
Demonstrating Mobile Manipulation in the Wild:
A Metrics-Driven Approach

Max Bajracharya, James Borders, Richard Cheng, Dan Helmick, Lukas Kaul, Dan Kruse,
John Leichty, Jeremy Ma, Carolyn Matl, Frank Michel, Chavdar Papazov,

Josh Petersen, Krishna Shankar, Mark Tjersland∗
Toyota Research Institute (TRI)

Los Altos, California 94022
Email: firstname.lastname@tri.global

Abstract—We present our general-purpose mobile manipu-
lation system consisting of a custom robot platform and key
algorithms spanning perception and planning. To extensively test
the system in the wild and benchmark its performance, we choose
a grocery shopping scenario in an actual, unmodified grocery
store. We derive key performance metrics from detailed robot
log data collected during six week-long field tests, spread across
18 months. These objective metrics, gained from complex yet
repeatable tests, drive the direction of our research efforts and
let us continuously improve our system’s performance. We find
that thorough end-to-end system-level testing of a complex mobile
manipulation system can serve as a reality-check for state-of-the-
art methods in robotics. This effectively grounds robotics research
efforts in real world needs and challenges, which we deem highly
useful for the advancement of the field. To this end, we share
our key insights and takeaways to inspire and accelerate similar
system-level research projects.

I. INTRODUCTION

The ultimate goal of mobile manipulation research is to
enable capable mobile manipulation robots to perform human-
level tasks in diverse and complex environments. However,
despite the vast robotics research in the past decades, au-
tonomous mobile manipulators still struggle to operate in
the real world, outside of specifically designed or modified
environments. This should come as no surprise - mobile ma-
nipulation in human environments is an extremely challenging
endeavor, requiring that robots:

• Accurately perceive their environment to estimate their
own location, detect obstacles, landmarks, and objects of
interest.

• Quickly generate collision-free motion plans to/from ob-
jects and locations of interest while avoiding obstacles.

• Manipulate a wide variety of unseen objects in ever-
changing environments.

Each of the aforementioned tasks constitutes a difficult
research problem on its own. This is why much of today’s
robotics research is focused on individual challenges in the
robotic pipeline. While this has led to significant progress
in developing individual aspects of the mobile manipulation
problem (e.g., motion planning, scene segmentation, grasping,
etc.), relatively little work has been done that combines these
capabilities and evaluates them in real-world environments.

∗All authors contributed equally and are listed in alphabetical order.

Fig. 1. TTT operating in a real, unmodified grocery store.

This bears the risk of leaving important challenges—crucial
for real-world deployment—unnoticed, while arguably less
critical aspects are overemphasized. For example, motion plan-
ning research continues to push for more optimal trajectories
in minimal time, while often settling for 90-95% success
rates. However, at a systems level, the effect of a single
percentage drop in success rate far outweighs even a significant
drop in path optimality or computation time. Therefore, we
believe that identifying and tackling fundamental problems
that stand in the way of more widespread, real-world robot
deployments by studying system-level performance in the field
is an important contribution towards advancing the field of
robotics.

In order to tackle the aforementioned difficulties and to
push the development of capable mobile manipulation robots,
we created a challenge task: a robot should go into a real
grocery store, pick 20 unique items off the shelves from a
randomly generated “shopping list” (out of ∼1000 potential
items), place them in a basket, and bring them to its starting
position. Figure 1 shows our robot in the grocery store we
use for testing. Note that it is a real store rather than a lab
replica, and that we do not modify it in any way for our
tests. In addition to forcing us to address all the previously
mentioned challenges (e.g., perception, planning, grasping),
task performance is easily quantifiable, allowing objective
measurement of performance and progress.

ar
X

iv
:2

40
1.

01
47

4v
1

 [
cs

.R
O

]
 3

 J
an

 2
02

4

This paper describes our robotic platform TTT, its custom
hardware design, and algorithms that we developed to tackle
the shopping challenge task. We focus on the entire mobile
manipulation system rather than discussing any single subsys-
tem or algorithm in detail. Most importantly, by developing
and testing the system end-to-end over an extended period
of time without abstracting away any components, we glean
valuable insights into what important, unsolved challenges
are for deploying mobile manipulators in real, semi-structured
environments.

Section II briefly discusses related work. Section III pro-
vides a system overview and describes the system architecture.
Sections IV, V and VI describe the hardware, perception
and behavior systems, respectively. Section VII evaluates
the robot’s performance on the grocery shopping challenge
task. Section VIII concludes by discussing important lessons
learned and avenues for future research. This paper is accom-
panied by a video that shows our robot in operation during
the most recent (sixth) field test at the grocery store.

II. RELATED WORK

Robotic mobile manipulation is a highly active, multi-
faceted area of research. Interest in the field is driven by
numerous potential applications and amplified by interna-
tional competitions such as DARPA’s robotics challenge [15],
RoboCup@Home [37], the Amazon Picking Challenge [11]
and RoboCup@Work [21], each focusing on different chal-
lenges and performance criteria.

A substantial number of capable mobile manipulation plat-
forms have resulted from past and current research projects.
Systems that were influential in the class of wheeled dual-arm
mobile manipulators like the one we are presenting include
Willow Garage’s PR2 [25], CMU’s Herb2.0 [33], DLR’s
Rollin’ Justin [7], JPL’s RoboSimian [17], KIT’s ARMAR-
6 [4] and IIT’s CENTAURO [27]. An overview over wheeled
mobile manipulation systems and the challenges involved is
provided in [35] and [29]. Particularly related to the work
we present are studies that involve the testing of mobile
manipulation systems in semi-structured environments outside
the lab. Dömel et al. [10] used a wheeled, single arm mobile
manipulation system to fulfill fetch and carry tasks in a factory
environment, similar to our shopping scenario. They conducted
a daylong evaluation test to asses their system’s performance.
Štibinger et al. [34] used a morphologically similar system
in an outdoor competition to pick up and place simulated
construction materials.

