arXiv:2401.02792v3 [hep-th] 27 Mar 2024

UNIST-MTH-24-RS-01

The Origin of Calabi-Yau Crystals in BPS States Counting

Jiakang Bao®, Rak-Kyeong Seong?, Masahito Yamazaki'?

I Kavli Institute for the Physics and Mathematics of the Universe,
University of Tokyo, Kashiwa, Chiba 277-8583, Japan
2 Department of Mathematical Sciences and Department of Physics,
Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, South Korea
3 Trans-Scale Quantum Science Institute, University of Tokyo, Tokyo 113-0033, Japan

jiakang.bao @ipmu.jp, seong @unist.ac.kr, masahito.yamazaki@ipmu.jp

We study the counting problem of BPS D-branes wrapping holomorphic cycles of a general toric
Calabi-Yau manifold. We evaluate the Jeffrey-Kirwan residues for the flavoured Witten index
for the supersymmetric quiver quantum mechanics on the worldvolume of the D-branes, and find
that BPS degeneracies are described by a statistical mechanical model of crystal melting. For
Calabi-Yau threefolds, we reproduce the crystal melting models long known in the literature. For
Calabi-Yau fourfolds, however, we find that the crystal does not contain the full information for
the BPS degeneracy and we need to explicitly evaluate non-trivial weights assigned to the crystal
configurations. Our discussions treat Calabi-Yau threefolds and fourfolds on equal footing, and
include discussions on elliptic and rational generalizations of the BPS states counting, connections
to the mathematical definition of generalized Donaldson-Thomas invariants, examples of wall
crossings, and of trialities in quiver gauge theories.


malto:jiakang.bao@ipmu.jp
malto:seong@unist.ac.kr
malto:masahito.yamazaki@ipmu.jp

Contents

1 Introduction and Summary

2

3

6

A

Toric CY, and 2d V' = (0, 2) Theories

The 4d Crystals from BPS States Countings

3.1
3.2
3.3
3.4
3.5

JK Residues for Supersymmetric Indices
Flags and JK Residues
Crystals from JK Residues
Weights for Crystals . . . . . ... ...
Wall Crossing

Elliptic and Rational Generalizations

4.1
4.2

The Elliptic Invariants . . . . . . . . ..
The Rational Limit

Examples

5.1
5.2

5.3

54

Solid Partitions: C*
Orbifolds: C* x C?/Z,

5.2.1 Wall Crossing of C* x C?/Z, .
ConifoldxC . . . . ... ... .. ...
5.3.1 WallCrossing . . . .. .. ...

Trialities: Q!

Equivariant DT, Invariants

Elliptic Genera

B Derivation of 3d Crystals from JK Residues

References

1 Introduction and Summary

20
20
21

22
22
25
27
30
32
35

41

44

45

47

One of the fascinating aspects of supersymmetry is that it allows one to obtain non-perturbative
results which are hard to be obtained otherwise. With the help of the supersymmetric localiza-
tion (see e.g. [1] for a review), the infinite-dimensional path integral can be reduced to a finite-
dimensional integral of over the moduli space of Bogomolnyi-Prasad-Sommerfield (BPS) con-
figurations, so that we can exactly compute partition functions and physical observables of the
theory. This has led to precision studies of supersymmetric gauge theories, black holes and string
theory.



In this paper, we are interested in the counting problem of the supersymmetric ground states
of Type IIA string theory on a Calabi-Yau (CY) manifold, whose holomorphic cycles are wrapped
by Dp-brane with even p’s. In particular we consider non-compact toric Calabi-Yau threefolds
and fourfolds.

On the one hand, on the worldvolume of the D-branes we find supersymmetric quiver quantum
mechanics. We expect that the BPS degeneracy can be computed by evaluating the BPS index
(Witten index [2]) of the quantum mechanics, with fugacities turned on for global symmetries.

On the other hand, when putting Type IIA string theory on a toric Calabi-Yau threefold, the
counting problem of BPS states can be nicely translated into the combinatorial problem of crystal
melting. The statistical mechanical model of crystal melting for a general toric CY threefold was
formulated in [3] (see also [4—17], and [18] for a review), generalizing the crystal melting model
for C3 [19]; the BPS degeneracies can be obtained by enumerating all the possible configurations
of the molten crystals satisfying the melting rule. Mathematically, these BPS invariants are in
fact the generalized Donaldson-Thomas (DT) invariants [20], and the crystal configurations are
nothing but the fixed-point sets of the moduli space, in the equivariant localization with respect to
the torus action originating from the toric geometry.

One of the main goals of this paper is to connect these two descriptions, by directly deriving
the crystal melting model from the evaluation of supersymmetric indices by applying the afore-
mentioned supersymmetric localization techniques. Following [21], the integral of the 1-loop
determinant can be computed using the Jeffrey-Kirwan (JK) residue [22]. For the cases of the
toric CY threefolds, we discuss them in Appendix B. It is worth noting that recently the relations
between JK residues and DTj invariants were proven mathematically in [23,24] (see also [25-27]
for relevant calculations). Moreover, our discussion generalizes (with interesting new features) to
toric CY fourfolds. We shall consider the BPS bound states formed by D6-/D4-/D2-/D0-branes
wrapping compact cycles in the CY fourfold, with a pair of non-compact D8- and anti-D8-branes
filling the CY.

There are clear similarities between the BPS state countings on threefolds and fourfolds. For
example, the definition of the 3d crystals can be naturally extended to those of the 4d crystals,
and it is natural to expect that the 4d crystals would likewise give a combinatorial interpretation
of the BPS spectra. Indeed, thanks to the JK residue formula, we can actually show that the
torus fixed points are in one-to-one correspondence with the crystal configurations, for both the
threefolds and the fourfolds. The melting rule of the crystals is then a natural consequence of the
pole structure in the JK residue formula. As we are considering the BPS indices, there would also
be signs given by the fermion number. For CY threefolds, we shall not only obtain the expected
crystal structure, but also recover the correct signs from the JK residues.

For toric CY fourfolds, the 4d crystals were recently discussed in [28], where the combina-
torial structure can be nicely obtained from the periodic quivers and brane brick models. Here,
we would like to discuss how the 4d crystals could appear from a different perspective, namely
the BPS index computations, where the situations for the toric CY fourfolds could be more com-
plicated compared to the threefolds. Although we still have the 4d crystals, it is important to
emphasize that the crystals themselves are not sufficient for BPS counting. Although the 4d crys-
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tals still label the isolated fixed points of the moduli space, they cannot encode the full information
of the BPS states; the full information can be extracted only when supplemented by the weights
obtained from the JK residue formula, and the weights are rational functions of the fugacities
associated to the global symmetries. This is a significant difference from the threefold cases.

Let us discuss the fourfold cases in more detail. In the 1-loop determinant for the index, there
are contributions from chiral and Fermi multiplets, as well as from vector multiplets. The infor-
mation of the supermultiplets is nicely encoded by a 2d N = (0, 2) quiver. The corresponding 2d
N = (0, 2) quiver gauge theory can be considered as the worldvolume theory of probe D1-branes
on the Calabi-Yau fourfold. This class of theories is represented by a Type IIA brane configuration
known as a brane brick model [29-39]. The dimensional reduction of this class of theories gives
rise to an N = 2 supersymmetric quiver quantum mechanics. The non-compact D8-/anti-D8-
brane pair corresponds to the “framing” of the quiver, which represents the non-dynamical flavour
branes. In particular, the chiral and Fermi multiplets thereof come from the strings connected to
the D8 and anti-D8 respectively.

We also turn on a background B-field [40], and the chamber structures could depend on its
value. In certain limit of the fugacities/chemical potentials, we expect the tachyon condensation
to happen, and the D8/anti-D8 pair would annihilate into a single D6-brane. For X x C where X
is a toric CY threefold, this should then recover the partition function for X. From the partition
functions we have for C? x C? /Z,, and conifold x C, we find that the limit should be €/ (v; —vy) —
0 (for any k = 1,2, 3,4), where ¢, and v, o are the equivariant parameters associated to the CY
isometries and the framing respectively.

Moreover, as we are considering the D8/anti-D8 pair (though considering Dp-branes bound to
a single D8 is still well-posed), the framing node should be U(1|1) (instead of U(1)). In terms of
the crystal structure that labels the fixed points, it is reflected by the fact that when v, is tuned to be
certain linear combinations of v; and ¢, the crystal would get truncated. Indeed, in the JK residue
formula, this may cause extra cancellations of the factors in the numerator and the denominator in
the 1-loop determinant, and thus terminates the growth of the crystal at the corresponding atom(s).

As an illustration, we shall discuss some examples of 2d AV = (0, 2) theories given by brane
brick models and compute their BPS partition functions. As the stability of the BPS states could
vary for different moduli, there is also the wall crossing phenomenon. We shall consider the
chambers that can be reached via “mutations” of the framed quivers. For 2d A = (0, 2) quivers
that can be obtained from dimensional reduction of 4d A/ = 1 quivers, some of the chamber
structures can be naturally inherited from the threefold counterparts. On the other hand, for 2d
N = (0, 2) theories themselves, they also enjoy certain IR equivalence known as the triality [41]
(see also [42]) that were shown to have a natural interpretation in terms of brane brick models
[31]. Therefore, it is expected that there is a richer chamber structure under wall crossing for the
fourfold cases. It would be an interesting problem to systematically extend this discussion to more
general examples of toric Calabi-Yau fourfolds.

In mathematics literature, there are also extensive studies on defining the (generalized) DT
invariants for the CY fourfolds. For instance, such invariants were introduced and explored in
[43—48] using the obstruction theory. It turns out that they have some nice physical interpretations,



where certain Ext groups correspond to the multiplets in the gauge theories and the insertions are
related to the framings. Moreover, the DT invariant in this mathematical definition depends on the
choice of the orientation of a certain real line bundle on the Hilbert scheme. We will see that this
is a choice of the sign collectively from the J- and E-terms of the gauge theory in each crystal
configuration, and would be canonically determined with the physical input.

Let us also mention that for the cases of Calabi-Yau threefolds, it has recently been found that
there exist some infinite-dimensional algebras, known as the (shifted) quiver Yangians [49-54], as
the BPS state algebras underlying the BPS state counting—the 3d crystals are the weight spaces
of the representations of the quiver Yangians, and the BPS partition functions are nothing but
the characters of the quiver Yangians for the crystal representations. It is natural to imagine
that similar algebras exist for the cases of Calabi-Yau fourfolds, which have the 4d crystals as
the representation spaces'. Let us again emphasize that, however, the situation for Calabi-Yau
fourfolds is more complicated since the 4d crystal in itself is not sufficient to fully recover the
data of the physical BPS state counting. The BPS algbera should also incorporate the non-trivial
weights as mentioned above.

The paper is organized as follows. In §2, we will review 2d N' = (0, 2) quiver gauge the-
ories associated to toric CY fourfolds and their realization in terms of brane brick models. In
§3, after recalling the JK residue formula used for localization, we will derive the combinato-
rial part, namely the 4d crystals, in the BPS counting problem for the fourfolds. We shall also
comment on the extra data of the BPS states that are not encoded by the crystals, as well as the
wall crossing phenomenon. In §4, we will mention the elliptic and rational counterparts of the
partition functions, where the elliptic invariants have further constraints on the parameters due to
the anomalies. Some explicit examples will be given in §5. In §6, we will discuss the connections
between the BPS counting and the mathematical definition of the DT invariants. In Appendix A,
we list the contributions from the supermultiplets in the integrands for the elliptic genera for both
2d N = (2,2) and N = (0, 2) theories. We will show in Appendix B how the 3d crystals, as well
as the correct signs in the BPS indices, can be obtained from the JK residue formula for toric CY
threefolds.

2 Toric CY4 and 2d NV = (0, 2) Theories

In this paper, we study an A/ = 2 supersymmetric quiver quantum mechanics associated with
a toric Calabi-Yau fourfold compactifications of Type IIA string theory. Such a quiver quantum
mechanics (with N' = 2 supercharges) can be obtained as the dimensional reduction of a class
of 2d N' = (0, 2) quiver gauge theories. These theories are worldvolume theories of D1-branes
probing toric Calabi-Yau fourfolds and are realized in terms of a Type IIB brane configuration
known as a brane brick model [29-39]. The following section gives a brief review of brane brick
models.

