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Planning in Human-Robot Collaboration
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Abstract—Adaptive task planning is fundamental to ensuring
effective and seamless human-robot collaboration. This paper
introduces a robot task planning framework that takes into
account both human leading/following preferences and perfor-
mance, specifically focusing on task allocation and scheduling
in collaborative settings. We present a proactive task allocation
approach with three primary objectives: enhancing team per-
formance, incorporating human preferences, and upholding a
positive human perception of the robot and the collaborative
experience. Through a user study, involving an autonomous
mobile manipulator robot working alongside participants in
a collaborative scenario, we confirm that the task planning
framework successfully attains all three intended goals, thereby
contributing to the advancement of adaptive task planning in
human-robot collaboration. This paper mainly focuses on the first
two objectives, and we discuss the third objective, participants’
perception of the robot, tasks, and collaboration in a companion
paper.

Index Terms—Human-robot collaboration, adaptive task plan-
ning, proactive task allocation, human preference and perfor-
mance.

I. INTRODUCTION

COBOTS, short for collaborative robots, have signified
a transformative leap from traditional industrial robots,

working isolated from humans, to robots that can share their
workspace with their human coworkers, laying the ground
to exploit the synergy of human-robot collaboration (HRC).
Although cobots are currently slower and less powerful than
traditional industrial robots, mainly due to their proximity
to humans and safety concerns, they are easy to install and
relocate and are productive and cost-effective automation so-
lutions for diverse work environments, even small enterprises
[1]. Leveraging these capabilities and establishing a seamless
collaboration, however, can be achieved only through human-
aware programming of cobots [2], empowering them to learn,
adapt, and work robustly.

One of the main challenges in programming cobots is en-
abling them to adapt to their human teammate, especially their
preferences. This topic has been extensively researched in the
context of human-robot interaction (HRI) and collaboration,
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Fig. 1. Spectrum of leading/following roles in human-robot collaboration

primarily centering on considering human preferences and
enhancing human satisfaction and perception of the robot [3]–
[6]. Clearly, a high level of human perception of the robot
facilitates effective long-term collaboration between humans
and cobots, but a question remains: “Do only the human
teammate’s satisfaction and perception matter?”. Cobots are
typically less expensive compared to traditional industrial
robots, yet they still need to demonstrate sufficient productivity
to convince business owners to invest in them [2]. Hence, team
performance, in addition to human perception of the robot and
collaboration, are two important factors to consider in cobot
programming.

Both the human and robot contribute to team performance
with their complementary skill, but in the context of task
planning and scheduling, the robot’s high computational and
planning abilities allow it to take a more significant and
leading role, ensuring good team performance in the short
term. However, due to human presence and dynamic envi-
ronment uncertainties, it is sometimes more efficient for the
human interaction partner to plan for the team [2]. However,
the objectives of maximizing team performance and human
perception may be conflicting. This leads to the following
problem, which is the focus of this paper: How do we enable a
cobot to adapt to its human coworker’s preferences to optimize
human perception while keeping the team performance at an
acceptable level?

We previously conducted an online user study involving
a scenario with a single human and a robot, requiring the
two parties to collaborate to accomplish a given task [7].
We considered three robot strategies: prioritizing the human
(Strategy 1), prioritizing the robot (Strategy 2), and balancing
both (Strategy 3). Based on the results, Strategies 1 and 3
enhanced human perception of the collaboration compared to
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Strategy 2, with no significant difference between Strategies
1 and 3. Those previous findings proposed that having a
balanced robot plan in collaborative scenarios benefits the team
without diminishing human perception of the collaboration.
In this prior work, although the robot’s decisions were based
on the state of the task, there was no adaptation to human
preferences, and only fixed strategies were considered.

Resting on the insights gathered from this initial study, we
have proposed a framework that equips the robot to estimate
and adapt its planning to

1) the human leading/following preferences, and
2) the human performance.

In this framework, in contrast to most common approaches,
which strictly focus on one end of the leading/following
spectrum, the cobot gradually and continuously adapts to
human performance and (leading/following) preferences in
pursuit of long-term performance and can encompass the entire
spectrum between acting solely as a leader or solely a follower.
Fig. 1 encapsulates the main idea of this framework.

The framework allows the robot to monitor and adapt to
changes in human preferences and performance during the
collaboration rather than relying on fixed, long-term prefer-
ences and performance. For example, consider a person with
a following preference who becomes fatigued at some point
and then prefers to assign more tasks to the robot, or a scenario
in which a person with a high level of performance becomes
confused and makes a few mistakes. This framework can
be applied to different collaborative scenarios; however, our
research focuses specifically on task selection/allocation and
scheduling in human-robot collaboration.

In a basic task allocation problem, agents need to be
assigned tasks with associated payoffs, aiming to optimize
overall team payoff. This is a widely explored topic in multi-
robot teams [8], as well as HRC, involving a blend of human
and robot agents [9]–[13]. Our work focuses on a single-
human, single-robot teams, and what makes it different from
conventional task allocation systems is: the human and cobot’s
agency in selecting their own tasks and assigning tasks to each
other instead of being assigned merely by one of the agents
or a third party (e.g., a manager/central controller).

The provided agency allows the human to demonstrate
and implement their leading/following preference in their
collaboration with the cobot. Subsequently, throughout the
collaboration, the cobot needs to estimate the latent human
preference, monitor and estimate the human’s performance,
and adapt its planning online. The robot performs two-step
task planning at each step: first, task allocation considering its
belief about human preference and performance, and second,
task scheduling. In this framework, the robot needs to re-
assume the leading role when the human’s performance is
poor, even if the human agent prefers to lead the team.

In [14], we tested the framework in a simulation environ-
ment using a simplified model of human decision-making. In
[15], we also implemented it on an actual mobile manipulator,
the Fetch robot, and tested it by having the experimenter enact
some possible different human collaboration styles. However,
to test the system and planning framework’s effectiveness and

their influence on human perception of the robot, we con-
ducted a user study, which is the primary focus of this paper.
We consider a collaborative scenario, inspired by the kitting
task, with a set of precedence-constrained tasks that must be
completed through collaboration between the human and the
cobot. Both agents make their decisions asynchronously and
can select tasks for themselves or assign them to each other.

A. Contributions

Restating the problem that we aim to tackle in this pa-
per, adapting to human leading/following preferences while
maintaining team performance at a high level, the main
contributions of this paper are as follows:

1) We propose a robot planning framework enabling the
robot to consider both human leading/following pref-
erence and performance simultaneously. We apply this
framework specifically to the task allocation problem and
present a two-step planning structure: 1- Task allocation
by considering the robot’s belief about the human agent’s
performance and leading/following preference, and 2-
task scheduling.

2) Our planning algorithm dynamically updates task states
based on both agents’ actions and actively identifies and
addresses errors made by the human agent.

3) We present the development and practical implementation
of adaptive robot task planning in a collaborative scenario
involving a robot performing autonomous pick-and-place.

4) Through a comprehensive user study involving 48 par-
ticipants, we demonstrate that the planning framework
empowers the robot to proactively infer participants’
performance and leading/following preferences in its task
planning. The study also reveals the framework’s ability
to adapt to changes, such as participants preferring to
follow the robot in challenging tasks or the robot reas-
suming the leading role when participants’ performance
decreases.

Preliminary versions of parts of this work appeared in the
conference papers [14], [15]. In [14] we introduced a planning
framework based on human preference and performance, lim-
ited to a collaborative scenario in a simulation environment
with a simplified human decision-making model. In contrast,
this paper applies the framework to a more complex collab-
orative scenario involving an actual robot working alongside
recruited participants. In [15] we presented an initial version
of implementing this collaborative scenario and assessed the
planning framework’s performance for four different scenarios
conducted by the experimenter. However, the current paper
presents the final version of the experimental setup with
modifications to the planning framework to minimize fre-
quent changes in robot planning. Importantly, it evaluates
the efficiency of the proposed planning framework for an
autonomous robot collaborating individually with each of the
48 participants (involving in total 144 tasks) and discusses
specific cases to demonstrate the framework’s adaptability to
different participant preferences and performance levels and
their variation.
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We also note that due to the broad scope of the planning
framework and user study, we have written this paper to
focus primarily on aspects of robot planning, both theory
and user study evaluation. We have then written a companion
paper [16], to focus on participants’ perceptions of the robot,
tasks, and collaboration, providing insight into their actions
within this collaborative context.

