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We study the quantum oscillations of inter-layer capacitance in an excitonic insulating electron-
hole double layer with the Hartree Fock mean-field theory. Such oscillations could be simply under-
stood from the physical picture “exciton formed by electron/hole Landau levels”, where the direct
gap between the electron-hole Landau levels will oscillate with exciton chemical potential and the
inverse of the magnetic field. We also find that the excitonic order parameters can be destroyed by
a strong magnetic field. At this time, the system becomes two independent quantum Hall liquids
and the inter-layer capacitance oscillates to zero at zero temperature.

I. INTRODUCTION

Two-dimensional bilayer separated by a perfect insu-
lating barrier is expected to be a candidate system to
realize exciton condensation at charge neutrality point
(CNP) where the two layers are equally charged by elec-
trons and holes[1–13]. This excitonic insulator (EI) phase
was realized recently in the dual-gated transition metal
dichalcogenide (TMD) double layers[14, 15]. The ex-
perimental setup is illustrated in Fig. 1(a), where the
electron layer (blue) and hole layer (orange) are sand-
wiched between the top and bottom gates (black), and
dielectric spacers (gray) are inserted between gates and
layers to avoid direct tunneling. The gate-layer voltage
(Ve + Vh)/2 is used to control the overall chemical po-
tential µ to make the system charge neutral. And the
exciton density (charge number density per layer) nex
is tuned by exciton chemical potential µex = eVb − Eg

where Vb = Vh − Ve is the inter-layer bias voltage and
Eg is the spatially indirect gap between the electron and
hole bands at zero bias.

Low energy excitations of single-layer TMD near the
valley center are approximated as free fermions with
quadratic dispersion. By tuning exciton chemical po-
tential µex, a typical non-interacting band structure at
CNP is illustrated in Fig. 1(b), where the electron and
hole layers have nested Fermi surfaces. In the absence
of single-particle tunneling t, the electron and hole layers
have charge conservation separately and the system has
a Ue(1) × Uh(1) symmetry. However, when inter-layer
excitons are generated and condensed due to the attrac-
tive interaction between electrons and holes, a non-zero

mean-field inter-layer coherence ∆ ≡ hmf
eh = |∆|eiϕ will

spontaneously arise, break the electron-hole U(1) symme-
try and leave only the total charge conservation. Besides,
the inter-layer coherence ∆ will also gap out the Fermi
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surfaces and drive the system into an excitonic insulator
phase[16]. Due to the spontaneous symmetry breaking,
the long wave phase fluctuation of the excitonic order
parameter in real space δϕ(r) is the Goldstone mode
and related to the exciton superfluidity. In real ma-
terials, a tiny single-particle tunneling t is unavoidable
which breaks the electron-hole U(1) symmetry initially
This will pin the phase of the inter-layer coherence to
ϕ = arg t, gap out the zero energy Goldstone mode, and
destroy the exciton superfluidity[17–19]. Without a di-
electric spacer, the single-particle tunneling strength in
TMDs bilayer is in the order of 10meV[19, 20]. By insert-
ing a few layer hBN spacer between the two TMD single
layers, the inter-layer hopping strength will be exponen-
tially suppressed. Since the single-particle tunneling is
unavoidable (although could be very small), the electron-
hole bilayer could be considered as an excitonic insulator
only when |∆| ≫ t is satisfied. In addition to the phase
pinning effect, the inter-layer tunneling will also induce a
tunneling current when the circuit is closed, which drives
the system into a non-equilibrium state. However, as long
as t is small enough, the tunneling current is insignifi-
cant and the non-equilibrium transport physics could be
ignored.

When magnetic field is applied along the z direction,
the parabolic dispersions of electron and holes are quan-
tized into Landau levels (LLs). At CNP, the overall
chemical potential must lay between the electron and
hole LLs with the same index as illustrated in Fig. 1(c).
The low-energy excitations are free particle-hole pairs be-
tween the highest occupied electron LL and the highest
empty hole LL. When interaction is considered, such free
pairs will bind to form exciton of LLs with binding en-
ergy EB . By tuning magnetic field B or exciton chemi-
cal potential µex to make the exciton binding energy EB

larger than the gap between the highest occupied electron
and empty hole LLs, excitons of LLs will spontaneously
form and condense. Since the gap between the highest
electron and hole LLs will oscillate with 1/B and µex,
physical properties of the exciton condensation state will
also oscillate. As an insulator, the conventional quantum
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oscillation of resistance might be hard to detect. In our
paper, we will focus on the inter-layer capacitance

CI = e2
(
∂nex
∂µex

)
T

(1)

to show the quantum oscillation phenomenon in such ex-
citonic insulating electron-hole bilayer system.

