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At time zero, there are N identical point particles in the line (1D) which are characterized by
their positions and velocities. Both values are given randomly and independently from each other,
with arbitrary probability densities. Each particle evolves at constant velocity until eventually
they meet. When this happens, a perfectly-plastic collision is produced, resulting in a new particle
composed by the sum of their masses and the weighted average velocity. The merged particles evolve
indistinguishably from the non-merged ones, i.e. they move at constant velocity until a new plastic
collision eventually happens. As in any open system, the particles are not confined to any region
or reservoir, so as time progresses, they go on to infinity. From this non-equilibrium process, the
number of (now, non-identical) final particles, X̃N , the distribution of masses of these final particles
and the kinetic energy loss from all plastic collisions, is studied. The principal findings shown in this
paper are outlined as follows: (1) A method has been developed to determine the number and mass
of the final particles based solely on the initial conditions, eliminating the need to evolve the particle
system. (2) A similar model of merging particles, with a universal number of final particles, Z̃N , is

introduced. (3) Strong evidence that X̃N is also universal and has the same law of probability as Z̃N

is presented. (4) An accurate approximation of the energy loss is presented. (5) Results for X̃N for
an explosive-like initial condition are analyzed.
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I. INTRODUCTION

The significance of non-equilibrium phenomena in
physics is profound, as they capture the intrinsic dy-
namic nature of complex systems beyond their states of
thermodynamic equilibrium. While it can be argued that
nearly every observable macroscopic event occurs under
non-equilibrium conditions, a comprehensive framework
for understanding such systems remains elusive. This
challenge arises from the diverse array of non-equilibrium
phenomena observed in nature. Examples include bi-
ological processes [1], chemical systems [2], turbulent
flows [3], quantum transport in novel materials [4], ve-
hicular movement on road networks [5, 6], competitive
dynamics among populations for resources [7], plasma
instabilities [8], among others. Most notably, these phe-
nomena manifest across scales, ranging from the micro-
scopic [9] to the cosmological [10].
In the study of non-equilibrium phenomena, complex

cases are typically addressed once simpler or more stream-
lined versions have been established. In this paper, a very
simple system is introduced: a gas consisting of identical
point particles in an open one-dimensional space under-
going perfectly plastic collisions. This particular system
does not seem to have been rigorously studied before. The
results presented here may provide insights into more com-
plex non-equilibrium processes. In particular, the study
of non-equilibrium interacting particle systems, such as
the one studied here, could provide valuable insights into
the intricate astrophysical phenomena that govern the
behavior of stars and galaxies on cosmic scales.

∗ dfraiman@udesa.edu.ar

II. THE 1D PARTICLE SYSTEM

At time zero, there are N identical point particles of
mass m in a one-dimensional space at different arbitrary
positions. Let the farthest left particle be considered
particle 1, the second be particle 2, and so on, with particle
N being the rightmost one, i.e. their initial positions verify
Y1 < Y2 < · · · < YN respectively. The reason behind the
positions distribution being flexible is that these values
will not be relevant on what will be studied in this paper.
Instead, velocity will take a protagonist role. The initial
velocities of each particle V1, V2, . . . , VN are considered
as a sequence of iid random variables with an absolute
continuous distribution function F (x) := P(V1 ≤ x). Each
particle evolves at constant a velocity, Yi(t) = Vit + Yi,
until it eventually collides with another particle. At this
point, a perfectly plastic collision is generated, resulting
in a single particle with a mass that is equal to the sum
of the individual particles’ masses, which moves at a
velocity determined by the conservation of momentum.
The conservation of momentum dictates that the velocity
of the particle after collision will be the weighted average
of the velocities of the particles prior to collision. The
merged particles evolve equally to the non-merged ones,
i.e. they move at constant velocity until a new plastic
collision eventually happens.

In this work, the asymptotic properties of the stochas-
tic process XN (t) = number of particles at time t, which
starts with XN (0) = N particles are studied. XN (t) con-

verges to a random variable X̃N that naturally depends
on N ,

XN (t) →
t→∞

X̃N .

On the left panel of Fig. 1, a realization of a system ofN =
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FIG. 1. Example of the evolution of a system of N = 10
particles suffering: perfectly plastic collisions, and non-physical
fusion collisions.

10 identical particles undergoing perfectly plastic collisions
is shown. The evolution of the number of particles, X10(t),
is shown below. For this random realization, after a
certain amount of time (the last collision time), henceforth
referred as t⋆, the system remains with 3 particles left. In
other words, for this realization, X̃10 = 3 (or equivalent
X10(t) = 3 for t ≥ t⋆). When looking at the mass of these
three resulting particles and comparing them to the mass
of the initial particles, one of them will have three times
the original value; another, six times the original value;
and the last one, the one which has not collided with any
particles, will have the same mass of the original particles.
In other words, the final masses are M = (1, 6, 3), with a
representation that considers the first coordinate of this
vector to be the particle in the farthest left position, the
second the next, and so on.

As one might expect, calculating X̃N and M in this
physical model is quite difficult. The strategy for tackling
this problem is to introduce a simpler, non-physical model,
solve it and apply what has been learned from the simpler
model to the physical model. The non-physical model
is very similar to the original model, except that when
a collision occurs, the velocity of the resulting merged
particle is given by the minimum velocity of the two
colliding particles before the collision.

With all of this in mind, this paper will be organized in
the following manner: the first section will be dedicated
to the non-physical model; the second section, to the phys-
ical model; and finally, a conclusion will be introduced,
summarizing and discussing the possible changes in the
results when a larger dimension is used instead of one
dimension (1D), as well as this study’s potential for a
better understanding of galaxy formation.

NON-PHYSICAL MODEL

A new non-physical collision process for the same initial
conditions is developed. In this artificial process, once two
particles collide, the resulting merged particle continues at
a velocity equal to the minimum velocity of both particles
involved in the collision. The only difference between this
new process and the original one is that there is no conser-
vation of momentum: the velocity of the merged particle,
which is the average velocity of the original particles prior
to the merger (see eq. 8), is replaced by the minimum
velocity of the colliding particles. In this new process,
considering ZN (t) = number of particles at time t, the

number of final particles, now called Z̃N is studied again.

ZN (t) →
t→∞

Z̃N .

A realization of this non-physical case is shown in the right
panel of Figure 1. The initial conditions are the same as
the ones in the physical system shown in the left panel.
Note that in this particular realization, Z̃10 is equal to 2
while X̃10 is equal to 3. The evolution of the total number
of particles, Z10(t), is shown in the lower right panel of Fig.
1. The pattern for calculating the number of final particles
can be easily found by looking at this figure. First, the
particle with the minimum velocity must be found, let us
say it is particle j. Then, particles 1, 2, . . . , j − 1 merge
with particle j, producing the leftmost final particle with
mass j. Then, the minimum velocity particle among the
remaining particles j + 1, j + 2, . . . , N is identified, let
us say it is particle k. Then, all the previous particles
in this group (j + 1, j + 2, . . . , k) are merged, producing
a second final particle of mass k − j. This process is
repeated until the minimum velocity particle is particle
N . For example, in the right panel of Fig. 1, it can
be observed that the minimum velocity corresponds to
particle number 7, which merges particles from 1 to 7, and
the second minimum velocity of the remaining particles
corresponds to particle 10, which merges particles from 8
to 10. So the final two particles (Z̃10 = 2) have masses of
7 and 3 respectively (defined as K = (7, 3) to differentiate
M from of the physical model). It is important to note
that this final configuration remains the same even if the
initial positions are modified, however, their order can
not be altered. I.e. Z̃10 = 2 and K = (7, 3) for the given
initial velocities and for any initial position satisfying
Y1 < Y2 < · · · < Y10. This will always be the case;
the positions will be irrelevant, and the only thing that
matters will be the order of the particle velocities, not
the specific values. That is why the behavior of Z̃10 and
their masses are described as universal or distribution-
free. Below are some definitions related to what has been
discussed and the main result.