To the best of our knowledge, our study is the first to
describe an approach for improving a fully autonomous dual-
arm mobile manipulation system based on rigorous, repeated
testing in an unmodified, real-world environment over an
extended period of time.

III. SYSTEM OVERVIEW

Figure 2 provides an overview of the software system.
The main system capabilities are encapsulated within modules

Fig. 2. Overview of our interconnected, modular software system designed
for mobile manipulation tasks.

running on board at different rates, communicating through a
custom interprocess communication (IPC) framework.

At the highest level, a task planning module implements
a hierarchical finite state machine (FSM), which keeps track
of the robot’s state and determines what high-level action it
should take next (e.g., look for item, grasp item, localize,
etc.). At the core of the system is a centralized behavior
module. Once the task planning module decides which action
to take, the behavior module queries other perception/planning
modules to aggregate all necessary information and send low-
level commands to the hardware at 200Hz in order to achieve
desired objectives. A centralized behavior module that has
exclusive control over joints simplifies the system architecture
and reduces potential for conflicts between modules.

A visual perception module, running at 5 Hz, keeps the
robot localized and aware of obstacles by generating a stereo
point cloud and a voxel map for spatial awareness. Once the
robot needs to grasp an item, it queries an event-triggered
grasp planning module, and whenever the robot needs to plan a
motion, it queries an event-triggered motion planning module.
In the following sections, we describe these modules (and sub-
modules) in more detail.

While many of these modules are based on pre-existing
methods, there was significant benefit for us to implement
them from the ground up. This way we can ensure to have
complete insight into and control over the implementation,
allowing us to (1) integrate tooling/visualizations to debug
issues with minimal overhead, and (2) easily and continously
modify/customize/improve our algorithms and implementa-
tions based on the results of our testing.

IV. HARDWARE SYSTEM

Our mobile manipulator robot TTT consists of four distinct
parts: (1) a pseudo-holonomic 4-wheeled chassis; (2) a 5-
DoF torso; (3) two 7-DoF arms; and (4) a perception head

on a 2-DoF neck. Nearly all components have been custom-
designed from a low level, creating a homogeneous system
that minimizes the footprint and upper body mass of the robot
while maximizing its manipulation capabilities, particularly its
range of motion and payload capacity.

Actuation: To maximize the payload capability of the robot,
we developed three sizes of rotary actuators that are tightly
integrated and have very high specific torques and torque den-
sities. Each actuator has an integrated custom motor controller,
torque sensor, and output position encoder. The controllers
are capable of communicating via CAN and EtherCAT. We
currently prefer using CAN.

Tools: At the end of each arm is a tool interface that allows
tools to be manually installed and removed. For the grocery
shopping task, we use a Robotiq HandE gripper on the right
arm and a custom suction gripper on the left arm. In contrast to
most industrial applications of suction grippers that primarily
perform top grasps, we exclusively use lateral side grasps for
the grocery task due to the tight constraints of the shelf. This is
a more challenging application for suction grasping due to the
gravity-induced moment and shear force acting on the suction
cup.

Our custom suction gripper integrates two vacuum gener-
ators, a Robotiq EPick with an integrated diaphragm pump
capable of producing an 82% vacuum, and a high-speed axial
pump able to generate much larger flow rates, albeit at a lower
vacuum level. We use the high flow rate when approaching
objects to help create initial contact and to hold onto bags
that are inherently challenging for suction grasps. If the tool’s
internal pressure signals a sufficient seal, it switches over to
the diaphragm pump, taking advantage of its much stronger
vacuum.

Compute: The robot has a single central compute system
consisting of a standard ATX motherboard with an Intel Core
i9-12900K CPU and an NVIDIA A6000 GPU. It has 15 TB of
removable U.2 NVMe storage for logging. The use of modular
consumer components as opposed to embedded single board
computers allows us to take advantage of new hardware as
soon as it is released. The robot communicates over Wi-Fi 6
to a consumer mesh network system.

Sensing: We exclusively use stereo cameras for visual per-
ception, with a pair of Basler acA2500-60uc color cameras
with wide-angle lenses mounted on the pan/tilt head and
another front-facing pair mounted to the chassis. Each arm
has a Sunrise Instruments M3553E 6-axis force/torque sensor
mounted between the wrist and the tool interface.

Power: To allow several hours of uninterrupted field testing,
the robot has a large amount of energy storage contained in
four hot-swappable battery packs. Each pack is made up of
three BB-2590 lithium-ion batteries and a backplane adapter,
for a total of 3.6 kWh of capacity. The packs plug directly
into a custom power board stack in the center of the chassis
which monitors and controls the robot power system.

V. PERCEPTION MODULES

A. Learned Stereo Depth and Voxel Mapper

The input to the visual perception system consists of color
stereo image pairs. A learned stereo algorithm [31] is used
to produce dense and accurate depth from camera pairs in the
robot head and chassis. The resulting RGB-D frames are fused
into a dynamic 3D voxel map [5, 6]. Each voxel accumulates
color as well as first and second order position statistics.

B. Object Detection, Segmentation, and Classification

Object perception is crucial for both grasping and creating
a map that contains the items in the store. It is done in the
following way:

• Object Detection: We run a YOLOv5 detector [13]
trained on SKU-110k [14] to obtain 2D bounding boxes
around all items in an input image.

• Object Segmentation: We utilize a UNet-based segmen-
tation network [28], trained on a mix of synthetic and real
data, in order to obtain a segmentation mask of the item
within the bounding box. The item pointcloud is then
obtained by overlaying this segmentation mask with the
RGB-D image obtained with the learned stereo module
described in Section V-A and back-projection to 3D.

• Object Classification: Given a query image crop using
the bounding boxes from the detector, a metric-learning-
based approach [20] is used to find the most similar items
in a database of images that are scraped from the internet.
A second stage Prototypical Network [32] gives a fine-
grained match and is trained with open-set loss [24] to
handle the case when the query item does not exist in the
database.

This provides us with segmented pointclouds of the items
in the scene, along with their classification. The pipeline is
shown in Figure 3, and it is utilized to map items within the
store prior to robot deployment, and also by the robot when
picking items from the shelves and placing them in its basket.