The remainder of this paper is structured as follows. Section
II provides a review of relevant literature on task allocation
and adaptation within the context of Human-Robot Collabora-
tion (HRC) and Human-Robot Interaction (HRI). Section III
presents the problem statement and introduces the proposed
framework. Section IV delves into the study’s design, and
the implementation of the planning and estimation method,
and outlines the study procedure. In Section V, we initially
summarized the results pertaining to human perception of the
robot, collaboration, and tasks. Subsequently, we analyze the
results, focusing on the robot’s planning and its effectiveness
in adapting to participants. Finally, Section VI concludes
the paper, highlighting its limitations and proposing potential
directions for future work.

II. RELATED WORK

In this section, we initially delve into related research
concerning task allocation and the incorporation of human
preferences into task allocation and planning.

A. Task Allocation

Task allocation in HRC involves a suitable allocation of
tasks to the human and robot agents and finding a proper
chronological order for completing tasks based on problem-
dependent decision factors and constraints. We can categorize
task allocation approaches into two main groups: offline and
online.

1) Offline Task Allocation: In offline task allocation, typi-
cally, the goal is to assign tasks based on prior knowledge of
the suitability of agents for each task. As a measure of suitabil-
ity, one can consider the proportionality of agents’ abilities and
constraints to the tasks’ requirements and constraints. After
determining suitability measures, the task allocation can be
done by an expert [17], [18], via simulation studies [19], [20],
or through mathematical modeling and optimization [12], [21].
In [19], after deciding possible suitable agents for each task,
different cases are evaluated by simulation, and the one with
the best utility value is selected. Similarly, in [20], multiple
criteria are calculated through simulations, and a depth-first
search algorithm is employed to find an optimal solution.
In [12], the authors designed a human capability-based cost
function to minimize human risk factors. Then, they applied
their method in a user study, using the A* algorithm for role
assignment. In [21], the problem of disassembly sequence
planning is formulated as an optimization problem to minimize
the disassembly time while considering resource and safety
constraints.

2) Online Task Allocation: Offline task allocation ap-
proaches force the human-robot team to adhere to the (optimal)
plan obtained offline. However, in many real-world scenarios,
uncertainties that might arise due to individual preferences and
behaviors, alterations in the workspace, and changes in task
requirements question the applicability of these approaches.
Online task allocation methods aim to cope with this limitation
by endowing the system with online replanning abilities.
Typically, these methods fall into two groups. The first group
of approaches, similar to the offline methods, finds an optimal
task allocation, and the agents must follow the obtained plan.
However, these methods are able to reactively replan online
when the current task allocation is not valid anymore [10],
[11], [22], [23].

The second group of methods mainly relies on the human
agents’ decisions, and the robot agents play more of a support-
ive role by adapting to the human agents. These methods do
not create a fixed allocation requiring agents to adhere to it. In
these methods, the human agents can make their own decisions
and manage arising uncertainties, and the robot agents need
to adapt their decisions proactively. In [24], the robot infers
the human preference by a two-stage clustering approach
and provides the parts for the human in an assembly task.
Other work proposed a real-time decision-making mechanism
for a cobot based on the human’s short-term and long-term
behaviors [25]. In [26], the robot infers human preferences
and chooses one of the three operation modalities: 1- the robot
plans, 2- the human plans, and 3- the robot adapts.

3) Human Preferences in Task Allocation: As discussed
in the preceding paragraph, it is crucial for the robot to
proactively infer human preferences when taking on a sup-
portive role. However, incorporating human preferences in
situations where the robot or a central unit (e.g., a manager,
central computer, etc) is actively involved in task allocation
and planning is an aspect that is often underestimated. This
aspect, central to our research, has been demonstrated as a
critical element in enhancing humans’ positive perception of
the robot [26]–[28]. In [27], different scenarios were explored
in which the manager, the robot, or the participants themselves
assign tasks. In [28], human participants’ task type preferences
are considered while balancing the assigned workloads. In
[26], the system can adjust to user preferences, enabling the
human partner to issue commands, or take a more passive role
and seamlessly transition between different modes as needed.
Nonetheless, most of these studies have considered human
agents’ preferences during offline planning, often by direct
inquiry. What is notably missing is an assessment of partic-
ipants’ performance to determine whether their preferences
and performance align with the team’s overall performance or
potentially hinder it.

B. Adaptation

As noted in the task allocation literature, robot adaptation is
an integral ability for a robot to collaborate smoothly and effi-
ciently with humans. This adaptation can be achieved through
manually teaching the robot by experts (i.e., how to collaborate
effectively while adhering to human preferences) [29], [30],
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equipping the robot with the ability to learn and adapt itself
autonomously, or a combination of both. Manual instruction
by experts, while fast and effective, faces practical limitations,
including time consumption, challenges in conveying nuanced
instructions, and scalability issues. [31].

Learning-based adaptation approaches typically employ su-
pervised or unsupervised learning-based algorithms. The latter
involves identifying decision factors (features) influencing
human behavior and collecting behavioral data, which is then
enriched through expert annotation or participant surveys [32]–
[34]. The former, however, enables machines or robots to learn
human preferences by observing their behavior and actions
without the explicit need for annotation or data labeling [24],
[35]–[37]. Some research also leverages both learning methods
and experts’ knowledge [31], [38].

However, these studies often emphasize the robot’s adap-
tation to the human agent. In contrast, mutual adaptation —
where both the human and robot adjust based on each other’s
actions and feedback — can be essential in human-robot
collaboration. The authors of [39] explored mutual adaptation
between humans and robots, where the robot initially guides
the adaptable human but may unilaterally adapt if the human
insists on their poor or inadequate performance or decisions.

III. TASK ALLOCATION & PLANNING

A. Problem Statement

This paper considers a collaborative task, τ , comprising two
agents: a human and a robot. These agents must cooperate to
complete a set of precedence-constrained subtasks, denoted
as τ = {τ1, τ2, . . . , τn}. Each subtask τi has associated
completion times, represented as thi for the human and tri
for the robot. However, owing to uncertainties stemming from
agents and the environment, the task completion time may
deviate from the initially specified duration.

In each decision-making step, an agent has the agency
to allocate a set of feasible subtasks to the other agent, as
well as to assign a subtask to itself and execute it. What
sets this problem apart from conventional task allocation
and scheduling problems is that the agents here have the
autonomy to choose their actions and subtask assignments
rather than being assigned specific tasks with predetermined
instructions regarding what and when they should execute
them. Throughout this collaboration, the robot needs to:

• estimate the human agent’s leading/following preference,
• monitor the impact of the human agent’s actions on the

overall team performance continuously,
• minimize the collaboration cost(e.g., completion time)

while adapting to the human agent’s preference and
performance,

• detect and address human errors, if applicable.

B. Planning Architecture

The planning architecture is illustrated in Fig. 2.
Tasks & Environment: the overall system or task the

human and robot collaborate on.
Human/Robot: These two blocks represent the input pro-

vided by the human and robot and applied to the system.

It’s important to note that this is an asynchronous decision-
making process, where the human and robot agents act and
make decisions independently and at different times.

State estimator: During the collaborative process, the robot
evaluates the human’s actions and infers their inclination
towards leading or following. Furthermore, it is responsible for
monitoring the human’s performance and assessing their level
of performance. These states, however, cannot be measured
directly, and the robot needs to infer them through the history
of the interaction. To do so, the state observer takes the history
of the human’s actions, the robot’s beliefs and schedule, the
human’s internal states (e.g., speed and fatigue), and the tasks’
states.

Robot Planner: The robot planner is responsible for pro-
viding the robot with a schedule based on the tasks and en-
vironment’s states and the output of the state estimator block,
belief about the human agent’s preference and performance.
The robot planner consists of two phases: task selection and
task scheduling. In each decision step, when necessary, the
robot performs task selection and subsequently performs task
scheduling to determine its following action.

