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Abstract

Achieving effective and seamless human-robot collaboration requires two key outcomes: enhanced team performance and
fostering a positive human perception of both the robot and the collaboration. This paper investigates the capability
of the proposed task planning framework to realize these objectives by integrating human leading/following preference
and performance into its task allocation and scheduling processes. We designed a collaborative scenario wherein the
robot autonomously collaborates with participants. The outcomes of the user study indicate that the proactive task
planning framework successfully attains the aforementioned goals. We also explore the impact of participants’ leadership
and followership styles on their collaboration. The results reveal intriguing relationships between these factors, which
warrant further investigation in future studies.

Keywords: Human-robot collaboration, adaptive task planning, leading/following preference, team performance,
perception of the robot and collaboration

1. Introduction

Human-robot collaboration provides the opportunity to
exploit the complementary abilities of both the human and
the robot in a collaborative task. This collaboration has
the potential to offset human limitations, given that robots
can be advantageous in tasks that require extensive rep-
etitions, precision, speed, physical strength, and stamina.
Collaborative robots (cobots) could also reduce the hu-
man’s cognitive load of tasks. Simultaneously, it leverages
human superior abilities to adapt and handle uncertain-
ties and address situations that demand human-level in-
telligence and decision making. However, the presence of
humans requires thoughtful consideration of human agents
in the development of computational architectures for ef-
fective human-robot collaboration [1, 2].

The robots’ ability to adapt to their human teammates
is essential for fostering effective, fluent, and long-term col-
laboration, establishing a high level of human perception
of the robot and the collaboration. Human preference,
a focus of many recent studies, is a crucial factor that
needs consideration in the design of human-robot collab-
orative scenarios and in robot programming [3–8]. This
paper specifically delves into human preferences within
the context of task planning and scheduling. The robot’s
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high computational and planning abilities enable it to as-
sume a more significant and leading role in task plan-
ning. However, there are situations (e.g., changing envi-
ronments) that necessitate human agents taking the lead-
ing role and planning for the team. Additionally, differ-
ent human teammates may have varying leading/following
preferences.

Although the robot needs to consider the human agent’s
leading/following preference and adapt its planning ac-
cordingly, the human agent’s performance may conflict
with the overall team goal and deteriorate team perfor-
mance. This necessitates the robot programming to take
into account the human agent’s preference and perfor-
mance simultaneously. However, the human agent’s pref-
erence and performance are not fixed and may change dur-
ing the collaboration. For example, for a challenging part
of a task, a human agent with the overall leading prefer-
ence would choose to follow the robot, or a human with
an overall high performance may get tired at some point
and thus start showing poor performance.

The core concept of the proposed framework for involv-
ing the human agent’s preference and performance in the
robot’s programming is enabling the robot to adjust its
planning according to the human agent’s preference as long
as the human preference does not lead to a substantial de-
viation from the optimal plan or compromise performance
beyond acceptable limits.

Within this framework, unlike the majority of conven-
tional approaches that concentrate strictly on one extreme
of the leading/following spectrum, our approach can cover
the entire range, allowing for roles ranging from solely act-
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Figure 1: Encompassing the entire spectrum of leading/following
roles based on human preference and performance

ing as a leader to exclusively functioning as a follower.
Fig. 1 encapsulates the main idea of this framework. This
framework requires the robot to continually monitor and,
in real-time, gradually adapt to human preferences and
performance and their changes. This framework is ver-
satile and applicable to various collaborative scenarios,
but our research specifically delves into the realms of task
selection/allocation and scheduling within the context of
human-robot collaboration.
The fundamental idea of task allocation problems is de-

termining the assignments of tasks to agents in order to
achieve the overall team objectives and optimize the team
payoff. This has been studied extensively in both multi-
robot teams [9] and Human-Robot Collaboration (HRC),
which incorporates human and robot agents [10–14]. Our
work centers on proactive task allocation for single-human,
single-robot teams, in which the human and robot have the
agency to select their own tasks and assign tasks to each
other. This agency makes the problem different from of-
fline and reactive task allocation problems, where tasks
are assigned by a single agent or an external entity like a
manager or central controller.
The human agent’s agency in selecting and assigning

tasks allows them to implement and adjust their lead-
ing/following preference. Subsequently, the robot must
continually gauge the current human preference and per-
formance in real-time, throughout the collaboration, and
adapt its planning accordingly through two-step task plan-
ning at each decision step: first, task allocation, and sec-
ond, task scheduling. The robot can reassume the leading
role in instances of poor human performance, even if the
human agent prefers to lead the team. The concept of the
robot reassuming the leading role in favor of team perfor-
mance is rooted in the results of our earlier user study [15],
encompassing three distinct robot strategies: prioritizing
the human, prioritizing the robot, and striking a balance
between both. This prior work revealed that maintaining a
balanced strategy can enhance team performance without
compromising the human perception of the collaboration.
Previously, we evaluated the suggested framework by

applying it in a simulation environment with a simplified
human decision-making model [16], and later on a physical
robot, where the experimenter enacted various scenarios

of how a human agent might behave [17]. These scenarios
spanned from a high leading preference to a high following
preference, as well as from high performance to low per-
formance. This work extends those studies by testing the
framework’s effectiveness and applicability by recruiting
participants to collaborate with the robot in a collabora-
tive scenario, similar to the kitting task. We evaluated
participants’ perceptions of the robot and collaboration as
well as their collaboration strategy and decisions, which
are the focus of this paper. We also analyzed the robot’s
estimations and actions, which are not within the scope
of this paper and will be discussed in a future publication
[18].

Given the intended objective of the proposed framework
– to empower the robot to adapt in real-time to the pref-
erences and performance of its human teammate while re-
taining a high level of human perception regarding the
robot and collaboration – we explore the following research
questions:

• RQ1: To what extent can this collaboration and task
planning framework improve the team performance
and reduce participants’ perceived task load?

• RQ2: How do the human agent’s perception of the
robot and the collaboration affect their collaboration
with the robot and vice versa?

• RQ3: How does this collaboration influence the hu-
man agent’s actions and decision making?

• RQ4: How does the task difficulty influence partici-
pants’ actions and collaboration with the robot?

1.1. Contributions

The contributions of this work are fivefold:

1. Designing a collaborative scenario involving au-
tonomous pick-and-place tasks for the robot and im-
plementing the task planning framework along with
the estimation methods for its execution.

2. Implementing dynamic task updates that take into
account task states, errors made by the human agent,
and subsequent actions by the robot to rectify them.

3. Studying the effects of the cobot’s adaptive task plan-
ning on participants’ perception of the robot and col-
laboration, e.g., trust, satisfaction, robot intelligence,
and workload.

4. Studying the effect of participants’ preferences and
attitude toward collaboration on the cobot’s planning.

5. Studying the effects of participants’ leadership style
and initial trust in the robot on their collaboration
and perception of the robot.
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The earlier versions of this research were presented in
conference papers [16, 17]. The paper [16] primarily con-
centrated on designing a robot planning framework and
evaluating it in a simulation environment for a collabo-
rative scenario with a simplified human decision-making
model. In contrast, this paper extends the framework’s
application to a more complex collaborative scenario, in-
volving an actual robot collaborating with recruited par-
ticipants.

The paper [17] introduced the initial implementation
of this collaborative scenario and assessed the planning
framework’s performance across four different scenarios
conducted by the experimenter. However, the present pa-
per unveils the final version of the experimental setup and
planning framework. Importantly, it evaluates the effec-
tiveness of the proposed planning framework for an au-
tonomous robot collaborating individually with each of the
48 participants, involving 144 tasks. This paper focuses on
evaluating participants’ perceptions of the robot, collabo-
ration, and tasks, examining their effects on actions and
collaboration. In [18], the companion paper explores the
framework’s ability to enable the robot to plan and adapt
to participants’ preferences and performance.

1.2. Organization

The rest of this paper is organized as follows: Section
2 reviews pertinent literature and formulates the research
hypotheses. Section 3 outlines the study’s design, includ-
ing both objective and subjective measures, and details
the study procedure. In Section 4, we analyze the re-
sults, emphasizing participants’ perceptions of the robot,
tasks, collaboration, and how these factors impact their
decision-making. Section 5 concludes the paper, address-
ing its limitations and suggesting potential avenues for fu-
ture research.