I'The charge function introduced in [55] could play a role in such representations.
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Figure 1: Quiver diagram for the C* brane brick model.

Quivers. Given a quiver Q = {Qo, @1}, where the set of vertices is denoted by )y and the set
of edges by ()1, we can use the following dictionary in order to identify the gauge symmetry and
matter content of the corresponding 2d N = (0, 2) gauge theory:

* avertex a represents a U(V,) gauge group;

* an oriented edge from an initial vertex a to a terminal vertex b represents a bifundamental
chiral multiplet X ;;

* an unoriented edge between vertices a and b represents a Fermi multiplet A.

We note that Fermi fields are not assigned an orientation in the quiver diagram due to the A, <>

A4y symmetry of 2d NV = (0, 2) theories. Fig. 1 shows as an example the quiver diagram for the
C* brane brick model.

The J-and E-terms. Given a Fermi multiplet A, there is an associated pair of holomorphic
functions of chiral fields called £, and J;, and are the J- and E-term relations of the correspond-
ing 2d NV = (0,2) theory. These are restricted to be binomials for toric Calabi-Yau fourfolds,
where F,;, transforms in the same representation as A,;,, while J,, transforms in the conjugate
representation of A,,. They satisfy an overall constraint  _ tr(E,;J,,) = 0. The general form of
the J- and E-terms is as follows,

Joa=Jit —Jr . Bu=E5—Eo @2.1)

where J;- and EZ; are monomials in chiral fields.
As an example, the above C* quiver has the following .J- and E-terms:

J E

AY: YZ-ZY =0, DX-XD=0,
(2.2)

A®. ZX _-XZ=0, DY-YD=0,

A®: XY -YX=0, DZ-ZD=0,
where X, Y, Z, D are the chirals and A(®) correspond to the Fermis.

Periodic Quivers. The quiver and J- and E-terms of a 2d N/ = (0, 2) theory corresponding to a
toric Calabi-Yau fourfold can be turned into a periodic quiver on a 3-torus. Such a periodic quiver
is dual to the underlying Type IIA brane configuration known as a brane brick model that realizes
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Figure 2: The periodic quiver for the C* brane brick model.
i 2 >
Asb
b 2 —>

Figure 3: Illustration of J- and E-term plaquettes that correspond to a single Fermi field in the
brane brick model.

ba

this class of 2d N' = (0, 2) theories. As we will see later, when computing the BPS index, the
fixed points of the torus action on the moduli space are actually labeled by a 4-dimensional uplift
of the periodic quiver. The periodic quiver for the C* theory is illustrated in Fig. 2.

In the periodic quiver, each monomial in the J- and E-terms is represented by a (minimal)
plaquette. By plaquette, we mean a closed loop in the periodic quiver composed of multiple
chirals and one single Fermi. In particular, the chirals form an oriented path with the two endpoints
connected by the Fermi. The toric condition (2.1) indicates that there are four plaquettes for each
unoriented edge, corresponding to (Agp, J;,) and (A, E;). Pictorially, this is illustrated in
Fig. 3.

Brane Brick Models. Brane brick models [29-39] represent a large class of 2d N' = (0, 2)
theories that are realized as worldvolume theories of D1-branes probing toric Calabi-Yau four-
folds. They represent Type IIA brane configurations of D4-branes suspended from an NS5-brane,
forming a tessellation of a 3-torus. The periodic quiver of the corresponding 2d N' = (0, 2)
theory forms the dual graph of this tessellation. The brane bricks in the brane brick model corre-
spond to the U(N) gauge groups and brick faces correspond to either chiral or Fermi fields of the
corresponding 2d A/ = (0, 2) theory.



Brane brick models exhibit brick matchings, which are collections of chiral and Fermi fields
that cover every plaquette of the brane brick model exactly once. Such brick matchings correspond
to GLSM fields in the GLSM description of the moduli spaces associated to abelian brane brick
models. They are directly related to vertices in the toric diagram of the corresponding toric Calabi-
Yau fourfold and allow us to better the moduli spaces associated to brane brick models [29,30,38].

Dimensional Reduction. The class of 4d A/ = 1 theories that are worldvolume theories of D3-
branes probing toric Calabi-Yau threefolds X can be represented by a bipartite periodic graph
on a 2-torus known as a brane tiling [56-59]. Similar to brick matchings in brane brick models,
brane tilings exhibit special collections of chiral fields in the 4d theory that are given by perfect
matchings in the associated bipartite graph. These perfect matchings correspond to GLSM fields
in the toric description of the corresponding Calabi-Yau threefold X.

When one dimensionally reduces a 4d A = 1 theory given by a brane tiling, the resulting 2d
N = (2,2) theory is known to correspond to a brane brick model associated to a toric Calabi-Yau
fourfold of the form X x C [29, 30, 33]. The 4d vector V, and 4d chiral multiplets X}, become
under dimensional reduction 2d N' = (2, 2) vector and chiral multiplets, which in turn can be
represented in terms of 2d N = (0, 2) multiplets as follows:

e 4d N =1 vector V,: 2d N = (0, 2) vector V,, + 2d N = (0, 2) adjoint chiral ®,,;

e 4d N =1 chiral X,;: 2d N = (0, 2) chiral X, + 2d N = (0, 2) Fermi Ay,

The superpotential W of the 4d N = 1 gives rise to the J- and E-terms of the 2d theory as

follows,
ow

0Xap
for every chiral X, and Fermi A, coming from a 4d N = 1 chiral X;.

We note that dimensional reduction of brane tilings into brane brick models can be generalized
with an additional orbifolding that breaks the factorization of the toric Calabi-Yau fourfold X x C.
This process is known as orbifold reduction in the literature [33]. A further generalization of this
process is known as 3d printing of brane brick models [35].

Jba 5 Eab = CI)aaXab + Xabq)bb ) (23)

Triality. It is known that 2d A = (0, 2) theories exhibit IR dualities similar to Seiberg duality
[60] for 4d N/ = 1 theories. This IR phenomenon for 2d N' = (0,2) theories is known as
triality [41,42]. As the name suggests, this low energy equivalence between 2d N' = (0, 2)
theories leads to the original theory after performing the triality transformation three times on the
same gauge group of the 2d theory. Triality has a natural interpretation in terms of a local mutation
of the corresponding brane brick model [31]. When one performs the local mutation three times,
triality returns the original brane brick model. As will be discussed in §3.5, triality for brane brick
models is closely related to the wall crossing phenomenon in the BPS state counting problem.



3 The 4d Crystals from BPS States Countings

In this section, we shall use the JK residue formula to write the index. We will use this to obtain
the crystals for BPS counting, together with the non-trivial weights that are not incorporated in
the crystals.

3.1 JK Residues for Supersymmetric Indices

Let us quickly summarize the JK residue formula for the supersymmetric index [61-63]. The
flavoured supersymmetric index is defined as

Z(y, {wi}, {a:}) = Tr | (=) Fe @y [Twl [ af*| 3.1)
7 k

where F' is the fermion number, and ¥, w;, g, are the fugacities for the R-symmetry and flavour
symmetries. In particular, w; (resp. q;) will be used to denote the fugacities associated to the
framing (resp. U(1) isometries) for the quiver gauge theories. It would be convenient to write

T eQﬂ'iui 7 y = e?’ﬂ‘iZ 7 w; = e27rivi 7 Qe = 62Wi€k ] (32)
Henceforth, we shall use the variables for the fugacities and the chemical potentials interchange-
ably. In the case of toric CY fourfolds, we have (€1, €2, €3, €4) € U(1)? for the Q-background. It
would also be convenient to introduce

€E=€ t+ete3st+€r, q=q1G20q3qs - (3.3)

The CY condition is then € = 0, or equivalently, ¢ = 1, for the (unrefined) indices.
From [21], we learn that the index can be computed using the JK residues:

1
7= W Z JK'ReSu:u* (Q(U*)v 77) Zl—loop(y> U) ) (34)
u*eM*

sing

where I is the Weyl group, and we have collectively denote {u;} as u. The 1-loop determinant
Z1100p denotes the integrand of the residue, and JK-Res denotes the Jeffrey-Kirwan residue. Let
us explain each ingredient in turn.

The integrand: Zy,,p The integrand 7)., factorizes into the contributions from the N =
(0, 2) vector/chiral/Fermi multiplet contributions:

Ziaoop(t) = [[ 2v (v w) [] Zi . ) [] Za(y. ) - (3.5)
\%4 X A

The contributions from the different multiplets are given as follows:



Vector multiplet V' with gauge group G
[T 2isin(-ma@) = J[ (-2 @~ -1), (3.6)

where ® denotes the root system of G and z¢ = e?™(®)

gauge groups in this paper, we have

Zy = H 2isin <7Tu5a) — 7Tu§-a)> 2isin (ﬂu(.“) — ﬂu(“)>
)

-1
= H (da)éa)) (xga) — xg.a)) <x§-a) — J?Z(a)) , (3.7)
(4:3)

where the product is over all pairs of (i, j) with ¢ # j, and we have included the superscript (a)
to indicate the gauge node in the quiver.

. As we are considering the unitary

Chiral multiplet y in a representation R:

1 1
7z, — -
X g 2isin (mp(u) + 7F(2)) g x=PPy=F2 (gryt — 1)’

(3.8)

where F' denotes the flavour charge. For the chirals connecting two unitary gauge nodes a, b of
ranks N,, N;, we have’

5abNa
1

X H 2isin ( Nao. I(ek))

i=1 j=1 | [ 2isin (ﬂuga) — Wug-b) + 7y, (€ )) []2isin ( ) _ (a) +7Ey,, (€ ))
T

5abNa

1
_1
1;[ QXH,QCL,I (1 - qua,I)

Nq Nb

1
. H H (a).(b) V20 @) () V20 v (a)
i=17=1 1;[ (l’l ‘xj qua,I) <$Z Axpa,r ] ) 1;[ <l‘ JJ Ay, 1) (:Cj ~ Gxap,1 %5 >

3.9

2The first line comes from the fact that the adjoint representation of U(/V) is reducible. In other words, there is a
U(1) part besides the SU(N) roots.



where ¢, = —FJ (¢;). To avoid possible confusions, we shall always refer to ¢; and F; as
weights and charges respectively so that they have the opposite signs®. We shall also use w; =
e?™i for the fields connected to the framing node.

* Fermi multiplet A in a representation R:

Zy = [ 2isin (=7p(u) — 7F(2)) = [ [ (a~2y~ "2 (274" - 1)) . (3.10)

PER PER

For the Fermis connecting two unitary gauge nodes a, b of ranks N,, NV, we have

bavNa N, N,
Zp = H 2isin (—mFy, (e)) H H H 2isin (—mu' ) 4+ 7wt — 7 Fy(e))
I i=1j=1 I
babNa N, N,
_ H (_ql—1/2 (1- q;)) HHH (_ (xt(AI)xs(AI)qI)*l/Z (xt(AI) _ qlxs(AI))> 7
I i=1j=1 I

(3.11)

where s(A),t(A) € {a,b} based on the choice of the orientations of the edges*, and hence we
have also omitted the subscripts 7, j.

The space 971 For gauge group GG of rank /N whose Lie algebra is g, denote the Cartan subalgebra
as b and the coroot lattice as ()¥. Then the space I is defined as hc/QY. From Zj00p, €ach
multiplet gives rise to a hyperplane H; = {Q;(u) + --- = 0} C 9 with covector Q); € h*. For
instance, a chiral leads to p(u) + F'(z) = 0 where Q; = p.

Take Mne = |J H;. The set of isolated points where at least [V linearly independent hyper-

planes meet is denoted as 90t%, .. Then Q(u*) is the set of (); meeting at u* € 9%, . In this paper,

sing* sing*

3For the 2d A/ = (0, 2) quivers that can be obtained from dimensional reduction of 4d theories, the weights can
also be determined as follows. As the original periodic quiver (for 4d A" = 1) on T? is uplifted to one on T, we
have an extra cycle/direction parametrized by the new adjoints ®,,. This would then cause the vertical shifts of the
multiplets in the periodic quiver. Suppose that ®,, are shifted by 1. As a result, the superpotential would have shift
—1 as the J- and E-terms should have opposite vertical shifts. We may then write the shift of X, (Jpq, resp. Fqp) as
Sab (—Sap — 1, rESP. Sopp + 1).

