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ON THE STABILITY OF A NON-HYPERBOLIC NONLINEAR MAP

WITH NON-BOUNDED SET OF NON-ISOLATED FIXED POINTS WITH

APPLICATIONS TO MACHINE LEARNING

R. HANSEN1, M. VERA1,2, L. ESTIENNE1,3, L. FERRER3 AND P. PIANTANIDA4

Abstract. This paper deals with the convergence analysis of the SUCPA (Semi Unsupervised
Calibration through Prior Adaptation) algorithm, defined from a first-order non-linear differ-
ence equations, first developed to correct the scores output by a supervised machine learning
classifier. The convergence analysis is addressed as a dynamical system problem, by studying
the local and global stability of the nonlinear map derived from the algorithm. This map, which
is defined by a composition of exponential and rational functions, turns out to be non-hyperbolic
with a non-bounded set of non-isolated fixed points. Hence, a non-standard method for solving
the convergence analysis is used consisting of an ad-hoc geometrical approach. For a binary clas-
sification problem (two-dimensional map), we rigorously prove that the map is globally asymp-
totically stable. Numerical experiments on real-world application are performed to support the
theoretical results by means of two different classification problems: Sentiment Polarity per-
formed with a Large Language Model and Cat-Dog Image classification. For a greater number
of classes, the numerical evidence shows the same behavior of the algorithm, and this is illus-
trated with a Natural Language Inference example. The experiment codes are publicly accessible
online at the following repository: https://github.com/LautaroEst/sucpa-convergence.

Keywords: Discrete Dynamical Systems, Non-Hyperbolic Maps, Algorithm Convergence, Cali-
bration
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1. Introduction

Difference equations have gained a lot of attention in the last decades due to their applicability
in many branches of scientific knowledge. These equations model discrete natural and social
phenomena and perform a fundamental role in many applications like population dynamics,
control engineering, genetics, signal processing, health sciences and ecology [20]. In most cases,
difference equations arise naturally as discretization of differential equations [8] or are defined
by an iterative algorithm that describe a dynamic system. In the later case, the algorithm can
be fully described by a map (i.e., a function) and the nature of this map defines the convergence
properties of the algorithm. As consequence, studying the map and the difference equation
associated to a dynamic system is usually considered a very important topic because they define
the behaviour of the system’s dynamic.

1Universidad de Buenos Aires, Facultad de Ingenieŕıa, Buenos Aires, Argentina,
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1.1. Non-hyperbolic maps and fixed points. Depending on the discipline in which they
are applied, different methods were developed throughout the literature to demonstrate the
convergence of iterative algorithms (e.g. [1,22,30]). In most cases, the map associated with the
algorithm is hyperbolic and the solutions of its associated difference equation (or equivalently,
the points to which the algorithm converges) form a finite set of points –and therefore isolated.
This points are usually referred to as the fixed points of the system. Roughly speaking, a fixed
point is called isolated if there exists a neighborhood of it that does not contain any other fixed
points of the system, otherwise it is called non-isolated. Also, a fixed point of a map is called
hyperbolic, if the Jacobian matrix of the map at this point has no eigenvalues of modulus one,
otherwise, it is called non-hyperbolic [6, 9].

As it is known, the eigenvectors provide the contracting/expanding directions of the local
dynamics according to whether their corresponding eigenvalues have modulus greater/lower
than one. The behaviour of dynamical systems around a non-hyperbolic fixed point is much
more subtle than for a hyperbolic one, because one cannot get a definite conclusion of the
local stability from just the linearization of the map when it has eigenvalues in the unit circle.
These are called resonant cases and the scenarios are very different depending on whether the
eigenvalues are 1, -1 or a pair of complex conjugates, and on the amount of each of them [21].
Neither is there a general classification of them, so a case-by-case analysis is required [2]. The
local stability near a non-hyperbolic fixed point is addressed by the theory of Central Manifold,
which is an invariant set in a low dimensional space where the local dynamics can be reduced.
This theory is relevant and mostly applied in the case of a system’s parameter bifurcation. It
consists of transforming the map into its normal form, first by setting the fixed point to the
origin through a suitable change of coordinates, and then splitting up the algebraic expression
of the new map into a linear and a nonlinear terms (the interested readers on this theory can
see [4, 9, 21, 32]). Thus, this formulation is used mostly in theoretical problems, or successfully
applied when the map under study posses a relative simple algebraic expression (polynomial,
exponential, etc.) as in [25]; otherwise it is very cumbersome to be utilized.

In this work, we study the convergence of the recently proposed SUCPA algorithm [12] by
means of the local and global stability analysis of the map derived from it. This K-dimensional
nonlinear map (K ≥ 2) is non-hyperbolic and its fixed points form an unbounded set of non-
isolated points (indeed, they are a straight line). We prove the convergence for the two-classes
case, and show different properties and conjectures in the general case.

The map associated with the SUCPA algorithm consists of equations that involve a compo-
sition of exponential and rational functions, and the non-hyperbolic fixed points have only one
eigenvalue equal to one and the rest of them have modulus less than one. The particular study
of –high order– rational difference equations like the ones present in this map has gained a lot
of attention in the last time, because there is no an effective general method to deal with, so
they currently are a class of challenging problems, and only specific type of them are treated
and reported in the literature [10, 17, 29]. In addition, despite that the study of non-hyperbolic
maps is addressed in several works, they do not usually bring together all the features presented
here. In most cases they are about isolated fixed points [27], one-dimensional maps [5, 19, 31],
flows [34], area-preserving maps [23] or a two dimensional map with double eigenvalue equal
one [18], to name a few.

Another problem addressed in this work is the global stability of the map, which would
account for the convergence of the SUCPA algorithm for any input. The standard tools for this
purpose –as obtaining a suitable Lyapunov function– cannot be applied here either for the same
reason that the fixed points are not isolated. This fact, together with the no so simple algebraic
equations of the system, force us to prove the local and global stability by non-standard ways,
defining auxiliary functions and solving it by an ad-hoc geometrical approach.