There are several advantages of the inter-layer ca-
pacitance measurement. Firstly, it’s unique to the bi-
layer system and could be measured accurately in real
experiments[15]. Besides, as we will show, the oscilla-
tion behaviors of the inter-layer capacitance could help
us to distinguish an excitonic gap from a single-particle
one. When the magnetic field is so large that the cy-
clotron energy ℏ(ωe + ωh) is much larger than the ex-
citon binding energy, one can always tune the exciton
chemical potential µex to make EB smaller than the LL
direct gap and exciton will not spontaneously generate
and condense anymore. For such a situation, the bi-
layer system in the magnetic field is just two independent
quantum Hall liquids and is charge incompressible at zero
temperature[21] which results in a zero inter-layer capac-
itance CI(T = 0) = 0. In other words, the inter-layer
coherence ∆ of an excitonic insulator could be destroyed
by a strong magnetic field and the inter-layer capacitance
might oscillate to zero. While for a consistent hybridiza-
tion from single-particle tunneling, the inter-layer capac-
itance will never be zero.

II. MODEL AND MEAN-FIELD THEORY

Without magnetic field, the many-body Hamiltonian
for the bilayer system as illustrated in Fig. 1(a) is mod-
eled as[8, 22]

H0 =
∑

ss′=eh,k

(h0ss′k − µδss′)c
†
skcs′k, (2a)

HI =
1

2V
∑

ss′=eh

∑
k1k2q

Vss′(q)c
†
sk1
c†s′k2

cs′k2+qcsk1−q,

(2b)

where c†ek and c†hk are electron creation operators in the
electron and hole layer, V ≡ LxLy is the area of the 2D
system and Li is the system length in the i direction. Un-
der k · p approximation, the single-particle Hamiltonian
is

h0k =

[
ℏ2k2/2me − µex t

t∗ −ℏ2k2/2mh

]
, (3)

where me/h are the effective masses and t is the inter-
layer tunneling strength. The intra- and inter-layer
interactions are taken as the gate-screened Coulomb
interaction[23] V (q) ≡ Vs=s′(q) ≈ 2πe2/ϵq(1 − e−2κqdg )
and U(q) ≡ Vs̸=s′(q) ≈ V (q)e−κqd where ϵ =

√
ϵxyϵz

is the effective dielectric constant and κ ≡
√
ϵxy/ϵz is

dg

z

r = (x, y)

ϵ = (ϵxy, ϵz)

d

dg

Ve

Vh

µ µex

0
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FIG. 1. (a) Setup of the double-gated electron-hole bilayer
system. d is the geometry distance between the electron-hole
layer. The distances between the top/bottom gates and the
electron/hole layers are set to be equal to dg. The voltages
applied to the two layers Ve, Vh are used to tune the overall
chemical potential and the exciton chemical potential. (b)
The exciton chemical potential µex = eVb −Eg is determined
by the inter-layer bias voltage Vb = Vh − Ve while the overall
chemical potential µ is tuned by (Ve+Vh)/2 to make the sys-
tem charge neutral. (c) When a magnetic field is applied in
the z direction, the non-interacting electron and hole bands
are quantized to LLs. At CNP, the overall chemical potential
must lay between the electron and hole LLs with the same
index, for example, the N -th level. If the electron-hole in-
teraction is considered, particle-hole excitations will bind to
form exciton with binding energy EB . If the gap between the
N -th electron and hole LLs is smaller than EB , such exciton
of LLs will spontaneously form and condense.

the anisotropy parameter (a detailed derivation could be
found in Appendix A).
By assuming a non-zero EI order parameter ρehk where

ρss′k ≡ ⟨c†s′kcsk⟩ − δss′δsh is the density matrix relative
to the uncharged state (ρ0 = δss′δsh is subtracted to
avoid double counting[8, 24]), the interacting part of the
many-body Hamiltonian Eq. (2) is decoupled into a non-
interacting mean-field Hamiltonian

HMF =
∑
ss′k

(h0ss′k + hHss′ + hFss′k − µδss′)c
†
skcs′k. (4)

