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Over the past century, an intense debate in statistical mechanics has been about the correctness of Boltzmann’s
surface entropy versus Gibbs’ volume entropy, for isolated systems. Both entropies make significantly different
predictions for systems with few degrees of freedom. Even in the thermodynamic limit, they can disagree—
while Boltzmann entropy allows negative absolute temperatures to exist, Gibbs entropy precludes such a
possibility. Here, we show that modifying Boltzmann’s entropy via a relative energy tolerance eliminates
thermodynamic inconsistencies in several model systems with unbounded energy spectra by ensuring positive,
finite temperatures. Concomitantly, the proposed entropy allows for negative temperatures in systems with
bounded spectra and closely matches canonical ensemble predictions. This work conclusively remedies the
prevalent deficiencies of the Gibbs and Boltzmann entropy formulations and paves the way for the use of the
modified Boltzmann entropy in the microcanonical ensemble, allowing negative temperatures to exist.

The microcanonical ensemble in statistical mechanics,
originally proposed by Gibbs over a century ago1, con-
tinues to receive a significant extent of attention2–6. In
the physics literature, there exist two competing entropy
definitions in the microcanonical ensemble: Gibbs’ vol-
ume entropy (also referred to as the Hertz entropy)1,7–10,
based on the phase space volume and Boltzmann’s sur-
face entropy11,12 (also referred to as the Boltzmann-
Planck entropy), based on the phase space density. Even
though Boltzmann’s surface entropy dominated textbook
discourses13–17, many studies favored the use of the Gibbs
entropy5,8–10,18,19. About a decade ago, Dunkel and
Hilbert indicated that Boltzmann’s surface entropy leads
to violations of equipartition and unphysical results, i.e.,
negative/infinite temperatures, for some model systems
with unbounded spectra5. Subsequently, several arti-
cles appeared that pointed out that Gibbs entropy suf-
fers from serious objections such as the consideration of
all states with energy lower than energy E, rather than
only the states at the desired energy, and the inability
to allow for negative temperatures in systems with non-
monotonically increasing density of states6,12,20–24.

Although the Boltzmann and Gibbs entropies usually
agree for very large systems, they differ significantly and
lead to widely varying temperatures for isolated systems
with few degrees of freedom25. (In some cases, even in
the thermodynamic limit, e.g., the case of a two-state
system (see below), they can disagree.) Note that the
principles of statistical mechanics can be applied to sys-
tems with few degrees of freedom, as the statistical aver-
aging is carried out over the classical phase space or the
available quantum states, rather than over the degrees of
freedom6,26–28. Thus, even quantities like the tempera-
ture of an isolated quantum state29–31 or the entropy of
a few-body system are well defined32,33.
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In light of this fact, that both entropy definitions have
shortcomings for small systems22 is particularly unnerv-
ing. Indeed, the lack of a universal microcanonical en-
tropy formulation not only adversely impacts the fun-
damental physical understanding of the thermodynamics
of small systems34, but also could impede technological
progress in the future, wherein systems of few atoms,
molecules, or electrons are increasingly becoming physi-
cally realizable35. In this work, we show that the consid-
eration of a relative energy tolerance in the microcanon-
ical ensemble eliminates all thermodynamic inconsisten-
cies put forth in previous work pertaining to systems with
unbounded spectra, while at the same time allowing neg-
ative temperatures in systems with bounded spectra.

Formulation of the relative-energy constrained Boltz-
mann entropy. Considering the microcanonical (NV E)
ensemble with fixed number of particles N , volume V ,
and energy E, the Gibbs entropy (SG) is defined as
SG = kB lnΩ, where Ω denotes the volume of the classi-
cal phase space or the number of quantum states in the
region E′ < E (Figure 1a). For a classical system, this
can be written as

Ω =
1

hdNN !