1.2. SUCPA as a calibration algorithm. The SUCPA algorithm was first developed in the
context of supervised machine learning classifiers. A supervised machine learning classifier is a
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function ĥ(·) that usually maps an input x composed by real-world data (e.g., images, text or
audio) to an output y that can be of the same type as the input or could be numerical. An
example of these functions is an image classifier, which takes in an image in the form of a 3D
tensor x ∈ RC×N×M and outputs the category y to which that image belongs. (For instance,
y={y1, y2}={cat, dog} in the case of binary classification of images of animals). In most cases,
classifiers map the input to a category contained in an unordered finite set of discrete categories.

The goal of supervised learning is not to manually design the function ĥ(·), but to obtained

it by exposing the system to a set D = {(x(1), y(1)), . . . , (x(N), y(N))} of multiple input-output

examples (called, the training set). More formally, the function ĥ(·) is obtained by minimizing
a loss LD(h) function over the entire set of possible functions considered in the problem. Then,

this function is used to predict an output ŷ = ĥ(x) from a new input x. Particularly in the
case of probabilistic machine learning classifiers, the training set is used to obtain a so called
posterior probability distribution P (y|x) over the set Y = {y1, . . . , yK} of possible categories, for
each possible input x. It is a well known result that once this distribution is known, it is trivial
to map the input x to the label ŷ by making Bayes decisions, which are those that minimize
the Bayes risk [7], a standard criterion for measuring performance of a classifier. A well known
instance of this risk (and the one used in this work) is the one obtained by assigning equal cost
to each decision. In this case, it can be shown that the risk is minimized by choosing the class
ŷ that maximizes the posterior P (y|x):

ŷ = ĥ(x) = argmax
y∈Y

P (y|x) (1)

Concerning the quality of the estimation of the posterior P (y|x), it has been studied in the last
years that the posterior distribution produced by most modern classifiers is miscalibrated [15],
which means that the Bayes decisions for that posteriors are not optimal for all cost functions
[13]1. This may happen for a few different reasons. A model that overfitted the training data
tends to overestimate its certainty about the class, resulting in posteriors that take sub-optimally
extreme values [15]. Further, when the data distribution of the training and the test data are
different, the model may also be miscalibrated. In particular, when the training and test class
probabilities (so-called priors probability distributions) are different, the posteriors will be sub-
optimal since the priors are implicitly encoded in the posteriors [14].

Many approaches have been proposed in the literature to calibrate machine learning systems
that are miscalibrated. One simple calibration method is based on logistic regression [3], taking
as input features the log posteriors produced by the model (i.e. the logarithm of the estimated
probability P (k|x) of a class k, k=1, . . . ,K, given an observed input x) and applying an affine
transformation of the following form:

log P̃ (k|x) = αk logP (k|x) + βk + γ(α,β), (2)

where P̃ (k|x) is the calibrated posterior probability, α =
[
α1, . . . , αK

]
, β =

[
β1, . . . , βK

]
and

γ(α,β) is determined so that
∑K

k=1 P̃ (k|x) = 1. Here, α and β are parameters of the affine
transformation, and they are trained to minimize a Proper Scoring Rule (usually the Negative
Log-Likelihood or cross-entropy) [13].

Different assumptions in (2) are usually made according to the specific problem that needs
to be solved. For instance, temperature scaling [15], one of the most widely used calibration
methods, corresponds to taking βk =0 for all k and αk =

1
T a single scalar. In recent work, we

proposed the SUCPA algorithm to address the scenario of mismatched priors for text classifica-
tion tasks solved with large language models [12]. This algorithm is derived for the case in which
αk=1 for all k ∈ {1, . . . ,K}, which is equivalent to assume that the source of miscalibration is

1A more formal definition of calibration is that a system is calibrated if the estimated probability of the
predicted label matches with the true probability of that category. For more details, consult [13].
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only due to a mismatch in class priors. As logistic regression, SUCPA is obtained by minimizing
the cross-entropy loss on the training set D={(x(1), y(1)), . . . , (x(N), y(N))}:

L(β) = 1

N

N∑
i=1

− log P̃ (y(i)|x(i)) = − 1

N

N∑
i=1

[
logP (y(i)|x(i)) + βy(i) + γi(1,β)

]
(3)

If we set the derivative of the cross-entropy to zero, we can derive the following expression for
βk:

βk = log

(
Nk

N

)
−

(
1

N

N∑
i=1

P (yk|x(i))∑K
j=1 P (yj |x(i))eβj

)
(4)

where Nk is the number of samples with y(i) = k. Mathematical details can be read in [12]. If

the proportion Nk
N is known as external knowledge from the nature of the task, then (4) can

be used to iteratively estimate the value of βk for every k ∈ {1, . . . ,K} using just the samples

{x(1), . . . ,x(N)} (i.e., with no labels). It is important to highlight the need to have this prior
information, which limits the spectrum of possible applications to tasks where this knowledge
is precise.

The rest of the paper is organized as follows. In Section 2 we present the K-dimensional
nonlinear map derived from the algorithm, and pose the main conjecture of the work. Section
3 summarizes some essential properties of the map. In Section 4 we prove the convergence for
two classes (K = 2). Numerical examples are shown in Section 5. Finally, in Section 6, some
concluding remarks are discussed.

2. The SUCPA-map

In this section, we formally introduce the K-dimensional map, f , derived from the SUCPA
algorithm presented in [12], henceforth the SUCPA-map. We also recall some useful definitions
and formulate the main conjecture of the work in terms of this map. The discrete time is denoted
by t∈N.

Definition 2.1. Let β[t] =
[
β
[t]
1 , . . . , β

[t]
K

]
∈RK and β[0] ∈RK be an initial condition. Let also,

[N1, . . . , NK ] ∈NK , with
∑K

k=1Nk =N and P ∈RN×K a matrix with coefficients Pi,k > 0 and∑K
k=1 Pi,k =1. We define the SUCPA algorithm as:

β
[t+1]
k = − log

 1

Nk

N∑
i=1

Pi,k∑K
j=1 Pi,je

β
[t]
j

 , 1 ≤ k ≤ K. (5)

The SUCPA-map, f = [f1, . . . , fK ] :RK →RK , is the map defined by (5), as β[t+1] = f
(
β[t]
)
.