2. Related Work & Hypotheses Development

In this section, we initially conduct a review of perti-
nent literature focusing on the human perception of the
robot and collaboration in terms of trust, self-confidence,
reliance, workload, and helpfulness, and develop our hy-
potheses based on the insights gathered from the existing
literature. We also explore the human perception of con-
trol and the various leadership and followership styles. Fi-
nally, we briefly review research concerning task allocation
and adaptation to human preferences.

2.1. Human Perception of the Robot & Collaboration

2.1.1. Trust, self-confidence & reliance

Trust is a complex and multifaceted concept in human-
human, human-technology, and, more specifically, in
human-robot interactions (HRI). In the context of human-
robot trust, contributing factors to human trust in robots
can be categorized into three groups [19]:

• robot characteristics and design elements (e.g., relia-
bility)

• human characteristics (e.g., self-confidence)

• environmental-based factors (e.g., task type)

Typically, in most human-robot collaboration scenarios, it
is assumed that humans and robots share common goals,
and the human agent is aware of the collaborative context
of the interaction, which prevents them from considering
deception. Sanders et al. mainly focussed on the first
two factors mentioned above and investigated how robot
performance can affect human trust [19].

Trust is a topic of interest in HRI and HRC and has
been studied extensively. Some studies focus on how to
model and measure trust and its dynamics and, in some
cases, use it to adjust the robot’s behavior or improve hu-
man distrust or overtrust in the robot [20–22]. Some other
studies, including this work, use objective or subjective
measures (e.g., questionnaires) to evaluate human trust in
robots before or after interaction with a robot. In our
study, using Muir’s questionnaire [23], we are interested
in how participants’ trust in the robot evolves during the
sessions over time. We established the following hypothe-
sis:

Hypothesis 1. Participants’ trust in the cobot, measured
before and during the collaborative tasks, will improve dur-
ing the session while engaged in different tasks.

Furthermore, it is well-established that human reliance
on an autonomous system is intertwined with their trust
in the system and their self-confidence (i.e., their trust in
their capability to accomplish the task). Studying and
modeling this relationship has been the focus of many
studies. The “confidence vs. trust” hypothesis is a well-
accepted concept and serves as the foundation for many
proposed models [24]. It posits that a person’s reliance
on an automation system is influenced by their relative
trust, which refers to the difference between their trust in
automation and their self-confidence. That is, if an indi-
vidual’s trust in the system exceeds their self-confidence,
they will opt to rely on the system; otherwise, they will
rely on their own decisions and perform the task on their
own. However, the findings of some studies contradict this
hypothesis [25]. Authors in [26] have proposed a computa-
tional model that outperforms the “confidence vs. trust”
hypothesis and signifies nuances between trust and self-
confidence in predicting human reliance on automation.
It is also noteworthy that in a collaborative scenario, the
goal is to exploit human and robot abilities, not bypassing
one by employing the other. This point may affect the full
applicability of the “confidence vs. trust” hypothesis in
human-robot collaboration.

We state the associated hypotheses as follows:

Hypothesis 2. Participants’ self-confidence will improve
during the collaborative tasks over time as they collaborate
more with the robot.
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Hypothesis 3. For demanding tasks, participants will
trust the robot more than their own ability and will rely
more on the robot.

2.1.2. Perceived workload

There are three fundamental measures for evaluating
workload: physiological (e.g., heart rate), performance-
based (e.g., time), and perceptual (subjective) [27]. In
this paper, we consider performance-based and subjective
measures. For the subjective measure, we use NASA-TLX,
which defines the workload experience in terms of “the
sources of loading imposed by different tasks” [28]. We
seek to study whether collaborating with the robot could
positively influence participants’ perceived workload, and
derive the following hypothesis.

Hypothesis 4. Participants will experience less work-
load when collaborating with the cobot rather than work-
ing alone, in terms of the dimensions in the NASA task
load index, including: (a) mental demand (b) physical de-
mand (c) performance (d) effort (e) frustration. However,
the temporal demand will be similar, as there was no time
limit for completing tasks.

2.1.3. Helpfulness

In [29] helpfulness is defined as “with honest intentions,
trying to play a positive role with the task at hand.” In this
study, we aim to investigate how humans’ expected help-
fulness from the robot, which refers to their anticipation of
the robot’s ability to provide effective assistance and en-
hance their overall collaboration experience, changes dur-
ing collaboration.

Hypothesis 5. Participants’ expected helpfulness of the
cobot will increase over time as they collaborate more with
the cobot.

2.2. Being in or under control

While the concept of human-robot collaboration is a
relatively recent subject, conversations surrounding hu-
man automation have endured for many years. The rise
of automation systems has gradually replaced humans in
various control systems, spanning from simple to com-
plex setups. Different factors, such as human preferences
and abilities, contribute to determining the autonomy lev-
els within these systems. These can range from manual
control, where human operators actively control, to semi-
autonomous and fully autonomous systems, where human
operators take on more supervisory roles.

The perception of control by humans is a crucial area of
research, spanning psychology, social science, and human-
computer (robot) interaction. In the late 1990s, re-
searchers like Ben Shneiderman and Pattie Maes discussed
human-computer interface design from distinct perspec-
tives [30]. Shneiderman emphasized user-controlled direct
manipulation, highlighting human control, predictability,

and responsibility. In contrast, Maes advocated for long-
lived, proactive, adaptive software agents aligned with in-
dividual user habits and preferences. As of 2023, tradi-
tional input methods like mice and keyboards remain pre-
dominant in computer interactions, suggesting a prevailing
inclination toward control and responsibility when dealing
with technology. This underscores the significance of de-
sign decisions and user anticipations when incorporating
intelligent technologies into human-computer interactions,
comprehending users’ behaviors and control perceptions
across diverse levels of agency and automation [31, 32].
When extending this concept to human-robot interaction,
a preference is likely for humans to maintain control over
robots.

The perception of robot control by humans can be influ-
enced by factors such as human characteristics (e.g., locus
of control), trust in robots, self-confidence, task difficulty,
task criticality, human abilities, and robot abilities. In
[33], the issue of being in control or under control was ex-
plored in a warehouse order-picking scenario, demonstrat-
ing higher productivity when the human leads and higher
accuracy when the human follows the robot. In contrast,
“6 River Systems,” a company actively engaged in col-
laborative robotics and warehouse automation, contends
that allowing associates to have self-control over their pace
leads to decreased speed and efficiency [34]. In response
to this challenge, they introduced a “system-directed pick-
ing” approach, wherein robots guide associates through
their tasks. Another instance in the industrial domain is
the robotic picking assistive system implemented in DHL
warehouses, where the robot (supplied by Locus Robotics)
directs human workers to the designated pickup location
[35]. In these setups, the robot is tasked with planning the
tasks, while humans are responsible for picking up items.

The findings from a user study in [36], in the con-
text of household robots, indicate that participants felt a
greater sense of control when the robot operated in semi-
autonomous mode. They observed a preference among
participants for reduced autonomy in critical tasks (e.g.,
scheduling a doctor’s appointment). However, when it
came to a robot transporting biscuits from the kitchen to
the living room, contrary to their stated preference, par-
ticipants leaned towards the autonomous robot condition.
The authors attributed this shift to the perceived advan-
tages of higher physical efficiency and comfort. It is worth
noting that a more comprehensive analysis could be con-
ducted if the researchers had also inquired about partici-
pants’ trust in the robot’s ability to move autonomously.
Furthermore, in [37], the authors explore the connection
between automation accuracy and task controllability, em-
phasizing its impact on user satisfaction. Their study un-
derscores a strong preference for manual control over au-
tomation.

In our work, based on the collaborative and cognitively
critical nature of the scenario designed (due to a penalty
for mistakes), we state the next hypothesis of this paper
as follows:
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Hypothesis 6. Overall, participants will prefer retaining
control over the robot and being a leader.