The Hartree and Fock terms are constructed by density
matrix as

hH =
e2nex
2Cgeo

σz, (5a)

hFss′k = − 1

V
∑
k

Vss′(k − k′)ρss′k′ , (5b)

where σz is the Pauli matrix nex = V−1
∑

k ρeek is ex-
citon density and Cgeo = ϵz/4πd is the geometry capac-
itance of the charged electron-hole double layer. The
mean-field Hamiltonian hMF

k = h0k + hH + hFk is a 2× 2
matrix and has two eigenvalues, i.e.

hMF
k |c/v,k⟩ = ξc/v,k|c/v,k⟩, (6)
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where ξc,k > ξv,k are the mean-field energy bands and
|c/v,k⟩ are the corresponding eigenstates. Then the new
density matrix could be reconstructed as

ρk =
∑
i=c,v

fi,k(µ)|i,k⟩⟨i,k| − δss′δsh, (7)

where fi,k(µ) = 1/[1 + e(ξi,k−µ)/kBT ] are the occupa-
tion numbers. By requiring charge neutrality, the overall
chemical potential is determined by solving∑

k

[fc,k(µ) + fv,k(µ)− 1] = 0. (8)

Eq. (5)(6)(7)(8) form the full self-consistent procedure.
At zero temperature T = 0, Eq. (8) is simply solved as
fc,k = 0 and fv,k = 1.

When a magnetic field is applied along the z direc-
tion, it’s more convenient to adopt the LL basis. In
Landau gauge A = (−yB, 0), the parabolic bands quan-
tized into LLs |ϕnkx⟩ as shown in Fig. 1(c), where n
is the LL index and kx is the momentum in x direc-
tion. By defining the creation operators for LL electrons

l†snkx
≡

∑
k′⟨k′|ϕnkx⟩c

†
sk′ which in fact is a basis transfor-

mation, the many-body Hamiltonian with magnetic field
is written under the LL basis as

H0 =
∑

ss′nkx

(h0n,ss′ − µδss′)l
†
snkx

ls′nkx , (9a)

HI =
1

2V
∑

ss′niki

∑
q

Vss′(q)e
iqy(k1−k2)ℓ

2

Λ∗
n4n1

(q)Λn2n3
(q)

× l†sn1k1+qx/2
l†s′n2k2−qx/2

ls′n3k2+qx/2lsn4k1−qx/2,

(9b)

where ℓ =
√
ℏ/eB is the magnetic length and Λmn(q) is

the form factor of LLs defined by[25]

Λmn(q) ≡ ⟨ϕmk−qx/2|e
−iq·r|ϕnk+qx/2⟩e

ikqyℓ
2

. (10)

The single-particle Hamiltonian now becomes

h0n =

[
ℏωe(n+ 1/2)− µex t

t∗ −ℏωh(n+ 1/2)

]
, (11)

where ωs ≡ eB/ms are the cyclotron frequency. Details
of deriving Eq. (9) are given in Appendix B.

The density matrix is now defined as ρsn1,s′n2
(kx) ≡

⟨l†s′n2kx
lsn1kx

⟩ − δss′δsh. However, due to symmetry con-
straints, not all the elements survive. Although the vec-
tor potential in Landau gauge A = (−yB, 0) breaks
translation symmetry in y direction, the physics is ex-
pected to be independent of the choice of gauge. After a
small translation in y direction, i.e. A → (−(y−η)B, 0),
the magnetic field is invariant while the LL electron

transforms as l†snkx
→ l†snkx+eBη/ℏ. It’s easy to see that

the many-body Hamiltonian Eq. (9) is invariant un-
der such magnetic translation while the density matrix

transforms from ρsn1,s′n2
(kx) to ρsn1,s′n2

(kx + eBη/ℏ).
By requiring magnetic translation symmetry in y direc-
tion, the density matrix should be kx-independent, i.e.,
ρsn1,s′n2

(kx) = ρsn1,s′n2
. As discussed in Appendix C,

when magnetic translation symmetry is preserved, the
EI order parameters ρen1,hn2 could be decomposed into
independent channels labeled by its angular momentum
M ≡ n1 − n2. In the charge neutral case, the overall
chemical potential µ must lay between electron and hole
LLs with the same index, for example, the N -th level as
illustrated in Fig. 1(c). At this time, the s-wave pair-
ing case with zero angular momentum M = 0 usually
has the lowest energy. For electron and hole bands with
trivial band topology, high angular momentum exciton
condensation in the quantum Hall regime is energeti-
cally preferable only when the electron and hole layers
are charge imbalanced as investigated by Zou et al. [26].
In summary, by requiring magnetic translation symme-
try and s-wave pairing, the only surviving density matrix
elements are ρsn,s′n and they will be abbreviated as ρn,ss′
in the following text.