Let ΘN = {1, 2, . . . , N} and ΩN = {ω1, ω2, . . . , ωN !} be
the set containing the N ! sequences that can be formed
with all N elements of ΘN without replacement, and

let Ξ = {ξ1, ξ2, . . . , ξm} with m =
∑N−1

i=1

(
N

N−i
)
(N − i)!

represent all the sequences of size smaller than N that can
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be formed with the elements of ΘN without replacement.
The space in which all these sequences live will be called
ΣN := ΩN ∪ Ξ. Frow this point forward, all sequences
will be considered vectors. Let s be an arbitrary sequence,
s[j] correspond to element j, and s[j : k] correspond to
the subsequence starting at coordinate j and ending at
element k of the sequence.

Definition 1 Let s ∈ ΣN be an arbitrary sequence, L(s)
be the length of the sequence, and the coordinate or place
of the sequence with the minimum value as

k̃(s) = {k ∈ ΘL(s) : s[k] = min(s)},

and k̃(∅) = L(∅) = 0.

Definition 2 Let Q be a function Q : ΣN ∪ ∅ → ΣN ∪ ∅,
called here cut function, that verifies

Q(s) =

{
s[(k̃(s) + 1) : L(s)] if L(s) > k̃(s)

∅ if L(s) = k̃(s).

The last condition includes Q(∅) = ∅.

Definition 3 Let Qk be the k-times composition of the
function Q, with Q0 the identity function. For example,
Q3(s) = Q(Q(Q(s))). The integer function Z̃N : ΩN →
ΘN is defined as

Z̃N (s) = min{k ∈ ΘN : Qk(s) = ∅}. (1)

Definition 4 For a given sequence, the cluster array K(s)
is defined as,

K(s) = (k̃(Q0(s)), k̃(Q1(s)), k̃(Q2(s)), . . . , k̃(QZ̃N (s)−1(s))).

Example 1 Let s = (5, 2, 8, 1, 9, 3, 10, 7, 4, 6), then:

k̃(s) = 4 Q1(s) = (9, 3, 10, 7, 4, 6),

k̃(Q1(s)) = 2 Q2(s) = (10, 7, 4, 6),

k̃(Q2(s)) = 3 Q3(s) = (6),

k̃(Q3(s)) = 1 Q4(s) = ∅,

Z̃10(s) = 4 and K(s) = (4, 2, 3, 1).

Most importantly in this section, if w is considered a
randomly chosen sequence ω ∈ ΩN , then

Z̃N = Z̃N (w).

Furthermore, the probability that Z̃N takes the value k
with k ∈ ΘN can be calculated as follows

P(Z̃N = k) =
|{ω ∈ ΩN : Z̃N (ω) = k}|

|ΩN |
. (2)

As shown in eq. 2, the problem of calculating the punctual
probability of Z̃N is a combinatorial one, e.g. P(Z̃N =
N) = 1

N ! . The following theorem is presented for the
general case.

Theorem 1 The punctual probability of Z̃N verify,

P(Z̃N = k) =
|c(N, k)|
N !

(3)

where c(n, k) is the Stirling number of the first kind given

by the equality a(a− 1) . . . (a−N + 1) =
N∑

k=0

c(N, k)ak.

For the proof, it is sufficient to note that if the initial
velocities of particles V1, V2, . . . , VN are considered to
be a time series. As usual, the index corresponding to
velocities represents discrete time. The problem of finding
the number of records of minimum value in this time
series has punctual probability given by eq. 3. In other
words, the problem of finding how many record values
(ocurrence of maximum/minimium value) there are in
a time series generated by a sequence of iid continuous
random variables, is equivalent to finding the number of
final particles in the non-physical model. Remarkably,
the problem of finding the number of record values can be
traced back to Renyi [12, 13]. See [14, 15] for additional
references on record analysis.
In addition, the mean and variance of Z̃N verify,

⟨Z̃N ⟩ =
N∑

k=1

1

k
, (4)

⟨Z̃2
N ⟩ − ⟨Z̃N ⟩2 =

N∑
k=1

1

k
−

N∑
k=1

1

k2
. (5)

Note that for large N , the previous equations are repre-
sented by

⟨Z̃N ⟩ ≈ ln(N) + γ, (6)

⟨Z̃2
N ⟩ − ⟨Z̃N ⟩2 ≈ ln(N) + γ − π2

6
, (7)

where γ is the Euler-Mascheroni constant.
It is important to stress that the results presented here

are universal (or distribution free). I.e. equation 3 (and
the ones derived from it, eqs.4-7) is valid for any initial
position distribution that preserves the order and for
any continuous initial velocity distribution. In essence,
the specific distribution of initial particle positions and
velocities does not matter. This behavior is expected in
systems approaching a critical phase transition [16, 17]
or in self-organized criticality systems [18–23].

In summary, for the non-physical system introduced in
this paper, the behaviour of the final number of particles
has been found to be universal. Punctual probability and
the first two moments have been explicitly calculated.
The next step in the following section is to study the
physical model through the eyes of the non-physical one.
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PHYSICAL MODEL

In this section, the originally proposed model in which
collisions preserve momentum is studied. This section
contains: (A) A procedure for calculating X̃N and M
without time evolution, (B) A study of the universal

behaviour of X̃N and its (C) distribution, mean and
variance, (D) A study of the distribution of the masses

of each of the X̃N final particles, (E) Simulations and an
accurate theoretical approximation for the mean fraction
of energy loss after all plastic collisions, and (F) Results
for an explosive initial condition.

A. A calculus for X̃N and M that does not require
time evolution

For any given initial condition, the way to compute the
number of final particles (X̃N ) and their masses has been
to evolve the particles system numerically and study the
results. However, is there a way to calculate these values
without evolving the system? The main purpose of this
section is to show that it is possible, and to present a
proposal for calculating both X̃N and the mass of each
final particle, without time evolution.

Before presenting the main result, two points must be
understood. First, note that in a system characterized by
perfectly plastic collisions, any fused particle (regardless
of the order in which the collisions occurred) will have a
velocity that is the average of the velocity of the particles
that formed it. Specifically, when two particles with
masses m1 and m2 and velocities V1 and V2 respectively
collide, the fused particle of mass m1 +m2 has a velocity
equal to V1p1 + V2(1 − p1) with p1 = m1/(m1 + m2).
Calculating the velocity of a system of particles of equal
masses, such as the one in this case, is surprising simple:
the final velocity of any fused particle, Ṽf , formed by Nf

identical particles, such as particles k, k+1, . . . , k+Nf−1,
ends up being the average velocity of the fused particles,

Ṽf = V k,k+Nf−1, (8)

where V i,j :=
1

j−i
∑

k∈Θi,j

Vk with Θi,j := {k ∈ N : i ≤ k ≤

j}.
Another important point to highlight is that, similarly

to the non-physical model, changing the initial positions of
each particle, while maintaining the order of the particles,
does not alter the number of final particles or their masses.
These position changes can only affect the sequence of
collisions and, trivially, the timing of the last collision, but
they do not affect the final configuration. The theorem
below expresses this fact.

Theorem 2 Let Y1 < Y2 < · · · < YN denote arbitrary
initial positions of the N particles, respectively, and let
V1, V2, . . . , VN represent their initial velocities. Then X̃N

and M do not depend on the initial positions.