∫
drNdpNΘ(E −H)

where Θ is the Heaviside step function, Θ(x) ={
1; x > 0

0; x ≤ 0
, h is Planck’s constant, d is the dimen-

sionality of the system, rN denotes the positions of the
particles, and pN denotes their momenta. Alternatively,
for a quantum-mechanical system, we can write

Ω = Tr[Θ(E −H)] (1)

where Tr denotes the trace, i.e., the sum over quantum
states in a Hilbert space. In contrast, the Boltzmann
entropy (SB) is conventionally defined as SB = kB lnω,
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where

ω =
1

hdNN !

∫
drNdpNδ

(
H − E

ϵ

)
or

ω = Tr

[
δ

(
H − E

ϵ

)]
(2)

and ϵ is an absolute energy tolerance, as visualized in
Figure 1a. Physically, the tolerance appears because no
system is perfectly isolated, and some amount of per-
turbation or broadening in the energy occurs due to the
system’s interactions with its surroundings (Figure 1b).

From Eq. (1) and (2), one can infer that

ω = ϵ
∂Ω

∂E
(3)

Even for a discrete spectrum, although direct enumer-
ation is often used as a simplification36, Eq. (3) is
preferred14,37, as it allows the correct definition of en-
tropy for nondegenerate quantum systems38,39. Typi-
cally, ϵ has been interpreted to be a fixed constant in
Eq. (3), and this has led to inconsistent results for sim-
ple systems with unbounded energy levels, e.g., negative
temperatures for an ideal gas with one degree of freedom
or infinite temperature for a quantum harmonic oscilla-
tor and an ideal gas with two degrees of freedom. We
suggest here that instead of using an absolute energy tol-
erance, the energy tolerance in the microcanonical en-
semble should be defined relative to the system’s energy
(Figure 1c). Indeed, a system with 1 J of energy and
with 1 eV = 1.602 × 10-19 J of energy should not use the
same tolerance in the microcanonical ensemble. This is
because the higher the energy of a system, the greater its
interaction with its surroundings, causing more broad-
ening or perturbation in its energy. Thus, we propose
that the constraint inside the delta function should be
expressed in terms of the relative error of Hr = H

E from
1. In terms of the phase space integrals or Hilbert space
summations, doing so amounts to applying a constraint
on H without using up a degree of freedom. Thus, clas-
sically, one should write

ωr =
1

hdNN !

∫
drNdpNδ

(
Hr − 1

ϵr

)
(4)

whereas for a quantum-mechanical system, we should
write

ωr = Tr

[
δ

(
Hr − 1

ϵr

)]
(5)

where ϵr is a relative error tolerance. In Eqs. (4) and
(5), we have used the subscript r to denote the use of
the relative deviation from the desired energy. It can be
shown that ωr = ϵrE

∂Ω
∂E , as indicated in Figure 1c. Note

that there is some precedent in the literature for adopting
an energy-dependent tolerance38,39.

System
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FIG. 1. Motivation and explanation of the relative-energy-
constrained Boltzmann entropy. (a) For a density of states
n(E), the Gibbs entropy is defined by the logarithm of the
area under the curve, i.e., Ω, while the Boltzmann entropy is
defined by the logarithm of the change in area due to a fixed
energy perturbation ϵ, i.e., ∂Ω

∂E
ϵ. (b) Interaction of a system

with its surroundings leads to smearing of the system’s energy
E by a perturbation ϵ. (c) The proposed entropy considers
an energy-dependent energy perturbation, given as ϵrE.

We now apply the new approach for calculating the mi-
crocanonical relative-energy-constrained Boltzmann en-
tropy, SBr = kB lnωr, and the corresponding tempera-
ture

1

TBr

=
∂SBr

∂E
(6)

to several example systems. One may think that
converting an absolute energy constraint to a relative
energy constraint would not affect the calculation of
entropy significantly. However, as seen in Table I,
we conclusively show that using a relative constraint
preserves the degrees of freedom of a system and thus
leads to thermodynamically consistent behavior for
various isolated systems with few degrees of freedom.