Once the mean-field channels are determined, the
Hartree Fock procedure is straightforward and the mean-
field Hamiltonian in LL basis is written as

HMF =
∑

ss′nkx

(h0n,ss′ + hHss′ + hFn,ss′ − µδss′)l
†
snkx

ls′nkx .

(12)
Since the Hartree term is just a renormalization of the ex-
citon chemical potential due to the geometry electrostatic
energy, it’s independent of basis transformation and is
still given by Eq. (5a). The only difference is that the
exciton density is calculated as nex = (2πℓ2)−1

∑
n ρn,ee.

The Fock term becomes

hFn,ss′ = −
∑
n′

Vss′,nn′ρn′,ss′ , (13)

where Vss′,nn′ = V−1
∑

q Vss′(q)|Λn′n(q)|2 is the interac-
tion matrix elements projected to LL basis. By replacing
the k index in (6)(7)(8) with LL index n, we get the full
self-consistent equations under LL basis.

III. RESULTS

In our calculation, the parameters are set to be con-
sistent with the MoSe2/hBN/WSe2 heterostructure ex-
perimentally studied by Ma et al. [15]. The effective
masses of the conduction band minimum of MoSe2 and
valence band maximum of WSe2 at the K-valley centers
are about me ≈ 0.58m0, mh ≈ 0.36m0[27] (m0 is the
bare electron mass). The inter-layer and gate-layer dis-
tances are taken as d ≈ 2.5nm (5 ∼ 6 hBN spacer) and
dg ≈ 10nm. The dielectric constant of hBN is about
ϵxy ≈ 6.71 and ϵz ≈ 3.57[28]. Thus the anisotropy pa-
rameter and the effective dielectric constant are about
κ ≈ 1.37, ϵ ≈ 4.89. To fit the inter-layer exciton binding
energy in the experiment[15] (about 20meV), a larger ef-
fective dielectric constant ϵ = 9 is used in the calculation.
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A. Inter-layer Capacitance at Zero Magnetic Field
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FIG. 2. (a) Zero magnetic field phase diagram as a function of
exciton chemical potential µex and temperature T , the single-
particle tunneling strength t is assumed to be zero. Below the
red solid line, the EI order parameter is not zero, i.e. ρeh ̸= 0
which means the system is in the EI phase while above the red
solid line ρeh = 0 and the system is in the normal phase. The
gray dashed line further separates the normal phase into a NI
phase and a SM phase. In the NI phase, there is no inversion
between the renormalized electron and hole bands, while in
the SM phase electron and hole bands are inverted. The color
represents the mean-field band gap. (b)(c) Typical mean-field
band structures in different regions of the parameter space,
points P1−4 in (a) are used for example.

Let’s first ignore the single-particle tunneling t. At zero
magnetic field, the mean-field phase diagram as a func-
tion of exciton chemical potential µex and temperature T
is calculated and plotted in Fig. 2(a). The red solid line
is the boundary of the region ρeh(T, µex) ̸= 0. The area
below the red line is the EI phase with a non-zero order
parameter ρeh ̸= 0. While above the red line, there is no
EI order and the system is in the normal phase. The gray
dashed line is determined by requiring the renormalized
offset between the electron and hole bands to be equal to
the original gap, after which the inversion between the
renormalized conduction and valence bands from differ-
ent layers occurs. To the left of the gray dashed line,
there is no band inversion and the normal phase is just a
normal insulator (NI) and to the right of this line, the
normal phase is a semi-metal (SM). In the EI phase,
the gray dashed line does not mark a phase transition
but rather indicates a BEC-BCS crossover to some ex-
tent. By diagonalizing the mean-field Hamiltonian hMF

k ,
mean-field band structures are obtained and the gap is

represented by the color plot in Fig. 2(a). Besides, typi-
cal mean-field band structures in different regions of the
parameter space are also plotted in Fig. 2(b)(c) (points
P1−4 in Fig. 2(a) are used for example).
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FIG. 3. (a) Exciton density as a function of exciton chemi-
cal potential and temperature at CNP. The exciton chemical
potential µex is used as abscissa and different temperatures
are represented by different color lines. (b) Inter-layer capac-
itance calculated by Eq. (1) as a function of exciton density
and temperature. The inset shows a magnified view of the
line at 60K near the phase boundary between the EI and SM
phases. (c)(d) The same quantities as in (a)(b) except that a
finite single-particle tunneling strength t ≈ 0.01meV instead
t = 0meV is used.