See Appendix A for proof.
Before formally presenting the main result of this sec-

tion (Theorem 3), let’s first provide a simple explanation
of this result. The method for determining the final num-
ber of particles is analogous to that in the non-physical
model. Initially, a particle that meets a specific condi-
tion is identified. Subsequently, the identified particle is
merged with the particles with indices lower to it. From
the remaining particles, another particle that satisfies the
given condition must then be found. Again, this particle
is merged with the particles with indices lower to it. This
process continues iteratively until particle N satisfies the
condition. In the non-physical model, the condition is
based on the minimum velocity. However, in the physical
model, the condition is more intricate. Specifically, one
must find a particle, denoted as particle k, whose velocity
is such that the resulting merged particle has a velocity
lower to any merged particle containing particle k + 1.
Now, some definitions similar to those introduced for

the non-physical model and the main result are presented.
Consider the vector vi, representing the initial velocities
of the N particles, expressed as vi = (V1, V2, . . . , VN ). Let
v be a general vector obtained by potentially excluding
the first coordinates, such as v = (V4, V5, . . . , VN ). The
set of all real vectors v with lengths ranging from 1 to N
will be referred to as Λ := ∪

k∈ΘN

Rk.

Definition 5 Let m̃ : Λ → ΘN be the function

m̃(v) = min{j ∈ Θ1,L(v) : v1,j < vj+1,i ∀i ∈ Θj+1,L(v)+1}

where vi,j =
1

j−i

j∑
k=i

w[k], with

w[k] =

{
v[k] if k ∈ ΘL(v)

2max{v[1], v[2], . . . , v[L(v)]} if k = L(v) + 1.

By hypothesis, the velocities are independent continuous
random variables, so there will be no repeated values.
Therefore, m̃(v) adopts a unique value.

Definition 6 Let G be a function that verifies

G(v) =

{
v[(m̃(v) + 1) : L(v)] if L(v) > m̃(v)
∅ if L(v) = m̃(v).

The last condition includes G(∅) = ∅

Definition 7 Let Gk be the k-times composition of the
function G, with G0 the identity function. For example,
G3(v) = G(G(G(v))).

Theorem 3 It is possible to calculate the number of final
particles (X̃N ) and their individual masses (M) without
evolving the particle system (in time). Moreover, for a
given initial velocity vector vi = (V1, V2, . . . , VN ),

X̃N (vi) = min{k ∈ ΘN : Gk(vi) = ∅}, (9)

M(v) = (m̃(G0(vi)), m̃(G1(vi)), m̃(G2(vi)), . . . , m̃(GX̃N (vi)−1(vi))).
(10)
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See Appendix B for proof. Based on the previous The-
orem, a simple algorithm for computing X̃N and M is
presented in Appendix C. Finally, an example is presented.

Example 2 Let vi = (5.4, 2.1, 8.5, 1.3, 9.5, 3.7, 10.1, 7.7, 4.6, 6.5),
then:

m̃(vi) = 2 G1(vi) = (8.5, 1.3, 9.5, 3.7, 10.1, 7.7, 4.6, 6.5),
m̃(G1(vi)) = 2 G2(vi) = (9.5, 3.7, 10.1, 7.7, 4.6, 6.5),
m̃(G2(vi)) = 2 G3(vi) = (10.1, 7.7, 4.6, 6.5),
m̃(G3(vi)) = 4 G4(vi) = ∅,

X̃10(vi) = 4, and M(vi) = (2, 2, 2, 4). For completeness,
the velocities of the final particles are computed. The ve-
locity of the leftmost merged particle is (5.4+2.1)/2=3.75,
and the velocities of the remaining final particles (from
left to right) are 4.9, 6.6 and 7.225. Note the increasing
velocity behavior of the final particles.

B. Universal behavior of X̃N

In this section, evidence in favor of the distribution of
X̃N being universal is presented, meaning, it does not
depend on the distribution of the initial conditions. Pre-
viously, it has been shown that, as long as the order of
the particles is preserved, the initial positions are irrele-
vant in determining the final particle configuration (Thm.
2). Taking into account that the initial velocities of each
particle V1, V2, . . . , VN are considered a sequence of iid
random variables with an absolute continuous distribution
function F (x) := P (V1 ≤ x), the question now is: does

F (x) affect X̃N (and M)? Put in a different way, is X̃N

(and M) universal (or distribution-free)?

For the non-physical model, the universal behaviour
of the number of final particles (Z̃N ) depends only on
the order of the velocities and not on the specific values,
as explained before. Here in the physical model, it is
natural to assume that the specific values of the velocities
are relevant given the condition outlined in Theorem 2
concerning the average velocities of the fusing particles.
It is therefore not evident whether X̃N is universal, and
it would be natural to assume that it is not. However,
this paper argues that it is. In this section, evidence
supporting this statement is presented.

The probability law of X̃N and its dependence on F
is studied here. The cases of N = 2 and N = 3 will be
analyzed first. For N = 2, the final number of particles
(X̃2) is equal to 2 if and only if V1 < V2, and this occurs
with probability 1/2 for any continuous velocity distribu-

tion, P(X̃2 = 1) = P(X̃2 = 2) = 1/2. For N = 3, X̃3 = 3
if V1 < V2 < V3, and this occurs with probability 1/6 for,
once more, any continuous velocity distribution. In order
to obtain X̃3 = 2 the following condition must occur

((V1 > V2) ∩ V3 > V 1,2) ∪ ((V3 < V2) ∩ (V1 < V 2,3))

1 2 3 4
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FIG. 2. Histogram of X̃N for ten different velocity distribu-
tions, as well as for (A) N = 4, and (B) N = 5. Results based
on 100000 simulations. The bars from left to right correspond
to each of the ten distributions described in the text in the
same order as they appear in the text.

where V i,j = (Vi + Vj)/2. The probability of this event is

P(X3 = 2) =

∫ ∞
0

P(V1 > V2)P(V3 > x|V 1,2 = x)g(x)dx

+

∫ ∞
0

P(V3 < V2)P(V1 < x|V 2,3 = x)g(x)dx

=

∫ ∞
0

1

2
P(V3 > x)g(x)dx+

∫ ∞
0

1

2
P(V1 < x)g(x)dx

=

∫ ∞
0

1

2
(1− F (x))g(x)dx+

∫ ∞
0

1

2
F (x)g(x)dx

=

∫ ∞
0

1

2
g(x)dx =

1

2
.

where g(x) is the probability density of an average of two
independent random variables with distribution F . Note
that once again, P(X̃3 = 2) (and P(X̃3 = 3), P(X̃3 = 1) )
does not depend on F (x). So far, it has been shown that

X̃2 and X̃3 are universal (distribution-free).
The above calculations become complex even for N = 4.

Therefore, for N > 3 the results are based on simula-
tions considering different initial velocity distributions:
Uniform(-1,1), Normal(0,1), Normal(10,1), Exponen-
tial(1), Exponential(10), Gamma(1,10), Gamma(1,0.1),
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Beta(1,1), Beta(2,2), Beta( 12 ,
1
2 ). The behaviour of X̃N

is studied by simulations for N = 4, 5, 6, . . . , 10, 100, 1000
and the ten different distributions described above. A
comparison of X̃4 under the different velocity distribu-
tions can be found in Fig. II BA, and in panel B, the
results correspond to X̃5. Each color bar corresponds
to one of the distributions mentioned above. In both
cases, the distribution of the final number of particles is
not affected by the initial velocity distribution, as seen
in the figure. In fact, when the empirical distributions
are statistically compared by the Kolmogorov-Smirnov
test adapted to K (greater or equal 2) populations, the
equal distribution hypothesis is not rejected at the 0.05
significance level in any of the studied cases (see Appendix
D for details of the comparison). Based on the results
presented in this section, it is safe to assume that the
following conjecture is true.

Conjecture 1 For N ≥ 1, X̃N is universal.

Other universal laws for random variables have been dis-
covered over the years. Perhaps one of the most impor-
tant examples is the first-passage time to the origin for
a random walk in discrete time and continuous space. A
random walker starts at position zero at time zero, and

at time n its position is given by Sn =
n∑

k=1

ψk, where

ψ1, ψ2, . . . , ψn are iid continuous random variables with
absolute continuous symmetric distribution G. The prob-
ability law of the first passage time, τ = min{n : Sn < 0},
does not depend on G [24–26]. This result is known as
the Sparre-Andersen theorem.

