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Abstract

We present a novel N = 2 Z2
2-graded supersymmetric quantum mechanics (Z2

2-
SQM) which has different features from those introduced so far. It is a two-
dimensional (two-particle) system and is the first example of the quantum me-
chanical realization of an eight-dimensional irrep of the N = 2 Z2

2-supersymmetry
algebra. The Z2

2-SQM is obtained by quantizing the one-dimensional classical sys-
tem derived by dimensional reduction from the two-dimensional Z2

2-supersymmetric
Lagrangian ofN = 1, which we constructed in our previous work. The ground states
of the Z2

2-SQM are also investigated.
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1 Introduction

In our previous work [1], a Z2
2-graded supersymmetric Lagrangian in two-dimensional

spacetime was constructed by the Z2
2-extension of the superfield formalism. The Z2

2-
supersymmetry is a higher graded extension of the supersymmetry, based on the Z2

2-graded
superalgebras introduced by Bruce [2]. The Lagrangian given in [1], which is L in (2.5) of
the present paper, has a very general interaction terms and appropriate choices of them
give Z2

2-graded supersymmetric extensions of the two-dimensional integrable systems, e.g.,
sine(h)-Gordon equation and Liouville equation. The integrability of these Z2

2-extended
equations is an open problem, however one may expect the existence of a novel class of
integrable systems characterized by the Z2

2-supersymmetry. Indeed, a Z2
2-graded extension

of the sine-Gordon equation, which is different from the one in [1], was introduced and
its integrability is shown by Bruce [4] and this is the only integrable classical systems
having the Z2

2-supersymmetry known so far. Therefore, in order to open up a new field of
integrable systems, the study of the classical systems obtained form L in (2.5) is important.

It is also important to quantize the Lagrangian L which will gives quantum integrable
systems. In the present paper, however, instead of quantizing L, we study the simpler
but highly non-trivial case, that is, Z2

2-supersymmetric quantum mechanics (Z2
2-SQM)

obtained from L via dimensional reduction. The Z2
2-SQM was first introduce by Bruce

and Duplij [5] which is N = 1 in our terminology (see §2 for the definition of N ).
The operators of this Z2

2-SQM close in ordinary 1D super-Poincaré algebra as well as
its Z2

2-counterpart. However, this does not means the Z2
2-SQM is trivial, since the Z2

2-
SQM shows detectable difference from the ordinary SQM in multiparticle sectors [6, 7].
The Bruce-Duplij Z2

2-SQM is also extended to N > 1 [8], Zn
2 -grading [9] and conformal

symmetries [12].
Our Lagrangian L in (2.5) is N = 1 and defined in two-dimensional spacetime. Re-

duction of it to one-dimension gives N = 2 Z2
2-supersymmetric classical mechanics. We

quantize the 1D system using a Z2
2-graded extension of the Dirac-Bergmann method of

constrained systems [10, 11]. This gives us a Z2
2-SQM which has different features from

the Z2
2-SQMs mentioned above (see §4). In particular, the Z2

2-SQM obtained is a two-
dimensional or two-particle (with the same mass) quantum mechanics and the left and
right movers are separated in the light cone coordinates. Furthermore, it is realized by
8 × 8 matrix differential operators which corresponds to the eight dimensional irrep of
N = 2 Z2

2-supersymmetry algebra [14] and it is the first example of the quantum mechan-
ical realization of the irrep.

It is well known that SQMs are closely related to solvable potentials through the fac-
torization of Hamiltonian (see e.g., [16, 17]). It is also known that Z2

2-graded algebraic
structure appears in simple solvalbe systems in quantum mechanics [25,26,30]. We there-
fore expect the Z2

2-SQMs to have a deep connection with solvable quantum mechanical
systems.

Before proceeding further, we mention some works discussing Z2
2-graded algebraic

structure in physics. Vasiliev pointed out that the symmetry group of SUGRA in de
Sitter spacetime is enhanced to Z2

2-graded superalgebra [22]. The quasi-spin formalism
is generalized to higher graded algebra in [23] and superconformal symmetry in two-
dimension is also generalized to Z2

2-graded setting [33]. Equivalence between algebraic
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structures generated by parastatistics triple relations of Green and Greenberg–Messiah,
and certain orthosymplectic Z2

2-graded superalgebras is pointed out in [24]. This ob-
servation of Z2

2-graded superalgebras in parastatistics leads the further development of
parastatistics representations of Z2

2-graded superalgebras [27–29]. We also comment that
the paraparticles are simulated recently by using a trapped ion [38].