Then the exciton density at CNP is calculated and
plotted as a function of exciton chemical potential µex

(the abscissa) and temperature (different color lines) in
Fig. 3(a). Using the definition Eq. (1), the inter-
layer capacitance CI (in the unit of geometry capacitance
Cgeo = ϵz/4πd) is also calculated and plotted in Fig. 3(b)
as a function of exciton density. The inset in Fig. 3(b)
shows a magnified view of the line near the phase bound-
ary between the EI phase and the SM phase at 60K. Due
to the exchange part of the interaction which accounts
for exciton condensation, the inter-layer capacitance is
greatly enhanced from its classic geometry value, which is
consistent with previous studies[8, 22]. Besides, disconti-
nuities of CI are shown at the transition points between
EI and normal phases. However, these discontinuities
may be absent in real experiments. On the one hand, the
transition between EI and NI in the low-density region at
finite temperature is a BKT transition[7, 29] that is be-
yond the mean-field description, and its main effect is to
smooth out the dramatic changes in the mean-field the-
ory. On the other hand, these discontinuities are easily
smoothed by a very small single-particle tunneling effect.
In Fig. 3(c)(d), the same quantities as in Fig. 3(a)(b)
are plotted, except that a finite single-particle tunneling
strength t ≈ 0.01meV is used. Although the tunneling
strength t is much smaller than the mean-field gap (about
20meV as indicated in Fig. 2(a)), the discontinuities at
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the EI phase boundary no longer exist as shown in Fig.
3(d).

B. Quantum Oscillation of the Inter-layer
Capacitance
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FIG. 4. (a) Phase diagram as a function of exciton chemi-
cal potential µex and magnetic field strength B at 0K. The
single-particle tunneling strength is assumed to be zero. The
red solid line separates the region into EI phase with a nonzero
EI order parameter ρeh ̸= 0 and normal phases where ρeh = 0.
The gray dashed line is the critical line for band inversion. In
the NI phase, all hole LLs are occupied and all electron LLs
are empty. In the QH-N phases, the first N electron LLs are
occupied while the first N hole LLs are empty. The pseudo-
color map represents the inter-layer capacitance CI/Cgeo.
(b)(c) Oscillations of inter-layer capacitance CI versus B−1

and µex respectively.

Since the inter-layer tunneling gap out the Goldstone
mode, the BKT phenomenon is suppressed for temper-
atures much below the energy scale of the tunneling
strength t, especially at zero temperature. In this sit-
uation, the mean-field theory is still qualitatively right.
Thus in this part, we will focus on zero temperature. Ig-
noring the single-particle tunneling effect, the mean-field
phase diagram as a function of exciton chemical poten-
tial µex and magnetic field strength B is plotted in Fig.
4(a). Similar to before, the red solid line is the boundary
of the region ρeh ̸= 0 and the gray dashed line is the criti-
cal line for band inversion. Only in the EI phase, ρeh ̸= 0
and there is an inter-layer coherence. In the NI phase,
there is no band inversion between the electron and hole
bands where all the hole LLs are occupied and the elec-
tron LLs are empty. In the QH phase, according to the

indexN of the highest inverted electron and hole LLs, the
regions in the parameter space are labeled by QH-N as
shown in Fig. 4(a). The color in Fig. 4(a) represents the
inter-layer capacitance CI/Cgeo, which is plotted in more
detail in Fig. 4(b)(c). Oscillations versus B−1 and µex

are easily identified. Similar to the quantum oscillation
in metal, the oscillation frequency versus B−1 increases
with exciton chemical potential as shown in Fig. 4(b). It
is also worth noting that inter-layer capacitance oscillates
to zero in the QH phases, which reflects the fact that a
QH state is charge incompressible at zero temperature.
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FIG. 5. Oscillations of ∆CI(nex, B) versus nex for different
magnetic field strengths.

To see the oscillations versus µex more clearly, let’s
transform the abscissa from µex to nex and define
∆CI(nex, B) as

∆CI(nex, B) ≡ CI(nex, B)− CI(nex, B = 0). (14)

Then the oscillations of ∆CI versus nex are shown in Fig.
5(a-d) for different magnetic field strengths. A period
about (2πℓ2)−1 = eB/h is observed which is exactly the
LL degeneracy for a spinless fermion.

