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Abstract: We employ a deep learning method to deduce the bulk spacetime from bound-

ary optical conductivity. We apply the neural ordinary differential equation technique,

tailored for continuous functions such as the metric, to the typical class of holographic con-

densed matter models featuring broken translations: linear-axion models. We successfully

extract the bulk metric from the boundary holographic optical conductivity. Furthermore,

as an example for real material, we use experimental optical conductivity of UPd2Al3, a

representative of heavy fermion metals in strongly correlated electron systems, and con-

struct the corresponding bulk metric. To our knowledge, our work is the first illustration

of deep learning bulk spacetime from boundary holographic or experimental conductivity

data.
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1 Introduction

The holographic correspondence, also known as holography or anti-de Sitter/conformal

field theory (AdS/CFT) duality, is a valuable and widely used tool in various fields like

quantum chromodynamics (QCD), condensed matter physics, hydrodynamics, and quan-

tum information [1–10]. It is often employed in a more practical, bottom-up design, without

resorting to its string theory origins [11] or issues associated with quantum gravity [12].

Conversely, holography is utilized as an effective framework for gaining insights into phys-

ical scenarios where conventional methods may not be applicable. It proves particularly

advantageous, and sometimes even the sole viable approach, when dealing with systems

exhibiting strong coupling, situations governed by complex many-body collective behavior

lacking well-defined elementary excitations, and dissipative systems where formulating a

proper finite temperature field theory is far from straightforward.

Considering the practical and application perspective of holography, it becomes evi-

dent that the primary challenge lies in the endeavor to closely align this framework with

reality, thus ensuring its applicability to real-world physical situations. An illustrative and

quintessential example for this is the comparison between QCD, a non-abelian SU(3) gauge

theory, and N = 4 supersymmetric Yang-Mills theory in the large Nc limit.
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Condensed matter application and broken translations. In pursuit of practical

real-world applications, another active area within applied holography is its utilization in

the context of condensed matter systems: dubbed as AdS/CMT. In the condensed matter,

it is evident that Poincaré invariance is not maintained so that translations (and also

rotations) are broken, often in a spontaneous manner, which is referred to as “spontaneous”

symmetry breaking instrumental in understanding the principles behind the rigidity and

elasticity of matters.

Furthermore, as in numerous situations (e.g., electronic transport), translations can

also be broken “explicitly”, resulting in a finite DC conductivity (or a Drude peak in the

optical conductivity) observed in common metals. Also, there are a mixed situation (e.g.,

a pinned charge density waves [13]) in which translations are broken both explicitly and

spontaneously, known as the pseudo-spontaneous limit, leading to a finite frequency peak

in optical conductivity.

As such, in order to describe more realistic situations for the condensed matter appli-

cation in holography, it is imperative to develop and understand holographic gravitational

models that encompass the broken translational invariance in the dual boundary theory.

Historically, this endeavor initiated with the development of holographic models incorpo-

rating bulk fields featuring spatially dependent boundary conditions, which are designed

to resemble an explicit lattice source.

Depending on the approach employed to break translational symmetry, holographic

models can be categorized into two classes: homogeneous and inhomogeneous models. In

this context, homogeneous signifies that the spacetime geometry relies exclusively on the

holographic bulk direction, maintaining independence from field theory directions. Other-

wise, it comes to inhomogeneous models.

As an example, homogeneous model includes helical lattice [14–16], Q-lattice [17, 18],

and linear-axion model [19, 20]. In the case of the linear-axion model, translations are

broken by the massless scalar fields that vary linearly with spatial direction.1 On the other

hand, inhomogeneous models are constructed by imposing periodic boundary conditions

either on a scalar field (i.e., scalar lattice) or on the chemical potential (i.e., ionic lattice).

Pioneering contributions to this field can be found in [26–29].

It is worth noting that the homogeneous model can be technically more tractable than

inhomogeneous model in the sense that one needs to solve partial differential equations for

inhomogeneous models due to the periodic boundary conditions, while in the homogenous

cases, it is reduced to solving ordinary differential equations.

Holographic linear-axion models. Furthermore, homogeneous model, especially linear-

axion models [19, 20], can be more appealing because of a closed-form analytical background

as well as its feasibility to consider all types of translational symmetry breaking patterns

from explicit to spontaneous one.2 Its novel and celebrated results have been achieved from

1The linear-axion model is closely associated with the Stückelburg formulation of a massive gravity

theory [21–25].
2The symmetry breaking pattern in linear-axion model can be controlled by the change of the asymptotic

boundary condition of the scalar field [20]. See also [30, 31] for the similar analysis with the vector fields
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the analysis of conductivity [32–42] (such as anomalous properties of strange metals, high-

Tc superconductivity, and pinning structure in optical conductivity), fermionic spectral

functions [43], transport coefficients such as diffusivity [44–58]3, and collective dynamics of

strongly coupled phase.4 See also [88–94] for the quantum information applications. For a

comprehensive and recent review of the holographic axion model and an extensive list of

references, we refer [20].

Neural ordinary differential equations and holography. In essence, the linear-

axion model has served as a pivotal toy gravitational model for studying strongly coupled

condensed matter systems. In particular, it operates as a bottom-up approach where

gravitational bulk physics is implemented to depict the realistic dual boundary condensed

matter systems characterized by broken translational symmetries.

In this paper, employing state-of-the-art techniques in applied holography, specifically

neural ordinary differential equations (neural ODE) [95] in machine learning, we explore

the holographic condensed matter application in the opposite direction. In other words,

we investigate the geometric bulk physics (such as the bulk spacetime metric) from the

boundary condensed matter physics, i.e. it is the inverse problem. For this purpose,

we focus on the original linear-axion model [19] where translations are broken explicitly.

Subsequently, we utilize the optical conductivity as the input data from the dual boundary

perspective.

Machine learning stands out as a significant tool in both theoretical and experimental

physics, proving especially powerful in domains characterized by extensive data. However,

its application in the more formal realms of theoretical physics remains somewhat restricted.

When approaching the AdS/CFT study as a problem of determining the bulk theory

for a given boundary quantum field theory (QFT) data, it may take on the nature of data

science. This involves the extraction of features from the extensive QFT data to interpret

it as a higher-dimensional gravity theory. In addressing such problems, machine learning

proves instrumental in identifying the underlying bulk theory, i.e., an illustrative example

of reconstructing the bulk geometry.