To determine s,;, we can choose one perfect matching in the brane tiling of the 4d theory. As a perfect matching
would pick out precisely one X,; in each monomial term of the superpotential, we can therefore choose these X,
in this perfect matching to have s,;, = —1 while keeping the other chirals unshifted. In the toric diagram, this adds
a vertex above the one corresponding to the chosen perfect matching, uplifting the polygon into a polyhedron (Of
course, choosing different perfect matchings would not change the geometry due to the SL(3,Z) invariance of the
toric diagram). Notice that the shifts of the Fermis A,;, are given by s + 1(# Sap), S0 the chirals and the Fermis
would connect different (lattice) nodes in the periodic quiver.

Therefore, for these 2d theories, we can assign the weights of ®,,, whose vertical shifts are always 1, to be 4. The
weights of X, are then shifted by sqpe4(= —e4 or 0) compared to their 4d N = 1 counterparts.

“Recall that choosing an orientation for one edge would simultaneously determine the orientations for all the other
edges. Different choices should give the same result due to the symmetry between A and A.
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the singularities are always non-degenerate. In other words, the number of hyperplanes meeting
at u* is always N for any u*.

The covector 7 € h* picks out the allowed sets of hyperplanes in the JK residue. This is given
by the positivity condition:

N
n € Cone(Q;,) := {Z%Qij a; > o} . (3.12)
j=1
Here, we shall mainly focus on the choice n = (1,1, ..., 1), whose admissible singularities as we

will see give rise to the crystal structure corresponding to the cyclic chambers.

The Jeffrey-Kirwan Residue The JK residue [22] (see also [64]) is defined by

dQy, (u) Aeee NNV

JR-Res Qil (u) QiN (U)

dQiy (u) {Sgn@et(@il,...,@m)), necone(@y)s 55

0, otherwise ,

which can be rewritten as

1
du;y A---Ad , € Cone(Q;,) ,
JK-Res —2. UN ) |det(Qiys -+, Qiy)] 1 (@) . (3.14)

Qi (u) ... Qiy (u) 0, otherwise ,

There is an equivalent way to define the JK residue constructively as a sum of iterated residues
[65]. The key ingredient is a flag. For each u* with (Q;,, ..., Q;, ), we consider a flag

such that the vector space F; at level j is spanned by {Q;,, ..., Q;,}. Denote the set of flags as
FL(Q(u")), and we choose the subset

FLYQ(u")) = {F € FLQ(u")) ‘ n € Cone (/{f, . /{ﬁ)} , (3.16)
where
KL= > Qi (3.17)
Q:€Q(u*)NF;

Introduce the sign factor v(F) = sgn (det (z/fC e Vﬁ)) The JK residue can then be obtained by

JK-Res(Q(u*),n) = > v(F)IK-Resy . (3.18)
f
Here, the iterated residue JK-Res r is defined as follows. Given an N-formw = w;,_ydu; A--- A
du, choose new coordinates
u;=Q -u, j=1,...,N (3.19)
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such that w = w;_nydu; A --- A duy. Once this is given, the contribution to the JK residue from
a flag is evaluated as

ou;
an

JK-Resrw = Resg,—: . . .Res%:g;@lm}v =J < ) Resy, —y; - - - Resy,—prw1 N, (3.20)

where J denotes the Jacobian.

Remark In [66], the integrand for the instanton partition function of the gauge origami system
[67] was expressed using certain vertex operators. The OPEs of the vertex operators can be read
off from the quivers. Using the above expression for Zj oy, it is straightforward to verify the
statement therein. These vertex operators can then be used to define the so-called quiver W-
algebras [68].

3.2 Flags and JK Residues

Although the JK residue formula and the computation of the index contain more information, the
collection of the intersection points u* of the hyperplanes can be viewed as some 4d configuration
for the CY fourfold. Each site in the configuration corresponds to one of the coordinates in u*.
For later convenience, we may call such configurations “crystals” and their sites “atoms”. The
first definition of the JK residue above tells us about the “final state” of the crystal. On the other
hand, the constructive definition of the JK residue tracks the growth/melting of the crystal (say,
from rank NV —1 to rank V) revealed by the flags. Of course, the equivalence of the two definitions
means that the index only depends on the final shape of the crystal configuration. In the followings,
we shall derive the melting rule for the 4d crystals.
When evaluating the JK residue using flags, it would be helpful to write the weight at level N
as
Zn (ury ... un) = Zn-1 (U1, ... yun—1) AZn_1 N (U1, ..., un) , (3.21)

where we have suppressed the superscripts (a) of u; for brevity. As the poles are always simple,
the iterated residues have the decomposition

ResuN:u*N .. .Resul:u;ZN (u1,...,un)
= ReSuN:uR; c. Resu1:u1 (ZN—I (ulv cee ,UN—l) AZN_LN (Ul, e ,UN))
- (ResuNﬂ:u;V_l .. Resy, s Zn_1 (ug, . .. ,qu)) (ReSuy—us, AZx-1n (Ul - Uy, un))

(3.22)

and the first bracket in the last line is the one obtained at level N — 1.
As Zy can be obtained from Zy_; by multiplying the factor AZy_; . Together with the
contributions from the vector multiplet

Ng—1
[T 2isin (7ufy) - wul®) 2isin (7l - 7uy)) . (3.23)
=1
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the extra AZy_; v is composed of the factors’

@)\ *°
2isin <—7TU2 + 7ruNa>

, (3.24)
2isin (Wug\(z — m)l)
with the initial node connected to the framing node labelled by 0, and®
Ny [T2isin (—mu!®) + 7us®D — 7 Fy (e))
! (3.25)

i—1 \ []2isin (mts\(g - mé”) + WFXbaJ(ek)) []2isin (Wugb) - ﬂug\(g + Wanb,z(Ek)>
T T

for all nodes b connected to the node a. Here, we require the quiver theory to satisfy the followings:

* The theory has a corresponding periodic quiver, which is a weight lattice.

 There is at most one edge (either chiral or Fermi) connecting any two lattice points (namely,
the nodes in the periodic quiver).

In paritcular, this is true for quivers arised from toric CY fourfolds considered in the paper’.
This indicates that the flavour charge of the chiral x4, ; (0r X44,7) Would not only differ the one
of a Fermi Ay, 7 by a multiple of €. In other words, F\,, , # Fh,,, = Fa,,, + ne (recall that
eventually we would like to take e = 0). Likewise, none of the adjoint chirals would have flavour
charge being a multiple of € as well, i.e., F,gj # 0 = ne. This means that we can take ¢ = 0 (or
equivalently, ¢ = 1) before evaluating the residues (as opposed to the threefold cases discussed in
Appendix B where the order is reversed). In fact, the Calabi-Yau condition should always come
before the evaluation of the integral so that the poles could be correctly cancelled by the factors
in the numerator. For example, for the C* case whose periodic quiver was given in (2), at rank 4,
there is one contribution from

(ula Ug, U3, u4) — (vla Uy + €3, U1 + €4, U + 64) - (Ula Uy + €3, U1 + €4, U3 + 63) . (326)

This can be depicted as

(3.27)

SHere, we simply take one chiral and one Fermi from the framing node to one (initial) gauge node. One can of
course consider more general framings with multiple edges connecting the framing node and different gauge nodes,
some of which could be related by wall crossing.

®We have omitted the U(1) part contributions from the possible adjoint loops as they do not have any poles in .

7One way to see this is to consider the brane brick model of the quiver. The lattice points correspond to the brane
bricks, i.e., the convex polytopes, in this dual graph. Any two polytopes can share at most one face, which is the edge
in the weight lattice/periodic quiver.
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For uy4, the corresponding pole has order 2, which comes from the contributions w4 — us — €3 and
uy — u3 — €4 (that are both equal to uy — v; — €3 — €4) due to the chirals®. However, this is actually
a simple pole since one such factor is cancelled by u; — u4 — €; — €5 in the numerator due to the
Fermi. This is because we need to take the Calabi-Yau condition €1 + €3 + €3 + €4 = 0 first so that
Uy — Uy — €1 — € = —(ug — Uy — €3 — €4).

Notice that not all the flags have non-vanishing contributions. In order to characterize the
flags with non-vanishing contributions, we first discuss the construction of the 4d crystals from
the periodic quivers.

For the case of the Calabi-Yau threefold, the process of obtaining the 3d crystal is as follows
[3]:

1. We start with a quiver diagram on the two-torus, and consider the periodic quiver in the
universal cover, i.e., R2.

2. Choose a vertex of the quiver diagram, and consider a set of paths on the quiver diagram.
3. We can add an extra direction by considering the R-charges.
We follow the same strategy as in our case at hand:

1. We start with a quiver diagram on the three-torus, and consider the periodic quiver in the
universal cover, i.e., R>.

2. Choose a vertex of the quiver diagram, and consider a set of (chiral) paths on the quiver
diagram.

3. We can uplift the 3d periodic quiver with the direction coming from the R-charges. Each
path in the quiver diagram (starting from the initial node ay and ending at some node b)
can be written as py, (1) = v, sw". Here, v, is the shortest path from a, to b, and w
corresponds to some closed loop. This loop can be viewed as composed of the chirals only,
or one can equivalently take some ““shortcut” such that it consists of both chirals and Fermis
due to the J-/E-terms. Following this path p,, ,(n), we put an atom b at depth n in the uplift
direction below the atom of colour b with the path p,, ,(0) = v, -

We notice that combinatorially this is exactly the structure discussed in the very nice paper [28].
Readers are referred to [28] for more details on the 4d crystals and the connections to the brane
brick models. Here, our interest is to derive the crystals from the perspective of the BPS states
counting.

8Here, we are using the rational version as it is the most straightforward one to see how the pole structure is related
to the periodic quiver.
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3.3 Crystals from JK Residues

As the JK residues over the flags may or may not be zero, the crystals cannot grow arbitrarily.
Now, let us derive the melting rule of the crystals. While this was done previously for the particular
examples of the solid partitions in the C* [69], we will generalize the discussion to an arbitrary
toric Calabi-Yau four-fold.

For brevity, let us denote the basis vector (0,...,0,1,0,...,0) € RY with the only non-zero
element at the /™ entry as e;. Then n = f; e; at level V. For an admissible set o such that
n € Cone(o), we can see a tree structure as Zfoilows. Given that o must contain at least one e;, the
vector e, — e; is allowed in o while e; — e, is not. Then if e; and e, — e; are in o, the vector
e; — e, is allowed while e;, — e; is not etc.

At a generic level, there would still be more admissible o than the atoms in the crystal due to
the cancellations of the factors in the numerator and the denominator in Z_joop.

Our proof proceeds by induction with respect to the rank of the gauge group. Suppose that the
pole structures are consistent with the crystal configurations at level N — 1. Then we can focus
on the part AZy_; y and always assume that o = oV=1) {en — e;} for some j < N where
o1 only involves e, y.

In AZy_1 n, the possible poles would be in one of the following scenarios:

* If the pole for ug\?) corresponds to an atom already appeared in the molten crystal at size N —

1, then ug\?) = uy)) — Py (e) = u§7) for some j° < N as depicted in Fig. 4. The pole

J

Figure 4: Suppose the atom labelled N is already existing in the crystal. The pole us\?) = ugb) —

F

Xba,I

has been added to the crystal.

corresponds to the arrow from j to N. However, this atom already has some label j as it

containing ug\?) — u§7) would then be cancelled by the same factor in the numerator coming from

the contribution of the vector multiplet as given in (3.23).

e If the pole for ug\?) corresponds to an addable atom for the molten crystal, then ug\‘;) = uy’) —

Fy,..:(ex) gives a pole for some j < NV. It could be possible that there are multiple such factors,
(er) = u§z2) - F

Xbya,s (€k) = . ... There would exist some j’ such

namely ug\‘;) = uyl’l) — Fxblw
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Figure 5: The atom to be added at level NV is shown in blue. Left: There are two same factors in
the denominator coming from the chirals, but one of them gets cancelled by the contribution from
the Fermi. This is in fact a pair of plaquettes from the J- or E-term. Right: There are multiple
contributions from the chirals (either pointing forwards or pointing backwards) to the same pole.
This would be cancelled to a simple pole by the factors in the numerator from the Fermis.

that
W) =" —Fy, () = ul—F, (e) = =P, (@)= Fy, () = ) —F
N — %5 Xbya, 1 \Ck) — Wy Xedq K \€k Xdnby,L \Ek Xbya,I Ek) = Uy Aab,l(ek) )

(3.28)
where the last equality follows from the J-/E-term plaquette in the quiver. As a result, one

of the two factors from ug\?) = u§b1) - F ;ZQ) — P, ., is killed by the corresponding

Xbya,I
contribution from the Fermi multi%ﬂet (3.1 11) in the numerator. After cancelling one such factor,
the surviving one with the next factor, say from ugg‘"’), would form another pair, and this proce-
dure can be repeated pairwise. Eventually, there would be a simple pole left. In other words,
the number of chirals connecting the existing atoms and an addable atom is always one more
than the number of Fermis connecting the existing atoms and this addable atom in the crystal’.