C. Mapping and Localization

To enable our mobile manipulation robot to shop for gro-
ceries, it has to know its own pose as well as where items
are located in the store. Since the venue is known in advance,
there is no need to pursue a SLAM approach. Instead, we
treat the two tasks separately: Mapping is done prior to robot
deployment, and localization within the generated map is
performed by the robot during task executions.
Mapping: The input to the mapping pipeline is a time-ordered
stream of stereo images (L0, R0), . . . , (Ln, Rn), acquired with
stereo cameras that are moved through the store. We run our
learned stereo network on each image pair to compute per-
pixel depth. We detect image keypoints in each image with
a DoG detector [23] and store a RootSIFT [2] descriptor for
every keypoint that has valid depth. The map is then generated
via the following four steps:

• Visual Odometry (VO): We estimate camera pose deltas
between each pair of subsequent left images (Lk−1, Lk).

YOLOv5
Detector
Network

Input Image Detections

Image Crops…

Object Detection

Reference Image Database

Embedding
Computation

Network

Query
Image Crop

Prototypical
Network

Best Match in Database

Reject

N
ot

 in
 D

at
ab

as
e

In Database

Object Classification

UNet Segmentation
Network

Input Image
Crop

Object Segmentation

Segmented 3D Pointcloud

Crop

Back-project
to 3D

Fig. 3. The object perception pipeline as outlined in Section V-B.

First, we match the descriptors in Lk−1 to their nearest
neighbors in Lk and vice versa. We only keep mutual
nearest neighbors as valid correspondences. Next, we
compute the pose of Lk relative to Lk−1 by running a
PnP solver [22] within a RANSAC loop [12].

• Loop detection and closure: Since VO leads to pose
drift, we perform loop detection and correct for the
accumulated VO pose error. We train a NetVLAD-based
network [3] to output a global image descriptor gk for
each image Lk. To detect a loop closure, we find the 5
nearest neighbors to gk and compute pose deltas between
the corresponding images and Lk in the same way as in
the VO section above. We accept the pose delta with the
highest number of inliers (if that number exceeds 200).
Then, we correct for the pose drift using a deformation
modeling technique, similar to [36].

• Bundle Adjustment (BA): We pass the following input
to a state-of-the-art BA algorithm [1]: (i) the 2D locations
of the inlier keypoints, (ii) initial estimates of the 3D
coordinates of the physical points we want to reconstruct
(computed by averaging the 3D coordinates of corre-
sponding keypoints) and (iii) the camera poses computed
by VO and loop closures. The output is a set of refined
3D point coordinates and camera poses. However, the
resulting 3D points are sparse and noisy (see Figure 4(a))

which makes it difficult to use them for collision-free
navigation. This is why we only use the refined poses to
position and orient the 3D point clouds computed using
the learned stereo module. The result is a dense and clean
3D geometric reconstruction (see Figure 4(b)).

• Mapping Store Items: Our maps have to contain more
than just a geometric reconstruction of the environment.
They have to be enriched with the locations of grocery
items in the store. To achieve this, we employ the object
perception module described in Section V-B. Since all
camera poses are registered within a single coherent
map coordinate system, we get the object location within
the map by transforming its pointcloud according to the
corresponding camera pose and computing the centroid.

Localization: The robot uses the map generated offline to
localize itself within the store. At the beginning of a shopping
task execution, the robot estimates its pose relative to the map
using the same procedure outlined in the above paragraph on
loop detection and closure, where Lk is the current image from
the robot’s chassis camera. Once localized, it relies on VO to
navigate to each item in the shopping list. To correct for the
VO drift, the robot re-localizes each time it arrives at an item.

VI. PLANNING

A. Task Planning

At the highest level, our task planner is implemented as
a hierarchical FSM, which guides the high level actions
of the robot. For example, when the localization/navigation
modules indicate that the robot is near the item to be grasped,
a transition into a detection state is triggered, where the
robot runs object detection, segmentation, and classification
(as detailed in Section V-B) to find the requested item. A
simplified illustration of the highest hierarchy of our FSM is
shown in Figure 5.

B. Navigation

The first step of the navigation pipeline is to generate a 2.5D
elevation map from the geometric reconstruction described
in Section V-C. At the beginning of a shopping run, using
that same geometric reconstruction with the (offline) mapped
items, navigation goals (2D locations on the ground plane) are
generated for each item in the randomly-generated shopping
list by searching for a collision-free pose of a planar robot
collision body along the outward-facing-axis of the item co-
ordinate frame. Obstacle-free paths (a sequence of 2D points)
are then generated between all permutations of the items in the
shopping list using an A∗ search within an inflated obstacle
map generated from the 2.5D elevation map. The Christofides
algorithm [9] is then applied to a graph of these obstacle-
free paths to compute the approximate shortest path that visits
all items for the generated shopping list. This gives us a full
path (set of 2D waypoints) that takes the robot to all the
items in our shopping list. To track this path, a path follower
algorithm [18] is used to generate collision-free trajectories
between consecutive waypoints.

(a) (b)

Fig. 4. (a) Output of a state-of-the-art BA algorithm [1]. Notice the noise and sparsity of the reconstruction. (b) Our map generated by registering the
stereo-based 3D pointclouds using the poses computed by the same BA algorithm. The green rectangles show a side-to-side comparison between the same
two regions in the maps and highlight the difference in reconstruction quality. The positions of the mapped store items are rendered as blue spheres and their
orientations are indicated by red, blue and green coordinate frames.

Get Item Place Item

Detect Items
Navigate

to Item

Success

Success

Success

Success
or

Failure

Failure

Failure

Failure

Fig. 5. Highly simplified task summary. Note that our hierarchical finite state
machine includes many more states/transitions, but this provides a pictorial
description of the main components of the grocery task.

The path follower uses high-rate, smooth pose estimates
from combining wheel odometry (200 Hz) and visual odom-
etry (5 Hz). Only at the end of each path (when it arrives
at the item) does it re-localize within the map (as described
in Section V-C). This is to prevent pose noise caused by the
localization updates from affecting the performance of the path
follower during execution.