Efficient holographic modeling has been demonstrated through the utilization of ma-

chine learning techniques [96–115]. Notably, a method proposed in [96, 97] treats the

“discretized” bulk geometry as a neural network, with the network weights representing

the bulk spacetime metric. The input data for the neural network comprises the infor-

mation from the boundary QFT. Consequently, deep learning (DL), a form of machine

learning employing deep neural networks, exhibits similarities with the AdS/CFT corre-

spondence and functions as a solver for the inverse problem. Upon completing the training

in order to study the dynamical electromagnetism in the dual boundary field theory.
3In recent years, a novel phenomenon known as pole-skipping has been employed to establish a connection

between thermal diffusive dynamics and quantum chaos [50, 53, 58–87]. Leveraging broken translations,

pole-skipping offers a new perspective for comprehending the diffusive process within the framework of

quantum chaos.
4The holographic axion model is not just a makeshift approach for breaking translational symmetries;

rather, its framework can be consistently related to and derived from the conventional effective field theory

formulations, as elaborated in recent review [41].
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of the neural network, the bulk metric can be determined. This is called the AdS/DL

correspondence.5 For those who want to understand the essential idea of AdS/DL in a

simpler setup easily, we refer to [107], where the idea was realized in a classical mechanics

problem.

In this manuscript, we investigate the scenario with finite momentum relaxation to

assess the efficacy of machine-learning holographic CMT in more realistic situations. Our

objective is to deduce the bulk spacetime metric from the electric optical conductivity data

in the presence of momentum relaxation (i.e., broken translations).

In particular, we choose the neural ODE [95] as the solver, which is a machine learning

technique suitable for “continuous” systems as opposed to discretized ones. It is note-

worthy that employing the neural ODE approach, which replaces the weights in neural

networks with continuous functions, not only enhances accuracy but also provides a natu-

ral interpretation of the metric function [105].

It is pertinent to highlight that the AdS/DL correspondence in this context has found

applications in holography. Examples include the magnetization curve of the strong cor-

related materials [96], a lattice QCD data of the chiral condensate at a finite tempera-

ture [98, 105], hadron spectra [104], the dilaton potential in improved holographic QCD

from the experimental data of the ρ meson spectrum [108, 112], the complex frequency-

dependent shear viscosity in strongly coupled systems in AdS/CMT [103], optical conduc-

tivity with the translation invariance [113], entanglement entorpy [110, 115].6

Note that the authors in [113] has also been deduced the bulk metric from conductivity

using deep learning in holography. However, in [113], the so called reduced conductivity,

which is not exclusively defined at the boundary but extends across the entire bulk dimen-

sion, was used. We plan to improve this work by using the conductivity strictly defined at

the boundary.

It is also worth noting that, in addition to the advantage of dealing with a realistic

setup involving finite momentum relaxation, our analysis introduces a further technical

development compared to the previously mentioned works. In prior research, attempts

were made to construct neural networks based on the bulk equations of motion of a single

field (scalar, metric tensor, or gauge field), namely, the decoupled equations. However, our

setup, which incorporates finite momentum relaxation and density, presents a challenge as

it involves coupled equations of motion encompassing all scalar, metric, and gauge fields.

This paper is organized as follows. In section 2, we provide a review of the linear-

axion model and holographic calculations pertaining to the electric optical conductivity.

In section 3, we introduce the neural ODE with a metric ansatz tailored to the holographic

CMT discussed in section 2. We utilize both the holographic conductivity and the real

5Machine learning techniques are commonly employed in holography through two main methodologies:

AdS/DL and EFL (Entanglement Feature Engineering). In the case of EFL, the approach entails the

construction of a tensor network within a given Anti-de Sitter space, and Boltzmann machines are employed

to optimize the tensor network [97, 100, 109].
6References of significance can also be found without holography. These references, for instance, inves-

tigate the methodologies of machine learning within condensed matter physics [116–119], as well as in the

fields of nuclear physics or QCD [120–122].
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materials as input data of neural ODE. Section 4 is devoted to conclusions.

2 Holographic model with momentum relaxation

In this section, we examine the standard holographic setup employed for investigating

electric optical conductivity in the presence of momentum relaxation. As outlined in the

introduction, we introduce the linear-axion model [19, 20] for this purpose. It is instructive

to note that the machine learning procedure in the following section is grounded in this

holographic setup, where the optical conductivity serves as the input data.

2.1 Linear-axion model: action and ansatz

The linear-axion model corresponds to a specific example of the Einstein-Maxwell-Axion

model. In 4-dimensional spacetime, its action is given as

S =

∫
d4x
√
−g

(
R+ 6− 1

4
FabF

ab − 1

2

2∑
I=1

(∂XI)
2

)
, (2.1)

where we have chosen units for simplicity where the gravitational constant 16πG = 1, and

the AdS length L = 1. The linear-axion model given by (2.1) incorporates two matter

fields: the U(1) gauge field A with its associated field strength F = dA and the axion

field X. From the perspective of the boundary field theory, the former serves to manifest

finite density or chemical potential, while the latter is introduced to break translational

invariance, leading to momentum relaxation.

The action (2.1) produces the equations of motion

Rab −
1

2
gab

(
R+ 6− 1

4
FabF

ab − 1

2

2∑
I=1

(∂XI)
2

)
− FacF

c
b −

1

2

2∑
I=1

∂aXI∂bXI = 0 ,

∇aFab = 0 , ∇a∇aXI = 0 ,

(2.2)

and for our analysis, we employ the following ansatz:

ds2 =
1

z2

[
−f(z)dt2 + dz2

f(z)
+ dx2 + dy2

]
,

A = µ (1− z) dt , X1 = αx , X2 = α y ,

(2.3)

where µ represents the chemical potential, and α denotes the strength of momentum relax-

ation. Here, for numerical convenience in machine learning, we fix the horizon at zH = 1

where f(zH) = 0.

Plugging (2.3) into the equations (2.2), one can find the analytic solution for the

emblackening factor f(z) as

f(z) = 1− α2

2
z2 −

(
1− α2

2
+
µ2

4

)
z3 +

µ2

4
z4 , (2.4)

then the Hawking temperature (TH) can be read as

TH := −f
′(1)

4π
=

12− 2α2 − µ2

16π
. (2.5)
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2.2 Holographic optical conductivity

Next, we review the holographic optical conductivity following the approach presented

in [19]. To do so, we consider the bulk fluctuations based on the background geometry

(2.3):

δgtx = e−iωthtx(z)

z2
, δAx = e−iωtax(z) , δX1 = e−iωtψx(z)

α
, (2.6)

where ω represents the frequency, and the remaining perturbations are decoupled.