Then:

fk(β) = − log

(
1

Nk

N∑
i=1

Pi,k∑K
j=1 Pi,jeβj

)
, 1 ≤ k ≤ K. (6)

As usual, f (t+1)(β) = f
(
f (t)(β)

)
, ∀ t∈N, and f (0)(β) = β. Note that Eq. (6) is a system of K

first-order difference equations involving a composition of exponential and rational functions.

Definition 2.2. Let f be a map, then [6, 32]:

(1) β∗∈RK is a fixed point of f if it verifies f(β∗)=β∗.
(2) The ω-limit set of β is the set:

ω(β) =
∞⋂
n=0

{f (t)(β), t≥n
}

(7)

where the over-bar accounts for the closure of a set.
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The fixed points are those that kept invariant when undergoing iterations of the algorithm.
The ω-limit is the set toward the algorithm, started in β, converges with the successive iterations.
Note that ω(β) is a limit set because it is the intersection of non-increasing sets. It is also a
closed set (by definition), and it can be of different type –a single point, a periodic orbit, an
infinite set, an unbounded set, an empty set, and it may have also complicated structures–
depending on the f structure [32].

As said in the introduction, this work deals with the convergence of the SUCPA algorithm
for any initial condition (i.c.), β[0]∈RK , which leads us to study the stability properties of the
related SUCPA-map.

Conjecture 2.3. For each i.c. β[0]∈RK , there exist a unique fixed point of the SUCPA-map,
f , β∗∈RK (β∗(β[0])), such that ω(β[0])={β∗} (it is a single point set).

This result is completely demonstrated in the case of two dimensions, i.e. K=2, corresponding
to a binary classification problem for the original algorithm. The case K>2 of this conjecture
is not yet proven, however many interesting properties can be shown, and this will be done in
the next section.

3. General properties of the SUCPA-map

Within the literature of discrete dynamical systems, most problems deal with the stability
of isolated fixed points, for which the standard tools to study both, local and global stability
focus on the linearization of the system at those points, and/or obtaining the so-called Lyapunov
functions [6,32]. Furthermore, the number of fixed points is usually finite –therefore they form a
bounded set. The SUCPA-map defined in (6) actually presents a fairly simple behavior, in terms
of its dynamics –for example, there is no presence of chaos despite being non-linear. However,
as will be demonstrated, the fixed points of the system form a non-bounded set of non-isolated
points. Indeed, the set of fixed points is a straight line. These two features together with the
algebraic type of equations, make it necessary to study the stability of the system by alternative
ways. We did this, for the case K=2, by defining properly auxiliary functions that allowed us
to argue geometrically.

3.1. Fixed points analysis. In terms of the SUCPA-map f of Eq. (6), and according to Def.
2.2(1), β∗=[β∗

1 , . . . , β
∗
K ] is a fixed point of f , if and only if, ∀ k=1, · · · ,K:

e−β∗
k =

1

Nk

N∑
i=1

Pi,k∑K
j=1 Pi,je

β∗
j

(8)

Equations (8) cannot be solved explicitly, so we must approach this point from another side.

The SUCPA-map has a particular behavior against constant vector sums. It is easy to see
the following result.

Lemma 3.1. Let λ = [λ, . . . , λ] ∈ RK a constant vector (all entries the same), then for all
β∈RK , the SUCPA-map satisfies:

f(β+λ) = f(β) + λ (9)

Proof. It is straightforward evaluating Eq. (6) in β+λ. □

Naturally, this property remains valid for successive iterations of f and it is the reason for the
geometry structure of the fixed points set –previously subjected to the proof of its existence.

Corollary 3.2. Let λ=[λ, . . . , λ]∈RK . If β∗ is a fixed point of f , then the points in the straight
line, S(β∗), with λ direction and through β∗:

S(β∗) =
{
β = λ+β∗} (10)

are also fixed points of f .
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Proof. It is straightforward by induction in t∈N. Lemma 3.1 is the case for t= 1. Assuming
f (t)(β+λ) = f (t)(β) + λ is valid for t>1, then for t+1, Lemma 3.1 implies:

f (t+1)
(
β+λ

)
= f

(
f (t)(β+λ)

)
= f
(
f (t)(β)+λ

)
= f (t+1)(β) + λ (11)

□

This result shows that, if for some i.c. β[0] the algorithm converges to β∗, then for a shifted
i.c. β[0]+λ, it converges to β∗+λ (an example of this behaviour can be seen in Fig. 3). Therefore,
if β∗ is a fixed point of f , the points of the straight line with 1=[1, . . . , 1] direction and through
β∗ are also fixed points of f . In fact, there exists abundant numerical evidence to formulate the
following conjecture, although only the case K=2 is formally proven in Sec. 4.

Conjecture 3.3. The map f has a unique straight line of fixed points which is of the form (10).

An example for K=3 can be seen in Fig. 4.

3.2. Jacobian Matrix of the SUCPA-map. The Jacobian matrix of a system is an essential
feature to study, for example, the local dynamics around the fixed points of a map [6,32].

The Jacobian matrix of the map f evaluated at β, J(β)∈RK×K , has elements, Jk,ℓ(β), which
can be computed as:

Jk,ℓ(β) =
∂fk
∂βℓ

(β) =

N∑
i=1

Pi,kPi,ℓ e
βℓ(∑K

j=1 Pi,j eβj
)2

N∑
i=1

Pi,k∑K
j=1 Pi,j eβj

, k, ℓ=1, . . . ,K (12)

In particular, J(β) turns to be a regular transition probability matrix for all β∈RK , and so, it
has the following properties [24]:

Lemma 3.4. The J(β) matrix defined by the elements of (12) verifies:

(i) Jk,ℓ(β)>0, ∀ k, ℓ.
(ii) Each row of the matrix adds up to 1, i.e.:

K∑
ℓ=1

Jk,ℓ(β)=1, ∀ 1 ≤ k ≤ K (13)

This condition necessarily means that J(β) has an eigenvalue µ=1 with 1=[1, . . . , 1] as
an associated eigenvector.