C. Motion Planning

To accomplish different tasks, we must be able to com-
mand the robot to arbitrary target end-effector poses (e.g. for
grasping objects and placing them) while avoiding collisions.
For this purpose, we developed a motion planner that can
achieve 100% reliability with sub-second average planning
times in a changing environment for our highly redundant,
21 DoF robot (the longest kinematic chain being 12 DoF).
To describe the collision environment, we utilize the 3D
voxel map mentioned in Section V-A. Our robot leverages
(1) a dynamic roadmap (DRM) [19] that is pre-checked for
collisions against any potential voxel map combined with (2)
an optimization-based inverse kinematics (IK) solver [30] to
quickly compute optimal plans in configuration space towards
goals specified in Cartesian space.

When a motion plan is requested, the voxel map is first
processed and used to prune out all nodes in the DRM that are
in collision. This is extremely fast, as these collision-checks
are done offline based on the robot model and stored for
efficient online queries. Since some collision-checks cannot
be done offline (e.g., if the robot model changes because
it grabbed an item), we leverage GPU-accelerated collision-
checking for pruning out any nodes in collision with any newly
added collision bodies. After this step, all remaining nodes
in the DRM can be assumed to be collision-free, and a set
of collision-free paths can be generated by searching for the
shortest path to all nodes in the neighborhood of our target
Cartesian pose (e.g., using A*). Finally, we rely on a QP-
based IK solver to connect from nodes in this neighborhood
of the target pose to the exact target pose, and the shortest
resulting path is chosen. 0

The goals of this approach, outlined in Figure 6, are to
front-load as much computation as possible to offline pre-
computation (i.e., training a large DRM) and to parallelize
expensive aspects of online planning (i.e., collision-checks).

0A shortcutting-step is added at the end in order to optimize the robot path.

n1

n2

n4

n3

n5

n6

n10n9

n8

n7

v2 v3
v4 v5

v6 v7
v8 v9

v11
v12 v13

v14 v15
v16 v17

v18 v19

v21
v22 v23

v24 v25
v26 v27

v28 v29

v31
v32 v33

v34 v35
v36 v37

v38 v39

v41
v42 v43

v44 v45
v46 v47

v48 v49

Voxel map

Offline

v2 v3
v4 v8 v9

v11
v12 v13

v14 v15
v16 v17

v18 v19

v21
v22 v23

v24 v25
v26 v27

v28 v29

v31
v32 v35

v36 v37
v38

v41
v42 v45

v46 v47
v48

Perceived Current Voxel Map

Collision map

v44 {n5, n7, n10, ... }
v34 {n7, n10, ...}
v45 {n5, ...}

.

.

.

Roadmap

v33

v5 v6 v7

v39

v49

v34

v43 v44

n1

n2

n4

n3

n5

n6

n10

n9

n8

n7

SE3 zgoal

x

x
x

Pose map

n1

n2

n4

n3

n5

n6

n10n9

n8

n7

x x

x

xgoal

Online

xstart

Fig. 6. Depiction of the motion planning pipeline. The top block denotes the offline process of building the roadmap and collision map of the DRM. The
colored links in the voxel map (top right) depict the robot configurations corresponding to the same-colored nodes in the roadmap (top-left), such that the
mapping from voxels to nodes-in-collision can be built. The bottom block denotes the online process of querying the DRM for a collision-free path, leveraging
the collision map to avoid expensive collision checks.

D. Grasp Planning
Upon successfully navigating to a target item’s location as

specified in the map and detecting the actual object instance in
the live camera images, the robot plans how to pick this item
off the grocery shelf and place it into its shopping basket. This
requires the robot to take the following steps:

• Plan a collision-free path to the front of the desired item.
• Reach into a cluttered shelf with either the parallel-jaw

gripper or the suction gripper.
• Grasp the item via a pinch or suction grasp.
• Extract the item from the shelf.
• Plan a collision-free path to place the item in its basket.
• Move the gripper over the basket and release the item.

Before the robot extends its end-effector tool into the shelf, it
corrects the pose of the tool, compensating for any kinematic
errors, using a custom, GPU-accelerated point cloud registra-
tion method. After extraction, the robot evaluates whether the
grasp was successful or not by examining the wrench at the
tip and (a) the position of the gripper fingers or (b) pressure
signals from the suction gripper.

In order to tackle grasping a variety of items in different
environmental contexts (e.g., sitting on a shelf or hanging
from a hook), we use a learned mapping from the perceived
item to a discrete, comprehensive set of grasp/extract strategies
for each item (ee Figure 7). Through experimentation with
the robot, we found five different categories of grasps (e.g.,
grasp by handle, grasp by cap, suction at flattest region), and
four categories of extraction (e.g., extract from hook) that

handle most items represented in our chosen challenge task.
We trained a PointNet-based [26] and a ResNet-based [16]
network for grasp and extraction classification, respectively,
with the grasp classifier using segmented point clouds and
the extraction classifier using RGB crops of item instances as
input. Once the type of grasp is inferred, a downstream process
computes the grasp pose that is optimal for that grasp type. For
example, for handle grasps, a keypoint detector was trained to
find the center of handles in RGB images in order to anchor
the grasp about that point. For convenience, classification of
the grasp/extract type is done offline for every mapped item
in the grocery store, while the grasp pose is computed online.
We use an engineered, geometry-based heuristic to select the
object instance to pick if the robot detects multiple instances
of a desired item type on the shelf.

VII. EVALUATION

A. Task Description

The challenge task requires the robot to fulfill a randomly
generated shopping list in a real-world, unmodified1 grocery
store. The items in the store are mapped prior to task execution
using the procedure described in Section V-C. We conduct our
tests at nighttime outside of the store’s opening hours. This

1We install a mesh Wi-Fi network with Ethernet backhaul connections for
the duration of our tests to ensure a stable connection between the operator
station and the robot. However, this is not required since our robot is fully
autonomous, and we do not consider it a modification of the environment.