2.3. Leadership and Followership Styles

In this study, we are also interested in how participants’
general leadership and followership styles can affect their
collaboration with the robot.

Leadership Styles [38]: Leadership style pertains to
the behaviors leaders demonstrate, encompassing their ac-
tions and interactions with followers. It characterizes what
leaders do and how they behave in diverse circumstances.
Leadership style is intricately linked to an individual’s
personal leadership philosophy. Commonly observed lead-
ership styles include [38]: 1. authoritarian 2. democratic
3. laissez-faire

• authoritarian – involves leaders perceiving followers
as requiring guidance, exerting control over their ac-
tions, emphasizing their authority, and directing com-
munication toward themselves rather than fostering
interaction among group members.

• democratic – involves leaders treating followers as
capable collaborators, guiding rather than control-
ling, and fostering open, inclusive, and supportive
communication. They prioritize helping followers
achieve personal goals, provide guidance and sug-
gestions without giving orders, and deliver objective
praise and criticism in evaluations.

• laissez-faire – is a “hands-off, let it ride” approach
where leaders exert minimal influence and allow fol-
lowers significant freedom. They do not control or
guide followers’ activities and may serve as temporary
or interim leaders with limited authority or interest in
shaping outcomes.

It is worth emphasizing that these leadership styles are
not separate categories; they can overlap and coexist.
Leaders may adopt different styles depending on the situa-
tion. For example, a leader might exhibit an authoritarian
approach in certain contexts while adopting a democratic
style in others, showcasing a dynamic and multifaceted
approach to leadership. Northouse proposed the leader-
ship style questionnaire in [38] to identify participants’
tendency to the leadership styles.

Followership Styles [39]: Kelley (1992) identified five
followership styles based on two key dimensions: engage-
ment and critical thinking. Engagement ranges from pas-
sive (waiting for direction) to active (taking the initiative
to participate actively in tasks). Critical thinking spans
from dependent uncritical thinking (accepting information
without evaluation or questioning) to independent critical
thinking (evaluating and analyzing information to iden-
tify consequences and opportunities). These five follower
styles are:

• Exemplary: These followers show high levels of ac-
tive engagement and independent critical thinking,

thinking for themselves, challenging leaders construc-
tively, proactively supporting organizational goals,
and assuming extra responsibilities.

• Conformist: Conformist followers are actively en-
gaged but tend to be dependent uncritical thinkers,
enthusiastically following leader directions without
questioning.

• Passive: Passive followers have low levels of both
engagement and critical thinking, needing constant
direction and acting only after explicit instructions.

• Alienated: Alienated followers are independent crit-
ical thinkers but lack engagement. They are skeptical,
may oppose management, and see themselves as mav-
ericks.

• Pragmatist: Pragmatists have a moderate level of
both engagement and critical thinking. They are un-
committed, prefer maintaining the status quo, and
act cautiously, often waiting for crises before taking
action.

Kelley also designed the questionnaire in [39] for determin-
ing followership styles.

2.4. Task Allocation and Adaptation

Task allocation in human-robot collaboration (HRC) in-
volves assigning tasks to human and robot agents. This
can be done offline, relying on prior knowledge to deter-
mine task suitability[40, 41], or online, allowing for flexi-
bility and reactive replanning. Online approaches can ei-
ther find an optimal allocation [11, 12, 42, 43] or involve
human decisions, with robot agents adapting to human
preferences[44–46]. Incorporating human preferences into
task allocation is essential for enhancing the perception of
the robot, but this aspect is often underestimated. While
some studies have considered human preferences during
offline planning, there is a need to assess how these pref-
erences align with overall team performance.

In the context of task allocation, the ability of a robot to
adapt is crucial for effective collaboration with humans[45,
47, 48]. Robot adaptation can be achieved through pre-
programmed instruction by experts[49, 50], equipping the
robot with autonomous learning and adaptation capabil-
ities, or a combination of both[51, 52]. Learning-based
adaptation approaches employ supervised or unsupervised
learning algorithms [46, 53–55], with the latter involving
identifying factors influencing human behavior and enrich-
ing behavioral data through expert annotation or surveys.
The former enables robots to learn human preferences
by observing their behavior without explicit annotation.
However, many of these studies focus on the robot adapt-
ing to the human agent, while mutual adaptation, where
both human and robot adjust based on each other’s actions
and feedback, is also vital in human-robot collaboration,
as demonstrated in the studies exploring mutual adapta-
tion between humans and robots[56].
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Figure 2: The layout of the experimental setup includes two ta-
bles in the robot’s workspace and two tables in the human agent’s
workspace. Additionally, there is a shared area (table) where both
agents need to arrange blocks. A conveyor belt beside human table
1 allows the robot to return a block to the human agent.

3. User Study: Setup & Methodology

This section provides a detailed explanation of the setup,
procedure, and measures employed in this user study.

3.1. User Study Setup

The design of the user study scenario was shaped by
three pivotal factors:

1. Collaboration: Focusing on the planning abilities
of both the human and robot, leveraging the cobot’s
advanced memory capacity and the human’s quicker
pace,

2. Leading/following preference: Providing the hu-
man with the agency to adjust their role as either a
leader or follower,

3. Performance: Introducing a task that imposes cog-
nitive load and penalizes errors.

3.1.1. Setup

In this specific scenario, the human-cobot team collab-
orates to select colored blocks from tables, adhering to a
specified pattern, and arrange them within a shared area
with a predetermined number of spots. The designed col-
laborative scenario closely resembles the kitting task. The
kitting task involves selecting and collecting all necessary
components for assembling a particular final product [57].
Additional details about the setup are visualized in Fig.2
and Fig.3. The camera’s placement in Fig.2 corresponds
to the viewpoint from which the image in Fig.3 was cap-
tured. Additionally, Fig. 2 illustrates the location of the
experimenter’s table, indicating the position of both the
computer and the experimenter themselves.

• Shared area: The shared area consists of four
workspaces denoted as W1 through W4, each con-
taining five numbered spots. As per the predeter-
mined pattern, participants are required to place a
colored block in each spot, adhering to the numerical
sequence, noted on each spot, from one to five.

Figure 3: An overview of the experimental setting captured from the
perspective of the camera illustrated in Fig. 2

• Patterns: The pattern depicted in Fig. 4a is an ex-
ample of the pattern the human-robot team must fol-
low when filling the spots. Participants are initially
presented with a pattern (Patterns A1, B1, C1, and
D1) on a sheet of paper, and they are given 45 seconds
for memorization. Subsequently, they return the pat-
tern, and the experimenter provides them with a par-
tially known version of the same pattern (Patterns A2,
B2, C2, and D2), again on a sheet of paper, in which
certain spots contain two colors, one of which is cor-
rect. This second pattern acts as a cue to recall the
initial pattern, and participants are allowed to retain
it until the end of the task. Patterns A2, B2, C2, and
D2 feature 9, 12, 6, and 9 partially known spots, re-
spectively, introducing varying levels of difficulty and
cognitive load. The decision to incorporate a pattern
memorization task was made to introduce a cognitive
challenge while adhering to the limitations of a rela-
tively short collaborative scenario. Conducting an ex-
tensive experiment that might place excessive mental
and physical burdens on participants was considered
impractical and challenging to obtain ethics approval.
Therefore, concise tasks with durations of around 12-
20 minutes were chosen to ensure participants’ sus-
tained mental engagement.

• Tables: The human and robot have separate work
areas, with two tables in each. In the human work
area, one table is close to the shared area and con-
tains blocks of two colors: green and orange. The
other table is far from the shared area (i.e., requires
travelling a longer distance) and contains blocks of
two other colors: blue and pink. Likewise, the robot’s
work area has two tables, one distant from the shared
area, with blue and orange blocks, and one close to
the shared area, including green and pink blocks. Ta-
ble. 1 summarizes the distribution of the blocks. Par-
ticipants were also told to pick up only one block at
a time, as the cobot’s gripper only has the capac-
ity to pick up a single block. This table and block
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Table 1: Distribution of blocks with respect to the distance to the
shared area

Color Human Robot

Green Close Close
Pink Close Far
Orange Far Close
Blue Far Far

distribution help evaluate the robot and the human’s
decision-making and task planning (i.e., selecting and
assigning tasks) regarding their preference, travel dis-
tance, completion time, and proximity to the optimal
plan.