(iii) µ=1 has multiplicity one, and all others eigenvalues verify |µ|<1.

Proof. Items (i) and (ii) are straightforward to find out. Item (iii) is a consequence of Perron’s
Theorem [24, Chapter 8]. □

3.3. Complementary definitions and properties. To deepen into some details, we add
other necessary concepts and results.

Definition 3.5. The forward orbit of β∈RK is the set:

O+(β) =
{
f (t)(β), t≥0

}
(14)

O+(β) is the set of all points that the algorithm will pass through when starting at β.

Definition 3.6. X ⊂ RK is an invariant set if f(X ) ⊂ X . If f(X ) = X , X is called strongly
invariant (or s-invariant for short).

This means that all forward orbits of points in X lie in X . In particular, any set of fixed
points is s-invariant. Also, for all β, the set ω(β) is a s-invariant set.
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Definition 3.7. A fixed point β∗ of a map is called unstable, if at least one eigenvalue of J(β∗)
has modulus greater than one. Otherwise, it is called stable. If all eigenvalues have modulus less
than one, it is called asymptotically stable.

Let ∆k(t) = β
[t+1]
k −β

[t]
k be the increment of the kth component of an orbit. The following

interesting lemma is related to them.

Lemma 3.8. For ∆k(t) the following condition holds:

K∑
k=1

Nke
−∆k(t) = N (15)

Proof. By Eq. (5), it is not hard to see that each ∆k(t) can be written as:

∆k(t) = − log

 1

Nk

N∑
i=1

Pi,ke
β
[t]
k∑K

j=1 Pi,je
β
[t]
j

 (16)

taking exponential functions on both sides of the equation:

Nke
−∆k(t) =

N∑
i=1

Pi,ke
β
[t]
k∑K

j=1 Pi,je
β
[t]
j

(17)

and finally adding all the terms over k, the proof is done. □

Lemma 3.8 shows that, in some sense, the results at every step of the algorithm values are
“balanced”, since, if for some k, βk tends to increase with the iterations, then there must be, at
least, another k′, for which βk′ tend to decrease (and vice versa).

4. The case of two classes

For K=2, β=[β1, β2], the SUCPA algorithm (5), and the map f=[f1, f2] : R2→R2, become
into: 

f1(β
[t]) = β

[t+1]
1 = − log

(
1

N1

N∑
i=1

Pi,1

Pi,1 eβ
[t]
1 +Pi,2 eβ

[t]
2

)

f2(β
[t]) = β

[t+1]
2 = − log

(
1

N2

N∑
i=1

Pi,2

Pi,1 eβ
[t]
1 +Pi,2 eβ

[t]
2

) (18)

where N1+N2=N , Pi,k>0, k=1, 2 and Pi,1+Pi,2=1, for all i=1, . . . , N .
Regarding the increments, Lemma 3.8 remains:

N1 e
−∆1(t)+N2 e

−∆2(t) = N (19)

In addition, for K=2 it is possible to derive an additional property. Once it is known that the
algorithm must be convergent, it is necessary that ∆1(t) and ∆2(t) go to zero when t→∞. From
Eq. (19), and applying the L’Hopital’s rule, it can be obtained the direction of convergence:

lim
t→+∞

∆2(t)

∆1(t)
= lim

∆1→0

− log

(
N−N1e

−∆1

N2

)
∆1

= lim
∆1→0

−N2

(N−N1e−∆1)

N1

N2
e−∆1 = −N1

N2
(20)

This means that O+(β[0])⊂R2 becomes tangent to a straight line of slope −N1/N2, and this

is true for every i.c. β[0].

In order to obtain the fixed points of Eq. 18, for x∈R, let Sx be the straight line with slope
1 and crossing the y-axis at x value:

Sx = {β=[λ, λ+x], λ∈R} (21)
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As the straight line of fixed point to be found is of this type, it will be enough to determine only
its intercept x.

4.1. Main results. The results will be splitted up into those related to convergence and those
related to the Jacobian matrix.

4.1.1. About the convergence. As said before, Conjectures 2.3 and 3.3 can be proven when the
number of classes K=2. The main result can be stated as follow: There exists a unique straight
line of slope 1 built up by fixed points, to which the algorithm converges, for all initialization. In
terms of dynamical systems, this is equivalent to state the following theorems.

Theorem 4.1. Let f be the map defined in (18). Then, there exists a unique b∈R , such that
the fixed point set of f is Sb.

Note that all fixed points are not-isolated, and Sb is an unbounded set.

Theorem 4.2. Let f be the map defined in (18). For all i.c. β[0], there exist a fixed point,

β∗∈ Sb (β∗(β[0])), such that ω(β[0])={β∗}.

Both proofs are developed in Section 4.2.

4.1.2. About the Jacobian matrix. As said before, the eigenvalues and eigenvectors of the Jaco-
bian matrix of a map, evaluated at a fixed point, account for the local dynamics of the system
around that point. A fixed point β∗ of a map f is call hyperbolic, if the Jacobian matrix, Jf (β

∗),
has no eigenvalues, µ in the unit circle. Otherwise, it is called non-hyperbolic. The invariant
spaces, Es, Eu and Ec, of Jf (β

∗), associated to |µ|> 1, |µ|< 1 and |µ|=1, respectively, corre-
spond to the local stable, the local unstable and the local “central” directions, respectively [6,32].

By Lemma 3.4, the two eigenvalues of Jf (β
∗) are, 1 with associated eigenvector 1, and the

other, µ, must verify |µ|<1, so, the fixed points are all of non-hyperbolic type. The eigenvalue 1
is in accordance with the obtaining of non-isolated fixed points [18], and the eigenvector 1 is in
accordance with the direction of the fixed points straight line. Therefore, Eu=∅, Ec=span{1}
and Es=span{v}, where v is the eigenvector associated to µ to be determined. The following
lemma shows some features for the eigen-pair of the Jacobian matrix for the fixed points.