C. Distribution, mean and variance of X̃N

The non-physical model, posses an explicit expression
for the probability law of Z̃N (eq. 3). At this point, it
has been conjectured that the random variable number
of final particles (X̃N ) is universal (distribution-free). In

order to fully understand X̃N , the best course of action
is to obtain an explicit expression for its distribution,
just like in the non-physical model. To approach this
objective, firstly, the mean and variance of X̃N will be
studied as a function of N , and finally the distribution
will be analyzed.

In Section B, explicit expressions for the point probabil-
ities have been obtained for the cases N = 2 and N = 3.
Consequently, all moments can be computed for these
cases. For N = 2, the expected value is ⟨X̃2⟩ = 1.5, and

the variance is 1/4; and for N = 3, ⟨X̃3⟩ = 11
6 and the

variance 17
36 . As previously mentioned, the calculations

become complex for N > 3. Therefore, for larger N ,
the results for the mean and variance will be based on
simulations using a Uniform(-1,1) distribution for both
positions and velocities. According to Conjecture 1, the
choice of using a Uniform distribution is irrelevant.
The following table shows an estimate of ⟨X̃N ⟩ from

numerical simulations, together with the exact values

of ⟨Z̃N ⟩ for comparison, for small values of N =
{2, 3, . . . , 10}. Note that for all values of N shown in

N ⟨Z̃N ⟩ ⟨X̃N ⟩
2 3

2
3
2

3 11
6

11
6

4 50
24
≈ 2.0833 2.0868 ± 0.0051

5 274
120
≈ 2.2833 2.2869 ± 0.0057

6 1764
720
≈ 2.4500 2.4507 ± 0.0062

7 13068
5040

≈ 2.5929 2.5911 ± 0.0066

8 109584
40320

≈ 2.7179 2.7158 ± 0.0069

9 1026576
362880

≈ 2.8290 2.8300 ± 0.0072

10 10628640
3628800

≈ 2.9290 2.9230 ± 0.0074

TABLE I. Exact ⟨Z̃N ⟩ and approximate ⟨X̃N ⟩ for different
values of N . The approximate data corresponds to the 95%
confidence interval obtained from 100000 simulations. For
N = 2 and 3, only exact results are presented.

Table 1, the confidence interval of ⟨X̃N ⟩ includes the

value ⟨Z̃N ⟩, i.e., no evidence of the two values being dif-
ferent was found. Panel A in Fig. 3 provides an estimate
of ⟨X̃N ⟩ for larger values of N . The results are plotted
on a logarithmic scale on the x-axis, and are based on
1000 random realizations for each value of N . The ex-
pected value shows a linear behavior on this scale, which
means that there is a logarithmic behavior. And more
importantly, the mean number of final particles in both
physical and non-physical models seems to take the same
value.

A similar behavior between the physical and the non-
physical model is observed for the variance. A table
showing that the variance of both X̃N and Z̃N is indis-
tinguishable is given in Appendix D, and simulations for
larger values of N are shown in Fig. 3 B. The variance of
X̃N has also a logarithm scaling.

Up until now, it has been shown that the first two
moments of X̃N and Z̃N appear to be the same. But
what about the remaining moments? If all the moments
are equal, this implies that the distributions of X̃N and
Z̃N are identical.

For N = 2 and 3, both X̃N and Z̃N distributions are
exactly the same. For N = 10000, Fig. 3C shows an esti-
mation of the cumulative distribution function of X̃10000,
along with the empirical cumulative distribution function
for Z̃10000 of the non-physical model. When comparing
these two distributions by the Kolmogorov-Smirnov (KS)
test, the null hypothesis of equal distribution is not re-
jected at 5%. To further this study, the distribution of
X̃N for different values of N is studied by running simu-
lations, and compared with the exact distribution of Z̃N

(known by Theorem 1) by the KS test. The results, as
shown in Appendix D, indicate that there is no evidence
to conclude that the distribution of X̃N is not the one
given by eq. 3. Based on the results presented in this
section, it is safe to assume that the following conjecture
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is true.

Conjecture 2 For N ≥ 1, X̃N and Z̃N have the same
distribution.

In other words, the conjecture says that the equations 3,
4, and 5 are valid when Z̃N is replaced by X̃N .

D. The mass distribution

In this section, the mass distribution will be studied
numerically. Naturally, one may be tempted to simulate
the process, obtain an M vector, place all the values that
compose this vector in a file, create different replicas,
read the file, and make a histogram. The problem with
doing this is the interpretation: to which random variable
does that potential histogram correspond? To answer
this question, let’s first note that M is a random vector
of random length. The fact that the length is not fixed
makes the interpretation more difficult and suggests that
the strategy outlined above may not be the best one.
Therefore, vectors of fixed length will be used and then
the combination of them will be performed.
First, the vector SN := M

N is defined: it considers the
sizes of the final particles as fractions of the original
number of particles. The mass fraction of a randomly
chosen final particle, conditioned on the final number
of particles being n (and assuming N initial particles)

will be denoted as S̃N,n. Figure 2 shows the empirical

results of P(S̃N,n > s) as a function of s for N = 10000

and n = [⟨X̃10000⟩] = 10 as the rounded value of the
expected value of the number of final particles considering
eq. 4 and Conjecture 2. Data of both physical and non-
physical processes is presented in a log-x scale. Note that
the physical and non-physical processes have the same
behavior once more. In the case n = [⟨X̃N ⟩], it mostly
behaves as

P(S̃N,n > s) ≈ aN ln(s), (11)

where aN is a constant that depends on N . For the case
under studied in Fig. 2, aN ≈ −0.1. Note that eq. 11 is
equivalent to say that the probability density function
(pdf) of S̃N,n is a power law function with power exponent
equal 1, i.e.

fS̃N,n
(s) ∝ 1

s
for

1

N
≤ s ≤ 1.

For values of n that differ from [⟨X̃N ⟩], this logarithmic
behavior changes principally at the highest (1) and lowest
values (1/N) of s, see Appendix F for details. Under-
standing the behavior for different values of n can be
difficult; out of the most common distributions, the most
consistent with the data shown in Fig. 4 is a Beta, how-
ever, confirmation that it is a discrete version of a Beta
distribution has not yet been achieved. The behavior of
P(S̃N > s) is similar to the conditional probability for

n = [⟨Z̃N ⟩], i.e. P(S̃N > s) ≈ P(S̃N,[⟨Z̃N ⟩] > s).
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FIG. 3. (A) Mean and (B) variance of the number of final par-
ticles as a function of the number of initial identical particles
for both processes. Lines corresponds to (A) ln(N) + γ and
(B) ln(N) + γ− π2/6. For each value of N one (ten) thousand
realizations were done for the physical (non-physical) system.
(C) The empirical probability distribution of the number of

final particles for N = 10000, P(̃[X]N < k). The estimation is
based on ten thousand realizations for both systems.



8

s

10−4 10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

   physical
   non−physical

aNlog(s)

P
(S~

 N
,n

 
>

s)

physical
non−physical

FIG. 4. P(S̃N,n > s) as a function of s for N = 10000 and
n = 10.

E. An accurate approximation of the kinetic energy
loss

In every plastic collision, a fraction of the total energy
of the colliding particles is lost. This fraction of energy
lost, L := (Einitial − Efinal)/Einitial, takes values in the
interval (0,1). It is equal to 1 in a frontal collision with
both having equal absolute momentum values, and is close
to 0 in a collision of particles with almost equal velocity.
Starting from N particles, the total number of collisions
is N− Z̃N , i.e. it is of the order of the number of particles.
Therefore, the amount of energy lost is expected to be
large, or, alternatively, a fraction of it is expected to be
large. Exactly how large, be it close to 1 or 0.1, is not
evident.