There are some proposals of Zn
2 -graded extensions of the spacetime supersymme-

try [34–37] which are related to higher graded SQMs. Regarding the higher graded
supersymmetry, we mention the bosonization [31], sigma model [3] and n-bit extension
of parastatistics [43]. A precise analysis of the Z2

2-graded superfield formulation of Z2
2-

supersymmetry has recently been done [13–15]. The Z2
2-graded superfield formulation is

a simplest example of higher supergeometry which was started in [41] (see [39, 40] for
a concise review of the higher supergeometry). Integration over the Z2

2-superspace is a
necessary ingredient of the superfield formulation. There are some different ideas of inte-
gration and one of them recently proposed by two of the present authors is suitable for
the superfield formulation [42].

This paper is organized as follows: In the next section, we recall the definition of
the Z2

2-graded Lie superalgebras and collect the results from [1] which we need in the
present work. In §3, we investigate the classical aspects of the 1D system obtained by
dimensional reduction. The 1D Lagrangian is derived from the 2D one and equations
of motion and conserved Noether charges are computed explicitly. The Lagrangian is
singular but all the constraints are second class. We thus develop a Z2

2-extension of the
Dirac-Bargmann method suitable to the present model to quantize the system. We also
observe the increase of the Z2

2-supersymmetry from N = 1 to N = 2. §4 is devoted to the
study of the quantized system. The quantum operators are realized in terms of the eight-
dimensional real irrep of the Clifford algebra Cl(4, 2). The use of light cone coordinates
provides separation of variables. This allows us to easily study the ground states of the
Hamiltonian. We close the paper with a short summary and some remarks in §5

2 Preliminaries

Let us first recall the definition of Z2
2-graded Lie superalgebras [18,19] (see also [20,21]). A

Z2
2-graded vector space (over R or C) is the direct sum of homogeneous vector subspaces

labeled by an element of Z2
2:

g = g(0,0) ⊕ g(1,1) ⊕ g(1,0) ⊕ g(0,1).

An element of ga⃗ is said to have the Z2
2-degree a⃗ ∈ Z2

2. We define the Z2
2-Lie bracket by

JX, Y K = XY − (−1)a⃗·⃗bY X, X ∈ ga⃗, Y ∈ g⃗b (2.1)

where a⃗ · b⃗ is the standard scalar product of two dimensional vectors. Namely, the Z2
2-Lie

bracket is the commutator (anti-commutator) for a⃗ · b⃗ is even (odd). A Z2
2-graded vector

space is said to be a Z2
2-graded Lie superalgebra if JX, Y K ∈ ga⃗+b⃗ and the Jacobi identity

is satisfied:
JX, JY, ZKK = JJX, Y K, ZK + (−1)a⃗·⃗bJY, JX,ZKK.
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If JX, Y K = 0, we say that X and Y are Z2
2-commutative. We also define the even and

odd subspaces of g by g(0,0) ⊕ g(1,1) and g(1,0) ⊕ g(0,1), respectively.
The Z2

2-graded Lie superalgebra considered in [1], which is denoted simply by g, is
five-dimensional and the Z2

2-degree assignment is as follows:

H ∈ g(0,0), Z, L11 ∈ g(1,1), Q10 ∈ g(1,0), Q01 ∈ g(0,1) (2.2)

Their non-vanishing Z2
2-Lie brackets in terms of commutator or anticommutator are given

by

{Q10, Q10} = {Q01, Q01} = 2H, [Q10, Q01] = iZ,

[L11, H] =
i

2
Z, [L11, Z] = 2iH,

{L11, Q10} = −
1

2
Q01, {L11, Q01} =

1

2
Q10. (2.3)

The subalgebra ⟨ H,Q10, Q01, Z ⟩ is the Z2
2-supersymmetry algebra introduced in [2]. We

refer this algebra as N = 1 since each odd subspace has only one element.
We consider the eight real fields with Z2

2-grading defined in two-dimensional spacetime

φ00(t, x), A00(t, x), A11(t, x), φ11(t, x),

ψ10(t, x), λ10(t, x), ψ01(t, x), λ01(t, x) (2.4)

where the suffices indicate their Z2
2-degree and the fields are Z2

2-commutative. It is shown
in [1] that the following action is invariant under the transformations generated by g :