IV. SUMMARY AND DISCUSSION

For an electron-hole bilayer without any inter-layer
coupling, the system is just a semi-metal, and quan-
tum oscillations are not surprising due to the Landau
quantization of the electron and hole Fermi surfaces[30].
An inter-band hybridization heh will gap out the Fermi
surfaces and lead the system into an insulating phase
at CNP. However, as long as the hybridization strength
is comparable with the cyclotron frequency ℏ(ωe + ωh),
quantum oscillations of physical quantities are still ex-
pected. Such oscillations have already been predicted[31–
35] and detected[36–39] in narrow gap insulators where
the hybridization has a single-particle origination. While
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in this paper, we show that quantum oscillations will also
appear in EI systems where the inter-band hybridization
purely arises from exciton condensation.

A more interesting observation is the QH phases in the
phase diagram Fig. 4(a) where there is no EI order pa-
rameter. And these phases are also noted in a similar
study by Zou et al. [26]. From the physical picture “exci-
ton formed by electron/hole LLs” illustrated in Fig. 1(c),
the critical magnetic field strength could be estimated by
requiring the cyclotron frequency to be comparable to the
exciton binding energy, i.e. ℏ(ωe + ωh)/2 = EB , which
implies

Bc =
2memh

me +mh

EB

eℏ
. (15)

Substitute the parameters me = 0.58m0, mh = 0.36m0

and value of the zero density binding energy EB ≈
20meV to Eq. (15), and the critical field strength is
estimated as Bc ≈ 77T. We argue that this value is
an overestimation since the binding energy usually drops
with the increase of exciton density nex (or equivalently,
exciton chemical potential µex)[22]. This point can also
be seen from the fact that the critical field strength of
the QH2 phase is lower than the QH1 phase.

The emergence of the QH phases also reflects the insta-
bility of an excitonic gap, which could be destroyed not
only by temperature[16] and electrical field[40] but also
by magnetic field. Such instability is a key difference be-
tween exciton gap and single-particle gap and could be
easily identified in inter-layer capacitance measurements.
As shown in Fig. 4(b)(c), the inter-layer capacitance at
zero temperature oscillates to zero when the EI order and
inter-band hybridization are destroyed by the magnetic
field in the QH phases. While the capacitance will never
be zero if the gap has a single-particle origination. To
see this, let’s assume a non-zero single-particle tunnel-
ing strength t ̸= 0 and ignore the exchange part of the
interaction which accounts for the exciton condensation.
Then the charge density per-layer is calculated as

nex =
1

4πℓ2

∑
n

[
1− ℏω∗(2n+ 1)− µ̃ex√

[ℏω∗(2n+ 1)− µ̃ex]2 + 4t2

]
,

(16)
where ω∗ = (ωe + ωh)/2 and µ̃ex = µex − e2nex/Cgeo is
the renormalized “exciton chemical potential” by inter-
layer geometry electrostatic energy. By definition, the
inter-layer capacitance should be calculated as

CI ≡ e2
∂nex
∂µex

= e2
∂nex
∂µ̃ex

∂µ̃ex

∂µex
= e2

∂nex
∂µ̃ex

(
1− CI

Cgeo

)
.

(17)

Denote C̃I = e2∂nex/∂µ̃ex, and the inter-layer capaci-

tance is solved as CI = (C̃−1
I + C−1

geo)
−1. It’s easily veri-

fied that

C̃I =
e2

4πℓ2

∑
n

4t2

{[ℏω∗(2n+ 1)− µ̃ex]2 + 4t2}3/2
> 0

(18)

as long as the hybridization strength t is nonzero, and
the inter-layer capacitance must satisfy 0 < CI < Cgeo.
That’s to say, if the inter-layer hybridization has a single-
particle origination, the inter-layer capacitance will never
oscillate to zero at zero temperature. So a zero inter-layer
capacitance in a strong magnetic field could be used to
exclude the single-particle contribution to the excitonic
gap, which is an essential requirement for exciton super-
fluidity.
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Appendix A: Gate Screening Interaction

When the gate layer distance dg is comparable to the
inter-layer distance d, the screening effects from the gates
are not negligible. To derive the gate screening interac-
tion, let’s solve the Possion equation of a point charge.
For convenience, let’s assume the point charge is in the
electron layer, using the Dirichlet boundary condition,
the Possion equation reads

ϵxy∇2
rφ(r, z) + ϵz∂2zφ(r, z) = −4πeδ(r − r0)δ(z − d− dg),

∇rφ(r, z)
∣∣
z=0,d+2dg

= 0.