Fig. 7. Object Grasp Examples (top, left to right): (1.i) flat, cylindrical object grasp; (1.ii) cap grasp; (1.iii) handle grasp; (1.iv) heavy, deformable object
grasp; (1.v) suction grasp. (bottom, left to right): (2.i) extraction from a lip-free shelf; (2.ii) extraction of a jug; (2.iii) extraction from a box; (2.iv) extraction
from a hook.

Extraction Strategy

Grasping Strategy

Fig. 8. Top: Network diagram for classifying grasp type based on segmented
point cloud of item. This is combined with the pose of the object (computed
downstream) to obtain a 6D grasp pose. Bottom: Network diagram for
classifying extraction type based on RGB crop (e.g. extracting from hook
vs. from box).

means no other shoppers are present and lighting conditions
in the store are not affected by sunlight.

At the start of the task, the robot localizes itself relative to
the map. Next, a shopping list of 20 unique items is generated
randomly, where up to two instances of each item may be
requested. The task is for the robot to autonomously collect
all items in a basket and bring them to the starting point.

During the task, no human intervention is allowed, unless
the robot is about to do something dangerous to itself or the
environment. For those occasions, the human operator has a
remote E-stop to end the task immediately. For liability and
safety reasons, the robot operates outside of opening hours.
Moreover, while no modifications are made to the grocery
store, we narrow the scope of items we attempt to grasp
primarily to avoid damaging products or the robot itself.

Namely, we remove produce, items inside a refrigerator, items
that are heavier than 4.5 kg2, and glass items. We will consider
those in future work.

B. Task Metrics

Using the grocery shopping task as a way to continuously
evaluate the performance of our system in an end-to-end
fashion allows us to make data-driven decisions about where
to focus our development efforts in order to efficiently improve
the most important robot capabilities. To gather the required
data, we conduct field tests every three months in an actual
grocery store, during which the shopping task is executed as
often as possible, over the course of five consecutive nights
for four hours per night. We do not change the hardware or
software of the robot system for the duration of this week-long
test.

Based on detailed data logs, videos and records of all
attempted picks, we use several metrics for performance
assessment. In the following, we define the most important
ones.
Reliability: A task is considered completed if the robot
navigates to all 20 items, attempts to pick the requested
number of instances, and drives back to its starting point. Note
that this definition does not take into account how many items
were successfully picked and placed in the basket. Tasks are
considered unsuccessful when they were prematurely stopped
by an unrecoverable hardware or software fault, or by an
operator-issued E-stop.

We define the task success rate as the ratio of the number
of completed tasks to the number of started tasks. We use
this as our highest-level indicator of system reliability. Since

2Note that TTT’s arms are capable of handling up to 10 kg of payload,
but most items in the grocery store that exceed 4.5 kg are too heavy for our
suction tool and not graspable with a parallel-jaw gripper (e.g., heavy boxes
of soda cans).

Fig. 9. Metrics that we use to drive our development. Top Left: Overall
system reliability measured by the task success rate. Top Right: Speed
measured by the shopping time per item. Bottom Left: Shopping performance
measured by the shopping success rate. Bottom Right: Number of unique
items attempted to grasp.

any of the robot’s subsystems, from hardware to motion
planning, can cause a task-ending failure, we use finer-grained
indicators to give us more insight into what caused a specific
failure. The unforgiving, multiplicative nature of the overall
system reliability, measured by the task success rate, strongly
motivates the development of fault recovery strategies for all
subsystems.
Shopping performance: We measure the shopping perfor-
mance as the ratio of the number of successfully retrieved
items to the total number of items in the shopping list. Even
though this metric can be negatively affected by items that
are in the shopping list but out of stock, it gives us valuable
insights into the system’s performance.
Speed: We quantify speed as the overall time it takes the
robot to complete one shopping list, divided by the number of
items it retrieved. This overall speed metric incentivizes us to
optimize speed on all levels, primarily for navigation, motion
planning and motion execution.

C. Results

Guided by the metrics described above, we have worked
on improving our system’s performance in the grocery store
shopping task for 18 months. In this time period, we con-
ducted six field tests at a local grocery store at three months
intervals. From the detailed log data collected during these
tests, we track the above metrics that allow us to assess the
overall performance and identify the most meaningful areas of
improvement.

Besides these high-level metrics, data from the field tests
enables us to perform fine-grained analysis of all system
failures. A visualization of such analyses for two consecutive
quarters is shown in Figure 10, where the main focus areas
were reducing hardware and low-level software reliability
problems with the new TTT platform (”joint control errors”)
and avoiding collisions with the environment.
Reliability: Reliability, measured by the task success rate, is
crucial for system up-time, a necessary requirement to collect

the data for our data-driven development approach.
We initially started this project with a different robot plat-

form, FMT. While kinematically and morphologically almost
identical, FMT is more heterogeneous in terms of hardware
components, and its arms have a lower payload capacity than
our current TTT platform. With FMT, we achieved a 21.4%
task success rate by the third field test. For the following
field tests, we switched to the newly developed TTT platform.
Naturally, this led to a decrease in system reliability as we
worked through the challenges of bringing up a new platform.
After the associated drop, system reliability recovered and got
better than ever: the success rate reached 35.7% by the sixth
field test (see Figure 9, top left).