In addition, it is also convenient [19] to introduce

ϕ(z) := −f(z)ψ
′
x(z)

ω z
. (2.7)

Subsequently, the equations of motion for the fluctuations can be expressed as

a′′x(z) +
f ′(z)

f(z)
a′x(z) +

(
ω2

f(z)2
− µ2z2

f(z)

)
ax(z)−

iµz

f(z)
ϕ(z) = 0 ,

ϕ′′(z) +
f ′(z)

f(z)
ϕ′(z) +

(
ω2

f(z)2
− α2

f(z)
− f ′(z)

zf(z)

)
ϕ(z) +

iα2µz

f(z)
ax(z) = 0 ,

(2.8)

where the equation of htx is algebraically eliminated. Note that using (2.8) one can find

that the fluctuations behave near AdS boundary (z → 0) as

ax = a(S)x + a(R)
x z + · · · , ϕ = ϕ(S) + ϕ(R)z + · · · , (2.9)

where the leading coefficients
(
a
(S)
x , ϕ(S)

)
denote the source, while the sub-leading coeffi-

cients
(
a
(R)
x , ϕ(R)

)
are interpreted as the response by the holographic dictionary.

The electric optical conductivity, denoted as σ(ω), can be derived using the Kubo

formula in terms of the boundary coefficients presented in (2.9):

σ(ω) =
1

iω
GR

jxjx(ω) =
1

iω

a
(R)
x

a
(S)
x

, (2.10)

where GR
jxjx is the current-current retarded Green’s function.

Four remarks regarding (2.10) are worth noting. First, the second equality in (2.10)

holds when a
(S)
x is the only non-zero source [19]. To do this, one needs to impose the

sourceless condition for the axion field, i.e., ϕ(S) = 0.

Second, when solving the fluctuation equations (2.8) and determining the coefficients

(2.9) for evaluating (2.10), all the fluctuations fields satisfy ingoing boundary conditions

at the horizon, as specified in (3.11).

Third, in the DC limit (ω → 0), the analytic expression of the electric conductivity

can be given by

σ(ω → 0) = 1 +
µ2

α2
, (2.11)
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where one can find that the DC conductivity has a finite value, consistent with the physics

of momentum dissipation (α ̸= 0).

Last but not least, to utilize the holographic electric conductivity (2.10) in the subse-

quent machine learning analysis, we consistently enforce the three aforementioned condi-

tions throughout this paper.

3 Machine learning and holographic CMT

The AdS/DL correspondence represents an emerging research direction within the field of

utilizing machine learning methodologies for addressing physics challenges [96, 98, 100, 103–

105, 108, 112, 113]. This paradigm introduces artificial intelligence for the elucidation of

the holographic bulk theory underlying quantum systems on the holographic boundary.

Enforcing the holographic principle [11, 123, 124] within a deep neural network frame-

work, the AdS/DL correspondence posits the neural network as the classical equation of

motion governing the evolution of fields on a discretized curved spacetime.7

The central tenet of this framework asserts that the emergent dimensionality of the

holographic bulk aligns with the depth dimension of the deep neural network, wherein the

neural network itself serves as the representation of the bulk spacetime. As the neural

network assimilates the holographic boundary data from its input layer, the optimization

of network weights in deeper layers ensues, culminating in an optimal holographic bulk

description corresponding to the given boundary data.

3.1 Neural ordinary differential equations

Nevertheless, the current progress has predominantly relied on discretizing the holographic

bulk dimension due to the inherent discreteness of neural network layers in a deep learning

approach. For instance, one can solve the ordinary differential equation (ODE) within the

Residual Network [125] by employing the Euler method.

It is informative to revisit the Euler method for later use, which is a numerical technique

for solving ODE with a given initial value. Let us consider a first-order ODE of the form:

∂zF = G (z,F) , (3.1)

where F is the unknown function of z, and G (z,F) is some known function. The goal is

to find an approximation to F(z) over a specific range of z.

The Euler method works by discretizing the z interval into small steps. Given an initial

value F1 at z1, the next value F2 is estimated using the formula:

F2 = F1 + h (F1; z1) ·∆z , h (Fn; zn) = ∂zF
∣∣
z=zn

, (3.2)

where ∆z is the step size, representing the width of each interval. The next value can also

be found straightforwardly as

F3 = F2 + h (F2; z2) ·∆z = F1 + [h (F1; z1) + h (F2; z2)] ·∆z , (3.3)

7Notably, advancements have been achieved through the neural network renormalization group (neural

RG) [99], which systematically constructs the precise holographic mapping between boundary and bulk

field theories at the partition function level.
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where we used (3.2) in the second equality. Then, the general recursive formula for the

Euler method can be expressed as

FN = F1 +
N−1∑
n=1

h (Fn; zn, θn) ·∆z . (3.4)

In this way, one can find the approximate numerical solution F(z). Note that we also

include θn in (3.4) to express a general hidden function in ODE, which will be the trainable

parameters in neural network. The utilization of the AdS/DL correspondence with the

Residual Network is explicated in the literature that includes [96, 98, 113] where the metric

function fn(zn) serves as the training variable.

It is also beneficial to note that the Euler method can accumulate errors, especially

over long intervals or when dealing with complicated ODEs. There are more sophisticated

numerical methods, such as the Runge-Kutta methods, which offer improved accuracy by

using multiple function evaluations within each step. In this paper, we employ the Runge-

Kutta method for this purpose: the detailed information can be found in Appendix A.

Neural ordinary differential equation. It is desirable to establish continuity in the

above approach, as a holographic spacetime is essentially smooth. To achieve this ob-

jective, leveraging the recent advancements in the neural ordinary differential equation

(neural ODE) approach becomes instrumental [95]. It is a continuous version of Residual

Network [126], namely

Ffin = Fini +

∫ zfin

zini

h (F ; z, θ) dz , h (F ; z, θ) = ∂zF . (3.5)

Notice that the subscript n in (3.4) has been omitted8, and the training variables, denoted

as θ, can be continuous, e.g., the metric function f(z).