Lemma 4.3. Let β∗∈ R2 a fixed point of f . The eigen-pairs of Jf (β
∗) are (1,1) and (µ,v)

where:

(i) The value of µ and v are the same for all fixed point β∗

(ii) 0 ≤ µ < 1
(iii) v = [N2,−N1]

The proof can be seen in Section 4.2. Fig. 1 illustrate the phase portrait of the local dynamics
near Sb. The eigenvalues and eigenvectors of J(β∗) account for the local dynamics, so every
point β∗ ∈ Sb is stable, which means that there exists a neighborhood of β∗, say B(β∗, ε), for
some ε>0, such that every orbit that enters it, stays there. Besides, as the ε value is the same
for all β∗ (because the Jacobian matrix is), it turns out that the set:

Sb(ε) =
⋃

β∗∈Sb

B(β∗, ε) (22)

is an invariant set for the map f . The set Sb(ε) is nothing but the strip of 2ε-width around Sb,
and the dynamics within it will be characterize by the sign of µ (see Fig. 1).

In order to prove the main results, in the next section we introduce some auxiliary functions
useful in the technical details of the proofs.
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Figure 1. Schematic representation of local stability at a fixed point β∗∈ Sb

within a ball of radius ε centered at β∗, B(β∗, ε). The stability direction Es

(blue line). The direction of Ec matches that of the Sb. The local dynamics is a
replica for each β∗∈ Sb within the 2ε-width strip Sb(ε)

4.1.3. Auxiliary functions and its properties. Let α1, α2 :R→R be the following function:

α1(x) =
1

N1

N∑
i=1

Pi,1

Pi,1+Pi,2 ex
α2(x) =

1

N2

N∑
i=1

Pi,2

Pi,1+Pi,2 ex
(23)

with Pi,k > 0, k = 1, 2, Pi,1+Pi,2 = 1, i = 1, . . . , N . Functions αk(x) are clearly positive and
continuous derivable. Also is easy to see they satisfy the following relation, for x∈R:

N1α1(x) +N2 e
xα2(x) = N (24)

Lemma 4.4. αk(x) are monotone decreasing on x, k=1, 2.

Proof. Indeed, for all x∈R:

α′
1(x)=

1

N1

N∑
i=1

−Pi,1Pi,2 e
x

(Pi,1+Pi,2 ex)
2 < 0 α′

2(x)=
1

N2

N∑
i=1

−P 2
i,2 e

x

(Pi,1+Pi,2 ex)
2 < 0 (25)

□

4.2. Proofs of the main results. Bellow are the proofs of Theo. 4.1, Lemma 4.3 and Theo.
4.2.

The first theorem is about the existence and uniqueness of a straight line, Sx, of fixed points
of f , for some x.

Proof. Theo. 4.1 The strategy is to prove that there exists a unique value b ∈ R, such that
β∗ = [0, b] is a fixed point of f . Thus, by virtue of Corollary 3.2, the straight line Sb is the
desired line (see Eq. (21)). For [0, b] to be a fixed point of f , it has to verify, f

(
[0, b]

)
=[0, b] in

Eq. (18). 
f1
(
[0, b]

)
= − log

(
1

N1

N∑
i=1

Pi,1

Pi,1 e0+Pi,2 eb

)
= 0

f2
(
[0, b]

)
= − log

(
1

N2

N∑
i=1

Pi,2

Pi,1 e0+Pi,2 eb

)
= b

(26)

Using the auxiliary functions αk defined in Eq. (23), this is equivalent to prove that there
exists a unique b∈R, such that α1(b)=1 and α2(b)=e−b.
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Indeed, taking limits for α1(x) when x→−∞ and x→+∞ respectively, it is obtained:

lim
x→−∞

α1(x) = lim
x→−∞

1

N1

N∑
i=1

Pi,1

Pi,1+Pi,2 ex
=

N

N1
> 1 (27)

lim
x→+∞

α1(x) = lim
x→+∞

1

N2

N∑
i=1

Pi,1

Pi,1+Pi,2 ex
= 0 < 1 (28)

The existence follows from the mean value theorem and the uniqueness from the α1 strict
monotony. The proof of α2(b)=e−b comes straight out from (24). □

Note that b is obtained implicitly, and only can be found by numerical methods.

The second theorem is about the global stability of the map f . The strategy is to prove that
Sb is a global attractor set for f .

4.2.1. About the intercepts. For every point β=[β1, β2] ∈ R2 there is a single straight line, Sx,
of slope 1 and intercept, x= β2−β1, that passes through it. This section is devoted to show
that every Sx monotonously approaches to Sb, where b is the intercept of the fixed points line,
previously obtained. Subtracting the equations in (18) and using the auxiliary functions αk of
23, it is obtained:

β
[t+1]
2 −β

[t+1]
1 = log

(
α1

(
β
[t]
2 −β

[t]
1

)
α2

(
β
[t]
2 −β

[t]
1

)) (29)

Thus, for each x∈R, the function:

ϕ(x) = log

(
α1(x)

α2(x)

)
(30)

defines the update of the Sx intercepts, according to the iterations of f . In particular, for the
Sb line of fixed points, this relationship implies:

b = ϕ(b) = log

(
α1(b)

α2(b)

)
(31)

The following lemma shows that the intercepts x monotonously approach to b.

Lemma 4.5.

(i) For x>b: b ≤ ϕ(x) < x
(ii) For x<b: x < ϕ(x) ≤ b

Proof. The right inequality in Lemma 4.5 (i) is fairly straightforward to prove. By Lemma 4.4
and (28), we have α1(x)<1=α1(b), and then, (24) implies exα2(x)>1. Thus, α1(x)<exα2(x),
which is equivalent to the statement (α2(x) > 0).