Figure 3A shows the average fraction of energy lost, ⟨L⟩,
as a function of system size (N). Given that the initial

energy is Einitial = 1/2
N∑
i=1

mV 2
i , then the final energy will

be Efinal =
X̃N∑
i=1

1/2miṼ
2
i , with

X̃N∑
i=1

mi = Nm, where Vi is

the initial velocity of the particle i, and Ṽi is the final ve-
locity of the (fused) particle i. This figure shows that very
similar results are obtained for both Uniform(-1,1) and
Normal(0,1) initial velocity distributions. Furthermore,
similar results are obtained for other symmetric distribu-
tions around zero, such as a double exponential (data not
shown). As seen in the figure, as N increases, the fraction
of energy loss increases as well, reaching high levels; over
99% of energy loss for relatively small systems of 1000
particles. Moreover, L→ 1 in the thermodynamic limit.
It is worth emphasizing that, as seen in the observations,
the results for small values of N (see N=10 in the graph)
are dependent on the velocity distribution. While the ve-

N
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FIG. 5. Proportion of the initial energy lost by total colli-
sions as a function of the initial number of identical particles,
considering random initial velocities with (A) symmetric dis-
tributions: Normal(µ = 0, σ = 1) and Uniform(-1,1); and (B)
asymmetric distributions: Normal(µ = {0.5, 1, 2}, σ = 1). The
theoretical values of L presented in eq. 12 are represented by
crosses in both graphs.

locity distribution had no impact on the previous sections’
results, the energy loss, conversely, is influenced by this
distribution. Understanding the energy loss calculation
requires knowledge of the velocity difference between col-
liding particles, denoted as ∆V := V1 − V2. It’s crucial
to acknowledge that the distribution of the subtraction
of two independent continuous random variables is not
universal; each velocity distribution F yields a distinct
distribution for ∆V . Therefore, the significance of the
velocity distribution is highlighted in this section.

In order to get a theoretical approximation regarding
the energy loss, an informal argument about the approxi-
mate behaviour of the particle system in a one dimensional
space will be explored. Initially, two “types of particles”
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will be considered: those composed of a large number of
merged particles, and those composed of a small number
of merged particles, henceforth called C (central) particles
and B (border) particles respectively. The large parti-
cles are those that grow linearly with N , and the small
particles are those that grow sublinearly. The particles
that don’t start at the ends (i.e. not in the first nor the
last positions) will eventually collide and form these large
particles (C particles) at the end of the process. On the
other hand, particles that start at the ends (or borders)
can “get away” and suffer very few collisions in this “es-
cape”, becoming B particles. The expected velocity of
B particles will be similar to the velocity of the original
particles since they will suffer few to no collisions. In
contrast, the velocity of C particles will be very different
from that of B particles. As explained in the previous
section, the velocity of fused particles (eq. 8) is an average
of independent velocities, meaning that for large fused
particles, the velocity will be very close to the initial ex-
pected velocity, ⟨V ⟩. In fact, the variance of the velocity
of a fused particle is equal to the variance of the initial
velocity divided by the number of particles that form the
fused particle (Nf ), i.e.

⟨Ṽ 2
f ⟩ = ⟨V ⟩2 + ⟨V 2⟩ − ⟨V ⟩2

Nf
.

The above expression will be used to calculate the velocity
of merged C particles. In the case of B particles, the
velocity will be approximated by using the initial velocity
of the original particle, as if no collision had occurred.
Furthermore, a fraction b of the final X̃N particles will
be considered as particles of type B, while the remainder
will be treated as merged C particles, with each of them
formed by (N − bX̃N )/((1 − b)X̃N ) particles. With all
the above considerations, the mean final energy can be
written as:

⟨Efinal⟩ ≈ 1/2b⟨X̃N ⟩m⟨V 2⟩

+ 1/2(N − b⟨X̃N ⟩)m

(
⟨V ⟩2 + (⟨V 2⟩ − ⟨V ⟩2)(1− b)⟨X̃N ⟩

N − b⟨X̃N ⟩

)
,

that does not depend on b. Therefore, the expected
fraction of kinetic energy lost,

⟨L⟩ ≈ 1− ⟨X̃N ⟩
N

− (1− ⟨X̃N ⟩
N

)
⟨V ⟩2

⟨V 2⟩
. (12)

Note that, for large N , this loss of energy ⟨L⟩ goes to
a value that depends only on the quotient of the first
two moments of the velocity distribution. In particular,
for velocity distributions with ⟨V ⟩ = 0 or ⟨V 2⟩ = ∞, all
kinetic energy is lost in the thermodynamic limit.
Panel B in Figure 3 is similar to panel A, but in this

case, results show for a Normal initial velocity distribution,
which is centered at various non-zero values (Normal(µ =
{0.5, 1, 2}, σ = 1)). Note that the asymptotic value of
⟨L⟩ is now different from 1. For example, the Normal

distribution centered at 1 with variance equal to 1 (and
⟨V 2⟩ = 2) goes to approximately 1/2.

In panels A and B of Fig. 3, the theoretical approxima-
tion given by eq. 12 is represented by crosses. Note that
the theoretical approximation for ⟨L⟩ is highly accurate
in the asymptotic case, and it is also accurate for small
values of N . Finally, to test the validity of the theoretical
approximation given by eq. 12, further velocity distribu-
tion were studied by simulating the particle systems for
a size of N = 10000. Table 2 shows the results obtained.
Note that the empirical results seem to coincide with the
theoretical values in each type of distributions studied,
validating our approximation.

Distribution Empirical Theoretical

Normal(0,1) 0.99901 ± 0.00003 0.99902

Beta(1,1) 0.24973 ± 0.00017 0.24976

Beta(2,2) 0.16661 ± 0.00012 0.16650

Beta( 1
2
, 1
2
) 0.33310 ± 0.00021 0.33301

Gamma(1,1) 0.49936 ± 0.00031 0.49951

Gamma(1,5) 0.49945 ± 0.00031 0.49951

Gamma(5,1) 0.16653 ± 0.00013 0.16650

TABLE II. Empirical and theoretical values of the expected
fraction of energy loss, ⟨L⟩, for different initial velocity dis-
tributions, and considering a system of N = 10000 initial
particles.

F. Explosion-like inital condition

In this section, the same system of particles will be
studied, however, a different initial condition will be ap-
plied. This initial condition will consider particles placed
at negative initial positions starting with negative ran-
dom velocities, and particles positioned at positive initial
positions starting with positive random velocities. This
initial condition mimics an explosion at the origin.

Since particles with positive initial positions will never
interact with particles on the left, the result of this partic-
ular “explosive” initial condition is the superposition of
the results of two independent systems: the right and the
left one. Therefore, the expected number of final particles

in this condition, ⟨X̃expl
N ⟩, is only 2⟨X̃N/2⟩ when half of

the particles are on each side. For a random distribution
of N particles on two sides,

⟨X̃expl
N ⟩ =

N∑
k=0

P(N← = k)(⟨X̃k⟩+ ⟨X̃N−k⟩),

where P(N← = k) is the probability that k of the N initial

particles start on the left, and ⟨X̃1⟩ = 1, and ⟨X̃0⟩ = 0.
Since both sides are independent, the variance is the sum
of the variances on each side. Moreover, the distribution

of X̃expl
N for a random sorting of N particles on each side
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of the axis will verify,

P(X̃exp
N = j) =

N∑
k=0

j∑
l=0

P(N← = k)P(X̃k = l)P(X̃N−k = j−l).

III. CONCLUSIONS

A 1D particle system of N identical point particles
undergoing perfectly plastic collisions has been studied.
The general goal was to understand the final configuration
of the merged particles for all values of N , not just for
the large N limit.