Schematically, this is shown in Fig. 5.

= U

* If the pole for ugs) corresponds to a position that does not belong to the size N molten crystal

(obtained from the size N — 1 crystal), then the cancellation of this factor is the same as given
in (3.28). This is diagrammatically shown in Fig. 6.

Therefore, the 4d configuration at level /N would be a crystal of size N. By induction, the fixed
points are in one-to-one correspondence with the crystal configurations satisfying the melting rule:
an atom a is in the molten crystal € whenever there exists a chiral / such that [ - a € €. In other
words, I - a ¢ € whenever a ¢ €. If one considers the Jacobi algebra CQ/(.J-, E-terms), the
melting rule says that the complement of € is its ideal.

°0f course, the initial atom(s) would be special as we keep the weights of the edges connecting the framing node
generic so that the corresponding factors in the numerator and the denominator do not cancel each other.
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Figure 6: The atom and the arrow in grey are not present in the crystal. Therefore, the blue atom
cannot be added to the crystal as there is no corresponding pole.

Example Let us illustrate the above three scenarios with an example. For C* whose toric dia-
gram and quiver can be found in (5.1) below, the 1-loop determinant reads

N
[[ (—&—ea) (s — w)
Zrton = 1<k<I<3 U; — V2 du;
P 4 5 (Uz - Ul)
[T(—€x) =1
k=1
N (UJ u))  J] (wi— Uj — € — €)
1<k<I<3
1T : : (3.29)
i#i [T (uj —ui —e)

where we have used the rational version for simplicity. Let us give one example for each of the
scenario:

» Suppose we have a single atom with position u; = v; in the crystal, and we would like to
add the second one to it. We have

7 | rsk<iss ((ul — vg) (ug — vg)
I-loop — (

Uy — U1) (Uz - Ul)

duldUQ)

k=1
o (uj—w) JI (wi—u;—e—ea)
I1 f’“lﬁg . (3.30)
i#j IT (uj — w; —€)
k=1

Then the contribution from us = vy is zero since the pole u, — v; is cancelled by the factor
U9 — U3 = Uy — v7 1N the numerator.
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 Consider the figure in (3.26) which is reproduced here:

(3.31)

Suppose we have the configuration with atoms labelled by (uy,us, u3). To add the atom
labelled by w4, we have two poles

U4—U2—63:’U4—U1—63—64andU4—U3—64ZU4—U1—€4—63. (332)
However, there is a factor
Ug — U — (—61 — 62) = Uqg — U] — €3 — €4 (333)

from the Fermi multiplet in the numerator. Therefore, we would have a simple pole left as
expected.

* In this figure, the configuration with only (u1, ug, u4) is not allowed since the corresponding
pole uy — us — €4 would be cancelled by uy — u; — (—€; — €3) = in the numerator from
the Fermi multiplet. Likewise, the configuration (uy, ug, u4) is also not allowed. Only when
both uy = uy + €3 and ug = uy + €4 are present can we add u4 in the above figure.

3.4 Weights for Crystals

For a toric CY3, each crystal corresponds to a BPS state in the index up to a sign'O. However,
as mentioned before, the 4d crystals, albeit having a one-to-one correspondence with the fixed
points, do not encode the full information of the BPS spectrum.

In general, it is not easy to write down the full BPS partition function in a closed form. Nev-
ertheless, using the constructive definition of the JK residue, we can get the recursive formula for
the BPS indices. Recall that the BPS partition function reads'’

Zaes(po, - PiQo-1) = >, Tala)pi - por (3.34)
no+Fngy -1 =N

where Zy(qyx) is the index at level N which takes all the crystal configurations of size N into
account, but with non-trivial weights depending on ¢g. In other words, we have

In(a) = > Zelar) (3.35)

|€|=N

10We also show this using the JK residue formula in Appendix B.
""Here, we use the formal variable p, representing the colours of the crystal. There should be non-trivial maps
from p,, to the variables associated to the D-branes.
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Recall that a crystal €y of size N can be obtained from some crystal € _; of size N — 1. For
brevity, let us abbreviate Z¢,, as Zy. Then

Zn(qr) = Zn-1(qk)AZN-1,n(Gk) (3.36)
where
ZN—I(Qk) = RCSuN71:u7V71 .. .Resul:uTZN_l (Ul, e ,UN_l) s
AZN_LN(qk) = ReSuN:u}‘VAZN—l,N (UT, e 7“7\7717 UN) . (337)

In particular, v is actually a function of the fugacities ¢;. This is precisely (3.22). More con-
cretely, for unitary gauge groups, the iterative factor AZx_q y(gx) is given by

AZy 1 v(gr) = ((3:23) X (3.24) X (3.25)) lucur(q1) » (3.38)

where the apostrophe indicates that we remove the factor of the corresponding pole in the denom-
inator (which always comes from the chirals).

3.5 Wall Crossing

For CY threefolds, as pointed out in [70], the chambers under “the wall crossing of the second
kind” [71] are essentially related by Seiberg dualities. The cyclic chambers achieved this way still
have the crystal structures, but with different shapes'”. Here, we can study the similar phenomena
under mutations'® on the node(s) connected to the framing node.

In general, foran V' = (0, 2) quiver, we can mutate the quiver in line with the triality following
the rules in §2. This would lead us to different cyclic chambers as the framing changes. However,
for a 2d quiver with a 4d parent theory, we can also first take the Seiberg duality for the 4d quiver
and then dimensionally reduce it to 2d. An example can be found in Figure 7. We expect this to
be different from the direct manipulation on the 2d quiver itself. In other words, the diagram

mutation

4d quiver A 4d quiver B

\Ldim’l red’n l/dim’l red’n (339)

mutation?

2d quiver A’ 2d quiver B’

does not commute. While the general rules of triality/mutation for quivers with supersymmetry
enhanced to A/ = (2, 2) is still not clear, there seems to be richer chamber structures for toric CY
fourfolds (even just for those admitting crystal descriptions).

120f course, the cyclic chambers are not necessarily obtained by mutations. See for example the dPy case in [51,
§5.2].

13Mathematically, quiver mutations are mainly defined for quivers without self-loops and 2-cycles (despite some
extensions in some mathematical literature). Moreover, these quivers only have oriented arrows (namely no Fermis).
In this paper, we simply use mutation to refer to the IR equivalence manipulation on the quivers.
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Figure 7: The wall crossing of the conifold x C quiver. Here, we are only showing the chambers
that descend from the cyclic chambers of the 4d A/ = 1 quiver. The labels indicate the multiplici-
ties of the edges. These were also recently studied in [72].

Again, a closed expression for the wall crossing formula is not easy to obtain. Nevertheless,
we can still use the JK residue formula to compute the index after the wall crossing. The new
crystals can then be read off from the flags. The crystals can also be obtained directly from the
quiver after the wall crossing, where the nodes/atoms connected to the framing node by the chirals
correspond to the starters, pausers or stoppers in the language of [51]. The positions of these atoms
are determined by the weights of the chirals. We shall consider more examples in §5.

Moreover, one may also consider the covectors 7 other than (1,...,1). This would give rise
to different sets of allowed cones. In particular, the resulting chambers may not have the combi-
natorial crystal descriptions satisfying the melting rule. Nevertheless, the BPS index can still be
computed using the JK residues.

4 Elliptic and Rational Generalizations

We have seen that the BPS index of a 1d quantum mechanics can be obtained from the 2d N =
(0, 2) elliptic genus under dimensional reduction. It is therefore natural to consider more general
possibilities, by considering the 2d elliptic genera themselves (“elliptic version”), as opposed to
the 1d indices (“trigonometric/K-theoretic version”). We can also consider further dimensional
reduction on a circle to 0d, to discuss “rational/cohomological version”. Let us briefly discuss
these in this section.

4.1 The Elliptic Invariants

Instead of supersymmetric indices of 1d quantum mechanics, we can compute the 2d elliptic genus
of the theory, by using the expressions for the 1-loop determinant reviewed in Appendix A. We
then obtain the elliptic version of the generalized DT invariants for the 2d NV = (0, 2) theories.
By taking the trigonometric limit of the elliptic genus, one recovers the K-theoretic invariants
discussed above. Note that some particular examples are discussed in the literature: for a special
example of C3, the N = (2, 2) elliptic invariants were computed in [73] and dubbed “elliptic DT
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invariants”, and the cases with abelian gauge groups were considered in [34]. Our discussion,
however, applies to a general toric Calabi-Yau threefolds and fourfolds, and to a general non-
Abelian theory.

There is one subtlety in the discussion of the 2d elliptic genus: unlike the 1d quiver quantum
mechanics and the 0d quiver matrix model (to be mentioned below), the 2d theories are subject to
anomaly constraints. This is similar to the case studied in [73].

Due to the gauge R-symmetry anomaly, the integrand of the elliptic genus is only doubly
quasi-periodic under u;, — u; + a + b7 with a,b € Z and any u; for generic v, 5. Often, there
would be an extra phase e~ 27(“1=v2) ynder the transformation. Therefore, we need

v — Uy €7 . “4.1)

Here, we are just considering the case when there is one chiral-Fermi pair from the framing node
to only one of the gauge nodes'*. One may also consider more general framings which could lead
to different conditions depending on the cases. We will analyze some examples in §5.

It is worth noting that under the shift ¢, — €, + 1 or v, — v + 1 for any €, or vy, the
corresponding fugacity is invariant. However, the elliptic genus may not be so due to the presence
of the Jacobi theta functions. Physically, this is caused by the 't Hooft anomaly, and Zr2 — +Zpe.

4.2 The Rational Limit

We may dimensionally reduce the 1d A/ = 2 quantum mechanics to a 0d quiver matrix model.
This can be achieved by taking the rational limit 5 — 0 in the fugacities

2Tl'iBQ)i

T = 627”5“1 ’ w; = e ’ Qe = eQmBek

, (4.2)
where we have taken the redefinition of the variables to make the scaling more explicit. In the
index formula, this replaces the functions of form sin(u) with u. As a result, we have a partition
function for the matrix model (the Od theory).

Now that we have mentioned the 0d theories, it is tempting to consider those arising from
a toric CY5 and wonder if they would also admit some combinatorial structure described by 5d
crystals for their partition functions (possibly with non-trivial weights). We run into a problem for
a general toric CY5—the resulting 0d theory has minimally N = 1 supersymmetry and we do not
have a supersymmetric partition function via localization for 0d N' = 1 theories. Nevertheless,
for the 0d theories obtained from dimensional reductions of the 1d N' = 2 theories as discussed
above, we have more (N > 2) supersymmetries. In other words, the formula of the partition
function from the BPS index provides a partial combinatorial structure for the theories associated
to C x CY4. This is characterized by the same 4d crystals from their 1d parent theories (with
non-trivial weights), where one parameter, say es, is turned off.

40f course, the flavour symmetry is U(1) (or U(1]1)) in the context of (generalized) DT theory. For general
SU(M) (or SU(M|M)) flavour symmetry which can be thought of as multiple D8-branes, the condition would
become M (v; — vg) € Z.
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S Examples

Let us now consider some examples as illustrations of our discussions above. Some features of
some examples were also studied previously in [66,69, 74-76].