To obtain the left inequality, we must “split hair”. It is equivalent to prove:

α2(x)

α1(x)
≤ e−b (32)

Let g be a function on x defined as:

g(x) = eϕ(x) =
α2(x)

α1(x)
(33)

Note that g(b) = e−b, via (31). Thus, to obtain (32), all that remains is to prove that g is a
monotone non-increasing function, i.e., g′(x)≤0, for all x>b. This is equivalent to show that:

N1N2

(
α′
2(x)α1(x)− α′

1(x)α2(x)
)
≤ 0 (34)



ON THE STABILITY OF A NON-HYPERBOLIC NONLINEAR MAP 11

By using the expressions of αk and α′
k in 23 and 25:

N1N2 α
′
2(x)α1(x)−N1N2 α

′
1(x)α2(x) = (35)

=

[
N∑
i=1

−P 2
i,2 e

x(
Pi,1+Pi,2 ex

)2
] N∑

j=1

Pj,1

Pj,1+Pj,2 ex

−

[
N∑
i=1

−Pi,1Pi,2 e
x(

Pi,1+Pi,2 ex
)2
] N∑

j=1

Pj,2

Pj,1+Pj,2 ex

 (36)

=
N∑
j=1

N∑
i=1

−P 2
i,2 e

xPj,1 + Pi,1Pi,2 e
xPj,2(

Pi,1+Pi,2 ex
)2(

Pj,1+Pj,2 ex
) = ex

N∑
j=1

N∑
i=1

Pi,2

(
Pi,1Pj,2−Pi,2Pj,1

)(
Pi,1+Pi,2 ex

)2(
Pj,1+Pj,2 ex

) (37)

= ex
N∑
j=1

N∑
i=1

Pi,2

(
Pi,1Pj,2−Pi,2Pj,1

)(
Pj,1+Pj,2 e

x
)(

Pi,1+Pi,2 ex
)2(

Pj,1+Pj,2 ex
)2 (38)

= ex
N∑
j=1

N∑
i=1

−
(
Pi,1Pj,2−Pi,2Pj,1

)2(
Pi,1+Pi,2 ex

)2(
Pj,1+Pj,2 ex

)2 ≤ 0 (39)

The last equality comes from the fact that in Eq. (38), the terms with same subscripts (i= j),
equal zero; and for i ̸= j, by lumping together and adding two symmetric terms on i and j, the
numerators become:

Pi,2

(
Pi,1Pj,2−Pi,2Pj,1

)(
Pj,1+Pj,2 e

x
)
+ Pj,2

(
Pj,1Pi,2−Pj,2Pi,1

)(
Pi,1+Pi,2 e

x
)
= (40)

=
(
Pi,1Pj,2−Pi,2Pj,1

)[
Pi,2

(
Pj,1+Pj,2 e

x
)
−Pj,2

(
Pi,1+Pi,2 e

x
)]

(41)

=
(
Pi,1Pj,2−Pi,2Pj,1

)[
Pi,2Pj,1 + Pi,2Pj,2 e

x−Pj,2Pi,1−Pj,2Pi,2 e
x
]

(42)

= −
(
Pi,1Pj,2−Pi,2Pj,1

)2
(43)

Then, (34) holds, g′(x) ≤ 0 and g(x) ≤ e−b. In an analogous way, it can be proven the same
inequalities corresponding to Lemma 4.5 (ii), for x<b. □

Figure 2. Any unitary slope straight line Sx above the line of fixed points, Sb,
is mapped onto another one, f(Sx) = Sϕ(x) (in blue), placed between them, but
strictly above Sx

The geometrical interpretation of this lemma is the following. Let S↑
b and S↓

b be the semi-
planes located above and below Sb, respectively, then they are invariant sets for f .

Corollary 4.6. If β∈S↑
b , then O+(β)∈S↑

b , and if β∈S↓
b , then O+(β)∈S↓

b .
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Moreover, if x > b (i.e. Sx is placed above Sb), then, Lemma 4.5 states that Sϕ(x) will be
placed between Sx and Sb, but strictly under the first one. This feature can be seen in the Fig.
2.

Proof. Lemma 4.3 Theorem 4.1 states that the fixed point of f are those β∗= [λ, λ+b], λ∈R,
with b the only value that verifies α1(b)=1 and α2(b)=e−b. By Eq.(12) the Jacobian matrix of
f at these points results:

Jb = Jf

(
[λ, λ+b]

)
=


1

N1

N∑
i=1

P 2
i,1

(Pi,1+Pi,2 eb)2
1

N1

N∑
i=1

Pi,1Pi,2 e
b

(Pi,1+Pi,2 eb)2

1

N2

N∑
i=1

Pi,1Pi,2 e
b

(Pi,1+Pi,2 eb)2
1

N2

N∑
i=1

P 2
i,2(e

b)2

(Pi,1+Pi,2 eb)2

 (44)

Note that Jb does not depend on λ, i.e., it is the same for all β∗ ∈ Sb, and so, the same the
eigenvalues and eigenvectors. As a consequence, the local dynamics at one fixed point results in
an exact replica at every β∗. This fact proves item (i).

In order to obtain both, the other eigenvalue µ and its eigenvector v, the matrix entries in
Eq. (44) are written in simplified form by means of the auxiliary functions αk, k=1, 2. Using
Eqs. (13) and (25), the matrix in (44), becomes:

Jb = Jf

(
[λ, λ+b]

)
=

[
1+α′

1(b) −α′
1(b)

1+ebα′
2(b) −ebα′

2(b)

]
(45)

The trace of Jb equals the sum of its eigenvalues, so:

µ = α′
1(b)− ebα′

2(b) (46)

Let h(x) be another auxiliary function on x defined as h(x) = α′
2(x)α1(x) − α′

1(x)α2(x). By
virtue of (34), we have that h(x) ≤ 0 for all x ∈ R. In particular, for x = b, and using that
α1(b)=1 and α2(b)=e−b, it is possible to obtain the sign of µ:

h(b) = α′
2(b)α1(b)− α′

1(b)α2(b) ≤ 0 (47)

α′
2(b)− α′

1(b) e
−b ≤ 0 (48)

α′
2(b) e

b − α′
1(b) ≤ 0 (49)

−µ ≤ 0 (50)

Therefore, item (ii) is proven. As a consequence of µ being non-negative, any trajectory that
approaches Sb from one side does not cross to the other side.