C. Planning Strategy
At each decision step, the robot planner must determine

a one-to-one subtask assignment for the agents and estab-
lish a task execution schedule to minimize the collabora-
tion cost, injecting both the human agent’s preference and
performance. Task allocation and scheduling problems can
usually be modeled as mixed linear integer programs (MILP).
However, the complexity of MILP-based solutions makes them
computationally intractable. In addition, involving the robot’s
belief about the human agent’s preference and performance
adds more complexity to the problem due to the dynamic
and unpredictable nature of human behavior and intentions.
These challenges, in concert, make formulating and solving
the problem as a single optimization problem increasingly
demanding and arduous. Decomposing task allocation and
scheduling is a promising and commonly used approach to
deal with this complexity [28]. Here, we also take advantage
of this idea and split the problem into two subproblems: task
allocation and task scheduling.

In the first step, considering the agents’ set A ={
human, robot

}
, the task τ = {τ1, τ2, . . . , τm}, and the

subtasks’ associated assignment costs to the human and robot
Cτi

(
a
)
, a ∈ A, the robot first seeks an optimal task allocation.

m is the number of subtasks that are not completed yet or need
to be fixed. Subsequently, if necessary, a new set of subtasks
τnew = τ ∪ τallocate is generated, including actions needed to
allocate subtasks to the human τallocate. For example, in a
sorting task, the robot may place a box on the human agent’s
side to indicate that the sorting of this box has been assigned to
them. This additional subtask, which requires a certain amount
of time, is needed as part of the task allocation process. The
task scheduler utilizes the derived optimal task allocation and
τnew to determine an optimal task schedule. If the solution
achieved in the task allocation phase proves infeasible during
the task scheduling phase, the first step must be repeated to
obtain a revised allocation.
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Fig. 2. Task selection and planning architecture encompassing the state estimator and robot planner. The robot planner takes into account human preference,
performance, and task state, followed by the implementation of two planning steps: task selection and task scheduling.

The task allocation optimization problem can be formulated
as (1), minimizing the maximum cost of task assignments,
between the human and robot,

X∗ = min
{X}

max
A

E

[ ∑
τi∈τ,a∈A

Xa
τiCτi

(
a
)]

(1)

subject to∑
a∈A

Xa
τi = 1, ∀ τi ∈ τ (2)

X /∈ F (3)
problem-dependent constraints. (4)

In Eq. (1), X =
{
Xa

τi | τi ∈ τ, a ∈ A
}

, where Xa
τi ∈

{
0, 1

}
is a binary decision variable that indicates whether task τi is
allocated to agent a ∈ A (Xa

τi = 1) or not (Xa
τi = 0). Function

Cτi

(
a
)

is the cost incurred by assigning task τi to the agent
a ∈ A =

{
human, robot

}
taking into account human agent’s

performance, and preference to follow the robot. Function Cτi

imposes a higher cost for assigning the task to the human
who prefers to lead, and a lower cost for allocating the task
to a human with low performance, since having the robot
allocate tasks limits the human’s control and mitigates the
potential for human errors. Equation (2) specifies each task
must be assigned to exactly one agent, the human or the
robot. Constraint 3 prohibits the task allocation solutions that
do not lead to an infeasible task scheduling solution, F . Eq.
(4) indicates that additional problem-dependent constraints can
also be added to (1). After finding a solution for the task
allocation problem, we generate τnew with known required
time, dτi , to finish each task τi and updated task-precedence
constraints.

In the subsequent phase, the robot determines an optimal
schedule specifying both the tasks to be performed and their
corresponding start and finish times. We introduce decision
variables sτi , representing the start times of subtask τi ∈ τnew.
fτi denotes the finish time for subtask τi. To account for
task precedence, we utilize a binary function P (τi, τj), which
takes the value of 1 when τi must be completed before τj .

Additionally, we employ a binary decision variable Q(τi, τj),
where Q(τi, τj) = 1 indicates that both τi and τj are assigned
to the same agent, and τi precedes τj .

In this paper, considering that we solely focus on collabo-
ration time, the task scheduling problem can be formulated as
minimizing the overall processing time:

min max
τi∈τnew

fτi (5)

subject to
P (τi, τj) .fτi ≤ sτj , ∀τi, τj ∈ τnew (6)
Q (τi, τj) .fτi ≤ sτj , ∀τi, τj ∈ τnew (7)
fτi = sτi + dτi , ∀τi ∈ τnew (8)
problem-dependent constraints. (9)

Inequality (6) guarantees the precedence constraints. Inequal-
ity (7) maintains the constraint that each agent can handle only
one subtask at a time. In (8), fτi is determined by the time
needed by the assigned agent, dτi , to complete subtask τi.
It’s important to note that the constraints in this optimization
problem are specific to the problem being addressed, and as
such, the mentioned constraints can be adjusted, and new ones
can be introduced (9).

Depending on the constraints in optimization problems (1)
and (5), they can be formulated as mixed-integer linear or
nonlinear programs. Nevertheless, in the collaborative scenario
explained in the Appendix, we will formulate the problem as
a mixed-integer linear program and subsequently use solvers
such as Gurobi or CPLEX.

D. Algorithm

The task selection and planning procedure proposed in this
paper is explained in Algorithm 1.

As indicated in Lines 1, the robot initializes its belief about
the human agent’s performance and following preference.
Throughout the collaboration, until completing all subtasks,
the robot monitors and records the human agent’s actions and
errors (Lines 3-4). The robot also has to update the task and
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Algorithm 1: Task selection and planning
input : Precedence-constrained tasks, τ

1 bel← initial beliefs about human agent’s following
preference and performance

2 while Tasks are not finished do
3 Monitor the human’s actions
4 Detect the human’s errors
5 Update task, τ
6 Update bel
7 if new schedule is needed then
8 while schedule, S⋆, is not found do
9 X⋆ ← TaskSelection(τ , bel)

10 τnew ← CreatNewTask(τ , X⋆)
11 S⋆ ← TaskSchedule(τnew, X⋆)

12 aR ← GetAction(S⋆)
13 ApplyAction(aR)

precedence constraints based on the finished subtasks and the
subtasks need to be fixed (Line 5). Then, based on the planning
structure shown in Fig. 2, the robot updates its belief about the
human agent’s following preference and performance (Line 6).
Next, If the situation requires a new plan, as discussed before,
the robot first solves for an optimal task allocation (Line 9)
and then creates τnew (Line 10). Next, the robot solves for
an optimal schedule (Line 11). If the robot fails to find an
optimal schedule with the current task allocation, it proceeds
to generate a new task allocation. Subsequently, the robot
performs its action, aR based on the obtained schedule (Lines
12-13). This continues until the team finishes all subtasks.

The framework outlined in this section has been imple-
mented on a mobile manipulator robot and evaluated in a user
study, described below.

IV. USER STUDY: SETUP & METHODOLOGY

This section provides a detailed explanation of the collab-
orative scenario designed for the study and outlines the study
procedure.

A. User Study Setup

The considerations for designing the user study scenario re-
volved around three aspects:1) Collaboration: focusing on the
human and robot’s planning ability, the cobot’s better memory,
and the human’s faster speed, 2) Leading/following prefer-
ence: the human’s agency to adjust their leading/following
role, 3) Performance: a task requiring cognitive load and a
penalty for mistakes.

1) Setup: Fig. 3 and Fig 4 illustrate the experimental setup.
The location of the camera in Fig. 3 shows the location where
the picture in Fig. 4 was taken. The experimenter’s table in
Fig.3 also shows where the computer is located and where the
experimenter stands. Both the human and the robot operate
in designated work areas, distinctly demarcated by safety tape
and cones to ensure clear separation. The collaborative task
involves arranging colored blocks on four workspaces, namely

Fig. 3. The schematic of the experimental setup

Fig. 4. A view of the experiment environment, taken from the location of the
camera in Fig. 3. The Fetch robot is positioned in its workspace between its
two designated tables, as illustrated in Fig. 3. The nearest table in the figure,
located next to the conveyor belt, belongs to the human and contains orange
and green blocks. On this table, there is also a tablet on which the GUI is
installed. The human agent’s other table is situated at the corner of the room,
containing blue and pink blocks. Four workspaces are present on the shared
table, along with a light bulb. Safety tapes and cones separate the work areas
of the agents.