• Blocks: Four unique block colors are employed:
green, blue, pink, and orange. The human’s tables
are equipped with ten blocks of each color, whereas
the robot’s tables contain eight blocks of each color.
This ensures a total of eighteen blocks for each color,
exceeding the necessary five blocks per pattern to ac-
count for possible errors. A larger quantity of blocks
is placed on the human agent’s table, taking into ac-
count their swifter working pace. Each block has an
ArUco marker affixed to it, aiding the robot in locat-
ing and handling the blocks within the room.

• Conveyor Belt: A conveyor belt has been integrated
to allow the robot to return any misplaced blocks to
the human. The robot places a block at one end of
the conveyor belt, which then transports the block to
the human’s side. This design decision accomplishes
two objectives: it separates the workspaces of the hu-
man and the robot, mimicking a real industrial envi-
ronment, while also enhancing safety by reducing the
need for the robot and human to interact closely.

• Light Bulb: On the shared table, there is a red
light bulb that lights up when the robot approaches
to place or retrieve a block from the shared table.
Participants are informed that this light serves as a
signal to avoid approaching the table due to safety
precautions. However, they can continue planning,
navigating within their designated work area, and col-
lecting blocks from other tables. In addition to safety
concerns, the light bulb also helps regulate the par-
ticipants’ pace, prompting them to wait for the robot
and ensuring that the collaboration is not perceived
as a competitive race.

• Safety Measures: Alongside the safety light bulb,
we have set up safety tape and floor cones to cre-
ate a well-defined physical boundary that separates
the work areas of both agents. These measures are
complemented by continuous vigilance from the ex-
perimenter, who is prepared to intervene as needed.
Intervention options include manually controlling the

(a) Pattern A1 (b) Pattern A2

(c) Pattern B1 (d) Pattern B2

(e) Pattern C1 (f) Pattern C2

(g) Pattern D1 (h) Pattern D2

Figure 4: a, c, e, g: Patterns A1, B1, C1, and D1 represent the
set of patterns presented on paper sheets, requiring participants to
memorize them within a 45-second timeframe before returning them
to the experimenter. b, d, f, h: Patterns A2, B2, C2, and D2 are
variations with some partially known spots, serving as cues for par-
ticipants throughout the collaborative task, and they are permitted
to retain these patterns until task completion to aid in recalling the
first pattern.

robot using a joystick or promptly activating the
emergency safety stop button. During the sessions,
there were instances where manual control of the
robot was necessary, particularly when it came too
close to the tables.

3.1.2. Tasks

Each participant is asked to complete four tasks:

• Task 0: In this initial task, participants engage in
solo work without the robot’s involvement. For all
participants, we provide pattern A and follow a con-
sistent procedure. They are tasked with memoriz-
ing pattern A1, printed on a sheet of paper, within a
45-second timeframe and returning it. Subsequently,
we furnish them with pattern A2, which they can
retain until the task’s conclusion. It is essential to
note that errors made by participants in this task
do not incur penalties; rather, this task primarily
serves to acquaint participants with the setup and of-
fer them practice in block placement. This practice
encompasses aspects such as adhering to the correct
block order, picking up a single block at a time, and
ensuring the markers on the blocks face the robot.
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Table 2: The human and robot’s sets of actions

Human Robot

Action Description Action Description

H1 Selecting a task for themselves R1 Selecting a task for itself
H2 Assigning a task to the robot R2 Assigning a task to the human
H3 Returning an block from the shared workspace R3 Returning a wrong block from the shared workspace
H4 Performing a task assigned by the robot R4 Performing a correct task assigned by the human
H5 Canceling a task assigned to the robot R5 Canceling a task assigned to the human
H6 Rejecting a task assigned by the robot R6 Rejecting a task assigned by the human

While focusing on task practice, we also assess partic-
ipants’ accuracy, self-confidence, and their perception
of workload.

• Tasks 1, 2, 3: The robot collaborates with the hu-
man in these tasks. We consider six distinct permuta-
tions (modes) that determine the order of presenting
patterns B, C, and D (e.g., B, C, D, C, B, D). Partici-
pants are randomly allocated to one of these six modes
(permutations) to ensure an equal distribution among
them. Following a consistent procedure, participants
are tasked with memorizing the initial pattern within
a 45-second timeframe and subsequently returning it.
Then, they are provided with the second pattern. To
emulate real-world collaborative scenarios in which
errors carry consequences, participants are informed
that, upon declaring the task as completed, for each
block incorrectly placed on the table, a deduction of
$1 will be applied to their total remuneration. This
method of conveying disinformation, classified as a
form of deception, received approval from the Univer-
sity of Waterloo Human Research Ethics Board.

3.1.3. Agents’ Actions

We considered a set of six distinct actions for each agent,
namely the human and the robot. These actions, outlined
in Table 2, are consistent for both agents, ensuring an
equivalent level of agency. It is essential to recognize that
the feasibility of these actions depends on the current task
state, and at each decision point, certain actions may not
be applicable. For instance, when the robot has not been
assigned any tasks (Action H4), taking on a task dele-
gated by the human is not a viable option. Additionally,
to provide the robot with greater autonomy in adjusting its
leadership role or reassuming it in the event of suboptimal
human performance, we intentionally designed the rejec-
tion option (Action H6) to be less straightforward for the
human. Action H6 entails the successive execution of H4
and H3 without without actually doing them physically.
This will be further explained in the next paragraph.

3.1.4. Human-robot communication

Both agents are required to uphold communication to
keep each other informed about their forthcoming actions,
as specified in Table 2. This communication is facilitated

through a purpose-built graphical user interface (GUI) in-
stalled on a tablet. Participants have the flexibility to
position the tablet on a table within the room or hold
it according to their preference. This GUI serves as a
medium for participants to assign tasks to the robot and
convey information about their intended actions. Simi-
larly, the robot can employ the GUI to assign tasks to the
participant and communicate its own planned actions. An
image of the GUI is provided in Fig. 5. Notably, the GUI
enforces constraints to prevent the human agent from se-
lecting actions that would violate precedence constraints
or interfere with tasks already initiated by the robot. Par-
ticipants received instructions on operating the GUI and
had the opportunity to practice using it before commenc-
ing the tasks. Additionally, participants were instructed
to scan the marker on the blocks before placing them on
the shared area, as this action enables the robot to iden-
tify the block’s ID for potential future retrieval. The GUI
streamlines this process by automatically activating the
tablet’s camera, allowing participants to scan the marker.
To maintain brevity, the details of the GUI’s design and
implementation are omitted due to space limitations.

Remark. In case participants wish to decline a task as-
signed by the robot, the sequence of actions involves ini-
tially performing the assigned task (H4) and subsequently
engaging in the action for returning (H3). Both of these
actions are executed through the GUI, without any re-
quirement for physical execution.

3.1.5. Robot

For our experiments, we utilized the Fetch mobile ma-
nipulator robot [58]. The robot was configured to perform
pick-and-place operations autonomously. While creating a
fully autonomous pick-and-place system demanded a con-
siderable amount of time, it was crucial to ensure that
participants experienced a work environment resembling
real industrial settings. To maintain brevity, we skip the
explanation of the autonomous pick-and-place implemen-
tation on the robot.

3.2. Recruitment

We started distributing flyers and recruiting partici-
pants after securing ethics approval from the University
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Figure 5: A screenshot of the graphical user interface (GUI) that
enables participants to convey their actions to the robot and obtain
information regarding the robot’s decisions and actions (refer to Ta-
ble 2 for a list of actions).

of Waterloo Human Research Ethics Board. This study
involves three phases for each participant.

3.3. Procedure

3.3.1. Phase 0

The first phase of our study commenced with prospec-
tive participants responding to our recruitment flyers and
establishing contact with the experimenter. Following this,
we sent the participants a consent form via email, along
with a questionnaire aimed at gauging their background
and experience in the domains of robotics and artificial
intelligence.

