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ABSTRACT

Accurate segmentation of the retinogeniculate visual
pathway (RGVP) aids in the diagnosis and treatment of
visual disorders by identifying disruptions or abnormalities
within the pathway. However, the complex anatomical
structure and connectivity of RGVP make it challenging to
achieve accurate segmentation. In this study, we propose a
novel Modality Exchange Network (ME-Net) that
effectively utilizes multi-modal magnetic resonance (MR)
imaging information to enhance RGVP segmentation. Our
ME-Net has two main contributions. Firstly, we introduce
an effective multi-modal soft-exchange technique.
Specifically, we design a channel and spatially mixed
attention module to exchange modality information between
T1-weighted and fractional anisotropy MR images.
Secondly, we propose a cross-fusion module that further
enhances the fusion of information between the two
modalities. Experimental results demonstrate that our
method outperforms existing state-of-the-art approaches in
terms of RGVP segmentation performance.

Index Terms— retinogeniculate visual pathway
segmentation, multi-modal image fusion, modality exchange

1. INTRODUCTION

The segmentation of the retinogeniculate visual pathway
(RGVP) is crucial for studying and understanding the
anatomical development and progression of various diseases
[1]. Additionally, visualizing RGVP through medical
imaging techniques, such as magnetic resonance imaging
(MRI), can provide valuable insights for surgical planning in
order to address both intrinsic and extrinsic lesions along
this pathway [2]. Accurate RGVP segmentation plays an
important role in these applications. However, RGVP
possesses a thin and elongated structure, making the accurate
identification and differentiation of RGVP from neighboring
tissues in MR images a challenging task.

To overcome these difficulties, researchers have delved
into different RGVP segmentation techniques, and deep

learning has emerged as a promising solution. By leveraging
the power of deep learning algorithms, more precise and
reliable RGVP segmentation results can be achieved, aiding
in the accurate analysis and diagnosis of visual pathway
disorders. For example, Mansoor et al. proposed an anterior
visual pathway (AVP) segmentation method, which
employs deep learning techniques to accurately identify the
shape model of the optic nerve by integrating various MRI
sequences including T1-weighted (T1w) imaging, T2-
weighted (T2w) imaging, and fluid-attenuated inversion
recovery (FLAIR) [3] .Tang et al. proposed an innovative
deep learning method that integrates pixel-level and
segmentation-level information using advanced integration
techniques [4]. Ai et al. introduced a spatial probabilistic
distribution map-based two-channel 3D U-net for visual
pathway segmentation [5]. The majority of previous studies
have focused on AVP segmentation using single-modal data.
Although Mansoor et al. adopted three MRI sequences in
their study, the three sequences are all structural imaging
techniques. Incorporating extra functional imaging
modalities can bring additional information to further
improve the segmentation performance.

In view of this, Li et al. proposed the TPSN network
[6], which integrates both structural T1w and functional
fractional anisotropy (FA) images for the first time for AVP
segmentation. In order to effectively exploit the different
information provided by T1w MRI and diffusion MRI, Xie
et al. developed a deep multi-modal fusion network for
RGVP segmentation [7]. While promising performance has
been reported, these existing studies still have limitations
when it comes to multi-modal information extraction and
fusion. Furthermore, they tend to employ conventional
convolutional neural networks (CNNs) in their study that
focus on extracting local features while neglecting the
importance of global context information [8]. As a result,
there is still plenty room for improvement in the field of
RGVP segmentation.

In this study, we propose a modality exchange network
(ME-Net) for segmentation of RGVP using multi-modal
MR images. Specifically, ME-Net utilizes a channel and
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spatial hybrid attention module to achieve soft information
swapping between T1w and FA images, so that only useful
features can be kept and enhanced. Meanwhile, a cross-
fusion module is designed to further enhance the
complementary information fusion. Experiments were
conducted on an open-source dataset, and the proposed ME-
Net achieves better results than state-of-the art approaches.

2. METHODS

2.1. Overall Architecture

Figure 1 depicts the architecture of proposed ME-Net,
comprising an exchange encoding module, a cross-fusion
module, and a decoder [7]. Our key contributions lie in the
exchange encoding and cross-fusion modules. Here, we will
introduce the details of these modules.

Figure 1. Illustration of the proposed ME-Net, which
consists of an exchange encoding module, a cross-fusion
module, and a decoder.

2.2. Exchange Encoding

The exchange encoding module aims to enhance the feature
extraction process while minimizing the amount of
introduced parameters. To achieve this, we employ two data
exchange mechanisms: the Fixed Exchange Module (FEM)
and the Adaptive Exchange Module (AEM) (Figure 2).