W1 to W4, within a shared area (table). Each workspace
comprises five numbered spots, and participants must adhere
to the numerical order when placing blocks. For instance, in
W2, they must fill spot 1 before proceeding to spot 2. While
the order of workspaces is flexible, allowing agents to switch
between them, the adherence to spot numbering is paramount.

Within each agent’s work area, two tables are present, each
hosting different colors. In the robot’s work area, the table with
pink and green blocks is proximate to the shared table, while
the one with blue and ornage blocks is situated at a distance.
In the human agent’s work area, a similar arrangement exists,
with one table in close proximity containing orange and green
blocks, and another distant table holding pink and blue blocks.
Essentially, blue blocks are distant from both agents, while
green blocks are close to both. Orange blocks are far from
the robot but close to the human agent, while pink blocks are
close to the robot and distant from the human agent. Table 1
provides a summary of the block distribution.

To complete the workspaces (spots), the team must adhere
to a prescribed pattern of colors. The pattern shown in Fig. 5a
represents a sample pattern the human-robot team is expected
to follow when filling the spots. The structure of these patterns
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TABLE I
DISTRIBUTION OF BLOCKS WITH RESPECT TO THE DISTANCE TO THE

SHARED AREA

Color Human Robot

Green Close Close
Pink Close Far
Orange Far Close
Blue Far Far

precisely mirrors that of the workspaces within the shared area.
Initially, participants are presented with a fully known version
of the pattern (Patterns A1, B1, C1, and D1), such as A1, printed
on a sheet of paper. They are given 45 seconds to memorize
it and then return it to the experimenter. Subsequently, the
experimenter provides them with a partially known version of
the same pattern (Patterns A2, B2, C2, and D2), for example,
A2. In this partially known version, certain spots contain
two colors, with only one of them being correct. Essentially,
the partially known pattern acts as a cue, aiding participants
in recalling the initially presented pattern. Participants are
allowed to retain the partially known version throughout the
duration of the task.

As shown in Fig. 3, there is also a conveyor belt responsible
for transferring the blocks that the robot needs to pass to the
human agent. The robot needs to return the block to the human
agent in cases where the human places a wrong block on the
shared table and the robot decides to return it. Additionally,
a red light bulb on the shared area warns the human agent
not to place or pick up any blocks from the table as the robot
is approaching. Participants, however, can continue planning,
moving into their work area, and picking up blocks from other
tables This, in addition to safety concerns, helps control the
human agent’s speed and prevents them from moving fast and
perceiving the collaboration as a race.

For this study, we employed the Fetch mobile manipulator
robot [40] and programmed it for autonomous navigation
within its designated work area, performing the pick-and-place
task. However, in consideration of safety, the experimenter
maintains constant vigilance over the robot. If necessary, they
can assume control using the joystick or promptly halt the
robot’s operations by pressing the emergency safety button.
The following details provide additional information about the
study setup:

• The collaborative scenario was inspired by the kitting
task. The kitting task involves gathering a specific set of
components for a defined purpose, which is then directed
to workstations for the assembly of intermediate or end
products [41].

• We chose the pattern memorization task to present par-
ticipants with a cognitive challenge within the limitations
of a brief collaboration scenario. Conducting a lengthy
experiment that might mentally and physically strain
participants would have been impractical and difficult to
obtain ethics approval. Consequently, we selected rela-
tively concise tasks, each lasting around 12-20 minutes,
while ensuring they maintain mental engagement.

(a) Pattern A1 (b) Pattern A2

(c) Pattern B1 (d) Pattern B2

(e) Pattern C1 (f) Pattern C2

(g) Pattern D1 (h) Pattern D2

Fig. 5. a, c, e, g: Patterns A1, B1, C1 and D1 are the patterns, printed on the
sheets of paper, that participants have to memorize in 45 seconds and then
return it to the experimenter. b, d, f, hPatterns A2, B2, C2 and D2 are the
patterns with partially unknown spot, and participants can keep it until the
end of the collaborative task as a hint to recall the first pattern

• Patterns A2, B2, C2, and D2 feature 9, 12, 6, and 9 par-
tially known spots, respectively. This intentional variation
in the number of partially known spots aims to introduce
distinct difficulty levels and cognitive load.

• Participants were instructed to handle only one block at a
time, aligning with the cobot’s gripper capacity to grasp
a single block.

• The distribution of blocks includes ten of each color on
the human’s tables, while the robot’s tables accommodate
eight of each color. With eighteen blocks of each color
in total, surpassing the required five per pattern, this
distribution accounts for potential mistakes. The decision
to place more blocks on the human’s table acknowledges
their faster working pace.

• Each block is equipped with an ArUco marker, facilitating
the robot in locating and picking them up within the
room.

2) Tasks: Each participant is asked to complete four tasks:

• Task 0: In this task, participants work alone, without
the robot. For all participants, we use pattern A and
follow the same procedure. This task, in addition to
being a practice for participants to learn how to do the
task and place the blocks, provides useful information
regarding the participants’ performance, self-confidence,
and perceived workload, which its details and results
are beyond the scope of the present manuscript and are
detailed in [16].

• Tasks 1, 2, 3: The robot joins the human in these tasks.
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TABLE II
THE HUMAN AND ROBOT’S SETS OF ACTIONS

Human Robot

H1- Selecting a task for themselves R1- Selecting a task for itself
H2- Assigning a task to the robot R2- Assigning a task to the human
H3- Returning an block from the shared workspace R3- Returning a wrong block from the shared workspace
H4- Performing a task assigned by the robot R4- Performing a correct task assigned by the human
H5- Canceling a task assigned to the robot R5- Canceling a task assigned to the human
H6- Rejecting a task assigned by the robot R6- Rejecting a task assigned by the human

We consider six different permutations (modes) of the
order of patterns B, C, and D (e.g., {B, C, D}, {C, B,
D}) and randomly assign participants to one of these six
modes in a way that has a balance across the modes.
Following the same procedure, we asked participants to
memorize the first pattern in 45 seconds and then return
it. Next, we provide them with the second pattern. In
addition, to resemble real cobot scenarios where mistakes
have a cost associated, we informed participants that for
each misplaced block on the table, at the end of the
task, when they declare finishing the task, 1$ would be
deducted from the total remuneration amount. Providing
this disinformation, considered a type of deception, was
approved by the University of Waterloo Human Research
Ethics Board.

3) Agents’ Actions: We considered a set of six different
actions for each agent, the human and the robot. These actions,
listed in Table II, are the same for both agents, providing
them with a similar level of agency. Note, the feasibility
of actions depends on the state of the task, and at each
decision step, some of them may not be feasible. For example,
when no task has been allocated to the robot, action H4,
performing a task assigned by the human, is not applicable.
Additionally, to provide the robot with greater autonomy in
adapting its leadership role or reassuming it when human
performance is poor, we intentionally designed the rejecting
option (Action H6) to be less straightforward for the human
(will be explained later). Action H6 involves the consecutive
performance of H4 and H3 without actually performing them
physically. Further elaboration on this will be provided in the
subsequent paragraph. Fig. 6 displays the state graph of a
single subtask, considering the possible actions of both human
and robot agents as outlined in Table II.

4) Human-robot communication: Both agents need to com-
municate to inform each other about their next actions (see
Table II). This can be done through a graphical user interface
(GUI) designed and installed on a tablet. Participants could
leave it on a table in the room or hold it. This helps them
assign tasks to the robot and inform it about their next action.
Similarly, the robot can assign tasks to the participant via
the GUI and inform them about its actions. Fig. 7 shows a
screenshot of the GUI. The GUI restricts the human agent
from taking unfeasible actions, such as violating precedence
constraints or choosing tasks already underway by the robot.
We instructed participants how to work with the GUI and
let them try it once before starting the tasks. Participants
were also asked to scan the marker on the blocks before

Initial State Placed correctly

Assigned to
robot correctly

Assigned to
robot incorrectly

Assigned to
human

Misplaced

H3

R3

H1

H5

R6

H2

H1

R1

H3

R5

H6

R2

H5

H2

H
4

R4

Fig. 6. State graph of a single subtask. There are six potential states for
each subtask based on the actions detailed in Table 1. Initially, each subtask
is in the “Initial state” state. To complete a subtask, it must transition to the
“Placed correctly” state and remain in this state. The states “Assigned to robot
correctly” and “Assigned to robot incorrectly” occur when the human agent
respectively assigns a subtask to the robot with the correct or wrong color.
The “Misplaced” state is reached when the human places a wrong color on
the shared area for a subtask. The state “Assigned to human” happens when
the robot assigns a subtask to the human agent.

placing them on the shared area, as the robot has to know
the block’s ID if it needs to return it. This is implemented
on the GUI, automatically launching the tablet’s camera and
letting participants scan the marker. We avoid the details of
the GUI’s design and implementation for the sake of brevity.