The strategy used for dealing with this complex model
has been to introduce a simpler new model, the aforemen-
tion non-physical model, solve it, and apply what was
learned from this simpler model to the physical model.
For the non-physical model, the distribution of the num-
ber of final particles, as well as its mean and variance,
were explicitly calculated. Using the non-physical model
as inspiration, a procedure for the physical model was sub-
sequently developed (Theorem 2), in which the number
of final particles and their masses could be determined
without the need to evolve the system. The resulting
procedure is significant, and holds particular value when
it comes to studying very large systems. Also, it has
been proven that the initial positions distribution does
not play any role in determining the final configuration
(Theorem 1). Furthermore, numerical evidence was pre-
sented to show that the initial velocity distribution has no
effect on the final configuration. This suggests that the
random variable number of final particles is universal or
distribution-free (Conjecture 1). This observed universal
behavior, although not yet formally proven, is notewor-
thy because it indicates that the system is robust and
consistent across different initial conditions. Moreover,
numerical evidence has been presented which support
that the distribution of the final number of particles and
their masses is the same in both physical and non-physical
models (Conjecture 2). This surprising result strongly
justifies the prior decision to introduce the non-physical
model as a tool to study the physical one.

Additionally, numerical evidence was provided to under-
stand the distribution of masses. Specifically, a randomly
selected final particle appears to have a fraction of the
total mass that follows a power-law distribution with a
probability density proportional to 1/s for 0 < s < 1
(eq. 11). Also shown is that the energy loss, unlike the
previous cases, is significantly influenced by the initial
velocity distribution. In this case, a highly accurate theo-
retical approximation for this loss is presented. Moreover,
for large N , this energy loss only depends on the first two
moments of the velocity distribution (eq.12). Finally, the
manner in which the number of final particles changes for
an explosive-like initial condition was analyzed.
Both conjectures merit further investigation. While

finding proof for Conjecture 2 would imply that Conjec-
ture 1 is true, there is something to be gained by testing

Conjecture 1 independently. Both conjectures look into
very different aspects of the model. The first one states
that the initial position and velocity distributions, which
describe the peculiarities at the beginning of the process,
appear to be irrelevant for the final configuration (Conjec-
ture 1). This is a great advantage, because if the evolution
of an N-body system depended on these distributions, it
would be extremely difficult to draw conclusions from a
single realization. To provide a rough analogy, if the initial
condition distributions were relevant, it would be almost
impossible to make any meaningful statements about the
Big Bang solely by observing the present universe.

On the other hand, Conjecture 2 will deal with an-
other type of universality, which is equally interesting
and more useful for understanding the model. This is the
universality is related to the results that models produce.
Models are known to be primarily defined by the way
in which their constituent elements interact. As of yet,
there is no general procedure for understanding whether
two models with different interactions will manifest the
same observables. In our case, while most realisations
under the same initial conditions yield different results
(see Fig. 1), surprisingly the results obtained for the
non-physical systems seems to be statistically equivalent
to the physical ones (Conjecture 2). This is similar to
the universality classes of systems in the critical regime
of phase transitions, where different models behave in
the same way [29, 30]. That rises the question: are there
“universality” classes for non-equilibrium systems like the
one presented in this paper? Results show that both,
the physical and the non-physical model, behave in the
same way. This is compatible with a vision that proposes
that both models belong to the same model category.
Admittedly, looking into the existence of classes of math-
ematical models for non-equilibrium systems lacking a
phase transition is not only fascinating, but it could also
aid in better understanding non-equilibrium systems.

Finally, it is likely there are some challenges in trying
to extend the system presented here to larger dimensions.
In this case, it is necessary to adapt the point particles
to finite particles in order for collisions to happen, and of
course, it is also necessary to modify the initial conditions.
It is expected for the number of final particles (X̃N )
to increase along with the dimension of space, as well
as for the distribution of the final particle masses to
change; however, the decreasing monotonic behavior of
the probability density is expected to stay the same. In
order to properly calculate these statistical properties it is
fundamental to consider a key variable: the percentage of
the total particles that can be considered at the surface (or
that belongs to the “propagating wavefront”). Typically,
superficial particles are likely to “escape”, experiencing
a small number of plastic collisions in the process. On
the other hand, those that start closer to the center will
suffer significantly more collisions, becoming considerably
massive particles. Therefore, as a general rule, for non-
explosive random initial conditions, one would say that
the final particles that are farther away from the starting
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point will most likely be lower-mass particles. Conversely,
under explosive initial conditions, the lower mass particles
are likely to be both those farther away and those closer
to the starting point.
The concepts and outcomes presented in this paper

might prove valuable in understanding and addressing
other non-equilibrium processes. To provide a rough anal-
ogy, the prior discussion on non-explosive initial condi-
tions shares some similarities with the Big Bang expansion.
As first order, it behaves like an out-of-equilibrium gas
of interacting elemental particles that finally produces
clusters of particles (atoms/stars/galaxies). In contrast,
the example involving explosive initial conditions can be
related to a supernova explosion [31] and the subsequent
formation of stars. In this analogy, plastic collisions are to
final particles what gravity is to galaxies: just like stars
and interstellar matter are bound together by gravity,
original particles are bound by plastic collisions.
In this context, it’s also worth mentioning that the

measurements and theoretical calculations of the mass
distribution of stars and galaxies remain an active area
of research [11, 32–35]. Some keywords include the Ini-
tial Mass Function [36] (IMF) and the Present-Day Mass
Function [32] (PDMF). The IMF describes the distribu-
tion of stellar masses at birth, while the PDMF describes
the current distribution of masses. The difference between
these two densities is that the stellar mass distribution
changes over time due to various dynamical phenomena,
such as the depletion of low-mass stars through evapo-
ration. An interesting observation is the predominance
of small stars over large ones in both distributions, since
the distribution is well-described mathematically by a
power-law, or at least a power-law tail provides a good fit.
This distribution is consistent with the mass distribution
identified in our simple model, although the power expo-
nent is different (here equal to 1, see eq. 11). However,
it is important to emphasise that this analogy is only
a rough approximation. Various physical phenomena in
both scenarios limit the applicability of this analogy 1.

Nevertheless, from a modeling perspective, the findings
outlined in this study could potentially pave the way for
the development of more intricate models that closely
mirror real-world scenarios.
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1 For example, galaxies are dynamic entities that will eventually
collapse under gravitational forces. Thus, the analogy may be
most relevant during a quasi-stationary period when galaxies
remain relatively unchanged before their eventual collapse. In the
context of star formation, the analogy also has limitations; the
mass of stars cannot exceed a certain limit, or they will collapse
into a black hole.

APPENDIX A: PROOF OF THEOREM 1

Suppose N particles start at positions Y1 < Y2 <
· · · < YN and with velocities V1, V2, . . . , VN respectively.
If we evolve the system, we end up with X̃N parti-
cles with masses M = (m1,m2, . . . ,mX̃N

) and final ve-

locities (vf1 , v
f
2 , . . . , v

f

X̃N
) with vfi = VMi−1+1,Mi

with

Mk =
k∑

i=1

mi for k ∈ ΘX̃N
and M0 = 0.

Final particles verify:

V 1,m1 < VM1+1,M2 < VM2+1,M3 < · · · < V X̃N−1,MX̃N

.

In addition, every fused final particle verifies:

VMk−1+1,Mk−1 > VMk,Mk
. (13)

Otherwise, the last particle composing the final particle
would not merge. The same argument holds for the last
j particles of the final particle, i.e.