Substituting the discrete neural network with the neural ODE not only provides a nat-

ural interpretation of the metric function in a continuous spacetime but also significantly

enhances accuracy. Notably, in prior studies, such as [96, 98, 103, 104], the discrete nature

of the neural network necessitated the introduction of regularization terms to reduce dis-

cretization artifacts and ensure the smoothness of network weights. This regularization is

unnecessary in the neural ODE approach.

The application of the AdS/DL correspondence with the neural ODE is elucidated

within the holographic QCD framework [105]. In this context, the neural ODE is employed

to find the emergence of bulk spacetime from provided data on the chiral condensate of

lattice QCD. In this manuscript, we utilize the neural ODE approach within the context

of holographic CMT, with the provided dataset consisting of optical electric conductivity.

The neural ODE within holographic CMT. Next, we provide the procedure for

employing the neural ODE within the framework of our holographic CMT investigation.

8Note that, when we implement numerical analysis, the integral is still a discrete sum. However, the

integral notation of (3.5) emphasizes that we no longer need to discretize for ourselves if we employ the

adaptive ODE solver. See also Appendix B.
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(1) (2) (3) (𝑁)

(1) (2) (3) (𝑁)

(1) (2)(1) (2)𝑓 𝑓

Network 1

𝑧 𝑓

Horizon Boundary
Forward propagation

Network 1

𝑧

Network 1

𝐴𝑥

𝛷

𝑧

𝐴𝑥

𝛷

𝐴𝑥

𝛷

… 𝐴𝑥

𝛷

σ

Figure 1. A schematic picture for the architecture of the neural networks. This comprises two

types of network: the initial one being the deep neural network mapping from z to f , identified

as “Network 1”. The second network is dedicated to the propagating bulk fields across N layers,

spanning from the horizon to the boundary.

To begin with, our bulk equations of motion (2.8) can be translated into the neural ODE

equation through the following identifications:

F(z) ←→ ax(z) and ϕ(z) , θ ←→ f(z) . (3.6)

Here, the bulk metric function f(z) is equivalent to the neural network weight θ. To ensure

a finite network depth, we incorporate the IR and UV cutoffs for the metic as

zini = 0.9999 , zfin = 0.0001. (3.7)

It is convenient to define the our bulk fields (ax, ϕ) as

Ax(z) := (1− z)−
iω

f ′(1)ax(z) , Φ(z) := (1− z)−
iω

f ′(1)ϕ(z) , (3.8)

to ensure the incoming boundary condition at the black hole horizon. Then, the original

bulk equations (2.8) can be rewritten

∂2zAx = ζ ∂zAx +

(
z2µ2

f
− ξ

)
Ax +

izµ

f
Φ ,

∂2zΦ = ζ ∂zΦ +

(
α2

f
+
f ′

zf
− ξ
)
Φ − izα2µ

f
Ax ,

(3.9)

where

ζ :=
2iω

(1− z)f ′(1)
− f ′(z)

f(z)
, ξ :=

ω2

f(z)2
+

iω

(1− z)f ′(1)

(
iω

(1− z)f ′(1)
− 1

1− z
− f ′(z)

f(z)

)
.

(3.10)

For the later use, let us also denote the first-order derivative of the redefined bulk fields

(3.8) at the horizon

∂zAx(1) = −
(
iωf ′′(1)

2f ′(1)2
+

iµ2

2ω − if ′(1)

)
Ax(1) +

µ

2ω − if ′(1)
Φ(1) ,

∂zΦ(1) = − α2µ

2ω − if ′(1)
Ax(1) −

(
iωf ′′(1)

2f ′(1)2
+
iα2 + if ′(1)

2ω − if ′(1)

)
Φ(1) ,

(3.11)
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where these are obtained from the horizon expansion of equations (3.9) together with the

horizon condition f(1) = 0. They are simply saying that the sub-leading coefficients of

the fields near the horizon, (∂zAx(1) , ∂zΦ(1)), are determined by the leading coefficients

(Ax(1) ,Φ(1)).

Now, we present the algorithm for solving equations (3.9) using the neural network. For

illustrative purposes, we initially employ the discretized version, i.e., (3.4) for explanatory

clarity. Our algorithm begins from the horizon and progresses towards the AdS boundary

across N layers. Hereafter, we adopt shorthand notation for the bulk fields assessed at

each bulk dimension z (or layers), denoted as
(
A

(1)
x , Φ(1)

)
for the fields evaluated at the

horizon and
(
A

(N)
x , Φ(N)

)
for those at the N -th layer.

The algorithm is given as follows.

1.
(
A

(1)
x , Φ(1)

)
, the fields at the 1st layer , are assigned by random values at the

specified parameters of interest: (ω, µ, α).

2. Find
(
∂zA

(1)
x , ∂zΦ

(1)
)
by solving (3.11). Also using the bulk equations (3.9), identify

the second-derivative values:
(
∂2zA

(1)
x , ∂2zΦ

(1)
)
.

3.
(
A

(2)
x , Φ(2)

)
, the fields at the 2nd layer , can be obtained by employing (3.4), i.e.,

A
(2)
x = A

(1)
x + ∂zA

(1)
x ∆z and Φ(2) = Φ(1) + ∂zΦ

(1)∆z.

4. Find
(
∂zA

(2)
x , ∂zΦ

(2)
)

by employing (3.4), i.e., ∂zA
(2)
x = ∂zA

(1)
x + ∂2zA

(1)
x ∆z and

∂zΦ
(2) = ∂zΦ

(1)+ ∂2zΦ
(1)∆z. Also find the second-derivative values,

(
∂2zA

(2)
x , ∂2zΦ

(2)
)
,

by (3.9).

5. For N ≥ 3, repeat step 3 and 4, in other words,

(
A

(N)
x , Φ(N)

)
, the fields at the N-th layer , can be obtained by employing (3.4),

i.e., A
(N)
x = A

(N−1)
x + ∂zA

(N−1)
x ∆z and Φ(N) = Φ(N−1) + ∂zΦ

(N−1)∆z.

Find
(
∂zA

(N)
x , ∂zΦ

(N)
)
by employing (3.4), i.e., ∂zA

(N)
x = ∂zA

(N−1)
x + ∂2zA

(N−1)
x ∆z

and ∂zΦ
(N) = ∂zΦ

(N−1) + ∂2zΦ
(N−1)∆z. Also find the second-derivative values,(

∂2zA
(N)
x , ∂2zΦ

(N)
)
, by (3.9).