Remark. If participants need to reject an assigned task by the
robot, they first have to do the assigned task (H4) and then
execute the returning action (H3), performing both actions on
the GUI, without needing to do them physically.

B. Adaptation & Planning

Here, we briefly explain the components and some details
of implementing the task planning architecture for the scenario
designed.

Collaborative task: The tasks and their associated prece-
dence constraints are conveyed using a directed acyclic graph
termed the task graph. This graph depicts tasks as vertices,



9

Fig. 7. A screenshot of the GUI through which participants can communicate
their actions to the robot and receive information about the robot’s decisions
and actions (actions listed in Table II)

τ1

τ0

τ6

τ11

τ16

τ2 τ3 τ4 τ5

τ7 τ8 τ9 τ10

τ12 τ13 τ14 τ15

τ17 τ18 τ19 τ20

τ21

Fig. 8. Task graph of the experiment, including twenty subtasks (τ1 - τ20)
and two dummy nodes representing starting (τ0) and finishing points (τ21).

while edges signify their precedence constraints. Fig. 8 pro-
vides a visual representation of the initial task graph for
the experiment, including two dummy nodes designating the
starting (T0) and finishing (T21) points.

In this experiment, we assume the same and time-invariant
speed for all participants, the average human walking speed
(1.3 m/s). In addition, we tested the required time for the
robot to complete the pick-and-place scenario from different
tables and used the average time for the near and far tables.
Thus, the nominal required processing times for tasks are fixed
for both the human and the robot.

Following preference and Performance: The robot uses
the single scalar random variables αf and αe, respectively, to
capture the human agent’s following preference and perfor-
mance (i.e., error-proneness or inaccuracy). For both, we con-
sider a tuple of possible discrete values, W = (w0, . . . , w10) =
(0, 0.1, 0.2, . . . , 1) with steps of 0.1. In other words, there
exists i ∈ {0, . . . , 10} such that wi = αf (the same for αe).
For αf , a value closer to zero indicates a leading preference,
while values closer to one suggest a following preference.
Additionally, values of αe closer to one represent higher error-
proneness (low accuracy), while values closer to zero indicate
lower error-proneness (higher accuracy).

At the beginning of the session, as a default, the robot
assumes that the human agent prefers to follow it and has high
accuracy, so the robot sets its initial belief about the human
agent as follows:

P [αf = wi] = b(i;n = 10, p = 0.7), i ∈ {0, . . . , 10},

τ1

τ0

τ a1

τ e1
τ6

τ11

τ16

τ2

τ a2

τ3 τ4

τ a4

τ5

τ a5

τ7

τ a7

τ8 τ9

τ a9

τ10

τ a10

τ12 τ13

τ a13

τ14 τ15

τ17

τ e17

τ18

τ a18

τ19 τ20

τ a20

τ21

Fig. 9. Temporary task graph of the experiment after task allocation.
Blue: Robot’s tasks, Orange: Human’s tasks, Cyan: Assigning tasks to the
human, Red: Correcting human errors, Green: Already assigned tasks, Gray:
Finished tasks

and similarly,

P [αe = wi] = b(i;n = 10, p = 0.1), i ∈ {0, . . . , 10},

where b(i;n, p) is a binomial distribution.
Task allocation: The problem of task allocation is formu-

lated using (1), where

Cτi (a) =

{
thi αf + cf (1− αf ) + cvx

robot
τi a = Human

tri + αece + cvx
human
τi a = Robot

.

(10)

The parameter cf represents the penalty incurred when assign-
ing the subtask to a human agent who prefers to lead, while
ce denotes the penalty imposed for not allocating subtasks to
the human agent who makes mistakes. Assigning subtasks to
the human agent allows the robot to inform them about the
next blocks to be placed on the shared table, minimizing the
risk of wrong decisions by the human agent. Additionally, a
penalty cost cv is applied when the robot (human) is assigned
a subtask that has already been allocated to the human (robot)
agent, xhuman

τi = 1 (xrobot
τi = 1). This penalty prevents frequent

and substantial changes in task allocation. In addition, as a
problem-dependent constraint, we need to add a constraint
ensuring the allocation of at least one subtask from τ to
the robot at each decision step. This constraint ensures the
robot will start placing another task on the shared area or fix
the human agent’s errors. In Appendix-A, the task allocation
problem is presented and reformulated as a mixed-integer
program.

Fig. 9 illustrates an example of the updated task graph
following task allocation. Subtasks 6 and 16 (τ6 and τ16)
are shaded in gray to indicate their completion. However, for
subtasks 1 and 17, the human agent mistakenly placed the
wrong colored blocks on the shared area. Consequently, the
robot must rectify these errors by executing subtasks τe1 and
τe17. Subtask 11 (τ11) has already been assigned to the human.
Additionally, the robot has allocated subtasks 1, 2, 4, 5, 7,
9, 10, 13, 18, and 20 to the human. Considering precedence
constraints, the robot can initiate subtask τa7 to allocate and
instruct the human agent through the GUI to perform subtask
7 (τ7). The robot has also allocated subtasks 3, 8, 12, 14, 15,
17, and 19 to itself.
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Task scheduling: After obtaining the optimal task alloca-
tion, the robot needs to find the optimal schedule by solving
the optimization problem in 1. Appendix-B elaborates on the
task scheduling optimization problem, representing it as a
mixed-integer linear program.

Solving optimization problems: The task allocation and
task scheduling problems, including their constraints, have
been reformulated into mixed-integer linear programs, which
are recognized as NP-hard optimization problems (see Ap-
pendix-A and Appendix-B). Our simulation experiments were
conducted on a computer running Ubuntu 18.04, equipped
with an Intel Core i7-11700 CPU with 8 cores operating
at 2.5GHz and 16 GB of RAM. We utilized the GUROBI
mathematical optimization solver, imposing a time limit to
terminate the solver if it continues searching for additional
solutions. We adopted a warm-start approach, providing the
solver with a partially valid initial solution derived from the
previous step’s solution. Consequently, for the initial step, we
could solve the problem offline.

Updating αf and αe: In updating the robot’s estimate of
the human agent’s preference to follow and their performance,
the robot needs to detect changes and adapt its planning
accordingly. That is, the estimation method has to be sensitive
enough to consider these changes. However, it also must not
be oversensitive to affect the planning abruptly. For example,
a single mistake in the human’s decision making will not be
reacted upon precipitously. Taking advantage of the “bounded
memory adaptation model” approach, proposed in [39], we use
a history of k-step in the past to estimate the human agent’s
preference and performance. A small value of k makes the
estimation sensitive to changes, and a large value leads to
measuring the overall leading/following preference and perfor-
mance. In this work, we chose k = 3. Appendix-C provides
details of the belief update and its required observation models,
transition functions, and the human agent’s action models,
which we have designed to estimate the human agent’s leading
and following preference.

C. Recruitment

After obtaining ethics approval from the University of
Waterloo Human Research Ethics Board, we initiated the
participant recruitment process for the study by distributing
recruitment flyers. This study involved three phases for each
individual.

D. Study Procedure

1) Phase 0: In this phase, after potential participants re-
acted to our flyer and contacted the experimenter, we emailed
participants the consent form and a set of questions regarding
their familiarity with and prior experience in robots and
artificial intelligence.

2) Phase 1 (In-Person): For this phase, we scheduled a
90-minute in-person session with each participant. In what
follows, we explain the procedure.