3.3.2. Phase 1 (In-Person)

In Phase 1, we scheduled a 90-minute in-person session
with each participant, where we conducted the following
procedure:

Step 1: We began by welcoming participants and pro-
viding an overview of the setup, showing them their desig-
nated work area. We used presentation slides to elaborate
on the specifics and informed participants that:

• The robot’s decision-making may involve occasional
errors (deception).

• Upon confirming the task’s completion, There is a
penalty of $1 for the team per misplaced block (de-
ception).

Step 2: Task 0 - To begin, we gave participants Pat-
tern A1, as a sheet of paper, and granted them 45 seconds
to memorize it. We then collected Pattern A1 and pro-
vided participants with Pattern A2, a partially known ver-
sion of Pattern A1, and indicated that they could keep it
until they finished the task. Participants were prompted to
assess their self-confidence in successfully completing the
task and subsequently initiated the retrieval and place-
ment of the blocks. The experimenter was available to
provide guidance and address any deviations from the in-
structions or questions. It was emphasized that the task

had no time constraint, and the completion time wouldn’t
be evaluated. After successfully placing all the blocks and
declaring task completion, the experimenter conducted an
inspection of the blocks based on the provided pattern,
counting any misplaced blocks. Importantly, participants
were assured that no penalties would be applied for errors
in this task. Following this, participants were requested
to complete a questionnaire regarding their perceived task
load.

Step 3: They watched a video of the pick-and-place of
some blocks by the Fetch robot1, and then answered the
questionnaire about their trust in the robot.

Step 4: Participants familiarized themselves with the
GUI and practiced its operation.

Step 5: Task 1 - Depending on the assigned mode
(a permutation of patterns B, C, D), participants were
provided with the corresponding pattern (e.g., B1) and
instructed to memorize it within a 45-second timeframe.
Subsequently, they returned the pattern and received the
second pattern, a partially known version of the first pat-
tern (e.g., B2). Before commencing the task, participants
were asked to respond to two questions about their self-
confidence and the expected helpfulness of the robot. Fol-
lowing this, they initiated the task, collaborating with the
Fetch robot. Upon task completion, participants com-
pleted three questionnaires assessing their perceived task
load, trust, and perception of the robot.

Remark. Participants initiate the task, and the robot
awaits their instructions. They can assign tasks to the
robot, and the robot starts working when participants allo-
cate a task to themselves. This approach allows the robot
to establish an initial understanding of participants’ pre-
ferred leading/following roles in the collaboration.

Step 6: Task 2 - This task followed the same procedure
as Task 1.

Step 7: Task 3 - This task followed the same procedure
as Task 1.

Step 8: Lastly, participants were asked to complete two
questionnaires. The first questionnaire aimed to evaluate
their performance as a team with the robot, while the sec-
ond one explored their collaborative experience and uti-
lized the shortened version of the User Experience Ques-
tionnaire (UEQ)[59, 60]. Additionally, participants were
asked to rank the difficulty of the tasks (Tasks 0-3) and re-
spond to an open-ended question: “Which abilities would
you improve or add to Fetch if you were to use it in a
manufacturing setting?”.

1https://youtu.be/ahZDo0_iyjg
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3.3.3. Phase 2 (Online)

In the online phase, we presented each participant with
a video recording of their interaction with the robot, with a
specific focus on Pattern B. These videos included synchro-
nized content from two different camera angles, a screen
recording of the graphical user interface (GUI), and the
display of Patterns B1 and B2. One of the participant’s
videos is accessible online2. During the online interview,
we played the video and encouraged participants to dis-
cuss their strategies, plans, and preferences, and how these
evolved throughout their collaboration. We also requested
them to complete two questionnaires regarding their lead-
ership and followership styles. In line with the approved
ethics application, we also informed participants about the
existence of “Deception” elements in the study and sought
their consent to use their data. To express our grati-
tude for their participation, participants received a $30
gift card.

3.4. Measures

As part of our analysis aimed at assessing participants’
perception of the robot, tasks, and collaboration, we uti-
lized a range of subjective measures, primarily derived
from the items in the questionnaires they completed at
various phases of the study, as well as insights from in-
terviews. Additionally, we considered objective measures
such as the number of tasks allocated to the robot by the
human.

To assess participants’ trust in the robot, we employed
Muir’s questionnaire [23] (refer to Table 3) using a ten-
point Likert scale. We administered this questionnaire at
multiple points in the study, including after they watched
a video of the robot (to gauge initial trust) and following
each collaboration with the robot in Tasks 1, 2, and 3. In
addition, participants provided responses to two questions
on a 21-point Likert scale, as shown in Table 4. These
questions pertained to their self-confidence in completing
each task (Tasks 0-3) and their expected helpfulness of the
robot (Tasks 1-3). Participants answered these questions
after reviewing the patterns but prior to commencing the
task of fetching and placing the blocks. High and low
values on the Likert scale represented high and low self-
confidence, as well as the expected helpfulness of the robot.

Following the completion of each task, participants eval-
uated their workload, considering factors such as perceived
mental demand, physical demand, temporal demand, per-
formance, effort, and frustration. They did so by respond-
ing to the NASA-TLX questionnaire, as shown in Table 5,
employing a scale ranging from 0 to 100. Additionally,
participants completed a questionnaire designed to assess
aspects of their working alliance, the traits of the robot
teammate, the robot’s performance, and the collaboration
experience. The first seven questions in this questionnaire,

2https://youtu.be/X6Rj0zwQhz8
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Figure 6: Kelley’s five followership styles

relevant to our study, were adapted from [61]. This ques-
tionnaire, as displayed in Table 6, used a 7-point Likert
scale, presented in an agree-disagree format.

At the end of the last task (Task 4), participants
were asked to complete the user experience ques-
tionnaire (UEQ). The UEQ encompasses six paired
aspects, each evaluated on a 7-point semantic differ-
ential scale: obstructive/supportive, complicated/easy,
inefficient/efficient, clear/confusing, boring/exciting,
not interesting/interesting, conventional/inventive, and
usual/leading edge. Participants also answered a 7-point
Likert scale questionnaire about team fluency (i.e.,
efficient, synchronized collaboration with seamless coordi-
nation in shared activities [61]) and their willingness to
collaborate again with fetch.

During the online phase of the experiment, we con-
ducted interviews with participants and categorized them
into four distinct groups based on their preference for
leading or following in collaboration with the robot.
These categories included “lead,” “collaborative-lead,”
“collaborative-follow,” and “follow.” Additionally, we ad-
ministered two questionnaires to assess their leadership
and followership styles. The leadership style questionnaire
utilized a 5-point Likert scale [38]. Scores for each leader-
ship style (authoritarian, democratic, laissez-faire) reflect
the degree of inclination toward that style, with potential
scores ranging from very low (6-10) to very high (26-30),
as well as intermediate levels such as low (11-15), moder-
ate (16-20), and high (21-25). To determine participants’
followership style, we employed a seven-point Likert scale
questionnaire from [39], which determines the score for in-
dependent thinking and active engagement. Based on par-
ticipants’ responses, they received scores for independent
thinking and active engagement, with scores ranging from
0 to 60. Subsequently, as illustrated in Fig. 6, they were
categorized into one of five distinct followership styles.

4. Results & Discussion

We recruited 58 participants from our university. How-
ever, we had to omit data from 10 participants due to rea-
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Table 3: Muir’s questionnaire - measuring participants’ trust in the
robot [23]

1- To what extent can the robot’s behavior be predicted
from moment to moment? (predictability)
2- To what extent can you count on the robot to do its
job? (dependability)
3- What degree of confidence do you have that the robot
will be able to cope with similar situations in the future?
(reliability over time)
4- Overall, how much do you trust the robot? (overall
degree of trust)

sons such as a bug in the robot’s program and the robot’s
malfunction. Consequently, our data analysis is centered
on the remaining 48 participants, comprising 22 females,
24 males, and 2 individuals self-identifying as ’others,’ with
an average age of 24.02 ± 3.93. The majority were Uni-
versity students (44), while 3 were postdoctoral or visit-
ing researchers, and 1 was a staff member. Initially, we
delve into participants’ perception of the tasks, the robot,
and collaboration. Subsequently, we shift our focus to the
analysis of participants’ actions and performance. The dis-
cussion pertaining to the robot’s actions and performance
is deferred to another paper centering more explicitly on
the planning framework [18].