Figure 2. Details of the proposed exchange encoding
module

2.2.1 Fixed Exchange Module

In FEM, we employ a parameter-free attention mechanism,
SimAm [10]. With SimAM, we obtain the coefficient maps
in the channel dimension. With these coefficient maps, we
determine the percentage of data to be retained and replace
the remaining data using the data from the other modality

accordingly. The detailed steps of FEM are illustrated in
Figure 3.

Figure 3. Details of FEM

In the work of Yang et al., the authors simulate the
spatial suppression mechanism in human visual neurons to
estimate the importance of individual neurons, thereby
achieving the spatial channel attention [9]. In order to
accurately evaluate the exchanged and retained features, we
first overlay the data from T1w and FA:

Xinput = XT1w + XFA (1)
where XT1 ∈ RC×H×W represents the features extracted

from the T1w modality, and XFA ∈ RC×H×W represents the
features extracted from the FA modality. Subsequently, we
input the obtained feature maps into a SimAm attention
block. Inspired by [11], here, we adopt a similar approach to
generate the desired weight map, using Xinput as the input:
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where xinputt and xinputi refer to the features of interest

and other features, respectively, within a specific channel of
the input feature map Xinput . M = H × W denotes the total
number of features in that channel. We can obtain the
solution for ωt and bias bt in Eq. (2) as:
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are the mean and variance of all features in the channel
except for xinputt . Given that the solutions presented in Eq.
(3) and Eq. (4) are derived from a single channel, it is a
valid assumption that all pixels within that channel adhere to
a uniform distribution. Consequently, the minimal energy
can be determined using the following equation:
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� 2
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where μ� = 1
M i=1

M xinputi� , and σ�2 = 1
M i=1

M (xinputi −� μ�)2.
In Eq. (5), a lower energy value et∗ indicates that the feature
xinputt is more distinct from the surrounding features. Hence,
the importance of each feature can be determined as 1/et∗ .
We use E groups all et∗ across channel and spatial dimen-
sions.Afterwards, we use 1/E to compute the coefficient
map of T1w:

FT1w = sigmoid( 1
E
) (6)



Similarly, we can obtain the coefficient map of FA:
FFA = 1 − FT1w (7)

And the output of FEM for T1w modality becomes:
XT1 = FT1wXT1w + FFAXFA (8)

2.2.2 Adaptive Exchange Module

For FA, we designed another lightweight and learnable
exchange module, AEM, where we combined efficient
channel attention (ECA) with spatial attention mechanisms
(Figure 4).

Figure 4. Details of AEM

In AEM, the ECA module effectively captures the
dependencies and interactions between different channels
within the network. This allows for more accurate and
informative feature representations.

Following what we have done for T1w modality, we
overlay the T1w modality and FA modality to generate the
input to ECA :

Xc = σ(f(GAP(Xinput))) (9)
where Xinput ∈ RC×H×W is the input feature map. GAP stands
for global average pooling. f (X) represents a 1D
convolutional layer. σ represents the sigmoid function. Then,
we apply a channel-wise attention to it:

XF = concat(AP(Xc),MP(Xc)) (10)
FFA = sigmoid(f(XF)) (11)

where AP and MP represent average pooling and max
pooling, respectively. f(x) represents a 2D convolution layer.
We concatenate them together and use another 2D
convolution layer for channel compression. Finally, we
apply a sigmoid function to generate a coefficient map FFA .
Similarly, we can obtain the coefficient map for T1w as:

FT1w = 1 − FFA (12)
Finally, we obtain the output result of the FA modality:

XFA = FFAXFA+FT1wXT1w (13)

2.3. Cross-Fusion Module

To further enhance the multi-modal information fusion, we
incorporate a cross-fusion module in our framework that
leverages a powerful cross-attention mechanism to match
and fuse information from different modalities, allowing for
comprehensive integration and capturing of both local and
global contextual dependencies.

Figure 5. The proposed cross-fusion module

The cross-fusion module generates cross attention
maps for each pair of class features and query sample
features so as to highlight the target object regions, making
the extracted features more discriminative [12]. In CrossViT,
the cross attention module is utilized for multi-scale feature
fusion [13]. The operations of the cross-fusion module can
be expressed as:

CrossAttentionT1w = softmax( QFAKFA
T

dk
)VT1 (14)

CrossAttentionFA = softmax( QT1KT1
T

dk
)VFA (15)

y = concat(reshape(CrossAttentionT1w ),
reshape(CrossAttentionFA) ) (16)

In our approach, we transform the FA modality through
three linear layers to obtain the KFA , QFA , and VFA
representations. Simultaneously, we apply the same linear
transformations to the T1w modality, resulting in the
corresponding KT1, QT1, and VT1w representations.

Then, we input the KFA and QFA representations from
the FA modality, along with the VT1w representation from
the T1w modality, to a cross-attention mechanism. After
that, we obtain the CrossAttentionT1w representation. We
follow the same procedure to obtain the CrossAttentionFA
representation.