The illustrative architecture depicting the algorithm outlined above is presented in Fig. 1.

Before continuing, one remark is in order. It is imperative to elucidate the procedure for

determining the bulk metric fn(zn) at each layer, denoted as f
(N)
n (zn), in the algorithm.

In the context of discrete neural networks, as discussed in works [96, 98, 103, 104], the

random values are introduced for f
(N)
n . Consequently, the metric function fn is generally

non-smooth and exhibits a seemingly random pattern. As a result, regularization terms

become imperative to mitigate discretization artifacts, ensuring the smoothness of network
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weights. It is noteworthy, however, that such regularization is unnecessary in the neural

ODE approach.

For the case of neural ODE, which represents the continuous counterpart of neural

network above, one can use a standard deep neural network where the primary objective

is to generate the smooth fn. In this framework, the layers situated between zn and fn
are systematically constructed through a linear transformation from zn to fn, leveraging

the provided weights and activation functions: see also footnote 13. Such the deep neural

network is denoted as “Network 1” in Fig. 1. For further elaboration, we refer the readers

to the comprehensive details in [96].

More on the neural ODE approach. In order to further promote the algorithm of

the discretized neural network (3.4) to its continuous counterpart (3.5), we employ the

PyTorch framework: an open-source machine learning library. The ODE solver utilized

for this purpose is torchdiffeq, a submodule embedded within PyTorch designed specifically

for neural ODE. In order to implement the neural ODE approach, one may also choose

the adaptive ode solver. For instance, the “DOPRI5” was employed for the holographic

QCD within the neural ODE approach [105]. However, we employ a fixed step ODE solver

rather than an adaptive one because it is faster and more practical. See Appendix B for

more details of our method and comparison between ODE solvers.

We proceed to elaborate on the methodology for training the bulk metric f(z) using

optical electric conductivity data. For numerical computations, we adopt the polynomial

metric ansatz as introduced in [105]:

f(z) =

4∑
i=0

bi z
i , (3.12)

where it involves five unknown coefficients to be trained, denoted as (b0, b1, b2, b3, b4).

However, the imposition of the asymptotic AdS boundary condition f(0) = 1 along with

the black hole condition f(1) = 0 leads to the constraints:

b0 = 1 , b4 = −(1 + b1 + b2 + b3) . (3.13)

It is noteworthy that the ansatz (3.12) in the bulk equations of motion (2.2), at the back-

ground level, results in the determination of b1 = 0. This can be also observed in the

analytic solution of the linear-axion model (2.4).9 Essentially, with the neural ODE, we

are left with training only two coefficients, namely b2 and b3.

Step 1. To initiate the algorithm, given (ω, µ, α), the random numbers (A
(1)
x , Φ(1)) are

set. Running the algorithm iteratively yields (A
(N)
x , Φ(N)), and ultimately, (Ax(z), Φ(z))

is obtained from the machine. The chosen number of layers in this paper is N = 10000.

Step 2. The machine, having obtained (Ax(z), Φ(z)), estimates the optical conductivity

σm(ω) using the Kubo formula (2.10) under the sourceless condition Φ(zfin) = 0 (or ϕ(S) =

9However, note that this may not hold true for the generalized holographic axion model [20].
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0 in (2.9)). The estimation is given by:

σm(ω) =
a′x(zfin)

iωax(zfin)
=

A′
x(zfin)

iωAx(zfin)
− 1

f ′(1)
. (3.14)

The machine then can compare the estimated σm(ω) with the holographic conductivity

σ(ω) at the same given (ω, µ, α).

Step 3. The primary goal is to obtain the bulk metric function f(z) or equivalently

(b2, b3) using optical conductivity data within the neural ODE method. For this purpose,

the loss function L is defined as:

L =
1

N

∑
ω

[
|σm(ω)− σ(ω)| + β|Φ(zfin)|

]
. (3.15)

Here, the first term in (3.15) measures the difference between the output data σm(ω) and

the true result σ(ω). The second term, the β “penalty” term, enforces the sourceless

condition for utilizing the Kubo formula (2.10). The β term plays a crucial role in shaping

the loss function and influencing the optimization process.

Utilizing the Adam optimization algorithm in the PyTorch machine learning frame-

work, the optimized parameters
(
A

(1)
x , Φ(1)

)
can be found when the local minimum of L is

attained by dialing β.10 Subsequently, the trained bulk metric f(z) is determined. In ideal

situations, L is expected to be precisely zero, nevertheless in our numerical experiments,

L ≈ 10−2 is achieved.

In the subsequent subsection, employing the outlined algorithm and procedure, we

determine the bulk metric f(z) for two distinct scenarios. The first scenario involves

utilizing boundary optical conductivity data derived from holography, while the second

scenario involves utilizing data obtained from experiments of real material (UPd2Al3).

As an improved development of our methodology, we also extend our approach to

ascertain the values of (µ, α) from the machine, given the specified boundary conductivity

data. In this context, the training parameters θ encompass both (µ, α) and f(z).

3.2 Emergent spacetime from holographic conductivity

Utilizing the aforementioned architecture, we conduct the training process. Specifically, we

demonstrate that the spacetime can emerge from the “holographic” electric conductivity

data up to ω = 2: See Fig. 2 for the provided data set (3.16).

Training f(z) at given (µ, α). In this paper, we use the following four data as the

specified parameters of interest

Data 1 : µ = 1.0 , α = 1.0 , Data 2 : µ = 0.5 , α = 1.0 ,

Data 3 : µ = 1.0 , α = 1.5 , Data 4 : µ = 0.5 , α = 0.5 .
(3.16)

10For our numerical deep learning computations, we set the sourceless condition as |Φ(zfin)| ≈ 10−4. For

this purpose, we find β = 1 in section 3.2 and β = 103 in section 3.3.
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Figure 2. Optical electric conductivity of linear-axion model in holography. The data set is given

in (3.16). The left panel is the real part, while the right one is the imaginary part.
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Figure 3. The metric function with the data set (3.16). The dotted lines illustrate the metric

corresponding to the linear-axion model (2.4), whereas the solid lines showcase the metric generated

through machine learning.

Within our specified setup (3.16), we have two training parameters (b2 and b3) for the

metric function f(z) in (3.12) then.