This number is low compared to human performance, giving
us lots of room to improve. However, we argue that it is high
for a complex robot system operating in a real-world setting,
considering that a shopping run can last up to 30 minutes and
consists of hundreds of consecutive actions (such as planning,
moving, driving, grasping). Even if each individual action was
99% reliable, it only takes 103 consecutive actions for the task
success rate to drop below the 35.7% achieved by our robot.
Shopping performance: We regard the shopping success rate
(the ratio of the successfully retrieved items to the number
of items in the shopping list) as the best overall indicator
of shopping performance. It is sensitive to almost every
aspect of the system’s performance, except for speed. Largely
driven by the significant increase in our system’s reliability
between the last two field tests, the overall performance has
started a very exciting upward trend from 8.9% in the fifth
to 28.9% in the sixth field test (see Figure 9, bottom left).
This increased performance and the resulting higher number
of grasp executions per field test unlock much more effective
data collection, which will further accelerate our development.
Speed: We made continuous overall progress on the shopping
speed, which is measured by the shopping time per item. This
time includes navigating to an item as well as picking it. We
were able to reduce this metric by approximately 70% over the
course of six field tests, from six minutes per item to below
two minutes (see Figure 9, top right). The largest increase
in speed occurred when we switched from the FMT to the
more capable TTT robot platform. However, switching to a
faster robot was only one aspect of increasing the speed. More
importantly, we developed tools to investigate which parts of
the shopping task take up significant time and were able to
focus our speed-up efforts there. This led to progress in widely
applicable robot capabilities such as faster motion planning for
redundant systems, faster collision-free navigation in confined
spaces, and faster grasping.
Unique items attempted to pick: Of the many more detailed
metrics we track, one that is particularly intuitive and valuable
to us is the number of unique items attempted to pick during
a field test. We aim to steadily increase this number, which
makes the overall problem harder, without regressing on the
other metrics. It is affected by our mapping capabilities and
the robot’s ability to grasp a wide variety of items with its two
complementary tools, but also by the sheer time the robot is

Fig. 10. Example of a comparison of quarterly field test failure analysis results. The pie charts break down causes of task failures, with the left and right
charts corresponding to the fifth and the sixth field test, respectively.

actually executing shopping runs, which is in turn affected by
its reliability. Thanks to a map containing close to 1000 items,
an ever more capable grasping pipeline and the significant
uptick in system reliability, this metric has entered a steep
upward trend from 164 unique items in the fifth field test to
389 in the sixth (see Figure 9, bottom right). Each attempted
pick, successful or not, creates invaluable data from which we
can learn and improve. For this reason we expect this increase
to benefit many aspects of our development pipeline.

VIII. LESSONS LEARNED AND KEY TAKEAWAYS

Based on our extensive experiments in the grocery store
and analysis of the resulting data (including successes and
failures), we have compiled key takeaways that we believe
could accelerate deployment of robots in the wild.
System/component reliability is the most important metric
for real-world deployment:

• Working on end-to-end systems with many actions
chained in series emphasizes how important reliability
and accuracy of the individual components/subsystems
are. If each individual action is 99% reliable, and we
take 10 actions per minute, overall reliability would be
0.2% for a task that takes 1 hour.

• Resetting the robot is not a viable option in the real-
world. When the robot gets stuck or hits an object or
goes down unexpectedly, human intervention is required,
at least partially defeating the purpose of an autonomous
robot.

• Homogeneous hardware enables more reliable systems.
TTT, using our in-house actuators in all of its joints,
is more reliable than our previous, more heterogeneous
robot architectures. Our observation is that more ho-
mogeneous systems require fewer unique hardware and
software components. These components are therefore
easier to test, improve and harden.

• In order to see research results transition to real-world ap-
plications, there needs to be a viable path from proof-of-
concept towards making methods reliable. While ‘hard-
ening’ certain methods is often deemed an engineering

rather than a research problem, we want to challenge this
notion. Making methods that are powerful and promising
in a laboratory setting more robust or fault-tolerant to
real-world challenges can be seen as a research problem
in its own right, requiring creative ideas and sometimes
entirely new approaches. Switching robot platforms in the
middle of the project highlighted the need for methods
that generalize beyond a highly specific hardware or
system architecture.

Machine learning has revolutionized many aspects of
robotics and enabled several new capabilities, but we are
still far from truly intelligent robots:

• While we use learning methods for narrow tasks such
as stereo reconstruction and gripper selection, a reliable
learning-based method to synthesize broader robot behav-
iors (including fault responses) is still missing, but it is
exciting to see recent progress towards this vision (e.g.,
[8]).

• Explainable AI will be crucial for deployment of powerful
learned models in mobile manipulation. The lack of
interpretability of current learned methods make fault
recovery and failure analysis extremely difficult, with
the only choice often being to add more/better data.
Therefore, we are very excited to see advancements in
this area leading to more reliable deployment in mobile
manipulation robots.

Manipulation with a mobile robot requires constant
hardware-software co-design and co-evolution:

• A robot that can navigate and manipulate objects within
a human-centric environment benefits from a smaller
footprint. In a sense, this places hardware and software
development at tension with each other – smaller actu-
ators are more difficult to design and manufacture, yet
larger robots face more challenging collision constraints,
affecting all areas of planning.

• Constant trade-offs are necessary when considering end-
effector designs for mobile manipulators, including bal-
ancing safety vs. strength, simplicity vs. versatility, and

power vs. form-factor. For instance, grasps for suction
grippers are easier to generate compared to grasps for
mechanical grippers. However, designing suction grippers
that can successfully grasp a wide variety of materials and
weights while maintaining a small form-factor poses new
challenges in hardware design.

IX. DISCUSSION

We hope we have impressed upon the reader that mobile ma-
nipulation is a hard problem, with the need and many exciting
opportunities for future research. Two things we deem critical
for continued progress are: (1) end-to-end system testing, and
(2) field testing in real-world (non-lab) environments.

End-to-end system testing (in addition to unit tests and
integration tests) is necessary because algorithms as well as
hardware subsystems that perform well in isolation may not
perform well on a complex robotic system. Concrete examples
that we encountered include:

• Our voxel mapper reconstructs and tracks obstacles. It
uses the robot kinematics to distinguish the robot itself
from the environment by masking out robot pixels, pre-
venting them from entering the voxel mapper pipeline.
Our motion planner relies on an accurate voxel map
for collision free planning. While both these components
functioned well (passing all unit tests), end-to-end testing
revealed rare instances in which kinematic uncertainty
leads to parts of the robot erroneously being labeled as
environment, preventing successful motion planning. This
led us to (1) develop a purely vision-based robot mask,
independent from the robot kinematics, and (2) make our
motion planner robust to spurious voxels arising from an
imperfect robot mask.