S =

∫
dt dxL, L = Lkin + Lint,

Lkin =
1

2
(φ̇2

00 − φ′
00

2 + φ̇2
11 − φ′

11
2) + 2A2

00 + 2A2
11

+ i(ψ10ψ̇10 + ψ01ψ̇01 + λ10λ̇10 + λ01λ̇01)

− i(ψ10λ
′
10 − ψ′

10λ10 − ψ01λ
′
01 + ψ′

01λ01),

Lint = −2α
(
A11V00 + A00V11

)
+ 2α

(
(ψ10ψ01 + λ10λ01)∂00V00 + i(ψ10λ10 + ψ01λ01)∂00V11

)
(2.5)

where α is a degree (1, 1) coupling constant and V00, V11 are functions of φ00, φ11 satisfying

∂00V00(φ00, φ11) = ∂11V11(φ00, φ11), ∂11V00(φ00, φ11) = ∂00V11(φ00, φ11) (2.6)

with

∂00 :=
∂

∂φ00

, ∂11 :=
∂

∂φ11

. (2.7)

H and Z are the generator of the translations of t and x, respectively. Q10 and Q01

are supercharges mixing up even (bosonic) and odd (fermionic) fields and changing the
degree by (1, 0) and (0, 1), respectively. L11 is the degree (1, 1) Lorentz transformation
which gives rise to mixture among bosonic (fermionic) fields with different degrees. The
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transformation generated by Z and L11 disappear after the reduction to one-dimensional
spacetime due to the non-existence of space translationa and Lorentz transformation.
Explicit form of the transformations are given in the equations (3.28)–(3.32) of [1]. The
matrix presentation of the generators is found in (3.34)–(3.37) of [1].

As is seen from the Lagrangian (2.5), A00, A11 are auxiliary, i.e., their equations of
motion are given by the algebraic equation

A00 =
α

2
V11, A11 =

α

2
V00. (2.8)

Using these relations, we remove the auxiliary fields.

3 One-dimensional model : classical mechanics

3.1 Lagrangian and equations of motion

We make the dimensional reduction (t, x) → (t). Then, we have the worldline Z2
2-

supersymmetric Lagrangian from (2.5)

L =
1

2
(φ̇2

00 + φ̇2
11) + i(ψ10ψ̇10 + ψ01ψ̇01 + λ10λ̇10 + λ01λ̇01)

+ 2A2
00 + 2A2

11 − 2α
(
A11V00 + A00V11

)
+ 2α

(
(ψ10ψ01 + λ10λ01)∂00V00 + i(ψ10λ10 + ψ01λ01)∂00V11

)
. (3.1)

This Lagrangian is invariant under the following transformations generated by g which is
the one-dimensional reduction of (3.28)–(3.32) of [1]:

(i) transformations by H and Z

δ00f(t, x) = −
ϵ00
2
∂tf(t, x), δ11f(t, x) = 0, for any component fields (3.2)

(ii) transformation by Q10

δ10φ00 =− iϵ10ψ10, δ10φ11 =ϵ10λ01,

δ10ψ10 =
1

2
ϵ10φ̇00, δ10λ01 =−

i

2
ϵ10φ̇11,

δ10ψ01 =iϵ10A11, δ10λ10 =ϵ10A00,

δ10A11 =−
1

2
ϵ10ψ̇01, δ10A00 =−

i

2
ϵ10λ̇10, (3.3)

(iii) transformation by Q01

δ01φ00 =− iϵ01ψ01, δ01φ11 =ϵ01λ10,

δ01ψ10 =iϵ01A11, δ01λ01 =ϵ01A00,

δ01ψ01 =
1

2
ϵ01φ̇00, δ01λ10 =−

i

2
ϵ01φ̇11,

δ01A11 =−
1

2
ϵ01ψ̇10, δ01A00 =−

i

2
ϵ01λ̇01. (3.4)
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Using the equations of motion (2.8), we get rid of V00, V11 (instead of A’s) so that the
coupling constant is absorbed into A’s and does not appear in L.We change the notations
W00 = A00,W11 = A11 as they will be the potentials of our model, then our Lagrangian
reads

L =
1

2
(φ̇2

00 + φ̇2
11) + i(ψ10ψ̇10 + λ10λ̇10 + ψ01ψ̇01 + λ01λ̇01)

− 2W 2
00 − 2W 2

11 + 4(ψ10ψ01 + λ10λ01)∂00W11 + 4i(ψ10λ10 + ψ01λ01)∂00W00 (3.5)

and the constraints (2.6) are given by

∂00W00 = ∂11W11, ∂00W11 = ∂11W00. (3.6)