5.1 Solid Partitions: C*

The simplest example would be the C* case whose toric diagram and quiver are

It is straightforward to see that the four adjoint chirals'> have weights €; 2 3 4, and we shall pick

the choice such that the weights of the three adjoint Fermis are —¢;, — ¢, with 1 < k <[ < 3. We

shall take the chiral (resp. Fermi) connected to the framing node to have weight v; (resp. —v5)'°.
Atrank N, the integrand is then

N
H <1_quZ) w N w dx
2 | 1<k<i<3 — i
Zl—loop - qz]LV - <4_ — H 2
Wa - - w1) X
[T —ar) =1
k=1
Ny (@j—z) TI (@ —2q0q)
H 41<k<l<3 . (52)
#] H ( - $zqk)
k=1
It would also be convenient to write
M= wl/wg. (53)
Let us list some indices at low ranks as an illustration'’
e Level 1:
— crystal labelled by v;:

(1= q1q2)(1 — ugs) (1 — 2q3)qs (Ve — 1/ /1)
(1—Q1)(1—Q2)(1—Q3)(1—Q4) ‘

5SThis can also be determined by the dimensional reduction for the C? case where the three chirals have weights
€1, €2 and € = —e; — €o. After taking the vertical shift, the four adjoint chirals in the C* quiver would have weights
€1, €2, €5 — €4 and e4. The identification €3 = €5 — €4 yields the weight assignment.
3 3 y g
1When writing the 1-loop determinant, we shall always make the choice that the Fermis connected to the framing
node are opposite to the accompanied chirals.
"Recall that we have ¢ = ¢1¢2g3q4 = 1.

7, = (5.4)
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e Level 2:

— crystal labelled by vy, v +€¢; (2 = 1,2, 3,4):

s (0-ae)d—qg)(l - 0203)¢3 B
Pt = D ) 0= ) (1 - g) (1 — qn) &R V)

(5 — Dlar — D(a — D(@lq; — )(@da — V(g — 1)

, (5.5)
(¢ + 1) — aj) (@ — ax) (@ — @) (@q; — D (qigr — 1) (qiq — 1)
where i, j, k, 1 € {1,2,3,4} are distinct values (notice that j, k, [ are symmetric).
The index is A
Ly=Y Toi. (5.6)
=1

e Level 3:

— crystal labelled by vy, v1 +€; + 2¢; 2 = 1,2, 3,4):

o U-ae)( - ae)( - ea)d,
Taen) = =T T T )1 - o)1 — qa) B VI T V)

(9 = Dlgx = D(a = D(g'g; = D(@'a — D(gia — 1)
(@ +a + V(a7 — )@ — ae) (¢} — a)(a:q; — D(@ige — Dlgig —1)
(5.7)

where i, j, k, 1 € {1,2,3,4} are distinct values (notice that j, k, [ are symmetric);
— crystal labelled by vy, v1 + € +¢; (4,7 = 1,2,3,4, ¢ # j):

(1—qg2)(1 — q1g3)(1 — Q2Q3)Q4
I3(U) IQl(l—ql)(l—qz)(l—qg)(l )( ]\/_—1/\/_)

(g + (g — @) (g — D(ar — V(@ — D(aq; — D)(@Far — @) (G a — a)
(@7 — a)(5 — @) ag; — V(gar — i) (@50 — @) (a5 — @) (g5 — )
(5.8)

where i, 7, k,l € {1,2,3,4} are distinct values (notice that k,[ are symmetric and
I37(i7j) = I3’(j7i))'

The index is

Z L3 (i) » 5.9

1<i<j<4

In general, we may also try to write down the generating function of the BPS indices'®

Zws= 30 D Tgylan’ o opg (5.10

NGZZO N1+"‘+N|QO‘=N

180ften in literature, the subscripts of p, start from 0. Here, we save the label O for the framing node, and hence
a=1,...,|Qo| for p,.
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where p, is the formal variable for each colour of the atoms in the crystal. It would also be
convenient to introduce p = (—1)/%lp,p, . .. P|Qo| (notice the sign).
For the C* case, it was conjectured in [69, 74] that the BPS partition function reads

Zgps = PE[F|(p, i1, {qx})

[Qﬂ]z][‘h ][Q2CI3H ]
F. 1 dad) = (o Talladpyilo /i (5.12)

where [X] := X2 — X~1/2 and PE[f](21, ..., x,) is the plethystic exponential of a function f
in variables xq, ..., xz,:

PE[f](z1,...,2,) :=exp (Z %f (", ... ,:Enm)) . (5.13)
m=1

(5.11)

Rational limit In the rational limit, the integrand is

g 13/~c1_<[l§3(_ek ~ ) 11 (u; — v2) 4.
1-loop 4 (UZ — Ul) i

[T(—ex) =1

k=1
N (i —w) T (wi—uj—e —a)
I1 =l . (5.14)
i#j IT (u; — wi — ex)

The above partition functions then becomes

(v1—vg)(e1+eg)(egteg)(eateg)

Zma = PE[F|(p, v1 — v, {ex}) = M(p) aecse : (5.15)
(v — ) (€1 + €2)(€1 + €3)(€2 + €3)p

F(p,v1 — vy, {ex}) = erereaca(l— ) : (5.16)
where
st 1
k=1

is the MacMahon function, and M (t) = M(1,t).

Elliptic invariants For the elliptic genus, we have

-2 39 0 0 —9
iy — < (7)%01(7, €1 + €2)01(T, €1 + €3)01 (T, €2 +63 > (H (7,09 — )>duz)

O1(7, —€1)01(T, —€2)01 (T, —€3)01 (T, —€4) O1(7,u; — vy

oy 01(7’, Uj — U; — 61)91(’7', Uj — U; — 62)01(7’7 Uj — U; — 63)01(7’, ’LLj — U; — 64)
(5.18)
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Notice that —6, (7, ve —u;) = 61(7, u; —v2). Indeed, under the transformation of u; — w; +a+br
with a, b € Z for any w;, the integrand would get an extra phase e ~27*("1=2)  Therefore, we need
to have v; — vy € Z.

5.2 Orbifolds: C? x C?/Z,

Let us now consider a special family of the C* orbifolds, namely C? x C?/Z,,. The toric diagram
and the quiver are given as

(0,0,1)

(5.19)

When n = 2, there are only two gauge nodes, and there are two pairs of opposite chirals and four
Fermis connecting the two nodes. The weights of the adjoint chirals (resp. Fermi) for each node
are taken to be €3 4 (resp. —e; — €2). For nodes a and a + 1, the chiral a — a+1 (resp. a+1 — a)
connecting them has weight €; (resp. ¢5) while the Fermis have weights —e; — €3 and —e; — €3.
Here, a = n + 1 is understood as a = 1 (mod n). The edges connected to the framing node are
assigned the same weights as in the C* case.

For the dimension vector N = (N, ), the integrand is then

( a*Na+1)2 2 Ng a
1-loop = 3 4 (1 . Q3)(1 . C_I4) wo (a)

a€Qo i=1 Lj
GO (1 () (=)
oy Y @y )
Na Nat1 (xi“) — gl )Q2Q3> (x§“+ s )QIQZS)
(

e Rt ( (a+1) (a>q> (x,co _x(aﬂ)qQ)

Again, we have n + 1 = 1. As an illustration, let us list some indices at low ranks for n = 2:

=z

.
I

(5.20)

e Level 1:
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— crystal with a single atom of colour p;:

(0= a1g2) s (Ve —1/y/R)
b= (1 —q3)(1 —qq) ) (5.21)

e Level 2:

* crystal with an atom of colour p; and an atom of colour ps:

Z, (1) = i (—1)i+1Q4(1 — CJ1Q2)(1 — QiCI1C]3)(1 - %%%)(%‘ - 91613)(%‘ - C]2Q3)I1 .

%%(1 - Q3)(1 - 94)(1 - Qiql)(l - %CJ2)(Q1 - 92>

i=1

(5.22)

* crystal with two atoms of colour p;:

i (“D)"™"@3qi (1 — i) (1 — ) (1 — qiq1a2) (@i — 1102) (6i/B — 1/\/_)

Zs2,0) =
(20 pr ¢i(1 —g3)(1 — qa)(1 — ig3) (1 — ¢3q4) (g5 — q4)
(5.23)
Rational limit In the rational limit, the integrand is
> N Ni (1)
€1+ €2 \.é0 u; " — Vg
Zl—loop - <_ ) 0 du —_
€3€4 ago H g ugl) — V1
(=) (87 =k =)
a€Qo i#j] ( z(a Ug‘a) - 63) (uz(a) - u§a) - 54)
No Nati ( (a) u(a+1) — €y — 63) <u§-a+1) - uE“) — € — e3>
LTI @) _ @ @ _ @) (5.24)
a€Qo i=1 j=1 ( ] —Uu; " — €1> <U,Z — uj — 52)

In fact, it was conjectured in [76] that

Zmat = PE[ ] (pa {p[a b]} V1 — V2, {Gk})
n(vi —va)(e1tep)(e1te)(eates) | (n )(vl v2)(€1+e2) H M w
" Pla,b] p

= M(p)

)
1<a<b<n

(5.25)
n(e; + €3)(ea + €3) i n—1/n i Z Dlab] T 1/p[a,b}>

€1€2€3€4 €1€2 €3€4

£ (p’ {p[avb]}ﬂ}l — Vg, {Ek}) = (

(1 —va)(€1 + €2)p

1<a<b<n

5 (5.26)
(1-p)?
where -
M(z,t) = M(z,t)M (z7",t) . (5.27)
Here, we have introduced the notations pj, := (—1)*""'p,p1 ... pp (notice the sign). In the

limit €4 /(v; — vg) — 0, this recovers the partition function for the threefold C x C?/Z,,.
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Elliptic invariants For the elliptic genus, we have

_ _ D
7 _ —277'7](7-)391 (7_7 €1 + 62) aEEC:ZO Ne H ﬁ du ﬁ 91 <T’ 2 i )
1-loop ‘91 (7_, —63)61 (7_7 —64) a L. ( "

a€Qq i=1

H ﬁ 0, (T, uga) - ug@) 0, (T, uz(-a) — uga) + €1 + 62>
acQo itj 01 (7’, ul — ug-“) — 63) 6, (uga) — ug-a) — 64)
N, Ng+1 01 (U(»CH_I) o u’ga) + €9 + 63) 01

< (
v J
H H H (u(a+1) _ uga) _ 61) 0, <u§a) _ u§a+1) _ 62)

J
a€Qp i=1 j=1 th j

Again, the gauge anomaly would require v; — vy € Z.

5.2.1 Wall Crossing of C* x C*/Z,

Let us consider the wall crossing of the specific example with n = 2. We shall focus on the
chambers that are induced by the cyclic chambers of the corresponding 4d quivers. For Cx C?/Z,,
the cyclic chambers have the structure

D2 + Do D2 +2D0 D2+ 3D0 Do D2 + 3D0 D2 + 2D0 D2+ DO
| l | LU | l |

o — o 1 o | /m\ P & (5.29)

NCDT DT PT Core

For the chambers C'x, the crystals are coloured plane partitions with K semi-infinite faces “peeled
off™:

(5.30)




For the chambers Cl, the crystals are of the Toblerone shape [77]:

w By

K o (531)

Here, the orange lines indicate the top rows in the crystals. Notice that the first one is for K =1
in this figure as 50 trivially has Zgps = 1.