Define the 2D Fourier transformation of φ(r, z) as
φq(z) =

∫
dr φ(r, z)e−iq·r, the Possion equation be-

comes

ϵz∂2zφq(z)− q2ϵxyφq(z) = −4πeδ(z − d− dg), (A2a)

φq(z = 0, d+ 2dg) = 0. (A2b)

Define the effective dielectric constant and anisotropy
parameter as ϵ =

√
ϵxyϵz, κ =

√
ϵxy/ϵz, and the Possion

equation Eq. (A2) is solved as

φq(z) =
2π

ϵq
[c1e

κqz + c2e
−κqz + e−κq|z−(d+dg)|],

c1 = −e−κq(2dg+d) sinhκq(dg + d)

sinhκq(2dg + d)
,

c2 = − sinhκqdg
sinhκq(2dg + d)

.

Thus the intra- and inter-layer interactions are

Vintra(q) = eφq(d+ dg) =
4πe2

ϵq

sinhκqdg sinhκq(d+ dg)

sinhκq(2dg + d)
,

(A3a)

Vinter(q) = eφq(dg) =
4πe2

ϵq

sinh2 κqdg
sinhκq(2dg + d)

. (A3b)
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Expanded in exponentials, the interactions are approxi-
mated by

Vintra(q) ≈
2πe2

ϵq
(1− e−2κqdg ), (A4a)

Vinter(q) ≈
2πe2

ϵq
(1− e−2κqdg )e−κqd. (A4b)

From the expression in Eq. (A4) we can see that the
screening mainly happens at the long-range part (q → 0)
of the interacting.

Appendix B: Many-body Hamiltonian under Landau
Level Basis

In this section, we will derive the LL representations
of the many-body Hamiltonian. When magnetic field is
applied, one should replace the kinetic momentum ℏk
in Eq. (3) by the canonical momentum Π = ℏk + eA
(e = |e|) according to Peierls substitution[41]. In Landau
gauge A = (−yB, 0), the wavefunction of LLs are

ϕnkx
(r) =

1√
Lxℓ

eikxxψn(y/ℓ− ℓkx), kx ∈ [0, Ly/ℓ
2],

(B1)

where Li is the system size in i direction, ℓ =
√

ℏ/eB is
the magnetic length and

ψn(x) = (2nn!
√
π)−1/2e−x2/2Hn(x) (B2)

is the n-th level of 1D quantum Harmonic oscillator. The
LLs are complete and orthonormal, i.e. ⟨ϕnkx

|ϕmk′
x
⟩ =

δnmδkxk′
x
,
∑

nkx
|ϕnkx

⟩⟨ϕnkx
| = 1. Besides, it satisfies

Π2

2ms
|ϕnkx

⟩ = ℏωs(n+ 1/2)|ϕnkx
⟩, (B3)

where ωs = eB/ms is the cyclotron frequency.
It’s easy to verify that

⟨e, ϕnkx
|h0Π|e, ϕmk′

x
⟩ = [ℏωe(n+ 1/2)− µex]δnmδkxk′

x
,

⟨h, ϕnkx
|h0Π|h, ϕmk′

x
⟩ = −ℏωh(n+ 1/2)δnmδkxk′

x
,

⟨e, ϕnkx |h0Π|h, ϕmk′
x
⟩ = tδnmδkxk′

x
.

Thus the single-particle part expressed under LL basis is
written as

H0 =
∑

ss′nkx

⟨s, ϕnkx
|h0Π − µ|s′, ϕnkx

⟩l†snkx
lsnkx

=
∑

ss′nkx

(h0n,ss′ − µδss′)l
†
snkx

lsnkx , (B5)

where l†snx
is the creation operator for LL electrons and

h0n =

[
ℏωe(n+ 1/2)− µex t

t∗ −ℏωh(n+ 1/2)

]
. (B6)