VMk−1+1,Mk−j > VMk−j+1,Mk
. (14)

Now we study the system, but in this case, starting
from different positions Y new

1 < Y new
2 < · · · < Y new

N ,
while maintaining the previous velocities. By evolving
the system, we end up with X̃new

N particles with masses
Mnew = (mnew

1 ,mnew
2 , . . . ,mnew

X̃new
N

). The equation 14 is

again fulfilled, but Mk is replaced by Mnew
k :=

k∑
i=1

mnew
k ,

VMnew
k−1 +1,Mnew

k −j > VMnew
k −j+1,Mnew

k
. (15)

Suppose the final configurations are different, M ̸=
Mnew. Then there is a first final particle in which they are
certain to differ.Without loss of generality, let us assume
that this difference occurs in the first final particle, i.e.
m1 ̸= mnew

1 .
Suppose first that mnew

1 is less than m1, specifically
mnew

1 = m1− j with j ∈ Θm1−1. First note, the first final
particle will always have a lower velocity than the second
final particle,

V 1,mnew
1

< V mnew
1 +1,mnew

1 +mnew
2

. (16)

According to eq 15, we have that V mnew
1 +1,mnew

1 +mnew
2

<

V mnew
1 +1,mnew

1 +j . So by putting this information together,
it is verified:

V 1,mnew
1

< V mnew
1 +1,mnew

1 +j . (17)

However, if we look at the original system with the initial
positions Y1, Y2, . . . , YN , we see that due to the equa-
tion 14, it is fulfilled:

V 1,mnew
1

= V 1,m1−j > V m1−j+1,m1
= V mnew

1 +1,mnew
1 +j .

(18)
This last equation contradicts equation 17, so mnew

1 can-
not be less than m1.
In the same way, we can prove that mnew

1 cannot be
greater than m1. So M = Mnew.
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APPENDIX B: PROOF OF THEOREM 2

The process begins with a configuration of velocities
v1 := vi = (V1, V2, . . . , VN ) and a set of positions Y1 <
Y2 < · · · < YN . The specific positions determine the
sequence of collisions, dictating which ones occur initially
and which ones follow. Importantly, this sequence doesn’t
impact the total number of final particles or the mass of
each individual particle. For a detailed proof, refer to the
end of this appendix. Consequently, in the following, we
will assume a particular order in which the collisions take
place

For particles 1 and 2 to merge, one of two alternatives

must occur: (A) V1 > V2, or (B) V1 >
1

s−1

s∑
i=2

Vi for some

s > 2 (i.e. particle 1 collide with a fused particle that
contains particle 2). Alternatively, we can express that
particle 1 merges with other particles if s1(vi) ̸= ∅, where

s1(v1) = min{s ∈ Θ2,N : V1 > V 2,s},

with V j,k = 1
k−j

k∑
i=j

Vi. If s1(v1) ̸= ∅, particle 1 will collide

with a merged particle comprising particles 2, 3, . . . , s1(v1).
In essence, a merged particle will form, incorporating par-
ticles 1, 2, . . . , s1(v1), and it will have a velocity V 1,s1(v1).

Now, with this new merged particle, we work as we did
before, i.e. as if it were the original particle 1, which can
be merged when s2(v1) ̸= ∅, where

s2(v1) = min{s ∈ Θs1+1,N : V 1,s1 > V s1+1,s}.

If s2(v1) ̸= ∅, then the merged particle containing particles
1, 2, . . . , s1(v1) will inevitably collide with another merged
particle containing particles s1(v1)+1, 3, . . . , s2(v1). Con-
sequently, a new merged particle will form, incorporating
particles 1, 2, . . . , s2(v1), and it will possess a velocity of
V 1,s2(v1). This process repeats until, for the first time,

k̃(v1) = min{k ∈ ΘN : sk(v1) = ∅ or sk(v1) = N}.

with

sk(v1) = min{s ∈ Θsk−1(v1)+1,N : V s0(v1),sk−1(v1) > V sk−1(v1)+1,s},

and s0(v1) = 1.
Finally, the resulting final particle 1, the leftmost parti-

cle, will be a fusion of particles 1, 2, . . . , sk̃(v1)(v1). That

is, the mass will be sk̃(v1)(v1), and if its mass is smaller

than N , the following condition will be satisfied 2:

V 1,sk̃(v1)(v1)
< V sk̃(v1)(v1)+1,s ∀s ∈ Θsk̃(v1)+1,N . (19)

2 Eq. 18 is equivalent to:

V 1,s
k̃
(v1) < min{V s

k̃(v1)
(v1)+1,s

k̃(v1)
(v1)+1, . . . , V s

k̃(v1)
(v1)+1,N}

.

Fig. S1. Solution based on system evolution.

The general case of sk̃(v1)(v1), which includes the value

N , can be written as:

sk̃(v1)(v1) = m̃(v1)

= min{j ∈ Θ1,N : V 1,j < V j+1,i ∀i ∈ Θj+1,N+1}.
(20)

Where, to improve the notation, an additional “phan-
tom” particle is added; particle N + 1, positioned to
the right of particle N , with a velocity equal to 2Vmax :=
2max{V1, V2, . . . , VN}. The upper row in Fig. S1 presents
an illustration of a system involving N = 9 particles,
solved through the temporal evolution of the process. In
contrast, the analogous scenario without temporal evolu-
tion, as outlined by equation 20, is portrayed in the upper
row of Fig. S2.
Now that we understand the composition of the final

particle 1, comprising particles 1, 2, . . . , m̃(v1), we can
apply a similar analysis to the remaining particles on
the right-hand side. Assuming m̃(v1) < N , we initiate
the analysis starting with particle m̃(v1) + 1 to investi-
gate potential mergers with the remaining particles. Let
v2 = v1[m̃(v1)+ 1 : N ]=(Vm̃(v1)+1, Vm̃(v1)+2, . . . , VN ) and
define

s1(v2) = min{s ∈ Θm̃(v1)+2,N : Vm̃(v1)+1 > V m̃(v1)+2,s}.

If s1(v2) ̸= ∅, particle m̃(v1) + 1 will collide with a
merged particle comprising particles m̃(v1) + 2, m̃(v1) +
3, . . . , s1(v2). A merged particle will form, incorporating
particles m̃(v1)+1, m̃(v1)+2, . . . , s1(v2), and it will have
a velocity V m̃(v1)+1,s1(v2). This fused particle can fuse
with other particles if s2(v2) ̸= ∅, with

s2(v2) = min{s ∈ Θs1(v2)+2,N : V s1(v2)+1,s > V s1(v2)+2,s}.

If s2(v2) ̸= ∅, the fused particle will collide. The new fused
particle will be formed by particles s1(v1) + 1, s1(v1) +
2, . . . , s2(v2), and this process continues until the first
time that

k̃(v2) = min{k ∈ ΘN : sk(v2) = ∅ or sk(v2) = N}.

with

sk(v2) = min{s ∈ Θsk−1(v2)+1,N : V s0(v2),sk−1(v2) > V sk−1(v2)+1,s},

and s0(v2) = sk̃(v1)(v1) + 1. It is crucial to reemphasize

that, within the context of this proof,

sk̃(v2)(v2) = m̃(v2).
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Fig. S2. Solution without relying on system evolution.

This continues until we have j̃ final particles, with

j̃ = min{j ∈ ΘN :

j∑
h=1

k̃(vh) = N}.

Finally, evolving the system, we obtain the following final
masses:

M = (sk̃(v1)(v1), sk̃(v2)(v2), . . . , sk̃(vj̃)
(vj̃)),

= (m̃(v1), m̃(v2), . . . , m̃(vj̃)),

= (m̃(G0(vi)), m̃(G1(vi)), . . . , m̃(GX̃N (vi)−1(vi))).

To conclude the proof, note that the last equality is valid,
since vj = Gj−1(vi) and

X̃N (vi) = min{k ∈ ΘN : Gk(vi) = ∅},

= min{k ∈ ΘN :

k−1∑
j=0

m̃(Gj(vi)) = N}.

APPENDIX C: ALGORITHM FOR COMPUTING
X̃N AND M.

Based on Theorem 1, a simple algorithm for comput-
ing X̃N and M is presented here. For clarity, the main
algorithm is first introduced, followed by an auxiliary
function, m̃, which is then explicitly detailed as part of
the main algorithm.

v[1:N ] ← randomF(N); # N velocities
v[N+1] ← 2 · max(v); # auxilar velocity
vi ← v ;
w ← 0 ; s ←1
M ← vector();
while w < N do

M[s] ← m̃(vi) ;
w ← masses[s]+w ;
vi ← v[(w+1):length(v)] ;
s ← s+1 ;

end

X̃N ← length(M) ; # number of final particles

Algorithm 1: Main algorithm for X̃N and M.