Our neural ODE approach successfully reveals the black hole geometry within the

holographic bulk spacetime, as illustrated in Fig. 3. This emergent metric by the machine

learning aligns with the geometry associated with the linear-axion model described by

(2.4). We also provide the obtained metric by the machine learning in Table. 1. Our

results suggest that the machine learning has the capability to precisely identify the metric

based on the holographic conductivity data.

Training f(z) and (µ, α). To check the robustness and consistency of our method,

we extend the training parameters: (b2, b3) → (b2, b3, µ, α). As an illustrative case, we

employ machine learning using the optical conductivity data from Data 4 in Fig. 2 without

explicitly defining (µ, α); for clarity, this case is denoted as Data 4*. In this scenario, the

training variables encompass (b2, b3, µ, α).

Our machine learning approach demonstrates not only successful reconstruction of the
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Metric function f(z)

Data 1 True f(z;µ, α) = 1− 0.5000 z2 − 0.7500 z3 + 0.2500 z4

Trained f(z; b2, b3) = 1− 0.5048 z2 − 0.7435 z3 + 0.2483 z4

Data 2 True f(z;µ, α) = 1− 0.5000 z2 − 0.5625 z3 + 0.0625 z4

Trained f(z; b2, b3) = 1− 0.5056 z2 − 0.5481 z3 + 0.0537 z4

Data 3 True f(z;µ, α) = 1− 1.1250 z2 − 0.1250 z3 + 0.2500 z4

Trained f(z; b2, b3) = 1− 1.1294 z2 − 0.1146 z3 + 0.2440 z4

Data 4 True f(z;µ, α) = 1− 0.1250 z2 − 0.9375 z3 + 0.0625 z4

Trained f(z; b2, b3) = 1− 0.1274 z2 − 0.9271 z3 + 0.0544 z4

Table 1. The metric function with the data set (3.16). Here, True stands for the result of linear-

axion model (2.4), while Trained denotes the result by machine learning.
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Figure 4. The result of Data 4* by the machine learning. The left figure displays the metric

function, the center figure is the conductivity, and the right figure illustrates the parameters (µ, α).

In each figure, the dashed line represents the machine learning data before training, while the solid

line corresponds to the data after training. The dotted line in each case is the true data derived

from the linear-axion model.

metric function of linear-axion model, but also the well trained parameters (µ, α) as

(b2, b3) =

{
(−0.1250, −0.9375) (True)

(−0.1487, −0.8627) (Trained) ,
(µ, α) =

{
(0.5000, 0.5000) (True)

(0.5004, 0.4997) (Trained) ,

(3.17)

which are closely align with Data 4 for (µ, α) in (3.16). See also Fig. 4. It is evident that

throughout the training procedure, both the metric function f(z) and the accompanying

parameters (µ, α) progressively converge toward the values derived from the linear-axion

model.

Furthermore, we conduct an analysis of the Mean Square Error (MSE) between the

metric functions of the linear-axion model and those obtained through machine learning,

as illustrated in Fig. 5. The MSE is calculated as follows
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Figure 5. Mean Square Errors of the metric functions (3.18) of all the data we have.

MSE =
1

N

∑
z

|f(z;µ, α)− f(z; b2, b3)|2 . (3.18)

The MSE values are consistently below 10−7 for all data when the machine is provided

with (µ, α): i.e., from Data 1 to Data 4. Even without (µ, α), Data 4*, the MSE remains

on the order of 10−6.

3.3 Emergent spacetime from real material: UPd2Al3

In the preceding subsection, we demonstrated the applicability of deep learning in elucidat-

ing the AdS black hole spacetime within the context of the linear-axion model. Specifically,

we illustrated that the spacetime can be emergent from the “holographic” electric conduc-

tivity data.

Finally, we investigate a scenario involving the utilization of “experimental” optical

electric conductivity data obtained from real materials. For this purpose, we employ the

data of UPd2Al3 [127], which serves as a representative example of heavy fermion metals

in strongly correlated electron systems.

It is noteworthy that the expression governing the low-frequency conductivity in the

Drude model is given by:

σ(ω) =
σ0

1− iωτ
, (3.19)

where σ0 is the DC conductivity, and τ denotes the relaxation time which is finite due to

momentum relaxation. In [127], the authors established that the optical conductivity of

the heavy fermion metal UPd2Al3 can be effectively described by the simple Drude model

(3.19) with the parameters

σ0 = 10.5µΩ−1m−1 , τ = 4.8× 10−11 s . (3.20)

We reproduce this conductivity plot in Fig. 6, where τ and ω in [127] are rescaled by 1011

and 10−11 respectively so that they become numbers of order unity. This rescaling does

not affect any physics but is useful for numerical analysis.11

11Specifically, for computational convenience in our deep learning process, we rescale ω as 4ω × 1011.
Note that ω is scaled by 109 in [127].
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Figure 6. Optical conductivity of UPd2Al3 taken from [127]. The fitting is plotted by the Drude

formula (3.19) with the specified parameters (3.20).

Before continuing, we address two remarks. Firstly, there exists a general ambiguity

regarding the relationship between physical quantities, such as “ω” utilized in holography,

and their counterparts ω in real word. This ambiguity exists in other parameters like tem-

perature, chemical potential, and conductivity. Most holographic models, including our

own, fall under the category of bottom-up models. In the absence of an exact top-down

construction with a well-defined field theory dual, the interpretation of the “frequency”

(“ω”) remains ambiguous. Therefore, it is advisable to establish a reference scale intrinsic

to the model. For instance, in the context of superconductors, the phase transition tem-

perature could be that case. Further insights into this discussion can be found in [36, 39].

Another way to fix this ambiguity is to determine the unknown bulk parameters such as the

AdS radius, the Newton constant, bulk interaction(coupling) parameters or the location of

horizon by the boundary experimental observables. In any case, for the purposes of our

discussion, this ambiguity does not play any role, because it can be easily adjusted at the

end by simple rescaling.

Secondly, as demonstrated in [128], the optical conductivity of the linear-axion model

converges to a finite value in the high-frequency limit, which is in contrast with the Drude

model (3.19). To avoid this issue, one may consider introducing additional contributions

into (3.19), such as those arising from pair production [128]. Such contributions can provide

more accurate DC results as well. However, for our current focus on the low-frequency

limit, where the original Drude formula (3.19) is expected to perform well, we set aside

these additional considerations.