Application of the modified entropy to example sys-
tems: d-dimensional monoatomic ideal gas. Consider
a d-dimensional monoatomic ideal gas consisting of N
atoms of mass m each, occupying a total volume V .
This system has unbounded energy levels and thus should
not have negative temperature, as correctly argued by
Dunkel and Hilbert5. The volume of the phase space for
this system is19

Ω =
V N

hdNN !

(2πm)
dN
2

Γ
(
dN
2 + 1

)E dN
2 .
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TABLE I. Comparison of the predictions of the Gibbs, conventional Boltzmann, and proposed modified Boltzmann entropies in
the microcanonical ensemble with the corresponding predictions in the canonical ensemble. Only the relative-energy-constrained
Boltzmann entropy leads to predictions consistent with the canonical ensemble in every case considered.

System Gibbs Conventional Boltzmann Modified Boltzmann Canonical

3D ideal gas E = 3N
2
kBT E =

(
3N
2

− 1
)
kBT E = 3N

2
kBT E = 3N

2
kBT

Harmonic oscillator (high T ) E = kBT − hν
2

T = ∞ E = kBT E = kBT

Harmonic oscillator (any T )a E−E0
hν

=
3−exp( θ

T )
2 exp( θ

T )−2
T = ∞ E−E0

hν
= 1

exp( θ
T )−1

E−E0
hν

= 1

exp( θ
T )−1

Particle in 1D box E = kBT
2

E = − kBT
2

E = kBT
2

E = kBT
2

Negative temperatures? No Yes Yes Yes
a Note that E0 = 1

2
hν and θ = hν

kB
for the harmonic oscillator.

Further, the number of states can be written as

ω =
V N

hdNN !

(2πm)
dN
2

Γ
(
dN
2

) E
dN
2 −1ϵ.

The Gibbs temperature (TG) can be calculated using the
equation 1

TG
= ∂SG

∂E to obtain E = dN
2 kBTG. How-

ever, using the analogous equation for Boltzmann tem-
perature, assuming a fixed energy tolerance ϵ, leads to
E =

(
dN
2 − 1

)
kBTB . Note that if dN = 1, i.e., the

system has one degree of freedom, one obtains negative
temperatures whereas if dN = 2, i.e., the system has
two degrees of freedom, one gets infinite temperature5.
This is a serious shortcoming of the Boltzmann entropy,
as pointed out by Dunkel and Hilbert5, as one is led to
predict negative/infinite temperature for a system whose
energy is unbounded. Considering a fractional energy tol-

erance, one however obtains ωr = V N

hdNN !
(2πm)

dN
2

Γ( dN
2 )

E
dN
2 ϵr,

which combined with Eq. (6) leads to

E =
dN

2
kBTBr

.

The above equation not only disallows negative/infinite
temperatures for an ideal gas but fixes the disagreement
between the energy of a three-dimensional ideal gas as
traditionally calculated in the canonical

(
E = 3N

2 kBT
)

and microcanonical
(
E =

(
3N
2 − 1

)
kBT

)
ensembles (see

Table I)!
Quantum harmonic oscillator. For a quantum har-
monic oscillator, the energy of the system is given as40

En = hν
(
n+ 1

2

)
, where n = 0, 1, 2, ... and ν represents

the frequency of vibration of the oscillator. It follows
that Ω = 1 + n = E

hν + 1
2 . At the high-temperature

limit, the states can be treated as a continuum, so that
kBTG = hν

2 + E. Although applying the original defi-
nition of Boltzmann entropy leads to infinite tempera-
ture, the newly proposed definition (Eq. (5)) results in
ωr = ϵrE

hν , leading to E = kBTBr
, which predicts finite,

positive temperatures. Again, only the relative-energy-
constrained Boltzmann entropy leads to predictions con-
sistent with the canonical ensemble (Table I)! One can
also derive expressions valid for the temperature under all
cases, using discretized definitions of the partition func-
tion and temperature (see, e.g., ref.41), as shown in the