• If an item to grasp is far enough from the current robot
position, requiring our gripper to make a difficult reach,
the robot first does a lateral drive to make the grasp easier.
To keep the item in view, the robot needs to rotate its
head, resulting in skewed images. We learned that this
leads to a much higher likelihood of failed or inaccurate
item perception. This observation led us to re-think this
aspect of the overall item retrieval pipeline.

There are many more examples of such subtle interplay that
are difficult to produce when testing modules in isolation, but
that arise during long periods of end-to-end testing. Such in-
stances are important for highlighting inaccurate assumptions
made by different algorithms so that we can push towards
addressing them.

In addition to end-to-end testing, periodic testing in real-
world environments is crucial as it will highlight issues that do
not arise in the lab, and expose implicit assumptions that hold
true in the lab but not in the field. As an analogy, consider
how in the machine learning field, it is standard practice to
divide a dataset into a training set, validation set, and test set.
The validation set can be used to tune hyperparameters of the
learning algorithm, whereas the test set should only ever be
used for evaluation. The reasoning is that having access to the
validation set, even just to tune hyperparameters, introduces

the risk of overfitting to it. A lab environment is analogous to
a validation set - even if it is designed to approximate the real
world, we risk overfitting to its specific characteristics. Testing
in the field is analogous to testing on a test set.

We have found that our metrics are significantly better in
the lab (i.e. our mock grocery store) versus the real-world
grocery store. Part of that is because the real environment is
more challenging (e.g. customers place items in odd configu-
rations, the store layout and placement of items is constantly
changing), but a large part is also that we have constant access
to the lab when designing/tuning our algorithms, and so we
can unconsciously overfit to the challenges we encounter there.

ACKNOWLEDGMENTS

We would like to thank JC Hancock, Jordan Skerbetz,
Andrew Custer and Jonathan Yao for their support with map
data collection and robot testing.

REFERENCES

[1] Sameer Agarwal, Keir Mierle, and The Ceres Solver
Team. Ceres Solver, 2022. URL https://github.com/
ceres-solver/ceres-solver.

[2] Relja Arandjelovic. Three Things Everyone Should
Know to Improve Object Retrieval. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[3] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas
Pajdla, and Josef Sivic. NetVLAD: CNN Architecture for
Weakly Supervised Place Recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[4] Tamim Asfour, Mirko Waechter, Lukas Kaul, Samuel
Rader, Pascal Weiner, Simon Ottenhaus, Raphael Grimm,
You Zhou, Markus Grotz, and Fabian Paus. ARMAR-
6: A High-Performance Humanoid for Human-Robot
Collaboration in Real-World Scenarios. IEEE Robotics
& Automation Magazine, 26(4), 2019.

[5] Max Bajracharya, Jeremy Ma, Andrew Howard, and
Larry Matthies. Real-Time 3D Stereo Mapping in
Complex Dynamic Environments. In Proceedings of the
International Conference on Robotics and Automation-
Semantic Mapping, Perception, and Exploration (SPME)
Workshop, volume 15, 2012.

[6] Max Bajracharya, James Borders, Dan Helmick, Thomas
Kollar, Michael Laskey, John Leichty, Jeremy Ma,
Umashankar Nagarajan, Akiyoshi Ochiai, Josh Petersen,
Kevin Stone, and Yutaka Takaoka. A Mobile Manipula-
tion System for One-Shot Teaching of Complex Tasks
in Homes. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[7] Christoph Borst, Thomas Wimbock, Florian Schmidt,
Matthias Fuchs, Bernhard Brunner, Franziska Zacharias,
Paolo Robuffo Giordano, Rainer Konietschke, Wolfgang
Sepp, and Stefan Fuchs. Rollin’Justin-Mobile Platform
with Variable Base. In Proceedings of the IEEE Interna-

https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver

tional Conference on Robotics and Automation (ICRA),
2009.

[8] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas
Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian,
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-
Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina
Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jor-
nell Quiambao, Kanishka Rao, Michael Ryoo, Grecia
Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh,
Sumedh Sontakke, Austin Stone, Clayton Tan, Huong
Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong,
Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. RT-1: Robotics Transformer
for Real-World Control at Scale. In arXiv preprint
arXiv:2212.06817, 2022.

[9] Nicos Christofides. Worst-Case Analysis of a New
Heuristic for the Travelling Salesman Problem. Technical
Report 388, Graduate School of Industrial Administra-
tion, Carnegie Mellon University, 1976.

[10] Andreas Dömel, Simon Kriegel, Michael Kaßecker,
Manuel Brucker, Tim Bodenmüller, and Michael Suppa.
Toward Fully Autonomous Mobile Manipulation for In-
dustrial Environments. International Journal of Ad-
vanced Robotic Systems, 14(4), 2017.

[11] Clemens Eppner, Sebastian Höfer, Rico Jonschkowski,
Roberto Martı́n-Martı́n, Arne Sieverling, Vincent Wall,
and Oliver Brock. Lessons from the Amazon picking
challenge: Four aspects of building robotic systems. In
Robotics: science and systems, pages 4831–4835, 2016.

[12] Martin A. Fischler and Robert C. Bolles. Random
Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartog-
raphy. Communications of the ACM, 24(6), 1981.

[13] Jocher Glenn. YOLOv5 by Ultralytics, 2020. URL https:
//github.com/ultralytics/yolov5.

[14] Eran Goldman, Roei Herzig, Aviv Eisenschtat, Jacob
Goldberger, and Tal Hassner. Precise Detection in
Densely Packed Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[15] Erico Guizzo and Evan Ackerman. The Hard Lessons of
DARPA’s Robotics Rhallenge [News]. IEEE Spectrum,
52(8), 2015.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[17] Paul Hebert, Max Bajracharya, Jeremy Ma, Nicolas
Hudson, Alper Aydemir, Jason Reid, Charles Bergh,
James Borders, Matthew Frost, Michael Hagman, John
Leichty, Paul Backes, Brett Kennedy, Paul Karplus, Brian
Satzinger, Katie Byl, Krishna Shankar, and Joel Bur-

dick. Mobile Manipulation and Mobility as Manipula-
tion—Design and Algorithms of RoboSimian. Journal
of Field Robotics, 32(2), 2015.