We here present an example of the potentials satisfying the constraints:

W00 = eφ00 coshφ11, W11 = eφ00 sinhφ11. (3.7)

The conserved charges corresponding to the transformations (3.2)–(3.4) are obtained from
(3.47)–(3.50) of [1]:

H =
1

2
(φ̇2

00 + φ̇2
11) + 2W 2

00 + 2W 2
11

− 4(ψ10ψ01 + λ10λ01)∂00W11 − 4i(ψ10λ10 + ψ01λ01)∂00W00,

Z = 0,

Q10 =
√
2(φ̇00ψ10 − iφ̇11λ01 + 2W00λ10 + 2iW11ψ01)

Q01 =
√
2(φ̇00ψ01 − iφ̇11λ10 + 2W00λ01 + 2iW11ψ10). (3.8)

The charge Z vanishes as the operator Z does not generate any transformation, cf. (3.2).
We now introduce the complex femionic variables:

ξ := ψ10 + iλ10, η := ψ01 + iλ01. (3.9)

The Lagrangian (3.5) becomes (up to total time derivative)

L =
1

2
(φ̇2

00 + φ̇2
11) + i(ξ̄ξ̇ + η̄η̇)− 2W 2

00 − 2W 2
11

+ 2(η̄ξ + ξ̄η)∂00W11 + 2(ξ̄ξ + η̄η)∂00W00. (3.10)

The equations of motion derived from the Lagrangian are given by

φ̈00 + 4W00∂00W00 + 4W11∂00W11 − 2(η̄ξ + ξ̄η)∂200W11 − 2(ξ̄ξ + η̄η)∂200W00 = 0,

φ̈11 + 4W00∂11W00 + 4W11∂11W11 − 2(η̄ξ + ξ̄η)∂200W00 − 2(ξ̄ξ + η̄η)∂200W11 = 0,

iψ̇10 + 2ψ01∂00W11 + 2iλ10∂00W00 = 0,

iλ̇10 + 2λ01∂00W11 − 2iψ10∂00W00 = 0,

iψ̇01 + 2ψ10∂00W11 + 2iλ01∂00W00 = 0,

iλ̇01 + 2λ10∂00W11 − 2iψ01∂00W00 = 0. (3.11)

In terms of the complex fermions, the conserved Noether charges Q10 and Q01 split into
two parts which are conjugate each other, see (3.18).
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3.2 Hamiltonian formalism

When we switch from Lagrangian theory to Hamiltonian theory, we have to be careful
about the order of Z2

2-commutative variables and their derivatives, since the derivatives are
also Z2

2-commutative among themselves and have non-trivial relations with the Z2
2-graded

variables [11]. We describe our conventions below.
First, we define the conjugate momentum by

pq := L
←−
∂ q, q ∈ {φ00, φ11, ξ, ξ̄, η, η̄} (3.12)

Explicity
p00 = φ̇00, p11 = φ̇11, pξ = iξ̄, pη = iη̄, pξ̄ = pη̄ = 0. (3.13)

We see that, as the standard supersymmetry, our model is a constrained system. We here
employ the Dirac-Bergman method for constrained systems. The constraints are given by

ϕξ = pξ − iξ̄, ϕξ̄ = pξ̄, ϕη = pη − iη̄, ϕη̄ = pη̄. (3.14)

The Hamiltonian and the total Hamiltonian involving the constraints are defined by

H =
∑
q

pq q̇ − L

=
1

2
(p200 + p211) + 2W 2

00 + 2W 2
11 − 2(η̄ξ + ξ̄η)∂00W11 −

(
[ξ̄, ξ] + [η̄, η]

)
∂00W00 (3.15)

and
HT := H + αξϕξ + αξ̄ϕξ̄ + αηϕη + αη̄ϕη̄ (3.16)

where the Lagrange multiplier αq has the degree same as q. Then the Hamilton’s equations
of motion equivalent to the Euler-Lagrange equations (3.11) are given by

q̇ =
−→
∂ pqH, ṗq = −H

←−
∂ q. (3.17)

The Hamiltonian (3.15) is, of course, identical to the conserved Noether charge H in (3.8).
The supercharges in complex notations split into two parts:

Q10 = Q10 + Q̄10, Q01 = Q01 + Q̄01 (3.18)

with

Q10 =
1√
2

(
(p00 − 2iW00)ξ − (p11 − 2iW11)η

)
,

Q̄10 =
1√
2

(
(p00 + 2iW00)ξ̄ + (p11 + 2iW11)η̄

)
,

Q01 =
1√
2

(
(p00 − 2iW00)η − (p11 − 2iW11)ξ

)
,

Q̄01 =
1√
2

(
(p00 + 2iW00)η̄ + (p11 + 2iW11)ξ̄

)
. (3.19)

6



Now we introduce the Z2
2-version of the Poisson bracket

{A,B}PB := AΓ̂B − (−1)a⃗·⃗bBΓ̂A, Γ̂ :=
∑
q

←−
∂ q

−→
∂ pq , a⃗ := degA. (3.20)

It is straightforward to verify that the Poisson bracket satisfy the following relations:

{A,B}PB = −(−1)a⃗·⃗b{B,A}PB,

{A,BC}PB = {A,B}PBC + (−1)a⃗·⃗bB{A,C}PB,

{A, {B,C}PB}PB = {{A,B}PB, C}PB + (−1)a⃗·⃗b{B, {A,C}PB}PB. (3.21)

The constraints (3.14) are the second class as there exist non-vanishing Poisson brackets:

{ϕξ, ϕξ̄}PB = {ϕη, ϕη̄}PB = −i. (3.22)

The time evolution of the constraints determined by the equation ϕ̇q = {ϕq,HT}PB is
summarized as

(ϕ̇ξ, ϕ̇ξ̄, ϕ̇η, ϕ̇η̄) = ({ϕξ,H}PB, {ϕξ̄,H}PB, {ϕη,H}PB, {ϕη̄,H}PB)
+ (αξ, αξ̄, αη, αη̄)∆ = 0 (3.23)

where

∆ :=


−{ϕξ, ϕξ}PB −{ϕξ̄, ϕξ}PB {ϕη, ϕξ}PB {ϕη̄, ϕξ}PB
−{ϕξ, ϕξ̄}PB −{ϕξ̄, ϕξ̄}PB {ϕη, ϕξ̄}PB {ϕη̄, ϕξ̄}PB
{ϕξ, ϕη}PB {ϕξ̄, ϕη}PB −{ϕη, ϕη}PB −{ϕη̄, ϕη}PB
{ϕξ, ϕη̄}PB {ϕξ̄, ϕη̄}PB −{ϕη, ϕη̄}PB −{ϕη̄, ϕη̄}PB


= i

(
σ1 0
0 σ1

)
. (3.24)

This relations determine the Lagrange multiplier

(αξ, αξ̄, αη, αη̄) = −({ϕξ,H}PB, {ϕξ̄,H}PB, {ϕη,H}PB, {ϕη̄,H}PB)∆−1

= i({ϕξ̄,H}PB, {ϕξ,H}PB, {ϕη̄,H}PB, {ϕη,H}PB). (3.25)

More explicitly, we have the expressions:

αξ = −2iη ∂00W11 − 2iξ ∂00W00,

αξ̄ = −2iη̄ ∂00W11 + 2iξ̄ ∂00W00 = αξ,

αη = −2iξ ∂00W11 − 2iη ∂00W00,

αη̄ = −2iξ̄ ∂00W11 + 2iη̄ ∂00W00 = αη. (3.26)

With these data one may defined a Z2
2-version of the Dirac bracket by

{A,B}DB := {A,B}PB +
∑
q,q′

{A, ϕq}PB∆−1
qq′ {ϕq′ , B}PB

= {A,B}PB − i{A, ϕξ}PB{ϕξ̄, B}PB − i{A, ϕξ̄}PB{ϕξ, B}PB
− i{A, ϕη}PB{ϕη̄, B}PB − i{A, ϕη̄}PB{ϕη, B}PB. (3.27)
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It is not difficult to verify that the Dirac bracket satisfies the same relations (3.21) as the
Z2

2-Poisson bracket.
One may easily find that the non-vanishing Dirac brackets for the canonical variables

are the followings

{φ00, p00}DB = {φ11, p11}DB = {ξ, pξ}DB = {η, pη}DB = 1. (3.28)

Using (3.13), the Dirac brackets for the fermionic variables are converted into the form:

{ξ, ξ̄}DB = {η, η̄}DB = −i. (3.29)

We introduce the quantity of Z2
2-degree (1, 1):

Z = −p00p11 − 4W00W11 + 2∂00W00(ξ̄η + η̄ξ) + ∂00W11([ξ̄, ξ] + [η̄, η]). (3.30)