Supplementary Information42 and in Table I. The ensu-
ing E vs. T relationships for various entropy choices
are plotted in Figure 2. Therein, one sees that only
the modified Boltzmann entropy predicts thermodynam-
ically consistent results at all temperatures, including
the existence of the zero-point energy

(
1
2hν

)
and agree-

ing with the high-temperature prediction of E = kBT .
On the contrary, while the Gibbs entropy fails to pre-
dict the existence of a zero-point energy (i.e., leads to a
Planck oscillator rather than a Schrodinger oscillator14!),
the Boltzmann entropy predicts infinite temperatures for
all energies. Note that, to the best of the author’s knowl-
edge, this is the first derivation of the temperature of a
single, isolated quantum harmonic oscillator, i.e., in the
microcanonical ensemble; previous expressions relied on
the consideration of multiple oscillators, in the limit of a
large number of oscillators (see, e.g.,43 and44).

Quantum particle in a 1D box. The energy of a quan-
tum particle in a one-dimensional (1D) box is given

as40 En = an2

L2 , where a = ℏ2π2

2m and n = 1, 2, 3, ...,

so that Ω = L
√

E
a . At high temperatures, the states

form a continuum, and we find that E = kBTG

2 and

PG = TG
∂SG

∂L = 2E
L . This statistical-mechanical pres-

sure equals the thermodynamic pressure calculated as
PT = −∂E

∂L . Now, although the conventional Boltzmann

entropy leads to a negative temperature
(
E = −kBTB

2

)
and negative pressure

(
PB = − 2E

L

)
, the newly proposed

definition of Boltzmann entropy fixes these predictions,

as seen in Table I, to yield E =
kBTBr

2 and PBr = 2E
L .

Two-level system and the possibility of negative tem-
peratures. We now demonstrate that the newly proposed
definition of Boltzmann entropy still allows for negative
temperatures for systems having non-monotonic density
of states12,21,22, i.e., a bounded phase space. Considering
the well-known case of a two-state system, with energy
levels 0 and E1 and N0 particles occupying the ground
state and N1 particles occupying the excited state, the
energy of the system is E = N1E1 and the number of
particles is N = N0 +N1. It follows that the number of
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FIG. 2. Comparison of various microcanonical entropies in
terms of their ability to predict the thermodynamic behavior
of a quantum harmonic oscillator. The canonical prediction
is shown using a blue line and the high-temperature canoni-
cal/modified Boltzmann predictions are shown using a dashed
black line. Blue, red, and green circles represent predictions of
the modified Boltzmann, Gibbs, and conventional Boltzmann
entropies in the microcanonical ensemble. In these cases, lines
are simply a guide. Only the modified Boltzmann entropy
predicts the existence of the correct zero-point energy at 0 K
and degenerates to the limit of kBT at high temperatures.

states with energy less than or equal to E is

Ω =

N1∑
N ′

0=1

N !

N ′
0!N

′
1!

where N1 = E/E1 and N ′
1 = N − N ′

0. The original
Boltzmann partition function is given as

ω =
∆Ω

∆E
ϵ =

N !

(N0 − 1)!(N1 + 1)!

ϵ

E1
.

where ∆Ω is obtained as the difference in the summa-
tion expressions of Ω with N ′

0 going up to (N1 + 1) and
N1. Considering a large number of particles and applying
Stirling’s approximation results in

SB = kBN lnN − kB(N0 − 1) ln(N0 − 1)−

kB(N1 + 1) ln(N1 + 1) + kB ln
ϵ

E1
.

For fixed N , the absolute-energy-constrained Boltzmann
temperature can be determined to be

TB =
∆E

∆SB
=

E1

kB ln
(

(N0−1)N0−1(N1+1)N1+1

(N0−2)N0−2(N1+2)N1+2

) .
Since we are considering a large number of particles, the
temperature reduces to TB = E1

kB ln
(

N0
N1

) . Now, if E1 > 0

and N0 < N1, i.e., we consider a system exhibiting “pop-
ulation inversion”, we find that TB < 0. Analogously,
the modified Boltzmann partition function is given as

ωr =
∆Ω

∆E
ϵrE =

N !