[18] Daniel M Helmick, Stergios I Roumeliotis, Yang Cheng,
Daniel S Clouse, Max Bajracharya, and Larry H
Matthies. Slip-Compensated Path Following for Plan-
etary Exploration Rovers. Advanced Robotics, 20(11),
2006.

[19] Marcelo Kallmann and Maja Mataric. Motion Planning
using Dynamic Roadmaps. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), 2004.

[20] Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. Siamese Neural Networks for One-Shot Image
Recognition. In ICML deep learning workshop, vol-
ume 2, 2015.

[21] Gerhard K. Kraetzschmar, Nico Hochgeschwender, Wal-
ter Nowak, Frederik Hegger, Sven Schneider, Rhama
Dwiputra, Jakob Berghofer, and Rainer Bischoff.
RoboCup@Work: Competing for the Factory of the Fu-
ture. In RoboCup 2014: Robot World Cup XVIII, 2015.

[22] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal
Fua. EPnP: An Accurate O(n) Solution to the PnP
Problem. International Journal Computer Vision, 81(2),
2009.

[23] Tony Lindeberg. Detecting Salient Blob-Like Image
Structures and Their Scales with a Scale-Space Primal
Sketch: A method for Focus-of-Attention. International
Journal Computer Vision, 11(3), 1993.

[24] Bo Liu, Hao Kang, Haoxiang Li, Gang Hua, and Nuno
Vasconcelos. Few-Shot Open-Set Recognition Using
Meta-Learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[25] Wim Meeussen, Melonee Wise, Stuart Glaser, Sachin
Chitta, Conor McGann, Patrick Mihelich, Eitan Marder-
Eppstein, Marius Muja, Victor Eruhimov, Tully Foote,
John Hsu, Radu Bogdan Rusu, Bhaskara Marthi, Gary
Bradski, Kurt Konolige, Brian Gerkey, and Eric Berger.
Autonomous Door Opening and Plugging in with a
Personal Robot. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2010.

[26] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. Pointnet: Deep Learning on Point Sets for
3D Classification and Segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[27] Vignesh Sushrutha Raghavan, Dimitrios Kanoulas, Dar-
win G. Caldwell, and Nikos G. Tsagarakis. Reconfig-
urable and Agile Legged-Wheeled Robot Navigation in
Cluttered Environments With Movable Obstacles. IEEE
Access, 10, 2022.

[28] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional Networks for Biomedical Image
Segmentation. In Proceedings of the 18th International
Conference on Medical Image Computing and Computer-

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

Assisted Intervention (MICCAI), 2015.
[29] Martin Sereinig, Wolfgang Werth, and Lisa-Marie Faller.

A Review of the Challenges in Mobile Manipulation:
Systems Design and RoboCup Challenges. e & i Elek-
trotechnik und Informationstechnik, 137(6), Oct 2020.

[30] Krishna Shankar, Joel W. Burdick, and Nicolas H. Hud-
son. A Quadratic Programming Approach to Quasi-Static
Whole-Body Manipulation. In Algorithmic Foundations
of Robotics XI: Selected Contributions of the Eleventh
International Workshop on the Algorithmic Foundations
of Robotics, 2015.

[31] Krishna Shankar, Mark Tjersland, Jeremy Ma, Kevin
Stone, and Max Bajracharya. A Learned Stereo Depth
System for Robotic Manipulation in Homes. IEEE
Robotics and Automation Letters, 7(2), 2022.

[32] Jake Snell, Kevin Swersky, and Richard Zemel. Proto-
typical Networks for Few-shot Learning. In Advances
in Neural Information Processing Systems (NIPS), vol-
ume 30, 2017.

[33] Siddhartha S. Srinivasa, Dmitry Berenson, Maya Cak-
mak, Alvaro Collet, Mehmet R. Dogar, Anca D. Dragan,
Ross A. Knepper, Tim Niemueller, Kyle Strabala, Mike
Vande Weghe, and Julius Ziegler. Herb 2.0: Lessons
Learned From Developing a Mobile Manipulator for the
Home. Proceedings of the IEEE, 100(8), 2012.

[34] Petr Štibinger, George Broughton, Filip Majer, Zdeněk
Rozsypálek, Anthony Wang, Kshitij Jindal, Alex Zhou,
Dinesh Thakur, Giuseppe Loianno, Tomáš Krajnı́k, and
Martin Saska. Mobile Manipulator for Autonomous
Localization, Grasping and Precise Placement of Con-
struction Material in a Semi-Structured Environment.
IEEE Robotics and Automation Letters, 6(2), 2021.

[35] Shantanu Thakar, Srivatsan Srinivasan, Sarah Al-
Hussaini, Prahar M Bhatt, Pradeep Rajendran, Yeo
Jung Yoon, Neel Dhanaraj, Rishi K Malhan, Matthias
Schmid, Venkat N Krovi, and Satyandra K. Gupta. A
Survey of Wheeled Mobile Manipulation: A Decision-
Making Perspective. Journal of Mechanisms and
Robotics, 15(2), 2023.

[36] Thomas Whelan, Stefan Leutenegger, Renato Salas-
Moreno, Ben Glocker, and Andrew Davison. ElasticFu-
sion: Dense SLAM without a Pose Graph. In Proceedings
of Robotis Science and Systems (RSS), 2015.

[37] Thomas Wisspeintner, Tijn Van Der Zant, Luca Iocchi,
and Stefan Schiffer. RoboCup@ Home: Scientific Com-
petition and Benchmarking for Domestic Service Robots.
Interaction Studies, 10(3), 2009.

	Introduction
	Related Work
	System Overview
	Hardware System
	Perception Modules
	Learned Stereo Depth and Voxel Mapper
	Object Detection, Segmentation, and Classification
	Mapping and Localization

	Planning
	Task Planning
	Navigation
	Motion Planning
	Grasp Planning

	Evaluation
	Task Description
	Task Metrics
	Results

	Lessons Learned and Key Takeaways
	Discussion