For item (iii), on the one hand, the anti-diagonal entries of Jb in (44) satisfy:

N1J1,2=N2J2,1 (51)

then, the entries of Jb in (45) meet:

−N1α
′
1(b) = N2

(
1+ebα′

2(b)
)

(52)

On the other hand, using the expression of µ in (46) we have:

Es = Nul
(
Jb−µ I

)
= Nul

([
1+ebα′

2(b) −α′
1(b)

1+ebα′
2(b) −α′

1(b)

])
(53)

= span
{
[α′

1(b), 1+ebα′
2(b)]

}
(54)

= span
{
[N2,−N1]

}
(55)

□
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Then, Es = span {v=[N2,−N1]}. Note that, in case that N1 =N2, E
s and Ec =Sb become

orthogonal.

The strategy for proving Theo. 4.2 depends largely on the geometrical interpretation of
Lemma 3.1 which, in the case of two dimensions, means that any unitary straight line is mapped
by f onto another unitary straight line. The idea is to prove that any Sx gets closer and closer
to the fixed line Sb with successive iterations of the map. As they are parallel lines, it is enough
to study only the sequence given by the intercepts x. First, the following auxiliary lemmas will
be useful.

Lemma 4.7. For all x∈R, f (t)(Sx) → Sb, as t → +∞
Proof. Let x∈R, and β=[0, x]. Evaluating f in β in Eq. (18), and using functions αk, we have
that:

f
(
[0, x]

)
=[− logα1(x),− logα2(x)] (56)

so, by Lemma 3.1:
f
(
[0, x]+λ

)
= λ+ [− logα1(x),− logα2(x)] (57)

which, in terms of Eq. (21), means that f(Sx) = Sϕ(x), where ϕ(x) is the function defined in
Eq. (30), i.e., the unitary slope straight line with x intercept, is mapped to the unitary slope
straight line with ϕ(x) intercept (see Fig. 2). Recursively, by applying Lemma 4.3 to ϕ(x)>b,

we have f (2)(Sx)=Sϕ2(x), where ϕ2=ϕ ◦ ϕ, and so on. In other words, for x>b, the sequence of

intercepts, {ϕt(x)}t≥1, is monotone decreasing and:

lim
t→+∞

ϕt(x)=b (58)

The analogous way, if x<b, Sϕ(x) will be placed between Sb and Sx, but strictly above the latter.

Following the previous arguments, the succession {ϕt(x)}t≥1 is monotone increasing and so, it
converges to b. □

As a natural consequence of this lemma, it is possible to say that the orbit of any initial
condition approaches Sb.

Corollary 4.8. For any i.c. β[0], O+(β[0]) → Sb, for t → +∞

Proof. Indeed, any point, β[0]∈R2, β[0]=
[
β
[0]
1 , β

[0]
2

]
belongs to Sx, for x=β

[0]
1 −β

[0]
1 . □

Proof. Teo. 4.2
The latest results show that the line Sb is a global asymptotically stable set for f . However,

in order to demonstrate the convergence of SUCPA algorithm, it is still necessary to show that
the orbit of any i.c. does not approach asymptotically to Sb but, in fact, reaches a point β∗ on it.
Although it is already evident that the asymptotic behavior is ruled out by the local dynamics
illustrated in Fig. 1, we will also give rigorous argument on this point.

Let β[t] and β[t+1] be two consecutive points of O+(β[0]) and ∆k(t) = β
[t+1]
k −β

[t]
k , k = 1, 2,

their increments. Then, the slope of the straight line through β[t] and β[t+1], is ∆2(t)
∆1(t)

.

Proceeding by reductio ad absurdum, if O+(β[0]) where asymptotic to Sb, then the slopes
should approach the unity:

lim
t→+∞

∆2(t)

∆1(t)
= 1 (59)

Indeed, O+(β[0]) cannot cross over the straight line Sb due to Cor. 4.6, and so the “oscillating”
asymptotic approach cannot take place. Finally, Eq. (59) is ruled out by Eq. (19), given that

the possibility for the increments are two: they are both null (∆k(t)=0, and so, β[t]=β[t+1]),

or they are of different sign, so
∆2(t)

∆1(t)
<0, for all t, and this is in contradiction to (59).

Thus, having excluded the asymptotic behavior, there must be a fixed point, β∗∈Sb, to which
the orbit converges, and then, the proof of Theo. 4.2, for K=2, is completed. □
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5. Numerical examples

In this section we present three real-world applications, showing the features proved for the
K = 2 cases and the conjectures made for the K = 3 case. The first two examples correspond
to language models and the third to an image classification application. Implementation details
can be found in the repository of this work2.

5.1. Application to Language models with K=2. The first example corresponds to the
calibration of the posterior probabilities of a language model when it is used as a zero-shot
classifier. Specifically, a generative language model is a function that maps a string of characters
x (the prompt) to a probability distribution PLM (t|x) over a set of tokens V ={t1, . . . , t|V |} (the
vocabulary), which represents the probability of the next token after the input string. Language
models can be used as classifiers by computing the probability that the next token is the one
that represents the class y to be predicted. For instance, we can compute the probability that
the words “positive” or “negative” appear after the sentence “Identify if the next review has a
positive or negative connotation. Review: ‘I love this movie’. Sentiment:”. This is an example
of zero-shot classification because the prompt does not contain examples of correctly classified
phrases. In order to obtain a probability distribution P (yk|x) for each class yk, we compute the
score sk=PLM (wk|x) with a predefined set of tokens (in the example, the words w1 =“positive”
and w2 =“negative”) and then we normalized over all the scores:

P (yk|x) =
sk∑K
k=1 sk

(60)

This is a particularly good use-case scenario because these probabilities produced by the language
model are likely to be uncalibrated. For an extended explanation of this problem, see [12].