(N0 − 1)!(N1 + 1)!

ϵrE

E1
.

This leads to, via the Stirling’s approximation, the fol-
lowing expression for the temperature:

TBr =
∆E

∆SBr

=
E1

kB ln
(

(N0−1)N0−1(N1+1)N1+2

(N0−2)N0−2(N1+2)N1+2N1

) ,
which also simplifies, for a large number of particles,
to TBr

= E1

kB ln
(

N0
N1

) , also allowing negative tempera-

tures. (This is the same expression that one obtains
by direct enumeration as well12.) On the other hand,
Gibbs entropy would not admit negative temperatures
at all due to a monotonically increasing total number
of states. Thus, Gibbs entropy cannot account for sys-
tems with bounded spectra in a thermodynamically con-
sistent manner12,45,46. Note that this also indicates that
Gibbs and Boltzmann entropies can disagree, even in the
thermodynamic limit. Now, according to the above dis-
cussion, the newly proposed relative-energy-constrained
Boltzmann entropy (SBr

) allows for both negative and
positive temperatures, and in the appropriate contexts
in which they should be seen, i.e., systems with bounded
and unbounded phase space, respectively (see Table I).
Therefore, this work indicates that previous negative
temperature measurements for various systems are in-
deed correct47–53, unlike what is stated in ref.5. In fact,
another argument against negative temperature, viz.,
the incorrect interpretation of Carnot efficiencies being
more than one has also been addressed by Abraham and
Penrose54.
Conclusions. In this work, we introduced a relative

energy constraint in the calculation of the microcanoni-
cal partition function, which eliminates negative/infinite
temperatures for systems with unbounded spectra, such
as ideal gases with a few degrees of freedom, a quantum
harmonic oscillator, and a quantum particle confined in
an infinite well. At the same time, the proposed entropy
definition allows for negative temperatures for systems
with non-monotonic density of states, i.e., a bounded
spectrum, such as a two-state system with population
inversion. This makes the proposed entropy definition
the one that is the closest to predictions from the canon-
ical ensemble in each case considered (see Table I). The
physical insight underlying the proposed approach is that
systems with higher energy will interact more with their
surroundings, thus causing a larger perturbation in their
energy. Mathematically, while an absolute energy con-
straint uses up one degree of freedom from the system
(by fixing the value of E), the use of a relative energy
constraint fixes only the ratio H/E, thus retaining the
original number of degrees of freedom of the system and
resulting in the correct scaling of energy with tempera-
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ture for various systems. Thereby, we proposed a reso-
lution to the ongoing debate in microcanonical statisti-
cal mechanics on the use of the Gibbs volume entropy
and Boltzmann surface entropy. Overall, this work sets
the foundation for using the relative-energy-constrained
Boltzmann surface entropy in the microcanonical ensem-
ble of statistical mechanics. Thereby, the work puts on
firm theoretical footing the existence of negative temper-
atures for systems with bounded energy spectra. Finally,
this work lays a solid foundation for accurate theoreti-
cal descriptions of isolated systems with few degrees of
freedom using statistical mechanics.
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7P. Hertz, “Über die mechanischen Grundlagen der Thermody-
namik,” Ann. Phys. (Leipzig) 338, 225–274 (1910).

8H. H. Rugh, “Microthermodynamic formalism,” Phys. Rev. E
64, 055101 (2001), arXiv:0201062 [nlin].

9M. Campisi and D. H. Kobe, “Derivation of the Boltzmann prin-
ciple,” Am. J. Phys. 78, 608–615 (2010).

10M. Campisi, “Construction of microcanonical entropy on
thermodynamic pillars,” Phys. Rev. E 91, 052147 (2015),
arXiv:1411.2425.

11D. H. Gross and J. F. Kenney, “The microcanonical thermo-
dynamics of finite systems: The microscopic origin of conden-
sation and phase separations, and the conditions for heat flow
from lower to higher temperatures,” J. Chem. Phys. 122 (2005),
10.1063/1.1901658.