Use the relation

csk =
∑
nk′

x

⟨k|ϕnk′
x
⟩lsnk′

x
, (B7)

the interaction part Eq. (2b) becomes

HI =
1

2V
∑
ss′

∑
k′
1k

′
2q

∑
niki

Vss′(q)l
†
sn1k1

l†s′n2k2
ls′n3k3

lsn4k4

×⟨ϕn1k1
|k′

1⟩⟨k′
1 − q|ϕn4k4

⟩⟨ϕn2k2
|k′

2⟩⟨k′
2 + q|ϕn3k3

⟩

=
1

2V
∑

ss′niki

∑
q

Vss′(q)l
†
sn1k1

l†s′n2k2
ls′n3k3

lsn4k4

×⟨ϕn1k1
|eiq·r|ϕn4k4

⟩⟨ϕn2k2
|e−iq·r|ϕn3k3

⟩. (B8)

To get the last equal, we use the identity∑
k

|k⟩⟨k − q| =
∑
k

∫
dr|k⟩⟨k − q|r⟩⟨r|

=
∑
k

∫
dr|k⟩e−i(k−q)·r⟨r|

=
∑
k

∫
dr|k⟩⟨k|eiq·r|r⟩⟨r|

=eiq·r. (B9)

Notice that ⟨ϕn2k2
|e−iq·r|ϕn3k3

⟩ ∝
∫
dx e−i(k2+qx−k3)x ∝

δk3−k2,qx , Eq. (B8) is finally simplified to

HI =
1

2V
∑

ss′niki

∑
q

Vss′(q)e
iqy(k1−k2)ℓ

2

Λ∗
n4n1

(q)Λn2n3
(q)

× l†sn1k1+qx/2
l†s′n2k2−qx/2

ls′n3k2+qx/2lsn4k1−qx/2,

(B10)

where Λmn(q) is the form factor for LLs

Λmn(q) ≡⟨ϕmk−qx/2|e
−iq·r|ϕnk+qx/2⟩e

ikqyℓ
2

=

∫
dy e−iqyℓyψm(y + qxℓ/2)ψn(y − qxℓ/2).

(B11)

For m ≥ n, Λmn(q) is evaluated as[25]

Λmn(q) = e−
q2ℓ2

4

√
m!

n!

(
q−ℓ√
2

)m−n

L(m−n)
n

(
q2ℓ2

2

)
,

(B12)

where q− = qx − iqy and L
(α)
n (x) is the Laguerre poly-

nomial; for m < n, Λmn(q) could be got by Λmn(q) =
Λ∗
nm(−q).

Appendix C: Mean-field Channels in Magnetic Field

As discussed in the main text, by requiring magnetic
translation symmetry, the density matrix

ρsn1,s′n2(kx) ≡ ⟨l†s′n2kx
lsn1kx⟩ − δss′δsh (C1)
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is kx-independent. Under Hartree Fock approximation,
the mean-field Fock Hamiltonian is decoupled as

HF =− 1

2V
∑

ss′nik

∑
q

Vss′(q)Λ
∗
n4n1

(q)Λn2n3
(q)

×
[
l†s′n2k

lsn4kρs′n3,sn1 + l†sn1k
ls′n3kρsn4,s′n2

]
.

(C2)

According to Eq. (B12), we have Λmn(q) ∝ e−i(m−n)θq .
Thus the q summation in Eq. (C2) is nonzero only
when n4 − n1 = n2 − n3. It’s convenient to define
M = n3−n1 = n2−n4 which labels independent conden-
sation channels. For condensation channel labeled byM ,
the only surviving density matrix elements are ρs′M+n,sn

and ρsn,s′n+M .

We argue that the index M is just the angular mo-
mentum of exciton condensation. In the absence of a

magnetic field, the density matrix for the exciton con-
densation of angular momentum M takes the form

ρehk ∼ kM+ f(k2), (C3)

where k+ = kx + iky and f is some analytic function.
After Peierls substitution and projecting to LL basis, we
have

⟨e, ϕnkx
|ρΠ|h, ϕmk′

x
⟩

∼⟨ϕnkx
|ΠM

+ f(Π
2/ℏ2)|ϕmk′

x
⟩

∼⟨ϕnkx
|ΠM

+ |ϕmk′
x
⟩f((2m+ 1)eB/ℏ)

∼δn,m+Mδkxk′
x
. (C4)

Due to Hermiticity, ⟨h, ϕnkx |ρΠ|e, ϕmk′
x
⟩ ∼ δn+M,mδkxk′

x
.

Thus, for exciton condensation of angular momentumM ,
the only surviving EI order parameters under LL basis
are ρen+M,hn and ρhn,en+M .
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