Step 1: After greeting participants, we explained the setup
and showed them their work area. We used some slides to
explain all the details and inform them that:

• the robot may make mistakes in its decision-making (de-
ception),

• the team would be penalized $1 for each misplaced block
at the end of the task, once participants confirm task
completion (deception).
Step 2: (Task 0) We asked them to complete the task

alone, without the robot, for Pattern A. Before starting the
task, they answered a question about their self-confidence to
accomplish the task, and after doing the task, they completed a
questionnaire about the task load (NASA-TLX, [42]). Results
from this step are not covered in this manuscript and are
discussed in [16].

Step 3: We asked them to watch a video1 of the Fetch robot
performing pick-and-place, and then answer the questionnaire
about their trust in the robot (Muir’s questionnaire [43]).

Step 4: Participants worked with the GUI and practiced
how to use it.

Step 5: (Task 1 ) Based on the mode assigned to par-
ticipants (permutation of patterns B, C, D), experimenters
gave them the associated pattern (as a sheet of paper) and
asked them to memorize it within 45 seconds. Then, they
returned the pattern (e.g., B1) and were given the second
pattern, a partially known version of the first pattern (e.g.,
B2). Next, prior to starting the task, we asked them to answer
two questions regarding their self-confidence and the expected
helpfulness of the robot. Afterwards, they started the task and
the collaboration with Fetch. Having completed the task, they
answered three sets of questionnaires regarding their perceived
task load, trust, and perception of the robot.
Remark. Participants start the task first, and the robot waits for
them. They can allocate subtasks to the robot. The robot starts
working as soon as participants allocate a task to themselves.
This allows the robot to initially update its belief about their
following preference.

Step 6: (Task 2) It followed the same procedure as Task 1
Step 7: (Task 3) It followed the same procedure as Task 1
Step 8: Finally, participants were asked to complete two

sets of questionnaires. The first set focused on their perfor-
mance as a team with the robot. The second set explored
their collaborative experience using the short version of the
User Experience Questionnaire (UEQ) [44], [45]. Additionally,
participants were asked to rank the difficulty of tasks (Tasks
0-3) and respond to an open-ended question: “Which abilities
would you improve or add to Fetch if you were to use it in a
manufacturing setting?”.
The details and the results of the questionnaires on topics of
participants’ perception of the robot and collaboration (trust,
helpfulness, task load, robot traits, team fluency, and user
experience) go beyond the scope of this manuscript and are
reported in [16]. However, we will use part of the results about
participants’ self-confidence, trust, and perceived workload for
analyzing the proposed framework’s performance.

3) Phase 2 (Online): For the online phase, we prepared
a video of each participant’s collaboration with the robot,
only for Pattern B. This video contained the synchronized
videos showing the room from two different angles, a screen

1https://youtu.be/ahZDo0 iyjg

https://youtu.be/ahZDo0_iyjg
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recording of the GUI, and Patterns B1 and B2. The video
created for one of the participants is available online2. During
the online interview, we played the video, and participants
were asked to talk about it and talk about their strategy,
plan, and preference during their collaboration in the task
in the video, as well as two other tasks (Patterns C and
D). Then, we asked them to complete two questionnaires
about their leadership and followership styles. However, the
results and analysis of these two questionnaires are not in
the scope of this manuscript and are reported in [16]. Finally,
as per the approved ethics application, we explained about
the “Deception” elements in the study and asked them to
sign another consent form to let us use their data. Participants
were remunerated a $30 gift card as an appreciation of their
participation.

V. RESULTS & DISCUSSION

We recruited 58 participants. However, we had to exclude
data from 10 participants for various reasons, including a bug
in the robot’s program and the robot’s failure. Consequently,
our data analysis is based on the remaining 48 participants,
consisting of 22 females, 24 males, and 2 selection “others”,
with an average age of 24.02 ± 3.93. The majority were
University students (44), 3 were postdoctoral or visiting re-
searchers, and 1 was a staff member. The results of this study
can be analyzed from three key perspectives: 1- participants’
perception of the tasks, the robot, and collaboration, 2- par-
ticipants’ preference and performance, 3- the robot’s actions
and performance. The first two perspectives were explored in
[16]. Building on their findings, this paper focuses on the
latter. Furthermore, we delve into specific participant cases
to illustrate how the robot adapted to individuals and various
situations.
Remark. We used the Kruskal–Wallis H test, a nonparametric
statistical test, to determine whether there are statistically
significant differences between two or more groups. When a
significant overall difference exists among multiple groups, we
employ the Dunn test as a post hoc analysis to identify specific
group differences.
Remark. Analyzing the results based on the tasks corresponds
to the chronological sequence, commencing from Task 0 and
concluding with Task 3.

A. Highlights from Subjective & Objective Analysis

Here, we summarize the findings from analyzing 1- partici-
pants’ perception of the tasks, the robot, and collaboration and
2- participants’ preference and performance. These results are
explored and elaborated in [16].

1) Subjective assessments reveal an improvement in partici-
pants’ perception of the robot and collaboration following
their interaction, along with a reduction in perceived
workload.

2) Both subjective and objective assessments demonstrate
that the robot effectively assisted participants in enhanc-
ing their performance and reducing errors.

2https://youtu.be/X6Rj0zwQhz8

3) The interview results show that most participants pre-
ferred to take on the leading role and have more control
over the robot. Based on participants’ preferences, we
categorized them into four groups (from highest leading
preference to highest following preference): 1- lead (17
participants), 2- collaborative-lead (20 participants), 3-
collaborative-follow (4 participants), and 4- follow (3
participants).

4) According to the interviews, participants found the robot
to be slower than themselves and preferred to handle more
blocks.

5) The results indicate that participants, in general, found
Pattern B more difficult compared to Patterns C and D.
In addition, there was the highest number of participants
who made at least one mistake in Pattern B. This can be
attributed to the fact that Pattern B was both challenging
to memorize and had the most unknown spots, leading
participants to rely on the robot.

B. Robot’s Actions and Estimation

We briefly highlighted participants’ preferences and perfor-
mance based on the interviews and recorded data from the user
study. However, we must also explore how the robot could
adapt to participants’ preferences and performance.

1) Participants Preference: The robot updated its estima-
tion of the human preference based on the 3-step history
of the human’s actions. The robot needs to consider the
human agent’s preference changes and adapt accordingly.
However, we needed to create a measure to evaluate the robot’s
performance in estimating the human overall preference. To
do so, first, we normalize the completion time and then
fit a polynomial (e.g., degree 4) on the estimated values,
f(t), t ∈ [0, 1]. Then, we calculate the area under the curve in a
certain range, as a measure of participants’ overall preference,
op =

∫ 1

t0
f(t), where we considered t0 = 0.2.

To evaluate the robot’s ability to estimate participants’
preference, for each of them, we measured the average of the
overall preference (op) in Tasks 1, 2, and 3. Combining them
with the information gathered in interviews (i.e., participants’
actual preferences) leads to Fig 10, which shows that the robot
effectively estimated participants’ actual preferences.

In addition, we analyzed participants’ estimated overall
preference for each task and noticed no significant difference
among them (H(2) = 2.29, p = 0.32). This is justifiable as
the majority of participants preferred to lead the robot.

2) Task Difficulty - Following Preference: As stated in the
highlights of the participants’ subjective and objective mea-
surements, participants found Pattern B more challenging than
Patterns C and D. Analyzing participants’ estimated overall
preference based on the patterns, as illustrated in Fig. 11,
shows that there is a significant difference in participants’
following preference based on the patterns (H(2) = 6.5,
p = 0.039), indicating a significantly higher preference for
following in Pattern B compared to Patterns C and D.

Based on the robot’s task planning algorithm, the greater
the human agent’s preference for following or the occurrence
of errors, the more tasks are assigned to them by the robot.

https://youtu.be/X6Rj0zwQhz8
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Fig. 10. The robot performance in estimating participants’ preference by comparing with the participants’ actual preference, gathered through interviews. The
numbers above each bar show the number of participants falling into that group.
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Fig. 11. Participants’ overall estimated leading/following preference based
on the patterns. The robot’s estimation of participants’ preference to follow
was significantly higher in Pattern B compared to Patterns C and D.