One of the families of classification problems are those known as polarity classification and
consists in determining if a given sentence has a positive or negative connotation. For this
experiment, a subset of the SST-2 dataset [28], which contains examples of annotated movie
reviews was used. The number of positive and negative samples was N1=1729 and N2=2271,
respectively. To obtain the class scores, the GPT-2 model [26] was used.

Using the above values of N1 and N2 and the probabilities output by the model, a line Sb of
fixed points with b=−1.39726 is obtained. Fig. 3 shows this line and the orbits of five different

i.c.: β
[0]
1 = [0, 2] (in red), β

[0]
2 = [1.5, 3.5] (blue), β

[0]
3 = [3, 0] (cyan), β

[0]
4 = [4,−1] (green) and

β
[0]
5 = [5, 1] (magenta). It can be appreciated that orbits starting at on one side of the line

Sb, converge to it on the same side, without crossing the semi-planes. Also, Lemma 3.1 and

Corollary 3.2 are illustrated: The blue orbit initialized at β
[0]
2 =β

[0]
1 +λ, i.e. shifted from the red

one (in the straight line direction), converges with the same shift, to β∗
2 =β∗

1+λ. In addition,
the convergence of the algorithm is really fast, managing to converge in at most 5 iterations.

5.2. Application to Language models with K=3. For the second example, we repeat the
same procedure for a classification task with K =3. We choose the MNLI dataset [33], which
contains examples of sentence pairs with textual entailment annotations. Specifically, given a
premise sentence and a hypothesis sentence, the task is to predict whether the premise entails
the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral).
The prompt template used for this task was the following: “Premise: [premise]. Hypothesis:
[hypothesis]. Entailment, neutral or contradiction? Answer:” and the model used to obtain
the probabilities was the same as the first experiment.

In this case, the parameter values are N1 = 1407, N2 = 1298 and N3 = 1295. Fig. 4 shows
the line of fixed points, S(β∗), with direction vector [1, 1, 1]; the orbits of five different i.c.:

β[0] = [1,−1, 1] (red), β[0] = [2,−2, 2] (blue), β[0] = [2.5,−2, 1] (magenta), β[0] = [2.5,−0.5, 1]

(green) and β[0]=[1,−1.5, 1.5] (cyan).

2https://github.com/LautaroEst/sucpa-convergence
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Figure 3. Example with K =2. Orbits of five different i.c.: β
[0]
1 = [0, 2] (red),

β
[0]
2 = [1.5, 3.5] (blue), β

[0]
3 = [3, 0] (cyan), β

[0]
4 = [4,−1] (green) and β

[0]
5 = [5, 1]

(magenta). Only five points of each orbit were plotted due to rapid convergence.
Also the line of fixed points, Sb, with b = −1.39726. The shift vector is λ =
[1.5, 1.5]

As we mention in Conj. 2.3 and 3.3, all i.c. converges to the unique straight line of unitary
slope. This example would seem to indicate that the characteristics shown for K = 2 can be
extended to a greater number of classes. In addition, the convergence of the algorithm is really
fast, managing to converge in at most 5 iterations.

5.3. Application to Image Classification. The final example shows that the features shown
in the previous examples occur in other completely different applications. In this case, a rec-
ognizer of images of dogs and cats was trained on the Asirra dataset [11] obtained from the
Dogs-vs-Cats Kaggle competition website3. Here, the pretrained ResNet-18 [16] model was fine-
tuned on 80% of the training data and validated on the rest. A final accuracy of 0.98 on the
validation split was obtained after one epoch using Adam optimization with defaults parameters,
a learning rate of 1e-4 and batch size of 64.

In this case, the parameter values are N1=10053, N2=9947, and b=−0.03465 is obtained.
Fig. 5 shows the line of fixed points and the orbits of different i.c. The same conclusions as
in the previous cases can be seen in this example with the difference that up to 200 steps were
needed to achieve convergence.

6. Conclusions

In this work we proved several convergences properties of SUCPA, a calibration algorithm
described by a non-hyperbolic map with a non-bounded set of non-isolated fixed points. Among
them it is worth highlighting, on the one hand, the main results: Corollary 3.2 and Lemma 3.4.

3https://www.kaggle.com/c/dogs-vs-cats
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Figure 4. Example with K = 3. Orbits of five different i.c.: β[0] = [1,−1, 1]

(red), β[0] = [2,−2, 2] (blue), β[0] = [2.5,−2, 1] (magenta), β[0] = [2.5,−0.5, 1]

(green) and β[0]=[1,−1.5, 1.5] (cyan). Five points of each orbit are plotted. Also
the line of fixed points, S(β∗)

The first one establishes that if there exists a fixed point, then, all points in the straight line of
direction [1, . . . , 1] and passing through it must be also fixed points of the map (an unbounded
set of non-isolated fixed points); while the second one shows that the Jacobian matrix of the
system is a regular transition probability matrix (for all β∈RK) which makes it a non-hyperbolic
problem.

On the other hand, stronger conclusions were proved for the two–classes case by means of
Theo. 4.1 which proves the existence and uniqueness of the fixed points straight line, and Theo.
4.2 which shows that every i.c. converges. These results seem to be valid for the general case, but
it remains as future work to prove it formally. Additionally, interesting real-world application
examples were presented in language models and image classification for which all the mentioned
results are experimentally corroborated.

Another possible study to continue this work is the sensitivity of the priors. SUCPA algorithm
greatly degrades its performance when the proportion of labels is poorly estimated. Perhaps
this phenomenon can be explained from the point of view of convergence, studying how the fixed
points change according to variations in the Nk values. This sensitivity analysis is under study
and will be reported elsewhere.
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Figure 5. Example with K=2 in an image classification task. Orbits of eight
different i.c. are plotted. At least 200 points of each one were needed to reach
the corresponding limit point β∗
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