4.1. Participants’ Perception of the Tasks, Robot, & Col-
laboration

This part mainly focuses on subjective measurements
through questionnaires. Throughout this section, the
Kruskal–Wallis H test, a nonparametric statistical test,
is applied to ascertain if there are statistically significant
variations among two or more groups. If a noteworthy
overall difference is detected among multiple groups, the
Dunn test is subsequently employed as a post hoc analysis
to pinpoint specific group differences. In addition, when-
ever we state that the analysis is based on the tasks, it im-
plies an examination following the chronological sequence,
starting from Task 0 and progressing through Task 3.

4.1.1. Trust

We assessed participants’ trust in the robot at four
stages: before collaborating with the robot, after watching
a video of the robot (initial trust), and after each collab-
oration for Tasks 1, 2, and 3. We found a statistically
significant difference among these stages (H(3) = 13.85,
p = .003). Fig. 7 illustrates participants’ trust in the
robot, representing the average of their responses to ques-
tions in Table 3. The figure reveals a notable difference
between participants’ initial trust and trust levels after
Tasks 1, 2, and 3. Furthermore, it demonstrates a grad-
ual increase in participants’ trust over the sessions, with a
significant difference observed between Task 1 and Task 3.

4.1.2. Self-confidence

Participants were also asked about their self-confidence
in accomplishing the tasks before collaborating with the
robot, but after seeing the pattern they needed to work
on. In Task 0, participants were told they had to work
alone, without the robot. To answer this question in Task
1, participants knew that the robot would work along-
side them, but they had not yet worked with the robot,
and it was their first experience. Fig. 8 shows the re-
sults for this question, revealing a significant difference
in self-confidence across different tasks (H(3) = 13.85,
p = .003). As expected, despite an increase in the av-
erage self-confidence of participants in Task 0 and Task
1, there is no significant difference between them, as both
tasks involved participants working without prior experi-
ence with the Fetch robot. However, the results indicate
a significant difference between Task 0 and Task 2, Task 0
and Task 3, as well as Task 1 and Task 3.

4.1.3. Helpfulness

Participants’ self-confidence improvement can be at-
tributed to becoming more familiar with the task and find-
ing the robot more helpful over time. However, to demon-
strate that this improvement is not solely due to the for-
mer, in Tasks 1, 2, and 3, in addition to inquiring about
their self-confidence, we also asked about their expecta-
tions regarding the robot’s helpfulness in completing the
task. This revealed a significant difference among these re-
sponses (H(2) = 19.76, p ≪ .001). As depicted in Fig. 9,
participants’ expected helpfulness of the robot increased
over time, with a significant difference observed between
their expectations in Tasks 1 and 2, as well as Tasks 2
and 3. It’s worth noting that when participants answered
this question in Task 1, they had not yet collaborated with
the robot. Thus, participants perceived the robot as more
helpful after the initial collaboration. However, there was
no significant difference in participants’ expected helpful-
ness of the robot across different patterns.

4.1.4. Relative Trust

We also evaluated participants’ relative trust, i.e., the
difference between participants’ trust in the robot and
their self-confidence. The result shows no significant dif-
ference in participants’ relative trust between Tasks 1, 2,
and 3.

4.1.5. Robot’s Performance and Traits

After each task (Tasks 1-3), participants answered the
questions in Table 6. In Fig. 10, participants’ scores indi-
cate a positive working alliance and favorable robot team-
mate traits. We also observe a significant improvement in
how participants perceive the robot’s intelligence between
Tasks 1 and 2, as well as between Tasks 1 and 3. We asked
participants to rate their collaboration with the robot and
its performance in terms of reliability, accuracy, and op-
erating speed. Based on Fig. 11, participants found the
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Table 4: The questions about the participants’ self-confidence and expected helpfulness of the robot. Asked after seeing the patterns but
before starting the task

Q1 (Self-confidence): To what extent are you confident about your ability to successfully accomplish the task?
Q2 (Expected Helpfulness): To what extent do you think Fetch can help you improve your performance?

Table 5: NASA-TLX questionnaire asked after each task

(Mental demand) How mentally demanding was the task?
(Physical demand) How physically demanding was the task?
(Temporal demand) How hurried or rushed was the pace of the task?
(Performance) How successful were you in accomplishing what you were asked to do?
(Effort) How hard did you have to work to accomplish your level of performance?
(Frustration) How insecure, discouraged, irritated, stressed, and annoyed were you?

Table 6: A Questionnaire Assessing Working Alliance, Robot Team-
mate Traits, Robot’s Performance, and Collaboration. Q1-Q7
adopted from [61]

Q1: Fetch was intelligent
Q2: Fetch was committed to the task
Q3: Fetch perceived accurately what my goals are
Q4: Fetch did not understand how I wanted to do the
task.
Q5: Fetch and I worked towards mutually agreed-upon
goals.
Q6: Fetch and I respected each other.
Q7: I feel that Fetch appreciates me.
Q8: Fetch and I collaborated well together.
Q9: Fetch worsened the team’s performance in terms
of completion time.
Q10: Fetch improved the team’s performance in terms
of accuracy.
Q11: The robot’s decisions were reliable.
Q12: The robot failed to pick up and place objects
reliably.

Table 7: The robot and team’s overall performance. Q1-3 are
adopted from [61]

1- Our team improved over time.
2- Our team’s fluency improved over time.
3- The robot’s performance improved over time.
4- I will be happy to collaborate again with this robot
in similar future tasks
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Figure 7: Participants’ trust in the robot before collaboration and
after each task

robot’s decisions accurate and reliable, leading to a posi-
tive collaboration experience. It’s worth noting that Fetch
was noticeably slower than the human agent in pick-and-
place tasks, which is reflected in some participants’ scores.
However, overall, the average of participants’ scores is low
(reverse scale), indicating they believed Fetch did not sig-
nificantly extend task completion time. This perception
aligns with participants’ understanding of the robot’s role
in the collaboration, as one participant expressed during
the interview: “Mentally, it can compensate for me, but
physically, I can compensate for it (Fetch).”

4.1.6. User Experience & Team Fluency

At the end of the in-person phase of the experiment,
participants answered the user-experience questionnaire.
Fig. 12 shows participants’ scores on this questionnaire,
indicating a positive user experience. They also answered
four questions in Table 7, and Fig. 13 shows their scores
for these four questions. Based on it, participants per-
ceived an improvement in their team performance and flu-
ency and expressed a willingness to collaborate again with
Fetch. Despite a high average, participants’ scores regard-
ing the improvement in the robot’s performance cover the
whole range of the scale. However, this is reasonable as
the robot had the same plan for all three tasks.
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Figure 9: Participants’ expected helpfulness from the robot

4.1.7. Perceived Workload

After each task (Tasks 0-3), participants answered the
NASA-TLX questionnaire. Hereinafter, we discuss the re-
sults for each of the six measures in this questionnaire.

• Mental Demand: The mental demand for each task
started from the point when participants were given the
first pattern (i.e., Patterns A1, B1, C1, and D1) to mem-
orize until the end of the task where they needed to
recall the pattern with the help of the second given pat-
tern (i.e., Patterns A2, B2, C2, and D2). We analyzed
participants’ scores for this question based on the tasks
and the patterns. Fig. 14a shows the result for Task
0 to Task 3 (in chronological order), with a significant
difference between them (H(3) = 18.05, p < .001). The
results show a significant required mental demand for
Task 0 (working alone) compared to Tasks 1, 2, and 3.
This indicates that collaboration with the robot could
decrease participants’ perceived mental demands, sup-
porting part of Hypothesis 4.