Employing the neural ODE method as previously detailed in the subsection, we now in-

corporate the optical electric conductivity from Fig. 6 as the boundary data. In particular,

in order to assess the ability of the linear-axion model in characterizing the conductivity

of the real material, we employ our polynomial ansatz (3.12) to adhere the solution of the

linear-axion model (2.4). In other words, the coefficients (b2, b3) are the functions of (µ, α)

so we can train either (b2, b3) or (µ, α). After the deep-learning process,12 we obtain the

12For computational convenience, we train variables (µ, α) instead of (b2, b3).
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Figure 7. The emergent metric obtained by the machine learning from the data in Fig. 6.
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Figure 8. The left (right) figure displays real (imaginary) part of the conductivity. In each figure,

the dashed line represents the machine learning data before training, while the solid line corresponds

to the data after training. The dotted line in each case is the experimental conductivity of UPd2Al3,

i.e., Fig. 6.

emergent metric f(z) shown in Fig. 7, with the trained parameters

b2 = −0.1164 , b3 = −1.4556 , (3.21)

or equivalently

µ = 1.5127 , α = 0.4825 . (3.22)

To check how precisely this trained metric yields the conductivity, we made comparison

plots for conductivities in Fig. 8. The dashed lines are initial conductivities, which are very

far from experimental data, dotted ones. However, after training, with the metric in Fig.

7, the final conductivities (solid lines) are very close to the experimental data. To double-

check, we also confirmed that the conductivities of the linear-axion model with (3.22) agree

to the solid lines in Fig. 8. Our finding reveals that the deep learning with the boundary

data in Fig. 6 may effectively discern the metric for the linear-axion model.
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4 Conclusion

We have studied the bulk geometry of the AdS black hole within the framework of holo-

graphic condensed matter theory (CMT), with a focus on scenarios where translational

symmetry is broken. Utilizing the neural ordinary differential equation (ODE) [95] in the

AdS/DL correspondence, we derived the bulk metric from the boundary electric conductiv-

ity data as a function of frequency. Our analysis pertains to a simple toy model, belonging

to the typical class of holographic CMT models featuring broken translations: linear-axion

models [19, 20]. In essence, we examined a scenario with finite momentum relaxation to

assess the effectiveness of machine-learning holographic CMT in a more realistic context.

The pioneering work of the neural ODE within the AdS/DL correspondence is explored

in holographic QCD [105], where the chiral condensate of lattice QCD serves as the bound-

ary data. It is notable that our study can signify the first application of the holographic

CMT within the AdS/DL correspondence, employing the boundary optical conductivity

data in the context of neural ODE.

It is worth noting that, before our paper, the authors in [113] deduced the bulk metric

from conductivity using deep learning in holography. However, in that literature, the au-

thors used so called reduced conductivity, which is not exclusively defined at the boundary

but extends across the entire bulk dimension. In our research, there are three improvements

compared to [113]. Firstly, we adopted the neural ODE methodology. By choosing a con-

tinuous function as the training variable, we not only ensured effective application to ODEs

with complex structures but also enabled a more natural interpretation as the metric in

spacetime. Secondly, we utilized optical conductivity data defined strictly at the boundary.

By introducing regularity conditions into deep learning, we not only removed constraints

in exploring data at various parameter values but also enabled a physically meaningful in-

terpretation. Lastly, we considered the holographic model with the momentum relaxation,

i.e., the translational symmetry is broken.

In our work, we also improved the neural ODE framework used in previous studies

on applied AdS/DL correspondence. Our modifications allow for the construction of neu-

ral networks based on the fluctuation bulk equations of motion for various fields (scalar,

metric tensor, or gauge field), accounting for finite momentum relaxation and density.

Importantly, our approach involves solving coupled bulk equations, which represents an

enhancement over previous methods that focused on solving single bulk equations.

Following this, by stipulating that the “holographic” optical electric conductivity serves

as the boundary data for these coupled bulk equations of motion, we derived the metric

for linear-axion models. This marks the successful completion of the bulk reconstruction

program.

Additionally, we also explore a scenario involving the use of “experimental” optical

electric conductivity data from the real material UPd2Al3 [127], representative of heavy

fermion metals in strongly correlated electron systems. Employing the neural ODE method,

we ascertain the bulk geometry of the linear-axion model through analysis of experimental

data. However, our investigation holds validity within the small frequency regime, where

the Drude model (3.19) produces results consistent with the linear-axion model.
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In addition to employing more generalized gravitational models, such as the Q-lattice

model, there are several avenues of extending our investigation to identify the proper grav-

itational dual corresponding to experimental data. Firstly, one can pursue the exploration

involving a deep neural network13 without relying on the polynomial metric ansatz (3.12).

The current polynomial ansatz may be overly restrictive, assuming continuity even be-

fore using the deep neural network. It is not guaranteed that the dual metric function

aligns with such a polynomal form. Secondly, beyond investigating the “electric” optical

conductivity, additional transport properties like thermal conductivity or thermoelectric

conductivity can also be explored for the better training of the metric function. Addition-

ally, the effect of the external magnetic field, e.g. Nernst effect, can also be beneficial in

this context.

More on future research of holographic CMT within AdS/DL correspondence.

Given the demonstrated feasibility of data-driven holographic modeling in CMT, the sub-

sequent challenge is to identify a unified holographic CMT model capable of reproducing all

the pertinent physical observable. To accomplish this, a comparison of various inversely-

solved holographic models is essential, as briefly attempted with the toy model in this

paper. Given the extensive amount of data in CMT, accomplishing unification may neces-

sitate employing more sophisticated tools from the field of deep learning.

There can be several promising related directions worthy of future exploration. Un-

doubtedly, the primary and enduring motivation behind applying holography to condensed

matter physics has been the pursuit of a deeper understanding of the enigmatic nature

of the strange metal phase and its correlation with high-temperature superconductivity in

materials such as cuprates and other strongly correlated systems [129, 130].

In this context, it is still plausible to employ optical conductivity, as demonstrated

in this paper, to seek the corresponding holographic gravity model for cuprate materials.

Specifically, one can consider leveraging well-established experimental universal features

exhibited by such materials, such as the linear-in-temperature resistivity, Hall angle, and

Homes’ law in high-temperature superconductors.14 Also, one may endeavor to identify

the gravity model for superconductors (in the context of AdS/DL) and compare it with

the renowned holographic superconductors [131, 132].