For the chambers of C? x C?/Z, that are induced by the above chambers of C x C?/Z,, we
shall use the same notations C'x and C'x. Moreover, it is also clear how the framing of the quiver
would change:

©%@ > @@@ - S) >
- @@@ > @%@

(5.32)
For convenience, let us swap the labels of the two gauge nodes every time we cross a wall of
marginal stability. In other words, a = 1 always refers to the gauge node with incoming chirals
from the framing node.
For the C'x chamber, the chirals connecting the framing node and the gauge node 1 (resp. 2)
have weights v; + Kep, v1+ (K —1)eg+€a, . .., v1 + Key (resp. vo+ K€y +€9, va+ (K —1)€g +2€q,
.., U3 + € + Key when existing) while the accompanied Fermis have weights —vy — Keq,
—vy— (K —1)e1 —€g, ..., —vy— Keég (resp. v1 + Key+ €9, v1+ (K —1)e1 +2¢a, ..., v+ €61+ Keg
when existing). Therefore, in the integrand, we only need to change the factors coming from the

framing to

1)—1)2 K€1>...<U,§1)—U2—K62>
(1)

)

2 ) (Ul +e + Keyg — U(2)>

(
z(2 <’02 + €1+ K€2 - u(2)>

u

1 —’Ul—K€1)

II

=1

: (5.33)

N2 <U1+K€1+62—U
(U2+K€1+€2—U
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where we have used the equivariant version for simplicity. We conjecture that the equivariant
partition function is

Zmae = PE[F] (p(xcy, P(xc [2.2), V1 — 2, {€x})

2(v1 —vg)(eq+eg)(e1+e3)(ea2+€3) + 3(v1 —vo)(e1+eg)

=M (p(K) c1e2ezeq 2e1€2
(v1—vo)(e1te2)
6364
= 1
M (pospanpae) 1] % : (5.34)
k=K +1 (1 - p(K,[zz])p(K))
F (pcrys pere 22 v1 — va, {ex})
o (Ul — UQ)(El + Eg)p(K) (2(61 + 63)(62 + 63) i 3 >
(1 — p(K))2 €1€2€3€4 26162
K
v — v9) (€1 + € P 2.2) + /DK 2.2)) P 1
L = w)(a+e) ((Pucpa) +1/p [21>) ) Skl ). 539)
€3€4 (1= px)) Pk ,[2,2) 4=
where p(x) = p1p2 and pk 2,2)) = —pHpE+t. The crystals are the 4d versions of (5.30), where

one “peels off” a 3d subcrystal every time one crosses a wall from C to C'x 1.

For the Cc chamber, the chirals connecting the framing node and the gauge node 2 (resp. 1)
have weights vy + Ke1, v+ (K —1)e1+€2, . .., va+ Key (resp. v1+ (K —1)ey, v1+ (K —2)€; + €,
..., v1 + (K — 1)e; when existing) while the accompanied Fermis have weights v; + Key, v; +
(K—1)eg+e€g, ..., v+ Keg (resp. —ve — (K —1)e1, —vg — (K —2)e; — €9, ..., =9 — (K — 1)€g
when existing). Therefore, in the integrand, we only need to change the factors coming from the
framing to

Ny <U§l) — Vg — (K - 1)61) Ce <U§l) — Vg — (K - 1)62)
im1 (ugl) —v — (K — 1)€1> <u§1) —v — (K — 1)62>
Na <v1 + Key — ul(2)> .. <v1 + Key — u£2)>
) ) , (5.36)
2:1(v2+K61—ui>.. (U2+K62_ul>

where we have used the equivariant version for simplicity. We conjecture that the equivariant
partition function is

(v1—vg)(e1+€2)

€3€4
K

- PE[]'—] (ﬁ(K),ﬁ(K,[zz]), U1 — V2, {Ek}) = H B k )
kel <1 - p(K7[272])ﬁ(€K>>

1

(5.37)
~ P22 (V1 — v2)(e1 + €2) S A—k—1~K
F (p(K)7p(K,[2,2}), V1 — Vg, {sz}) = €34 Z Z(\/ﬁ) Dy | »
k=1 I=1
(5.38)
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where px) = py p2_ and P [2,2]) = p K. The crystals are the 4d versions of (5.31), where
one adds a “layer” of a 3d subcrystal every tlme one crosses a wall from Cx to C K+1-

Let us also make a comment on the elliptic invariants. For the chamber C, the shift of
uV = u) + a4 + br with a,b € Z would yield an extra phase e 27(K+D)(®—2) and hence
(K+1)(v; —vq) € Z. On the other hand, the transformation of uZ@) would lead to K (v —v3) € Z.
As K + 1 and K are coprime, we should again have v; — vy € Z. Likewise, for the chamber 5;(,
the transformations of ugl) and u§2) would give rise to K (v; —vy) € Zand (K + 1)(vy —v2) € Z.

Therefore, we should have v — v, € Z.

5.3 Conifold xC

Another typical example would be the conifoldx C. The toric diagram and the quiver are

(0,0,1)
0
1.0.0) (5.39)
(0,1,0) I 1 2
(1,1,0)
The weights of the edges are

X11 | X12,1 | X12,2 | X21,1 X21,2 X22 A12,1 A12,2 A21,1 A21,2
, (5.40)

€4 €1 —€1 €9 —€y— €4 | €4 | —€1+ €4 | €1+ €4 | €0+ €4 | —€9

which can be directly obtained from the dimensional reduction of the conifold case. The weights
of the chiral and the Fermi connected to the framing node are still v; and —v5 respectively.
For the dimension vector N = (Nj, Ny), the integrand is then

(Nl—N2)2 1 N1+N2 Wy Ny Ny dl'(l) Na dx(2)
_ 2 -1 i i
Zl-loop =4y (1 _ Q4) (V w2) g 33(1) 211 $£2)

N1 Wy — xz(l) N zzﬁl) x§1) Ny I(Q) :v§ )

H 29w 1 (1) H ( ) _ .(2)

i=1 Li 1 itj T L ij L Ty qa

ﬁﬁ (%(1) _ $§2)q;1q§1> ( x(Q)q2—1> ( — 2 Waigr ) (x§2) — aWgr q4_1>
i=1 j=1 (Sﬂz(-l) - 513'52)6]2) (56'5 )~ x§ )CI1Q3> ( ; )~ 37( )q ) ( §2) - fﬂgl)q;l)

As an illustration, let us list some indices at low ranks:
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e Level 1:

— crystal with a single atom of colour p;:

7, = Vi (ViE—1/Vi) . (5.42)
(Q4 - 1)

e Level 2:

* crystal with an atom of colour p; and an atom of colour ps:

AT S (1-dia'e’) 0 —ga’) (@ —aa’) (@ —a'a’)

— I, (5.43)
c=+1 Vaadi(1 = q4) (‘h — 4 1) (1—-4qig) (1 — qiqiqs)

* crystal with two atoms of colour p;:

Vo= YVE) (5.44)

I —q

IQ,(Q,O) = -

Rational limit In the rational limit, the integrand is
Z 1-loop

P\ NN 2 e NN ) 2 N, (ul@ _ ug@)
- <_e_) 1BIEE RV | o I 75—
4 U - \ S — gy

a=11i=1 i=1 W U1

ﬁ ﬁ (ugl) — ug-?) + € + 63> (ugl) — u§-2) + 62> <u§-2) — ul(-l) — €+ 64) <U§-2) - Ugl) + e+ e4>
i=1 j=1 (uzm — u§~2) — 62) (uz(»l) — u§-2) — € (—:3> <u§2) u( ) _ €1> (u§2) — ugl) + €1>
(5.45)
We conjecture that the equivariant partition function is
Zma = PE[F] (', pp2), v1 — v2, {€x})
J\ (P1mv2) (€1 tep) (261 treg) (261 te) | (v1 —wa)eg(eg —ep) (261 —eq) ~ , (v1=v3)
= M(p ) 2e1egeq (e —€2) 2e1e4(e1+e)(2e1+e3) N (p[272} , P ) 4 (546)
2 2 — 2€; —
F (P,,P[2,217U1 — U2, {Ek}) - <(61 +ea)Bes 4 &5)(% o+ ) foley — €)1 — )
2e1e3€4(€1 — €3) 2e1€4(€1 + €2)(2€1 + €3)
+1 — v)p/
+P[2,2] /p[2,2] (Ul UQ)p ’ (5.47)
€4 (1—-p)?
where p’ := —pop; and ppp o) := —p1 (notice the sign). In the limit e, /(v — vy) — 0, this recovers

the partition function for the conifold.
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Elliptic invariants The integrand for the elliptic genus is straightforward to write down. Hence,
we shall omit the full expression here. Again, due to the factor

( ﬁ —6, <7‘, vy — u§1>> ) | »

i=1 61 <T, Uz(l) — Ul)

the gauge anomaly would require v; — v9 € Z.

5.3.1 Wall Crossing

Let us now consider the wall crossing, focusing on the chambers that are induced by the cyclic
chambers of the corresponding 4d quivers [78]. For the conifold, the cyclic chambers have the
same structure as given in (5.29). For the infinite chambers C'x, the crystals look like

(oo
C Y _Y ) .)

4)

VIV VI VR V.
SO an e ananyd

>

":j
)
)

4
X AN

A\ Y_Y_Y
\/

»' \/
tosavy
H <))
(%

5%

...
W. ...

VAN

Y Y Y
7 Y Y
7 X K X3
D

{(v‘o‘ XY

)
(5.49)
( Y )
ot gﬂ.\’,} \/
(P 4
r o K + 1 atoms

\/
A

\Vs
L_A_A_J

ev"*""
(0% X
VI ..,

/N

YD)

A

X
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For the finite chambers C K, the crystals are

O

E j (5.50)

Here, the orange lines indicate the top rows in the crystals. Notice that the first one is for X =1
in this figure as CN’O trivially has Zgps = 1.

For the chambers of the conifold xC that are induced by the above chamber of the conifold,
we shall use the same notations Cx and Cx. Moreover, the framing of the quiver would change
as in Fig. 7, which is reproduced here:

(5.5i)

For convenience, we swap the colours and the labels of the two gauge nodes every time we cross
a wall of marginal stability. In other words, a = 1 always refers to the gauge node in red with
incoming chirals from the framing node, and the weights of the edges remain the same as in (5.40).

For the C'x chamber, the chirals connecting the framing node and the gauge node 1 (resp. 2)
have weights v1+ Ke;+ Keg, v1+ (K —2)e1+ Keo, . .., v1— Kej+ Keg (resp. va+ (K —1)e;+ Keo,
vo+ (K —3)e1+Kea, ..., v3— (K —1)e;+ Kes when existing) while the accompanied Fermis have
weights —ve— Ke1—Kegy, —v9— (K —2)e1— Keg, ..., —v9+Key— Keg (resp. v1+ (K —1)e;+ Keo,
v+ (K —3)e; + Keg, ..., v — (K — 1)e; + Kea when existing). Therefore, in the integrand,
we only need to change the factors coming from the framing to

Ny <u.1)—1)2—K61—K€2> <

5 ,1)—02+K61—K62>
im1 (ugl) —v — K¢ —K€2> <

u;
U,Z(l) — v+ K€1 - K€2>

33



Ny <U1 + (K —1)e; + Keg — u§2)) <v1 — (K —1)e + Keg — uz@))
i—1 (1)2 + (K — 1) + Keg — ugz)) (vg — (K —1)eg + Keg — u§2)> ’

where we have used the equivariant version for simplicity. We conjecture that the equivariant
partition function is

Zma = PE[F] (p/(K)ap(K,[Q,Q})a v1 — va, {ex})

(vl*v2)(€1+62>(261+63)(261+64)+(’U1*%)63(61*62)(261*64)
=M (p,(K)) 2e1e3eq(e1—e2) 2ereq(er+e2)(2e1te3)

(5.52)

(v1—v2)
€4
0

M (px 2.2 Plic)) H » L \F
k=K+1 (1 - p(K,[2,2])p/(K))

(€1 + €2)(2€1 + €3)(2€1 + €4) es(€1 — €2)(2€1 — €4)

1

: (5.53)

]:<p/(K)7p(K7[272])>U1 _U27{€k}) = (

2e1e364(€1 — €3) 2e1€4(€1 + €2)(2€1 + €3)
L Pucpa + 1/P(K7[2,2]>) (01 — ”2>P'(K2> 1 i kD' e
€4 (1 _ p/(K)) P(K,[2,2]) €4 1
(5.54)
where p’( K) = —P1p2 and p(g [2,2)) = —pXpl*! In the DT chamber, this agrees with the equivari-

ant DT invariants in [45] (upon redefinition of the parameters). The crystals are the 4d versions of
(5.49), where one “peels oftf” a 3d subcrystal every time one crosses a wall from C'x to C'k .