Then one may verify that H,Qa, Q̄a,Z close in the N = 2 extended Z2
2-supersymmetry

algebra whose non-vanishing Dirac brackets are given by

{Q10, Q̄10}DB = {Q01, Q̄01}DB = −iH,
{Q̄10,Q01}DB = −{Q10, Q̄01}DB = iZ. (3.31)

The combined N = 1 supercharges (3.18) satisfy the N = 1 Z2
2-supersymmetry algebra

with vanishing Z:

{Q10, Q10}DB = {Q01, Q01}DB = −2iH, {Q10, Q01}DB = 0. (3.32)

4 N = 2 Z2
2-supersymmetric quantum mechanics

We quantize the system discussed in §3.2 which means that the Dirac bracket is replaced
with the Z2

2-Lie bracket (ℏ = 1):

{A,B}DB →
1

i
JA,BK (4.1)

This gives the following non-vanishing (anti)commutators

[φ00, p00] = [φ11, p11] = i, {ξ, ξ†} = {η, η†} = 1 (4.2)

and all the followings vanish

{ξ, ξ}, {ξ†, ξ†}, {η, η}, {η†, η†},
[ξ, η], [ξ, η†], [ξ†, η], [ξ†, η†],

{c11, ξ}, {c11, η}, {c11, ξ†}, {c11, η†}, c11 = φ11, p11 (4.3)

where and in what follows we use “dagger”, instead of “bar”, for the hermitian conjugation
of the quantum operators.
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By using the real representation of the Clifford algebra Cl(4, 2) [44–46], the relations
(4.2) and (4.3) are realized by matrix differential operators. In this realization, the Z2

2-
grading is carried by the matrices which means that if there are non-zero entries in one
of the following blocks, the matrix has the indicated Z2

2-degree:
(0, 0) (1, 1) (1, 0) (0, 1)
(1, 1) (0, 0) (0, 1) (1, 0)
(1, 0) (0, 1) (0, 0) (1, 1)
(0, 1) (1, 0) (1, 1) (0, 0)

 . (4.4)

The Clifford algebra Cl(4, 2) is generated by γi, i = 1, 2, . . . 6 which subject to the relations

{γi, γj} = 2ηij, η = diag(1, 1, 1, 1,−1,−1). (4.5)

We introduce the anticommuting matrices X, Y,A and the identity matrix I:

I :=

(
1 0
0 1

)
, X :=

(
1 0
0 −1

)
, Y :=

(
0 1
1 0

)
, A :=

(
0 1
−1 0

)
(4.6)

then the real irrep of Cl(4, 2) is given by

γ1 = XII, (0, 0), γ2 = Y II, (1, 0), γ3 = AAI, (0, 1),

γ4 = AY A, (0, 1), γ5 = AXI, (1, 0), γ6 = AYX, (0, 1) (4.7)

where a word consisting of these matrices is understand as the tensor product, e.g.
XY A = X⊗Y ⊗A and the Z2

2-degree of γi is also indicated. With this eight-dimensional
irrep, the Z2

2-graeded quantum oparators are realized as:

φ00 =x0I8, p00 =− i∂x0I8, (4.8)

φ11 =x1Γ, p11 =− i∂x1Γ, (4.9)

ξ =
i

2
(γ1γ5 + iγ3γ4γ5), ξ† =− i

2
(γ1γ5 − iγ3γ4γ5) (4.10)

η =
1

2
(γ3 + iγ4), η† =

1

2
(γ3 − iγ4), (4.11)

where I8 = III, Γ = −γ3γ4γ5γ6, and x0, x1 ∈ R. The degree (1, 1) function W11 is also
realized by the matrix Γ and the constraints (3.6) read as follows:

W11 = W̃00(x0, x1)Γ, ∂x0W00 = ∂x1W̃00, ∂x1W00 = ∂x0W̃00 (4.12)

where W̃00 is a degree (0, 0) function. Therefore, we get two-dimensional or two-particle
(same mass) quantum mechanical system in this realization.