2.4. Decoder and Segmentation Output Generation

The decoder is a classical decoder of the U-shaped network.
It receives the features from the cross-fusion module and
generates the RGVP segmentation results for consideration.

3. EXPERIMENTS

3.1. Dataset

We used an open-source dataset from the human
connectome project (HCP), which consists of data from 102
cases. The dataset provides both T1w structural MRI and
preprocessed diffusion MRI (dMRI) data. The matrix size of
the data is 145×174×145, with a voxel resolution of
1.25×1.25×1.25 mm³. We generated the reference data for
the RGVP segmentation in 102 cases by mapping the
streamlines onto voxel-based binary images. In all
experiments, we divided the dataset of 102 cases into
training, validation, and testing sets using a ratio of 8:1:1.

3.2. Implementation Details and Evaluation Metrics



We used an NVIDIA GeForce RTX 2080 GPU to run the
experiments. Each model was trained for 200 epochs with a
batch size of 40. The initial learning rate during training was
0.00015, with a weight decay of 0.00001. We utilized a
combination of Dice loss and cross-entropy loss for network
training:
BCELoss(y, t) = y ∗ log(y') + (1 − y) ∗ log 1 − y' (17)

DiceLoss(y, t) = 1 − 2∗|y'∩y|
|y'| + |y|

(18)
Loss(y', y) = BCELoss(y', y) + DiceLoss(y', y) (19)

where y' represents the network prediction and y represents
the label. We compared the experimental results with Unet
[14], Unet++ [15], TPSN [6], and Deep Multimodal Fusion
Network [7]. Dice similarity coefficient (DSC), relative
absolutevolume difference (RAVD), Hausdorff distance
(HD), and average symmetric surface distance (ASSD) are
calculated to evaluate the segmentation performance of
different methods.

DSC = y∩y'
y+y'

= 2TP
2TP+FP+FN

(20)
where TP denotes true positive predictions. FP denotes false
positive predictions. FN denotes false negative predictions.

RAVD = | Vseg
Vgt

− 1| × 100% (21)

where Vseg represents the segmentation volume, and Vgt
represents the label volume.

HD = max h A, B , h B, A (22)
In this context, A and B represent the sets of

groundtruth segmentation and predicted segmentation,
respectively. h(A, B) denotes the one-way Hausdorff
distance, which is defined as the maximum of the minimum
distances between each point from A to B. Similarly, h(B,A)
is called the one-way Hausdorff distance from set B to set A.
ASSD = 1

|Sa|+|Sb|
( a∈Sa

d(a, Sb)� + b∈Sb
d(b, Sa)� ) (23)

Where �� and �� represent the model prediction results
and ground truth, respectively.
.
3.3. Results

3.3.1 Quantitative results

We conducted a thorough validation of our proposed ME-
Net by comparing its results with state-of-the-art (SOAT)
methods. Quantitative results are listed in Table 1. Our
network exhibited significant improvements over the SOTA
methods. Specifically, the average dice value was nearly one
point higher, RVD was 4.53% lower, HD was 0.4 lower,
and ASD was 0.008 lower than the current best method.
Additionally, our proposed method achieved a dice score
that was 0.8% better than the current best method,
demonstrating the effectiveness of our network architecture.

Table 1: Quantitative results of different methods. All
results of the comparison method are adopted from the
original papers.

Methods DSC
(%)

RAVD
(%)

HD
(mm)

ASSD
(mm)

Unet 83.3 -- 2.913 0.197

Unet++ 84.3 -- 3.066 0.168

TPSN 85.5 -- 2.330 0.162

(Xie et al. 2023) 87.4 7.762 2.679 0.135

Ours 88.2 3.232 2.278 0.127

3.3.2 Visualization results

Figure 6 plots the segmentation maps of our method and
one existing SOTA method. We can observe that
qualitatively, our method can still achieve better
segmentation results than the comparison method. Our
method can better preserve the fine details of the target,
while the comparison segmentation method shows some
detail loss. These visualization results further validate the
effectiveness of our proposed ME-Net for our task of RGVP
segmentation.

Figure 6. Example visualization results

4. CONCLUSION

In this work, we propose a modality exchange network, ME-
Net, for RGVP segmentation. ME-Net has two key
contributions: multi-modal information exchange encoding
and cross fusion. The exchange encoding module uses a
hybrid attention mechanism and soft swapping method to
enhance feature extraction by exchanging information
across modalities. The cross-fusion module employs a cross
attention mechanism to better capture global information
during multi-modal fusion. Experiments on the open-source
HCP dataset validated the effectiveness of ME-Net for
RGVP segmentation. This advancement in RGVP
segmentation can play a vital role in the study and
comprehension of the anatomical development and
progression of various visual-related diseases.
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