For the C chamber, the chirals connecting the framing node and the gauge node 2 (resp. 1)
have weights vy + Ke; + (K — 1)eg, vg + (K — 2)ey + (K — 1)eg, ..., v9 — Keg + (K — 1)eg
(resp. v1+ (K —1)e; + (K —1)eg, v1+ (K —3)e1 + (K —1)eg, ..., v — (K —1)e; + (K —1)ey when
existing) while the accompanied Fermis have weights v, + K€ + (K —1)ég, v1 4+ (K —2)e1 + (K —
Deg, ..., 01— Keg+ (K —1)ey (resp. —vo — (K —1)e; — (K —1)eg, —vg — (K —3)e; — (K —1)e,
ooy =y + (K — 1)e; — (K — 1)ey when existing). Therefore, in the integrand, we only need to
change the factors coming from the framing to

N (u(U vy — (K = 1)ey — (K — 1)eg> . <u§” — v+ (K — 1)ey — (K — 1)62)

i—1 (ugl) —v — (K —1)e; — (K — 1)62> (u(l) —uv+ (K —1)e — (K — 1)62>

2 K3

Na (vl + Key + (K — 1)eg —u(-2)> (vl — Key + (K — 1)eg —u(2)>

i1 (Ug + Kep + (K — 1)eg — u@)) (1)2 — Kep + (K —1)eg — uZ@)) 7

(]

(5.55)

where we have used the equivariant version for simplicity. We conjecture that the equivariant
partition function is

(v1—v2)

K “

Zmat = PE[F] (ﬁ(K),ﬁ(K,[2,2])»U1 — U2, {%}) = H _ —k N\
k=1 (1 - p(K,p,z])p'(K))

1

,  (5.56)
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K

~ k
i, ~ P(K 2,2 (U1 - 2)2) 4 ~K
F (p/(K)ap(K,[2,2])7U1 - vz,{ek}> = 2l ])64 (Z Z(\/ﬁ)2l F 1p’(K)> ., (5.57)

k=1 l=1

where ]7’( Ky = —Dp1'py " and Pix o)) = —pX*1pK . In the PT chamber, this agrees with the

rational limit of the K-theoretic PT invariants in [48]. The crystals are the 4d versions of (5.50),
where one adds a “layer” of a (semi-infinite) 3d subcrystal every time one crosses a wall from Cx
to C k1. Notice that, however, in contrast to the finite 3d crystals for the conifold, the 4d crystals
in the chambers C for the conifoldxC are infinite (due to the fourth direction extended by the
adjoint chirals).

Let us also make a comment on the elliptic invariants. For the chamber C, the shift of

MIOIN uz(l) 2mi( K+1)(

i + a + br with a,b € Z would yield an extra phase e~ v1=v2) " and hence
(K +1)(vy —vy) € Z. On the other hand, the transformation of uZ@) would lead to K (v; —vq) € Z.
As K + 1 and K are coprime, we should again have v; — vy € Z. Likewise, for the chamber Cl,

) would give rise to K (v; — v3) € Z and (K + 1) (v, — v2) € Z.

i

Therefore, we should have v; — vy € Z.

the transformations of ugl) and u

5.4 Trialities: Q1!

In general, the A/ = (0, 2) quivers do not need to have 4d counterparts as above. As an example,
QY1 has the toric diagram

(5.58)

(1,1,-1)

In particular, its quiver gauge theories enjoy triality featured in AV = (0, 2). Its three phases form

the triality network
A
/
ﬁl
NT
S»
P (5.59)

A =N A

NS

Here, phase A (resp. S) is antisymmetric (resp. symmetric) in the sense of the permutation of
the coordinate axes while phase NT is non-toric. Here, we shall only focus on phase A as an
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illustration of triality and wall crossing. The outer circle with three quivers of phase A is given
by19

(5.60)
This self-triality can be obtained by mutating the node 1 in purple.
Let us start with the quiver
0
1 2 (5.61)
4 3
The weights of the edges are chosen to be
X14,1 | X142 | X24,1 X24,2 X31,1 X31,2 | X32,1 | X32,2 | X43,1 | X43,2
€1 —€1 €9 —€9 €9 —€9 €1 —€1 €3 —€3
(5.62)

Aia | An Asyq Asyp A3 Asga

—€3 | —€3 | €1t € | €1+ €| € — €| €—¢€

9The periodic quivers of phase S and phase NT can be found in [31].
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For the dimension vector N =

(N, ), the integrand is then

N N1 (N3+N4s—No—(N1—1)/2) No N2(N3+Ng—N1—(N2—1)/2)
o amesngon () it
i=1 =1

4 Na g(a)
7

TTI1%%

a=1i=1 i

) (I

2
(1)

S (T -

a=1 i#j

S0) (o) g5 §>>>

IJH( W _ <3>> e

N3 N3(N1+N2—N4—(N3—1)/2) Ny N4(N1+N2—N3—(N4—1)/2)
i) it 0
i=1 =1

)

0" (3)>

HH ( 2! (3))

2
- Q1Q2l‘ (

7j=1

-
(i)
)

(=

=1
q:z:”)(
-1

) qu(4)> ( ) _ g1y 4))

Let us list some indices at low ranks as an illustration:

e Level 1:

— crystal labelled by v; (ranks (1,0, 0,0)):

e Level 2:

— crystal labelled by vq, v; + €; (ranks (1,0,0,1)):

q1
qi — 1

I27+ —

— crystal labelled by vy, v; — €; (ranks (1,0,0, 1)):

The index is

_ q1
1—gq}

T,

IQ = 1274,_ +IQ7_ - O .
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(5.64)

(5.65)

(5.66)

(5.67)



e Level 3:

crystal labelled by vy, v; + €1, v — €1 (ranks (1,0, 0, 2)):
Tos = wd(yii— 1/V)

crystal labelled by vy, v; + €1, v; + €3 (ranks (1,0, 1, 1)):

_ 0901(@ — e6)(1 — 0ee)(VE-1/VE)

7 =
e (1—a)(1 - a)

crystal labelled by vy, v; + €1, v; — €3 (ranks (1,0, 1, 1)):

_ an(ne — a)(@gs — @) (Vi —1/VR) .

(
L3 (4,—
He (1 —ah)(1 - a)

crystal labelled by vy, v; — €1,v1 + €3 (ranks (1,0, 1, 1)):

_ N1@394(193 — @2) (1 — q10203)* (/1 — 1/ /1) ‘

I (_
3,(—+) (1—a¢))(1 = g3)(q1g2 — g3)

crystal labelled by vy, v, — €1, v1 — €3 (ranks (1,0, 1, 1)):

Ta(r =
B 1—A)1 - @)1 - q10205)

The indices are

I(LO,O,Q) = I3,i7

Loy = a4 T Ls,(4,-) T s -4y + L, (- o)
1 —4qioq5 + 6 + 33 (1 + ¢)
B (192 — ¢3) (19293 — 1)

Q1Q3C]4(C]2Q3 - C]1)(Q1Q2 - Q3)2(\/ﬁ - 1/\/5) .

(i~ 1/VA) .

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

Wall crossing We can apply the triality to the quiver and this would take us to a different cham-
ber. Let us mutate the node 1 in (5.61). This maps to the same quiver but with a relabelling of the

nodes by 2 — 3 — 4 — 2. Taking the framing into account, we have

(5.75)



The weights of the edges connecting the framing node 0 are taken to be

X10 | Xo1 X02,1 X02,2 A30,1 A30,2

(5.76)

Vi | —U2 | V1t €3 | —VU1 —€ —€ | Vg€ —€3 | V3 — €

In the integrand, we only need to change the factors coming from the framing to

Nl N2

11 : II :
i=1 (vl — ugl)) (ugl) + vg) i=1 <u§2) e 63) (u?) +v +€+ 62>

N3
(H <u§3) — V9 — €1+ 63) (uf” — vy + 62)> ) (5.77)

i=1

where we have used the equivariant version for simplicity. Let us list some indices at low ranks
as an illustration:

e Level 1:

— crystal labelled by —u, (ranks (1,0, 0,0)):

w
L1000 = —————— (5.78)

VE=1/Vi
— crystal labelled by v; + €3 (ranks (0, 1,0, 0)):
v/ 4149243 (5.79)

Q3(Q1Q2Q3w% - 1) a

Zio,1,00)1 =

— crystal labelled by —v; — €; — €3 (ranks (0, 1,0,0)):

2
V14192+/9192493
L1002 = R (5.80)
The indices are
w
T(1000) = —————— (5.81)

Vi i

q192
Z0,100) = Zo,,00)1 T Z0,100)2 = — f 5 (5.82)
3

e Level 2:

— crystal labelled by —vs, v; + €3 (ranks (1,1, 0,0)):

gz (1— 1— ¢
Ta1001 = G1q2ws ( w1w22)( qawiwy) | (5.83)
Bwr g3(G1gegzwi — 1) (wy — wy)
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— crystal labelled by —vy, —v; — €1 — €5 (ranks (1, 1,0,0)):
vV QIQ2QSw1w2w1(Q1QQQ3w1 - wz)(%wz - q1q2w1)

Z = (5.84)
(11002 Q3(Q1CJ2Q3U)% — 1)(w1 — wy)
— crystal labelled by —wvy, —vy + € (ranks (1,0,0,1)):
q1w2
Zapo1)1 = . (5.85)
DT (L - @) (Vi - 1/
— crystal labelled by —vy, —vy — € (ranks (1,0,0,1)):
w
I(1707071)72 = ( ql = (5.86)

g —V(/r—1/y/m)

— crystal labelled by vy + €3,v; + €3 + €2 (ranks (0,1, 0, 1)):

42+/419293 (5.87)

(3 — 1) (q1gegzw? — 1)

Z01,01)1 =

— crystal labelled by vy + €3, v; + €3 — € (ranks (0, 1,0, 1)):
q2+/41G2943 (5.88)

¢3(1 — @) (q1gegswi — 1)

Z01,01)2 =

— crystal labelled by —v; — €1 — €9, —v; — €1 — €3 + €5 (ranks (0, 1,0, 1)):

2,2
{hgg 1\/@1161226]3 . (5.89)
1 — @) (q1geqzwi — 1)

Z0,1,01),3 = (

— crystal labelled by —v; — € — €3, —v; — €1 — €3 — €3 (ranks (0, 1,0, 1)):

qlqgw?\/qmqs
5 5 ) (5.90)
q5 — 1)(Q1Q2Q3w1 - 1)

I(O,I,O,I)A = (

The indices are

Z1,1,00) = Z(1,1,0001 + Z1,1,00).2 (5.91)
Z1,00,1) = L1001, + Za0012 =0, (5.92)
Zo,1,01) = Zo,1,00),1 T Zo,1,00),2 + Z0,1,01),3 T Z0,1,01)4 = 0 . (5.93)

We may also compare the conditions on the chemical potentials in the elliptic case for the two
quivers. For (5.61), we still have
v — Uy €7 . (5.94)

For (5.75), we have

v —1 €L, € +e—€e €L, 2u+€ —e—€e3E€ L. (5.95)
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6 Equivariant DT, Invariants

It is known that the BPS invariants discussed above are mathematically the (generalized) DT
invariants for CY threefolds. In the case of CY fourfolds, there are also extensive studies on
counting the coherent sheaves in mathematics literature. Let us now briefly discuss the equivariant
DT, invariants which were established using obstruction theory in [43—47]. The K-theoretic uplift
can be found in [48].

Given a toric CY fourfold X, we would like to define some DT(-type) invariants as f[I (B 17,
where Z(n, 3) is the Hilbert scheme of closed subschemes Z C X with x(Oz) = n and
[Z] = B € Hy(X). Here, we will be mainly focusing on the zero-dimensional DT invariants
with 5 = 0, and Z(n,0) = Hilb"(X) is the Hilbert scheme of n points on X. However, one
could quickly run into problems. For example, Hilb"(.X) is generally non-compact due to the
non-compactness of X. It turns out that we can consider the fixed locus

Hilb™(X)T = Hilb™ (X)) | 6.1)

where T C (C*)* is the 3-dimensional subtorus preserving the CY volume form. This equality
and the fact that it consists of finitely many isolated reduced points were shown in [44,45].