The quantized N = 2 supercharges (3.19) are given by

Q10 = aξ − bΓη, Q†
10 = a†ξ† + b†Γη†, (4.13)

Q01 = aη − bΓξ, Q†
01 = a†η† + b†Γξ†, (4.14)

where a :=
1√
2
(−i∂x0 − 2iW00), b :=

1√
2
(−i∂x1 − 2iW̃00).
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We introduce the new operators

A :=
1√
2
(a+ b), B :=

1√
2
(a− b), (4.15)

and the unitary matrix which diagonalize the Hamiltonian (3.15)

U =



1 0
0 1

0 1
1 0

i√
2
− i√

2
1√
2

1√
2

− i√
2

i√
2

1√
2

1√
2


. (4.16)

Then, we have the N = 2 Z2
2-SQM

H̃ := U †HU = diag(H1, H2, H1, H2, H3, H4, H3, H4) (4.17)

where

H1 =AA
† +B†B, H2 =A

†A+BB†,

H3 =AA
† +BB†, H4 =A

†A+B†B (4.18)

with the supercharges

Q̃10 :=U
†Q10U =



0 A
0 iB

0 −iA
0 B

B iA
0 0

−iB A
0 0


, (4.19)

Q̃01 :=U
†Q01U =



0 iA
0 B

0 −A
0 iB

−B iA
0 0

iB A
0 0


(4.20)
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and their hermitian conjugation. Furthermore, we have the non-vanishing degree (1, 1)
operator (3.30)

Z̃ :=U †ZU =



Z1

Z2

Z†
1

Z†
2

Z3

Z4

Z†
3

Z†
4


(4.21)

where

Z1 =− AA† +B†B = Z†
1, Z2 =− A†A+BB† = Z†

2,

Z3 =i(AA
† −BB†) = −Z†

3, Z4 =− i(A†A−B†B) = −Z†
4. (4.22)

The products of A,A† and B,B† are given by

A†A = −1

4
(∂x0 + ∂x1)

2 +W 2
00 + W̃ 2

00 − ∂x0W00 − ∂x0W̃00 + 2W00W̃00,

AA† = A†A+ 2∂x0W00 + 2∂x0W̃00 (4.23)

and

B†B = −1

4
(∂x0 − ∂x1)

2 +W 2
00 + W̃ 2

00 − ∂x0W00 + ∂x0W̃00 − 2W00W̃00,

BB† = B†B + 2∂x0W00 − 2∂x0W̃00 (4.24)

where we used (4.12) to have these formulae. The relations (4.12) are also used to see
that the non-vanishing commutation relations among A†, A,B†, B are following:

[A,A†] =2∂x0W00 + 2∂x0W̃00, [B,B†] =2∂x0W00 − 2∂x0W̃00. (4.25)

It is not difficult to verify that H̃, Q̃a, Q̃†
a and Z̃ forms the N = 2 Z2

2-supersymmetry
algebra whose non-vanishing relations are given by

{Q̃10, Q̃†
10} = {Q̃01, Q̃†

01} = H̃, [Q̃10, Q̃†
01] = −[Q̃

†
10, Q̃01] = Z̃. (4.26)

It is also immediate that the combined N = 1 supercharges (3.18) satisfy the N = 1
Z2

2-supersymmetry algebra with vanishing Z:

{Q10, Q10} = {Q01, Q01} = 2H, [Q10, Q01] = 0. (4.27)

One may also see from (4.17) and (4.21) that Z̃2 ̸= H̃2. This is the sharp contrast to the
Z2

2-SQMs discussed in the literature [5, 8, 11] where one always observe that Z2 = H2.
The relation Z̃2 ̸= H̃2 implies that our Z2

2-SQM is a quantum mechanical realization of
a eight dimensional irrep of N = 2 Z2

2-supersymmetry algebra. In [14], it is shown that
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irreps of the N = 2 Z2
2-supersymmetry algebra are four-dimensional if Z̃2 = H̃2, but

eight-dimensional otherwise. Our Z2
2-SQM is the first example of the physical realization

of eight-dimensional irrep of the Z2
2-supersymmetry algebra.

The formulae (4.23) and (4.24) suggest the introduction of the light cone coordinates

x+ := x0 + x1, x− := x0 − x1. (4.28)

The constraints in (4.12) become

∂+W00(x+, x−) =∂+W̃00(x+, x−), (4.29)

∂−W00(x+, x−) =− ∂−W̃00(x+, x−) (4.30)

and these differential equations may be solved to give the separation of left and right
movers

W00(x+, x−) =
1

2

(
W ′

+(x+) +W ′
−(x−)

)
, (4.31)

W̃00(x+, x−) =
1

2

(
W ′

+(x+)−W ′
−(x−)

)
(4.32)

where the prime stands for the derivative. The operators (4.15) in the light cone coordi-
nates yield the standard ones in the SQM:

A = −i∂+ − iW ′
+, B = −i∂− − iW ′

− (4.33)

which give the followings

A†A = −∂2+ + (W ′
+)

2 −W ′′
+, AA† = −∂2+ + (W ′

+)
2 +W ′′

+, (4.34)

B†B = −∂2− + (W ′
−)

2 −W ′′
−, BB† = −∂2− + (W ′

−)
2 +W ′′

−.