Another intriguing avenue involving conductivity is the pursuit for the gravity dual

of charge density waves [13]. This direction involves investigating scenarios where transla-

tional symmetry is pseudo-spontaneously broken. Such a setup gives rise to pinning phe-

nomena, where impurities pin the phase Goldstone mode and produce a finite frequency

peak in optical conductivity. This phenomenon is believed to play a significant role in the

phase diagram of underdoped cuprate high-temperature superconductors.

13 A deep neural network is a sequence of continuous mappings and is described by y(S) = b(S−1) +

w(S−1)η
(
b(S−2) + w(S−2)η

(
· · · η

(
b(1) + w(1)y(1)

)))
where S is the number of layers, y(S) is an output

f(z) corresponding to an input y(1) = z, w(k) is a weight matrix for a linear mapping, b(k) is a bias vector

for a translation, and η is an activation function for a nonlinear mapping.
14For a recent discussion of the original AdS/CMT approach in this context, see [42].
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Furthermore, beyond optical conductivity, studying the fermionic spectral function

within the framework of AdS/DL is an interesting prospect. It is worth noting that the

fermionic spectral function holds considerable importance, particularly in strongly cou-

pled materials, and it can be directly probed experimentally through techniques such as

Angle Resolved Photoemission Spectroscopy or Scanning Tunneling Microscopy. Several

pioneering works [133–137] have explored the fermionic spectral function in the context of

holography, shedding light on potential non-Fermi liquid signatures.

We leave these topics for future investigation and plan to address them in the near

future.
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A 4th Order Runge Kutta Method

Runge-Kutta method is a numerical method for solving ordinary differential equations.

This method is developed by Carl Runge and Wilhelm Kutta. Most simple method to

solve an initial value problem is using Euler method.

yn+1 = yn +∆t · h(tn, yn) . (A.1)

Euler method has a single slope in each step. However, 4th order Runge-Kutta method

has four different slopes in each step as the following:

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4) , (A.2)
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where

k1 = h(tn, yn) ,

k2 = h(tn +
∆t

2
, yn +

∆t

2
· k1) ,

k3 = h(tn +
∆t

2
, yn +

∆t

2
· k2) ,

k4 = h(tn +∆t, yn +∆t · k3) .

(A.3)

For example, we consider yn = [A′
n, An] and tn = zn such that A′′

n is given by the linear

combination of A′
n and An. Then, the slope h(t, y) := ∂t y is given by

h(tn, yn) =
[
P (tn)A

′
n +Q(tn)An, A′

n

]
, (A.4)

where P (tn) and Q(tn) are the any coefficient functions to make A′′
n. That is a reason yn+1

gets the linear combination of A′
n and An by (A.2).

yn+1 =
[
P̃ (tn,∆t)A

′
n + Q̃(tn,∆t)An, R̃(tn,∆t)A

′
n + S̃(tn,∆t)An

]
. (A.5)

Note that the neural network consists of the linear combination with bias b and activation

function η.

yn+1 = η
(
Wnyn + bn

)
. (A.6)

If we fix b = 0 and specify η as identity function, then the weight is

Wn =

(
P̃ (tn,∆t) Q̃(tn,∆t)

R̃(tn,∆t) S̃(tn,∆t)

)
. (A.7)

Therefore, the final value yN is given by

yN =
N−1∏
n=0

Wn · y0 . (A.8)

B Adaptive ODE Solvers

ODE solvers are numerical methods used to find solutions to differential equations. The

numerical methods include Euler’s method, Runge-Kutta method, and various adaptive

solvers. The adaptive solvers adjust the size of steps automatically.15 For adaptive step

size, adaptive solvers typically employ two different numerical methods. In almost adaptive

solvers, two distinct numerical methods are a higher order Runge-Kutta method and a

lower order Runge-Kutta method.16 The solver calculates one step using both methods

and estimates an error ϵ between the results of both.

ϵ(n+1) = |y(n+1)
1 − y(n+1)

2 | , y
(n+1)
k = y(n) +Rk(z

(n), y(n)) ·∆z (k = 1, 2) , (B.1)

15Here, the step means the discretized coordinate on the propagation direction like z in Fig. 1.
16For example, DOPRI5 method, most preferred ODE solver, employs 4th order and 5th order Runge-

Kutta method.
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ODE Solver Cutoff 10 epochs 100 epochs b2

Our solver 10−4 3 min 37 min -0.5015

DOPRI5 10−4 17 hr 9 min - -

10−3 14 min 2 hr 6 min -0.5157

10−2 1 min 16 min -0.5847

Fehlberg2 10−4 23 min 3 hr 38 min -0.5024

10−3 2 min 20 min -0.5140

10−2 1 min 14 min -0.5856

Table 2. Comparison of learning results of Data 1 over time according to ODE solver. Epoch

refers to the number of times the training parameters have been updated. Cutoff means UV and

IR cutoffs, as shown in (3.7).

where the upper index nmeans the step and lower one separates two Runge-Kutta methods.

Rk is given by the order of Runge-Kutta method, like (A.2). If the error is larger than a

predefined tolerance, the solver reduces the step size ∆z. In contrary, if the error is smaller

than the tolerance, the solver increases it. By adopting this adaptive method, the ODE

solvers guarantee a certain level of accuracy, but they may come with significant computing

costs and time.

The adaptive solvers require significant time in our problem. Hence, we employ the

fixed step ODE solver instead of adaptive one. The step size ∆z is specified in each step

through the uniform distribution of z̃ = log(1 − z + δ) to make the step size smaller near

the horizon. We introduce a shift factor δ = 0.1 to ensure a minimum number of steps

near the AdS boundary.

For comparison with adaptive solvers, we simplify the machine learning problem com-

pared to section 3.2. The Hawking temperature can be obtained by (2.5). Note that the

Hawking temperature, derived from (3.12) to (3.13), can also be expressed as

TH = −f
′(1)

4π
=

4 + 2b2 + b3
4π

. (B.2)

In other words, within our specified setup (3.16), the metric has a single training parameter

denoted as b2, with b3 determined based on the TH . In this case, Data 1 is learned using

the three ODE solvers, separately. One is our fixed step solver with 2000 steps, while

the others are adaptive ODE solvers as known as DOPRI5 and Fehlberg2.17 As shown in

Table. 2, our solver demonstrated the highest accuracy with affordable computing costs.
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