• Physical Demand: Fig. 14b illustrates the results for
physical demand scores based on the chronological order
of the tasks. Despite the higher mean value of physical
demand for Task 0, and in contrast to Hypothesis 4,
we observe no significant difference between Task 0 and
Tasks 1, 2, and 3 (H(3) = 3.35, p = .34). The reason
can be that participants placed most of the blocks on the

table, as the robot was slower than them and, therefore,
did not experience a higher physical demand compared
to Task 0.

• Temporal Demand: Participants were told several
times during the experiment that there was no time
limit, and we did not measure their time. However, as
shown in Fig. 14c, there is a significant difference be-
tween them (H(3) = 9.58, p = .023), and participants
perceived a higher temporal demand in Task 0 compared
to Tasks 2 and 3, rejecting part of Hypothesis 4.

• Performance: In Tasks 1, 2, and 3, as the robot
could fix participants’ errors, all participants completed
the tasks successfully. Conversely, in Task 0, partic-
ipants made some mistakes and had no teammate to
fix the errors. Therefore, as shown in Fig. 14d, partic-
ipants significantly perceived themselves as more suc-
cessful in completing Tasks 1, 2, and 3 compared to
Task 0 (H(3) = 52.75, p ≪ .001). This supports part of
Hypothesis 4.

• Frustration: The results show that there is a signif-
icant difference in perceived frustration in the tasks
(H(3) = 19.25, p < .001), specifically in Task 0 in com-
parison with Tasks 1, 2, and 3 (Fig. 14e. However, there
is no significant difference in perceived frustration be-
tween Tasks 1-3 and Patterns B, C, and D (H(3) = 0.27,
p = .87). This result also confirms part of Hypothesis 4,
which mentions that participants experienced less frus-
tration when collaborating with the robot.

• Effort: The results show a significant difference in per-
ceived effort based on the tasks (H(3) = 15.74, p = .001)
and patterns (H(3) = 6.89, p = .03). We can see in
Fig. 14f that participants perceived more required effort
to accomplish Task 0 in comparison with Tasks 1, 2,
and 3. This confirms part of Hypothesis 6, which states
collaboration can decrease perceived effort.

4.1.8. Participants’ Initial Trust vs. Perception of the
Robot

We assessed the correlation between participants’ initial
trust and their perceptions of the robot’s traits, helpful-
ness, and collaboration (Fig. 15). The findings indicate
weak correlations between participants’ initial trust and
their expected helpfulness of the robot, perceived robot’s
intelligence, understanding, and respect for them. Addi-
tionally, we observed moderate correlations between their
initial trust and perceived robot’s commitment to the task,
understanding of goals, and collaboration.

4.1.9. Task Difficulty

Here, we investigate how task difficulty influenced par-
ticipants’ perception of collaboration, performance, and
decision-making.
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• Participants Ranking: At the end of the last task, we
asked participants to rank the tasks based on their dif-
ficulty level. Fig. 16 shows their rankings based on the
patterns used in the tasks. Pattern A was used only in
Task 0 when they worked without the robot. Typically,
the perceived difficulty of the task depends on the chal-
lenge of memorizing the first pattern within 45 seconds
and then recalling it while arranging the blocks, with
the second given pattern as a hint. The second patterns,
Patterns A2, B2, C2, and D2, had 9, 12, 6, and 9 par-
tially known spots, respectively. However, the number
of these unknown spots is not the sole factor in determin-
ing their difficulty level; the complexity of memorizing
them also plays a crucial role. This is why most par-
ticipants considered Pattern D2 with 9 unknown spots
simpler than Pattern C2 with 6 unknown spots because
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it was more challenging for them to memorize Pattern
C1 compared to Pattern D1. Participants also found
Pattern B to be one of the most challenging patterns,
as expected.

• Self-confidence: We have also analyzed participants’
self-confidence based on the patterns, revealing a sig-
nificant difference (H(3) = 24.42, p ≪ .001). Pattern
A was consistently used for Task 0 when participants
worked alone. Fig. 17c illustrates that participants’ self-
confidence in accomplishing Pattern 0 (Task 0) is signif-
icantly lower than that for Patterns 2 and 3 (No sig-
nificant difference observed between Patterns 0 and 1).
Furthermore, we observed that participants exhibited
significantly higher self-confidence in performing Pat-
tern 3 compared to Patterns 1 and 2 (No significant
difference was noted between Patterns 1 and 2).

• Relative Trust: A significant difference was found
when evaluating participants’ relative trust for the pat-
terns (H(2) = 12.9, p = .001). Fig. 17d shows partic-
ipants’ relative trust based on the patterns, where we
can observe a significant difference between Patterns B
and D as well as Patterns C and D.

• Perceived mental demand: In Fig. 17a, as Pat-
tern A was used only for Task 0, we only considered
Patterns B, C, and D, revealing a significant difference
(H(2) = 8.05, p = .019). The results show that partic-
ipants perceived Pattern D as less mentally demanding
than Patterns B and C.

• Perceived effort: Additionally, in Fig. 17b, partici-
pants perceived significantly higher effort for completing
Pattern B compared to Patterns C and D.

Discussion: The subjective measurements support
Hypothesis 1, suggesting that participants’ trust in the
robot grows over time during the sessions. Additionally,

according to the results, participants’ self-confidence im-
proved during the sessions as they collaborated more with
the robot. This supports Hypothesis 2. Participants’ an-
swers also indicate that they expected more help from the
robot during the sessions, supporting Hypothesis 5. The
results also partially support Hypothesis 4. As discussed,
participants perceived less workload in terms of mental
demand, performance, effort, and frustration, supporting
Hypothesis 4. Contrary to Hypothesis 4, participants also
perceived less temporal demand when collaborating with
the robot. However, participants’ perceived physical de-
mand did not significantly change when they completed
the task in collaboration with the robot. To summarize,
the most important conclusion drawn from this study is
that the collaboration could enhance participants’ percep-
tion of the robot and collaboration and decrease their per-
ceived workload.

We also evaluated the participants’ self-confidence, rela-
tive trust, and workload (mental demand and effort) based
on the patterns. The results show that, as planned, Pat-
tern B was more challenging for the participants than Pat-
terns C and D. This also supports Hypothesis 3, which
states that participants will trust the robot more than
their own abilities for challenging tasks.

4.2. Participants’ Actions and Performance

Overall preference: In the online phase, we in-
terviewed participants and asked about their strategies
and preferences for collaborating with the robot. Probing
their inclination towards leading or following, we inquired
whether they preferred assigning tasks to the robot or be-
ing assigned tasks. Through detailed discussions, we dis-
cerned distinct preferences, categorizing participants into
four groups: lead, collaborative-lead, collaborative-follow,
and follow. The groups “lead” and “follow” represent par-
ticipants with completely leading or following preferences,
and the groups “collaborative-lead” and “collaborative-
follow” represent participants who preferred to collaborate
while having a slight preference to lead or follow, respec-
tively. Four participants fell under neither of these four
groups. One of them preferred to neither lead nor follow,
but do his own tasks, and he did not assign any subtask to
Fetch and did all subtasks assigned by Fetch. Three other
participants quickly began doing subtasks because they
didn’t want to forget the pattern. They mostly chose sub-
tasks for themselves but were also willing to do subtasks
assigned by Fetch. Table 8 shows the number of partic-
ipants for each group. This indicates that 37 out of 48
participants had more of a leading preference, supporting
Hypothesis 6.

Task difficulty: At the end of Task 0, we counted the
number of misplaced blocks on the shared table. We also
recorded the number of wrong actions by participants, in-
cluding placing or assigning wrong blocks and returning a
correct block from the shared table during the experiment.
Regardless of the number of errors, 28, 12, 9, and 3 par-
ticipants made at least a mistake in respectively Patterns
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Figure 14: Participants’ perceived a) mental, b) physical demand, c) temporal demand, d) performance, e) frustration, and f) effort based on
the tasks
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Table 8: Participants’ preference based on interviews.
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Figure 16: Ranking of task difficulty by participants

A, B, C, and D. Pattern A was used only in Task 0, with
the most participants who made mistakes.