The Hilbert space of our Z2
2-SQM is H = L2(R)⊗C8 and the space is also Z2

2-graded:

H = H(0,0) ⊕ H(1,1) ⊕ H(1,0) ⊕ H(0,1). (4.35)

The algebra (4.26) implies that the Hamilotonian H̃ (4.17) is positive semi-definite. This
is also seen from the component Hamiltonian Hk (4.18) all of which are also positive
semi-definite. The zero energy ground state Ψ0 of H̃ is determined by

Q̃aΨ0 = Q̃†
aΨ0 = 0. (4.36)

This is equivalent to finding the zero energy states of the component HamiltonianHkψ
(k)
0 =

0. More explicitly, ψ
(k)
0 are solutions of the equations

A†ψ
(1)
0 = Bψ

(1)
0 = 0, Aψ

(2)
0 = B†ψ

(2)
0 = 0,

A†ψ
(3)
0 = B†ψ

(3)
0 = 0, Aψ

(4)
0 = Bψ

(4)
0 = 0. (4.37)

It is easy to solve these equations:

ψ
(1)
0 =exp (W+) exp (−W−) , ψ

(2)
0 =exp (−W+) exp (W−) ,

ψ
(3)
0 =exp (W+) exp (W−) , ψ

(4)
0 =exp (−W+) exp (−W−) . (4.38)
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It is also easy to see that only one of them is normalizable. For instance, if ψ
(1)
0 is

normalizable, all other functions are not normalizable. Therefore, the possible ground
state is one of the followings (c ∈ C is a constant)

(ψ
(1)
0 , 0, c ψ

(1)
0 , 0, 0, 0, 0, 0) ∈ H(0,0) ⊕ H(1,1)

(0, ψ
(2)
0 , 0, c ψ

(2)
0 , 0, 0, 0, 0) ∈ H(0,0) ⊕ H(1,1)

(0, 0, 0, 0, ψ
(3)
0 , 0, c ψ

(3)
0 , 0) ∈ H(1,0) ⊕ H(0,1)

(0, 0, 0, 0, 0, ψ
(4)
0 , 0, c ψ

(4)
0 ) ∈ H(1,0) ⊕ H(0,1). (4.39)

Therefore, the ground state is either non-existent or two-fold degenerate and belongs to
H(0,0) ⊕ H(1,1) or H(1,0) ⊕ H(0,1).

5 Concluding remarks

In order to investigate a quantum theory relating to the the N = 1 Z2
2-supersymmetric

Lagrangian (2.5), we studied the Z2
2-SQM obtained from the Lagrangian by dimensional

reduction. The dimensional reduction increases the supersymmetry from N = 1 to N = 2
and we employed the Z2

2-extended Dirac-Bargmann method to quantize the system. The
Z2

2-SQM obtained is a two-dimensional or two-particle quantum system in which the right
and left movers are separated. It is also a quantum mechanical realization of the eight-
dimensional irrep of N = 2 Z2

2-supersymmetry algebra discussed in [14]. Moreover, it is
the first Z2

2-SQM with Z̃2 ̸= H̃2.
A conformal extension of the present Z2

2-SQM will not be difficult, since there is
a large freedom of choice of the super potentials. An appropriate choice of them will
give a quantum mechanical realization of the N = 2 Z2

2-superconformal algebra whose
representation theory has not been studied in detail. We comment that irreps of the
N = 1 Z2

2-superconformal algebra (Z2
2-osp(1|2)) are studied in detail in [32]. The N = 2

Z2
2-superconformal mechanics and the related representation theory are interesting future

work.
It is also interesting to investigate some special choices of the superpotential W±(x±),

e.g., harmonic oscillator, since we may have a larger symmetry. In [47], it is shown that
the largest spectrum generating algebra of the supersymmetric harmonic oscillator is the
semidirect some of osp(2|2) and 1D Heisenberg superalgebra. However, one may easily
verify that the operators in the article also close in a Z2

2-graded Lie superalgebra. If we
consider the Z2

2-supersymmetric harmonic oscillator, then the largest spectrum generating
algebra will be higher graded than the Z2

2-grading.
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