12D. Frenkel and P. B. Warren, “Gibbs, Boltzmann, and
Negative Temperatures,” Am. J. Phys. 83, 163–170 (2015),
arXiv:1403.4299.

13K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons,
Inc., 1987).

14R. K. Pathria and P. D. Beale, Statistical Mechanics, 3rd ed.
(Elsevier, 2011).

15M. Tuckerman, Statistical Mechanics: Theory and Molecular
Simulation (Oxford university press, 2010).

16R. H. Swendsen, An Introduction to Statistical Mechanics and
Thermodynamics (Oxford University Press, 2012).

17M. S. Shell, Thermodynamics and Statistical Mechanics: An In-
tegrated Approach (Cambridge University Press, 2015).

18V. Berdichevsky, I. Kunin, and F. Hussain, “Negative tempera-
ture of vortex motion,” Physical Review A 43, 2050–2051 (1991).

19J. Dunkel and S. Hilbert, “Phase transitions in small systems:
Microcanonical vs. canonical ensembles,” Phys. A: Stat. Mech.
370, 390–406 (2006).

20U. Schneider, S. Mandt, A. Rapp, S. Braun, H. Weimer, I. Bloch,
and A. Rosch, “Comment on “Consistent thermostatistics forbids
negative absolute temperatures”,” (2014), arXiv:1407.4127.

21R. H. Swendsen and J.-S. Wang, “Gibbs Volume Entropy is In-
correct,” Phys. Rev. E 92, 020103 (2015).

22R. Swendsen, “Thermodynamics, Statistical Mechanics and En-
tropy,” Entropy 19, 603 (2017).

23D. A. Lavis, “The question of negative temperatures in thermo-
dynamics and statistical mechanics,” Stud. Hist. Philos. Sci. 67,
26–63 (2019).

24R. Lustig, “Microcanonical thermodynamics of three and four
atoms,” Journal of Chemical Physics 150, 074303 (2019).

25M. Barbatti, “Defining the temperature of an isolated molecule,”
The Journal of Chemical Physics 156 (2022), 10.1063/5.0090205.

26R. V. Jensen and R. Shankar, “Statistical behavior in determin-
istic quantum systems with few degrees of freedom,” Physical
Review Letters 54, 1879–1882 (1985).

27B. Chirikov, F. Izrailev, and V. Tayursky, “Numerical experi-
ments on the statistical behaviour of dynamical systems with a
few degrees of freedom,” Computer Physics Communications 5,
11–16 (1973).

28L. Cerino, G. Gradenigo, A. Sarracino, D. Villamaina, and
A. Vulpiani, “Fluctuations in partitioning systems with few
degrees of freedom,” Physical Review E 89, 042105 (2014),
arXiv:1403.2896.

29P. Lipka-Bartosik, M. Perarnau-Llobet, and N. Brunner, “Opera-
tional definition of the temperature of a quantum state,” Physical
Review Letters 130, 040401 (2023).

30M. T. Mitchison, A. Purkayastha, M. Brenes, A. Silva, and
J. Goold, “Taking the temperature of a pure quantum state,”
Physical Review A 105, L030201 (2022), arXiv:2103.16601.

31P. C. Burke, G. Nakerst, and M. Haque, “Assigning tempera-
tures to eigenstates,” Physical Review E 107, 024102 (2023),
arXiv:2111.05083.

32G. D. Phillies, “The one-atom ideal gas,” in Elementary Lectures
in Statistical Mechanics (Springer, New York, NY, 2000) pp. 39–
54.

33L. F. Santos, A. Polkovnikov, and M. Rigol, “Entropy of isolated
quantum systems after a quench,” Physical Review Letters 107,
040601 (2011), arXiv:1103.0557.

34J. U. Andersen, E. Bonderup, and K. Hansen, “On the concept of
temperature for a small isolated system,” The Journal of Chem-
ical Physics 114, 6518–6525 (2001).
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