Fig. 12 shows that the robot significantly assigned more
subtasks to the human in Pattern B compared to Patterns C
and D (H(2) = 6.32, p = 0.042). Likewise, this is justifiable
as Pattern B was more difficult than the two others, and
participants made more mistakes or preferred to follow the
robot, and the robot could accordingly adapt its planning.

3) Task Assignment & Distribution: Referring back to the
distribution of the blocks (Table I) and the lower speed of
the robot compared to the human, the optimal task allocation
will be closer to assigning pink blocks to the robot and blue
and orange blocks to the human. Fig. 13 shows the colors of
blocks completed by participants and those assigned by the
robot. This distribution, resulting from the interplay between
the robot and participants, is close to optimal. As expected,
most of the orange blocks were completed by the human agent
due to participants’ expected rational decision-making and the
robot’s assignments. Similarly, pink tasks were completed by
the robot. Regarding the blue subtasks, on average, participants
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Fig. 12. Subasks assigned to participants by the robot based on the patterns.
The number of assigned subtasks by the robot to participants was significantly
higher in Pattern B compared to Patterns C and D.

completed most of them. However, the distribution of assigned
and completed blue subtasks by the robot and human ranges
from 0 to 5. This variation is due to some participants, as
indicated by interviews, who preferred to assign more blue
tasks to the robot, reducing their physical effort at the expense
of longer collaboration time.

Following preference vs. Task distribution: Based on
the designed algorithm, we expect the robot to assign more
subtasks to a human with the following preference, which
is particularly important for blue subtasks. Additionally, we
are interested in examining how the robot’s estimation of
participants’ following preference relates to the number of
subtasks participants assign to it. As shown in Fig. 14, there is
respectively a strong positive correlation and a strong negative
correlation between the number of subtasks the robot assigned
to participants and the number of subtasks that the human
assigned to the robot with the estimated participants’ following
preference. This aligns with the designed algorithm.
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Fig. 14. Correlation between estimated participants’ following preference and assigned/done tasks by the robot and participants

Furthermore, we can observe a moderate negative cor-
relation between the number of assigned blue and orange
tasks to the robot by humans and their following prefer-
ence. Conversely, a moderate to strong positive correlation
exists between the orange, green, and blue blocks allocated
to the human agent and the estimated following preference.
A weak negative correlation exists between the number of
assigned green tasks and participants’ following preference.
As expected, the correlation between the approximate robot’s
travel distance and the estimated following preference shows
a moderate negative correlation, as when the robot has a more
leading role, it assigns tasks that are farther from itself to the
human agent.

Discussion: The results indicate that the robot could suc-
cessfully identify participants’ following preferences and adapt
its planning accordingly. We also observed that the robot’s
estimation of participants’ following preference was higher for
Pattern B than for Patterns C and D, resulting in more tasks
being assigned to participants. This aligns with the previous
finding that Pattern B was more challenging than the other
two patterns, and participants required more support from the
robot. All of these, in concert, showed that the robot was more

of a leader in challenging tasks. This could result from either
the participants’ choice to follow the robot or the significant
number of mistakes they made. Additionally, the robot could
guide participants toward optimal task allocation to minimize
collaboration time, taking into account the block’s location and
the fact that it is slower in comparison to the human agent.

C. Participant-Specific Analysis

We discussed the overall participants’ preferences and per-
formance. The main goal of the proposed framework, how-
ever, is to track changes in participants’ performance and
preferences. To evaluate the framework’s online adaptation
and planning ability, we discuss the results for some specific
participants.

1) Leading or collaborating-leading Preference with a high
accuracy: These participants preferred to lead the team and
had a high accuracy. Thus, the robot estimated their lead-
ing preference and gave the leading role to them. Fig. 15a
and 15b show the robot estimate of two participants’ error-
proneness and following preference, with respectively leading
and collaborating-leading preferences.
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2) Leading preference with occasional robot support: One
of the participants preferred to lead the robot and minimize
her physical effort by assigning most of the tasks to the robot.
She also approved this in her interview and mentioned that
she followed the same strategy in all three tasks. However,
for Pattern B, she forgot the part of the pattern and thus let
the robot assign her some tasks. She was also unsure about
the last row of Patterns C. In Fig. 15c, the robot’s estimation
of her preference and performance is shown. Fig. 15d shows
the robot estimations for another participant with a leading
preference who was unsure about pattern B.

3) Leading preference with occasional errors: In this case,
some participants took the leading role, and, in total, they
could recall the pattern, but they made a few mistakes at
some points. The robot detected the errors and updated its
belief about their performance with usually a slight and
temporary rise of αe. Fig.15e, 15f, and 15g show the robot’s
estimate of three participants’ preference and performance
who had occasional errors. In Fig.15e, the participant made
some consecutive mistakes at a point, but she improved her
performance with the help of the robot.

4) Leading preference with Sudden Performance Drop:
This participant led the robot in Pattern B, and her performance
was good until almost the end of the task. However, she
started making mistakes at the end as she had forgotten and
was confused about the last row of the pattern. She initially
insisted on her wrong decisions, although the robot rejected
her assignment and fixed her mistakes. Subsequently, the robot
updated its belief about her performance (Fig. 15h). While
considering her as a person with a leading preference, it
reassumed the leading role and assigned more tasks to her,
guiding her to the correct pattern.

5) Following or collaborating-following Preference:
Fig. 15i and 15j show the robot estimate of two participants’
error-proneness and following preference, who preferred to
follow the robot. Therefore, the robot took the leading role
and assigned subtasks to them.

VI. CONCLUSION AND FUTURE WORK

We investigated if and how proactive task planning and
allocation can improve the efficiency of human-robot collab-
oration. The missing part in prior literature is overlooking
either the human agents’ leading/following preferences or the
human agent’s performance. This is what we focused on
in this study: balancing the human agent’s preference and
performance while maintaining collaboration and the human
perception of the robot at a high level.

Based on interviews with participants, we categorized them,
based on their following/leading preference into four groups:
“lead”, “collaborative-lead”, “collaborative-follow”, and “fol-
low”, with the majority falling into the first two categories.
This means that participants would prefer to take on more of a
leading role and have more control over the collaboration. This
finding can guide the design of collaborative scenarios and
collaborative robots. Furthermore, we compared this result,
showing actual participants’ leading/following preferences,
with the robot’s estimation of their preference. This analysis

showed that the robot successfully inferred their preference in
most cases.

The results indicated that for more difficult tasks, partic-
ipants trusted the robot more than their own abilities, which
led them to take relatively more following roles. Our proposed
task planning method properly inferred this need and provided
more help to participants by taking on more leading roles.
The robot could also identify when participants struggled to
remember the correct patterns and made errors, and accord-
ingly, it fixed their errors and provided more help.

We also analyzed the distribution of subtasks between the
robot and the human agent, showing that, overall, the interplay
of participants and robot agents led to near-optimal task
allocation. The results also indicated a moderate to strong
correlation between estimated participants’ preferences and
measures of task distribution. Additionally, the results showed
that participants were allocated more subtasks in tasks that
were more difficult since they preferred to follow the robot or
made many errors, causing the robot to take back the leading
role.

In summary, we have developed a planning architecture
for a robot, allowing it to adjust to its human teammate’s
preferences and performance while updating its plan in re-
sponse to the task state and the human agent’s actions. The
findings indicate that most participants favored assuming a
more leading role and exerting control over the team. The
results also demonstrate the robot’s capability to adapt its
planning to provide assistance when required by its human
teammate.

A. Limitations and Future Work

This work has certain limitations in terms of the study de-
sign and methods. The majority of our participants were young
adults recruited from the University of Waterloo campus,
while our ultimate target audience consists of working adults
in settings such as manufacturing and warehouses. These
two groups may have considerably different expectations and
perceptions of a robot teammate. Recruiting actual working
adults in those settings could help us create more practical
collaborative settings and robots. Additionally, despite our
attempts to simulate a working environment, e.g. by having
an autonomous robot performing pick-and-place tasks and
a setup including a conveyor belt, safety equipment, and a
graphical user interface, future work could further improve
the scenarios to make them as close as possible to a realistic
environment, e.g. a warehouse automation or assembly envi-
ronment. Another prevalent issue in manufacturing settings is
the occurrence of sudden changes or unpredictable events that
only humans could handle. Including these cases could also
make the study closer to real-life situations.