For general X, there would be wall crossing, and the BPS indices are expected to related to
generalized DT invariants. Therefore, let us first consider the DT chamber. For the C* case, each
[Z] corresponds to a solid partition®’. For general X, we have shown using the JK residues that
they should be labelled by 4d crystals. For each Z € Hilb™(X ), we have the vector bundles

ET XT EXti(Iz, Iz)

l/ (6.2)

ET XT {Iz} = BT

for 1+ = 1,2, where I is the monomial ideal that cuts out Z, and E’I' — BT is the univer-
sal bundle associated with 7. The deformation and obstruction spaces at [, then correspond to
Ext! (I, 1) and Ext?*(Iz, I;) respectively. Denote their Euler classes as ey (Ext'(Iz,I,)). The
Serre duality pairing on Ext*(I, I;) induces a non-degenerate quadratic form () on the bundle
ET x Ext*(Iz, ;). This allows one to define the half Euler class

dim Ext2 (Iz,I1z)
er(Ext®(Iz, 1), Q) = i\/ T2 er(Bx®(Iy, 1)) (6.3)
S Z[el,2,3,4]/<61 +e+e3+e) =],

20More generally, Z of dimensions < 1 which can have non-zero § were considered in [45,48]. This further
includes the so-called curve-like solid partitions loc. cit., which are solid partitions with non-trivial asymptotic plane
partitions. They are expected to give rise to open BPS states (cf. [18,51,79]). Although we expect the open BPS
states in the cases of general X would also have some combinatorial structures given by the 4d crystals with non-
trivial asymptotes, here we shall only focus on the closed BPS states.
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where the sign is determined by the choice of the orientation on the positive real form of (ET X
Ext?(Iz, 1), Q). Then the T-equivariant virtual fundamental class of Hilb™(X) is defined as

er(Bxt*(I5,12),Q)

GT(Eth(Iz, ]Z)) ’ (64)

Hilb" (X)) = Z

ZeHilb™ (X)T

where o (L) collectively denotes the choice of the square root for each Z. Fixing a line bundle
L on X with its tautological bundle on Hilb"(X) denoted as LI, the equivariant DT invariant is
defined as

DTy(n) = er (LM ) . (6.5)

Z er(Ext*(Iz,17),Q)

ZeHilb™ (X)T er(Ext'(Iz,12))

Recall that in the quiver gauge theory, there is a symmetry between the Fermi multiplets A and
their conjugates A, which makes the corresponding edges unoriented in the quiver. In the above
mathematical definition, this is reflected by the Serre duality pairing and the quadratic form, which
lead to the “square root” for Ext?(I, I;). In other words, the contributions of the Fermi multi-
plets, which are essentially relations in the gauge theories, are encoded by the obstruction space
and the half Euler class er(Ext*(Iz,17), Q). On the other hand, the contributions of the chiral
multiplets are given by the Euler class of Ext' (I, I;). Moreover, we have the factor ey (L[”] ‘ Z)
from the (tautological) insertion. This corresponds to the contribution from the framing, and the
line bundle L should be identified with the Chan-Paton bundle on the anti-D8-brane.

In this sense, the BPS counting problem in the fourfold case has some resemblance to the
threefold case. Mathematically, it is still determined by the Euler classes of certain Ext! and
Ext” in the deformation-obstruction theory. Physically, certain combinations of the N' = (0, 2)
multiplets would recover the contributions of the multiplets in the ' = (2, 2) case (cf. Appendix
A).

However, unlike the threefold case, here the Ext® group does not vanish. We can therefore
think of the factor in [Hilb™ (X )]?ro( r) as the square root of = (Extl(eITZSIZt)Q)(!TZ(’é@,)( NP The Ext!
and Ext® groups could be understood as the arrows and plaquettes in the periodic quiver. We
expect that the Ext® group, as the obstructions to the obstructions, corresponds to the relations of
the relations. In the 3d periodic quiver, it might be possible that this is reflected by the 3-cells.

Let us also make a comment on the choice of the orientation. Recall that for each Fermi
multiplet A; (and its conjugate A;), we can make a choice between the .J-term and the E-term.
In other words, we can have either A;J; or A;E; in the Lagrangian. As a result, for each crystal
configuration, there is a choice of the sign in the 1-loop determinant. This corresponds to a
sign choice for each torus fixed point, which is labelled by some 4d crystal, in the mathematical
definition. However, in the periodic quiver with its brane brick matching matrix [30], once a
J-/E-term is chosen, the others are simultaneously fixed. This would give no ambiguity in the
BPS index as the resulting sign is always the same no matter which column one picks from the
brick matching matrix. Therefore, the BPS index is uniquely fixed. With this physical input, an
orientation is automatically chosen. In some mathematical literature such as [44,45,48], with some
specific choices of the orientations (which are conjectured to be unique), the partition functions of
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some cases were expressed in terms of MacMahon functions and plethystic exponentials. In fact,
we observe that such choices always coincide with the physical results.

Non-commutative DT, The above discussion is restricted to the DT chamber. A mathemati-
cal formulation directly defined for the non-commutative DT, invariants was given in [43]. As
a result, one needs to consider quiver representations rather than sheaves. The Jacobi algebra
A = CQ/(J-, E-terms), which has the combinatorial structure given by 4d crystals, is a CY,
algebra in the sense that there are pairings Exty, (M, N) x Ext} “(N, M) — C for A-modules
M, N (with at least one of M, N being finite-dimensional). The representations of the (unframed)
quiver (with relations) are in one-to-one correspondence with the finite A-modules. Then instead
of the Hilbert schemes, one takes the moduli space of framed quiver representations, along with
certain framed obstruction bundle endowed with a non-degenerate quadratic form. Then the vir-
tual fundamental class is defined as the Poincaré dual of the half Euler class, which lives in the
Borel-Moore homology of the moduli space of quiver representations.

Vertex formalism and lifting D8-branes In [44,45,48,80,81], some vertex formalisms were
proposed to obtain the DT invariants. It is tempting to think of this gluing of vertices with certain
edge factors as some incarnation of possible “topological string formalism” in the fourfold case.
Indeed, the subschemes Z are now labelled by a collection of solid partitions, one from each chart
in the covering {U, = C*} of X.

On the other hand, for CY threefolds (without compact divisors), the connection between BPS
partition functions and topological string partition functions via wall crossing was explained from
the perspective of M-theory in [82]. There, one puts the M-theory on the Taub-NUT geometry,
which is an S! fibration over R® with the circle shrinking at the position of the D6-brane. Then
the central charges of the stable BPS particles for different B-fields can be translated to those of
the M2-branes.

It is natural to wonder if we can study the (cyclic) wall crossing structures for the CY fourfolds
in a similar manner (at least for those without compact 4-/6-cycles). This would also allow us to
relate the BPS partition functions to the vertex formalism mentioned above from a more physical
perspective. A naive way would be simply replacing the Taub-NUT space with an S* fibration
over R. However, with the presence of the D8-branes, to which the RR field couples, we have the
massive Type IIA string theory. It is believed that massive Type IIA string theory does not admit
a strong coupling limit [83], and the arguments of [82] does not seem to immediately generalize
here. An M9-brane could be reduced to the D8-brane with O8 orientifolds, but it is still not clear
whether this would be helpful in the analysis here.
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A Elliptic Genera

Let us recall the JK residue formulae for the elliptic genus Zr2. The appropriate contour was
determined for the rank 1 case in [84] and was later generalized to any ranks using the recipe of
JK residues [21].

Write

T = eQmu ’ Y= e27rlz ’ q= eQmT (Al)

For the N/ = (2, 2) theories, the 1-loop determinant is composed of the following contributions”':

* Vector multiplet V' with gauge group G

Zy(T,2z,u) = <_ 2m(a). )rankG H e raf(f du; (A.2)
) 61 (q7y_1) B Q q Yy~ 1xa ()
where ® denotes the root system of G and z® = e?™ie(),
 Chiral multiplet  in the representation R with R-charge R:
_91 q yR/2flxp)
(1,2, u) H 0 (q, ") (A.3)

pER

* Twisted chiral multiplet 2 with axial R-charge R 4:

_01 (q7 yiRA/Q‘Fl)
91 (qv y_RA/Q)

2INotice that there are some sign differences compared to the ones in [21, 84] based on the convention of the

fermion number. This is to recover the correct signs in the BPS partition functions for toric CY threefolds as discussed
in Appendix B.

Zs(1,2) = (A.4)
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The expressions of the elliptic functions are given below.
For the N = (0, 2) theories, the 1-loop determinant consists of the following contributions:

* Vector multiplet:

o 2\ rankG 0 ,Ia rankG
Zy(T,u) = ( ﬁi(cl) ) H 1%)) H du; . (A.5)
aca(@ 1\ i=1
* Chiral multiplet:
. ()
Z = : A.6
) =TT 70 (A6)
pER
* Fermi multiplet A:
0 p
Zn(rou) = [[IT (a9, 27) (A7)
o (@)

We have used the Dedekind eta function and a Jacobi theta function above:

o

n)=aJ[(1-d"), 6i(r.2)=—ig"*y'? [ (1 —a") (1 —ya*) (1 =y 'g"") .
k=1 k=1
(A.8)
For a,b € Z, we have the transformation
01 (T, u + a+ br) = (—1)**Pe=2mibu=mitTg, (- 4) | (A9)

In this paper, we are mainly focusing on the Witten index, which can be obtained from dimensional
reduction in the limit ¢ — 0. As (q;q)s = 1 and (¥; q)o = 1 — y in this limit, we have

n(r)=q"* . 61(r,2) =iq8y 121 — y) = 29"/ sin(nz) . (A.10)

B Derivation of 3d Crystals from JK Residues

It is well-known that the BPS counting problem in the toric CY threefold setting is encoded by 3d
crystals [3, 19]. We will now show this using the JK residue technique. The strategy is the same
as the one for the 4d crystal case. The contribution from the vector multiplet is given by

rankG

. 1 rankG H — (1 —.ZEC!) H dx; (B.1)
=\ ) L5 @

ac®(G) i=1

while the contribution from the chiral multiplet is

—y (1 . yR/Q—lxp)
A==

PER

(B.2)
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Using the weights ¢; such that ¢ := ¢1q2q3 = y~!, we have

-1 -1
e [ (1_90533 () )(1_@@ («9) )
H q1/2

1-— “ o\ L " o\ L
11 s (1 — quVj (xg )> ) (1 — qxg ) <x§\73> )

AZN_iN=—

o)) [ )’
IIII| II ¢ 1

= =
beo it \1cfamty  1—q; 'z (xg\‘;z) refpsay 1 —grlaly) (xz(»b)>

- —1@\ %0 o (a)
1 —qqt 1 —qulzy dz
1 1 1 a a
|| ¢ (q @ @ (B.3)

_ —1
IE{a—)a} 1 w xNa xNa

where w = €™V denotes the weight of the arrow from the framing node to the initial node (labelled
by 0). The crystal structure can be seen in a similar manner as the 4d crystal case discussed in the
main context, where the cancellations of the unwanted poles by the contributions from the Fermi
multiplets are replaced by the contributions from the chirals pointing backwards in the crystal
here.

As all the factors from (the roots of) the vector multiplets and the chirals are in pairs in the
numerator and the denominator, there would be one factor in the numerator left are taking the
residue (which cancels the factor x%j in the denominator). This factor in the numerator would
then be cancelled by the factor (1 — ¢) in the denominator. More concretely, suppose that we
take the pole at (1 — f:cgf,g) for some factor f. The residue of 1/ (1 — fﬁ@j) at 955\(2 = §lis

—§~1, which cancels the factor xg\‘;(z in the expression with a minus sign left. The corresponding

numerator of this pole (1 — qf:cg\‘;Z) is then cancelled by 1/(1 — ¢) in the expression. After taking
g = 1, all the paired factors in the numerator and the denominator get cancelled, and AZy_; y is
simply £1.

Let us now determine the sign factor’”. It is not hard to see that Zy has the sign

(_1)d1+<d»d) ) (B.4)
Here, d; denotes the rank of the gauge node connected to the framing node, and

<Oé,ﬁ> = Z aaﬁa - Z aaﬁb (BS)

a€Qo {a—b}

is the Ringel form with the dimension vector d = (d,) such that »_ d, = N. This is precisely
a€Qo
the sign factor for the BPS index as given in [5].

221f we use the convention of [21,62,84], AZ ~N—1,~ would always be 41, and this would recover the generating
functions of the 3d crystals (whose coefficients are always positive).
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Without taking ¢ = 1, this gives a refinement of the indices

23, We expect that this would

also recover the refined BPS indices that further track the spin information, as was discussed
in [25,27]%.
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