APPENDIX D: EVIDENCE FOR CONJECTURE 1

It has been proved that X̃2 snf X̃3 do not depend
on the initial velocity distribution (they are univer-

m̃=function(v){
N ← length(v)-1
Θ ← 1 : N ; Λ ← 2 : (N + 1);
k ←1; i ← 1;
while Λ[i] < N+1 do

i ← 1;
Λ ← (Θ[k]+1):(N + 1) ;
vl ← mean(v[1:Θ[k]]);
vr ← mean(v[Λ[1]:Λ[i]]);
k ← k+1;
while vl<vr & Λ[i] <N+1 do

i ← i+1 ;
vr ← mean(v[Λ[1]:Λ[i]]);

end

end
mass ← k-1;
return(mass) }

Algorithm 2: m̃ function.

Fig. S3. Black points corresponds to Dmax as a function of
N . Segments represent the empirical quantiles 0.95 (black),
0.99 (red) and 0.999 (green) of the statistic Dnull

max under the
hypothesis of equal distribution. On the left the empirical
distribution of Dnull

max for N = 20. Similar histograms are
obtained for the different values N .

sal). The number of final particles, X̃N , was studied
numerically for different initial velocity distributions
F1 =Uniform(-1,1), F2 =Normal(0,1), F3 =Normal(10,1),
F4 =Exponential(1), F5 =Exponential(10),
F6 =Gamma(1,10), F7 =Gamma(1,0.1), F8 =Beta(1,1),
F9 =Beta(2,2), F10 =Beta( 12 ,

1
2 ).

Let Fn,k be the empirical distribution of X̃N when
the initial velocity distribution is Fk. Ir order to test
if X̃N has the same distribution across the ten studied
distributions, the KS statistic is computed between each
pair for comparison,

Dj,k = sup
x
|Fn,j(x)− Fn,k(x)|,

and then the maximum value is determined,

Dmax = max{D1,2, D1,3, . . . , D1,10, D2,3, D2,4 . . . , D2,10, . . . , D9,10}.

Fig. S3 shows the statistics Dmax for N = 4, 5, 6, . . . , 20
(black points). In addition to these data, empirical thresh-
old values for significance levels of 0.05, 0.01, and 0.001
are also shown (color segments). To determine these
threshold values, simulations were conducted under the
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null hypothesis of equal distribution for each value of
N . The distribution of Dmax under the null hypothesis
is depicted on the right for the case N = 20. Similar
histograms are obtained for different values of N .

To determine Dmax under the null hypothesis, denoted
from now on as Dnull

max, first

Dnull
j,k = sup

x
|Fnull

n,j (x)− Fnull
n,k (x)|,

is computed. Where Fnull
n,j (x) is the j estimation (or equiv-

alent a random realization j) of the empirical distribution

of X̃N when considering the initial velocity distribution

to follow the law Fnull(x) = 1
10

10∑
i=1

Fi(x). Finally,

Dnull
max = max{Dnull

1,2 , Dnull
1,3 , . . . , Dnull

1,10 , D
null
2,3 , . . . , Dnull

9,10},

is computed. For a given N , this procedure is repeated
100000 to obtain a good description of the Dnull

max distri-
bution. Finally the quantiles 0.05, 0.01, and 0.001 are
estimated and presented in the figure. As observed in Fig.
S3, none of the observed statistics Dmax exceed the 0.05
threshold, i.e. the Dmax values observed are compatible
with those generated by Dnull

max. In summary, the results
presented here, along with those shown in the main text,
strongly support Conjecture 1.

APPENDIX E: EVIDENCE FOR CONJECTURE 2.

In Table 1, evidence was presented supporting the claim
that the mean of X̃N is equal to that of Z̃N . Here, we
analyze the variance, providing evidence that both ran-
dom variables also share the same variance. The vari-
ance of Z̃N is given by eq. 5, while for the physical
model, the variance is estimated through simulations. In
this case, a 95% confidence interval is presented, given
by [(n − 1)s2/χ20.025, n− 1, (n − 1)s2/χ20.975, n− 1],
where χ2α, n− 1 corresponds to the α quantile of a Chi-
squared distribution with n− 1 degrees of freedom. Here,
n = 30000 was defined as the number of simulations.
The results are shown in the following table. As can be
observed, the variance of Z̃N falls within the confidence
interval for the variance of X̃N . This provides strong
evidence in favor of both random variables sharing the
same variance.

Now, evidence is presented to show that X̃N and Z̃N

share the same probability law, i.e., P(X̃N = k) =

P(Z̃N = k) for all k ∈ ΘN . For N = 2 and N = 3,
this has already been shown; for N greater than 3, re-
sults from simulations will be presented. To quantify the
similarity between both distributions, the empirical dis-
tribution of X̃N , denoted as Fn(x), will be compared to

the theoretical distribution of Z̃N , denoted as Ftheor(x),
using the Kolmogorov-Smirnov statistic. The theoretical
distribution, defined as Ftheor(x) = P(Z̃N ≤ x), can be

N Var(Z̃N ) Var(X̃N )

2 1
4

1
4

3 17
36

17
36

4 95
144
≈ 0.6597 [0.6532, 0.6745]

5 274
120
≈ 0.8197 [0.8044, 0.8306]

6 3451
3600
≈ 0.9586 [0.9437, 0.9744]

7 190699
176400

≈ 1.0811 [1.0555, 1.0898]

8 839971
705600

≈ 1.1904 [1.1580, 1.1956]

9 8186939
6350400

≈ 1.2892 [1.2807, 1.3223]

10 350339
254016

≈ 1.3792 [1.3589, 1.4031]

Table S1. Exact Var(Z̃N ) and approximate Var(X̃N ) for
different values of N . The approximate data correspond to
the 95% confidence interval obtained from n=30000
simulations. For N = 2 and 3 only exact results are presented.

Fig. S4. Black points corresponds to D as a function of N .
Segments represent the empirical quantiles 0.95 (black), 0.99
(red) and 0.999 (green) of the statistic D under the
hypothesis of equal distribution. On the left the empirical
distribution of Dnull for N = 20. Similar histograms are
obtained for the different values N .

computed exactly from (Thm. 1) as

Ftheor(x) =

x∑
k=1

|c(N, k)|
N !

,

where c(n, k) is the Stirling number of the first kind. To
obtain Fn(x), simulations for the physical model were
performed, considering a random Uniform(-1,1) initial
velocity distribution (which is not relevant according to
Conjecture 1), and applying the algorithm from Appendix
C. Then finally, the KS statistic is computed,

D = sup
x
|Fn(x)− Ftheor(x)|.

The statistic D is calculated for N = 4, 5, . . . , 20. This
data is represented as black points in Fig. S4. Alongside
these values, threshold values for significance levels of
0.0 5, 0.01, and 0.001 are also shown. To obtain these
threshold values, new simulations under the null hypoth-
esis of equal distribution were conducted for each value
of N . This is necessary because the Kolmogorov-Smirnov
statistic (D) is not distribution-free for discrete variables
in our case. The significance levels, represented as color
segments, are shown for each value of N , considering
100,000 replicates. The distribution of D under the null
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Fig. S4. P(S̃N,n > s) as a function of s for N = 10000 and
n = {6, 10, 14}.

hypothesis is depicted on the right for the case N = 20.
Similar histograms are obtained for different values of
N . Note that almost all statistics have values smaller
than the 0.05 threshold; only two have values close to
this threshold. Under the null hypothesis, this is what is
expected since 16 tests are performed. If corrections for
multiple comparisons are applied, none of the statistics
exceed the corrected threshold.

APPENDIX F: CONDITIONAL MASS
DISTRIBUTION.

In the main text the distribution of the size of random
Fig. S3 shows P(S̃N,n > s) as a function of s for N =
10000 and three values of n.
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