One of the interesting and important future research direc-
tions will be extending the framework to cases where there
is a conflict between the agents, e.g. when both believe their
decisions are correct. In this study, we assumed that the robot’s
decisions were always correct. However, in real-world settings,
there can be cases in which the robot makes mistakes and may
even not be aware of them, e.g., due to perception inaccuracies.
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Fig. 15. The robot’s estimates of the participants’ preference and performance: a, b) Leading or collaborating-leading preference and high accuracy; c, d)
leading preference with occasional robot support; e, f, g) leading preference with occasional errors; h) leading preference with sudden performance drop; i,
j) following or collaborating-following preference
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Furthermore, in this study, we considered the human agent’s
correctness in selecting block colors as a measure of their
accuracy. This measure was easily understandable by our
study participants, and we used it to assess their performance.
However, practical measures can be added, such as completion
time or travel distance. However, such metrics are not easily
understandable and measurable for the human agents and
could lead to conflict between the agents.
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APPENDIX

A. Task Allocation

The derivation of optimization problem 1 for the task within
the designed scenario is equivalent to the optimization problem
represented by 11, which is formulated as a Mixed-Integer
Linear Program (MILP). In this context, we introduce decision
variables qi ∈ Q for i ∈ I = {1, . . . , nt} to determine the
assignment of agents to subtasks, where nt represents the
total number of remaining tasks. Specifically, when qi = 1, it
signifies that subtask i is assigned to the human agent, while
qi = 0 indicates the allocation of the subtask to the robot.

Q∗ =argmin
{qi}

z (11)

subject to

z −
∑
i∈I

qi

(
thi pf + cf (1− pf ) + chx

robot
τi

)
≥ 0 (12)

z −
∑
i∈I

(1− qi)
(
tri + pece + crx

human
τi

)
≥ 0 (13)∑

i∈U

qi ≤ |U | − 1, (14)

where U is the set of indexes of all feasible subtasks that the
robot can perform immediately by placing the blocks on the
shared area. We ignore details of obtaining U . This inequality
ensures that the robot will start placing a new block after
placing the previous one.

B. Task Scheduling

After allocating tasks to both the robot, denoted as τrobot,
and the human, denoted as τhuman, such that τnew = τrobot∪
τhuman, the robot proceeds to solve the optimization problem
15 in order to find an optimal task schedule. Within this
problem, the decision variables S = {sτi} dictate the start
times of the subtasks. Binary decision variables O = {oi,j}
are employed to determine if subtask τi comes before or after
τj . The set V comprises indices for all feasible subtasks in
τrobot that the robot can immediately perform by placing the
blocks on the shared area. Moreover, binary decision variables

B = {bτi} are used to indicate whether τi ∈ V begins at
sτi = 0.

min
{S,O,B}

z (15)

subject to
P (τi, τj) .fτi ≤ sτj , ∀τi, τj ∈ τnew (16)
sτi − fτj +M(1− oi,j) ≥ 0 ∀τi, τj ∈ τhuman (17)
sτj − fτi +Moi,j ≥ 0 ∀τi, τj ∈ τhuman (18)
sτi − fτj +M(1− oi,j) ≥ 0 ∀τi, τj ∈ τrobot (19)
sτj − fτi +Moi,j ≥ 0 ∀τi, τj ∈ τrobot (20)
sτi −Mbτi ≤ 0 ∀i ∈ V (21)∑
i∈V

bτi ≤ |V | − 1 (22)

z − fτi ≥ 0 ∀τi ∈ τnew (23)

where M is a large positive constant. In this problem, we
assume that rejecting the human agent’s assignments and
allocating tasks to the human takes zero seconds.

C. Updating αf and αe

To update the belief, we employ the belief update method
employed by [39] to estimate human adaptability. According
to this method, the system needs to be considered as a
factorization of observable (X) and unobservable (Y ) state
variables of the system S : X×Y . Subsequently, belief update
can be computed as:

b′(y′) =ηZ
(
x′, y′, aR, o

) ∑
y∈Y

Tx

(
x, y, aR, aH

)
(24)

Ty

(
x, y, aR, aH , x′, y′

)
πH

(
x, y, aH

)
b
(
y
)
,

where Tx and Ty are the transition functions, z is the obser-
vation function, and πH is the human action model (policy).

Following preference: We consider Z = 1 and Tx = 1.
We also consider Ty

(
x, y, aR, aH , x′, y′

)
= I(y = y′), where

I is an indicator function. This is based on the reasonable
assumption that the human agent’s preference changes in-
frequently and is usually fixed. The human agent’s strategy
is determined based on the analysis of the preceding three
steps in their actions. The actions taken into consideration by
the robot for updating its policy regarding human following
preferences (Pf ) include the actions of assigning a subtask to
the robot (F1), performing a subtask assigned by the robot
(F2), or refraining from performing a subtask assigned by the
robot (F3). By denoting the occurrences of F1, F2, and F3

as f1, f2, and f3, respectively, within the sequence of human
actions spanning a history of three steps, the resulting human
policy can be defined as follows:

πH
f (x, y, aH) =

{
αf1+f2

αf1+f2+f3
y aH ∈ F1 ∪ F2

f3
αf1+f2+f3

y aH ∈ F3

, (25)

where α > 1 is a parameter that weighs cases where the human
assigns a subtask to the robot more heavily.

Human error: We consider Z = 1 and Tx = 1. Modeling
human error, and specifically, the humans’ memory model in
this scenario, is demanding and not the focus of this paper.
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Fig. 16. Estimating the human’s accuracy: Transition probability, Ty

However, we consider a simple model for Ty and πH as they
are required to estimate pe. Defining gl(y) and gu(y) as the
functions which return respectively the closest value less and
closest value greater than y in set Y , we have

Modeling human error, specifically the human memory
model in this particular scenario, presents significant chal-
lenges and falls outside the primary focus of this paper.
Nevertheless, we adopt a simplified model for Ty and πH

as necessary components for estimating pe. We define two
functions, gl(y) and gu(y), which respectively identify the
closest value less than and greater than y within the set Y .
Consequently, we formulate Ty as follows:

Ty =


p
(
y′ ≤Z < gu(y

′)
)
,

Z ∼ SN
(
gu(y), σ

2, β1

) if aH ∈M1

p
(
gl(y

′) ≤ Z < y′
)
,

Z ∼ SN
(
gl(y), σ

2, β2

) if aH ∈M2

,

(26)

where β is the skewness factor of the skew-normal distribution
function SN (gl(y), σ

2, β). The erroneous actions (M1) and
correct ones (M2), if they are not assigned to the human by the
robot, are taken into account for updating αp. The transition
probability Ty heatmap is illustrated in Fig. 16. Considering
m1 and m2 as the frequency counts of M1, M2, the human
error model is as follows:

πH
e (x, y, aH) =

{
m2

m1+m2
y aH ∈M2

m1

m1+m2
y aH ∈M1

. (27)


	Introduction
	Contributions

	Related Work
	Task Allocation
	Offline Task Allocation
	Online Task Allocation
	Human Preferences in Task Allocation

	Adaptation

	Task Allocation & Planning
	Problem Statement
	Planning Architecture
	Planning Strategy
	Algorithm

	User Study: Setup & Methodology
	User Study Setup
	Setup
	Tasks
	Agents' Actions
	Human-robot communication

	Adaptation & Planning
	Recruitment
	Study Procedure
	Phase 0
	Phase 1 (In-Person)
	Phase 2 (Online)


	Results & Discussion
	Highlights from Subjective & Objective Analysis 
	Robot's Actions and Estimation
	Participants Preference
	Task Difficulty - Following Preference
	Task Assignment & Distribution

	Participant-Specific Analysis
	Leading or collaborating-leading Preference with a high accuracy
	 Leading preference with occasional robot support
	Leading preference with occasional errors
	Leading preference with Sudden Performance Drop
	Following or collaborating-following Preference


	Conclusion and future work
	Limitations and Future Work

	References
	Task Allocation
	Task Scheduling
	Updating f and e 