Additionally, we counted the number of subtasks that
participants assigned to themselves based on the patterns.
As depicted in Fig. 18, participants selected significantly
fewer tasks for themselves in Pattern B compared to Pat-
terns C and D. This indicates that they allowed the robot
to assign more tasks to them. This finding aligns with
their perception of task difficulty discussed earlier.

Task assignment: Additionally, we measured the
number of subtasks that participants assigned to the
robot, revealing a significant difference between the tasks
(H(2) = 11.56, p = .003). Fig. 19 shows that participants
preferred to assign fewer blocks to the robot, and there is
a significant difference between Tasks 1 and 3.

Discussion: The results of the interviews show that
most of the participants preferred to take on the leading
role and have more control over the robot, which aligns
with Hypothesis 6. In addition, according to the inter-
views, participants found the robot to be slower than
themselves and preferred to handle more blocks. How-
ever, this preference may change if they were faced with
a longer task requiring more physical effort. Some par-
ticipants also pointed out that if the task were longer or
the blocks were further apart, they would choose to assign
tasks to the robot, even at the cost of completion time, to
reduce their physical effort. Furthermore, the higher num-
ber of participants who made at least one mistake in Task
0 (Pattern A) compared to the other tasks indicates that
the robot could assist them in improving their performance
and making fewer errors. Except for Pattern A, which was
only used in Task 0, participants made the most mistakes
in Pattern B, a fact reflected in the subjective analysis of
their perception of the task difficulty. This led them to

rely more on the robot’s decisions and help.

4.3. Leadership and Followership style

The analysis of followership styles reveals that the ma-
jority of participants (37 out of 48) are classified as “ex-
emplary” followers, and ten of them fall into the “prag-
matist” category. Only one participant exhibited traits of
an “alienated” follower, and we did not encounter any in-
stances of passive or conformist followers among the partic-
ipants. This observation can likely be attributed to their
shared academic background, which places a strong em-
phasis on critical thinking and active engagement.

It is worth highlighting that all four participants listed
in Table 8, who neither assumed leadership nor followed
the robot, are categorized as “pragmatist” followers. How-
ever, due to the limited number of these observations, no
definitive conclusion can be drawn, and more investigation
is needed.

The distribution of leadership styles is depicted in
Fig. 20. The majority of participants exhibited a pre-
dominant “democratic leadership” style. Among the four
participants with no clear inclination towards leading or
following, three displayed a dominant “laissez-faire lead-
ership” style. However, we cannot make conclusive state-
ments based on this limited sample size. The sole partici-
pants characterized by an alienated followership style also
demonstrated a notably dominant “laissez-faire leader-
ship” style and exhibited a leading-collaborative approach
during the collaborative interactions.

We conducted an analysis of the correlation between
engagement, critical thinking, and leadership styles in re-
lation to various participants’ factors. Intriguingly, our
findings revealed a positive (negative) correlation between
the number of tasks assigned by the robot to partici-
pants (the number of self-assigned tasks by participants)
and their authoritarian leadership style. In other words,
participants with authoritarian leadership tendencies were
more inclined to accept additional subtasks assigned by
the robot while selecting fewer tasks for themselves. Ad-
ditionally, a moderate positive correlation was identified
between participants’ initial trust in the robot and their
authoritarian leadership style.

A positive, albeit nonsignificant, correlation was ob-
served between these participants’ following preference
and their perceived helpfulness of the robot in relation
to their authoritarian leadership style. However, this con-
nection warrants further investigation in future research.
We also encountered a nonsignificant negative correlation
between participants’ laissez-faire leadership style and the
number of tasks assigned by the robot. Moreover, there
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was a positive correlation between participants’ initial
trust in the robot and their level of engagement. These
correlations are shown in Fig. 21.

5. Conclusion, limitations and future work

Our study explored the potential enhancement of
human-robot collaboration efficiency through proactive
task planning and allocation. Unlike previous litera-
ture, which often neglects either human agents’ lead-
ing/following preferences or their performance, we cen-
tered on achieving a balance between human agent prefer-
ence and performance, while ensuring a high level of col-
laboration and positive human perception of the robot.

Trust is an integral part of this collaboration. We as-
sessed how the robot’s adaptive and proactive planning
can improve participants’ trust in the robot. The sub-
jective measurement of participants’ trust in the robot
confirmed our Hypothesis 1, showing trust enhancement
as they collaborated more with the robot. Additionally,
we hypothesized that participants’ self-confidence would
improve over collaboration with the robot, which was con-
firmed by analyzing their self-reported self-confidence (Hy-
pothesis 2). Furthermore, we observed an increase in the
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expected helpfulness of the robot by participants, support-
ing Hypothesis 5. According to participants’ answers to
the questionnaires, they found the robot to be a team-
mate with positive traits and a strong working alliance,
with whom they were willing to collaborate again in the
future.

In support of Hypothesis 3, the results indicated that for
more difficult tasks, participants trusted the robot more
than their own abilities, which led them to take relatively
more following roles. Our proposed task planning method
properly inferred this need and provided more help to par-
ticipants by taking on more leading roles. The robot could
also identify when participants struggled to remember the
correct patterns and made errors, and accordingly, it fixed
their errors and provided more help. This ability of the
robot to adapt its task planning led us to hypothesize
that participants would perceive, overall, a lower workload
(Hypothesis 4). The results partially supported our hy-
pothesis, and we observed an enhancement in participants’
perceived mental demand, performance, effort, frustration,
and unexpectedly temporal demand. However, contrary to
our hypothesis, participants did not perceive a lower phys-
ical demand, likely due to the designed scenario focusing
more on mental ability than physical abilities.

Based on interviews with participants, we catego-
rized them into four groups: ‘lead’, ‘collaborative-lead’,
‘collaborative-follow’, and ‘follow’, with the majority
falling into the first two categories. This supports Hy-
pothesis 6 that participants, while having a high level of
trust in the robot, would prefer to take on more of a lead-
ing role and have more control over the collaboration. This
finding can guide the design of collaborative scenarios and
collaborative robots.

Additionally, the results showed that participants se-
lected fewer tasks for themselves and were allocated more
subtasks in tasks that were more difficult since they pre-
ferred to follow the robot or made many errors, causing
the robot to take back the leading role.

We also inquired about participants’ leadership and fol-
lowership styles using questionnaires. Our observations

revealed that individuals with an authoritarian leadership
style exhibited greater trust in the robot. They also al-
lowed the robot to assign more subtasks to them. Addi-
tionally, we identified a positive correlation between their
initial trust and the level of engagement. Nevertheless, a
more comprehensive investigation involving a diverse par-
ticipant group is warranted to delve deeper into this sub-
ject.

5.1. Limitations and Future Work

This study has certain limitations concerning its de-
sign and methods. All of our participants were recruited
from the University of Waterloo campus and consisted
mainly of young adults. However, our ultimate goal is
to study working adults in settings such as manufacturing
and warehouses. It is conceivable that these two groups
hold significantly different expectations and perceptions of
a robot teammate. To address this, involving actual work-
ing adults in such settings could enhance the practicality
of our collaborative scenarios and the robots used. Despite
efforts to simulate a working environment by employing an
autonomous robot for pick-and-place tasks and creating a
setup with features like a conveyor belt, safety equipment,
and a graphical user interface, there is room for future en-
hancements to make the scenarios more closely resemble
realistic environments, such as warehouse automation or
assembly settings. Moreover, prevalent challenges in man-
ufacturing settings, like sudden changes or unpredictable
events typically managed by humans, could be incorpo-
rated to better align the study with real-life situations.

In our current study, we assumed the infallibility of the
robot’s decisions. However, real-world scenarios may in-
volve instances where either the robot or the human agents
makes errors, potentially without awareness, and believe
their decisions are correct, which can lead to a conflict be-
tween two agents. Additionally, our study gauged the hu-
man agent’s accuracy in selecting block colors as a measure
of correctness, a metric easily comprehensible to partici-
pants. While practical measures like completion time or
travel distance could be introduced, these might not be as
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easily understandable and measurable for human agents,
potentially leading to conflicts. Numerous other avenues
for exploration exist, including a comprehensive investi-
gation into how human leadership and followership styles
influence collaboration with a robot.
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