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SINGULAR LIGHT LEAVES

BEN ELIAS, HANKYUNG KO, NICOLAS LIBEDINSKY, AND LEONARDO PATIMO

Abstract. For any Coxeter system we introduce the concept of singular light

leaves, answering a question of Williamson raised in 2008. They provide a
combinatorial basis for Hom spaces between singular Soergel bimodules.
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1. Introduction

1.1. Subject of the paper and motivation. The Hecke category H(W ) is a
graded additive monoidal category whose Grothendieck group is isomorphic to the
Hecke algebra H(W ) of a Coxeter group W . When W is a Weyl group, H(W ) acts
monoidally on the regular block of the Bernstein–Gelfand–Gelfand category O, on
the category of perverse sheaves on the flag variety, and on related categories in
modular representation theory. In this way H(W ) serves as a link between repre-
sentation theory and geometry, and plays a central role in geometric and modular
representation theory. A more sophisticated but no less ubiquitous object, the sin-
gular Hecke (2-)category SH(W ) is a graded additive 2-category whose objects are
the finite parabolic subgroups of W . It acts on singular blocks of category O, and
on perverse sheaves on partial flag varieties. In affine type it is the setting for the
geometric side of the geometric Satake equivalence.

Though SH is defined similarly toH, and even containsH (as the endomorphism
category of the trivial parabolic subgroup), it feels quite different in practice. The
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viewpoint of SH is more “zoomed in” than the ordinary Hecke category, with
objects and morphisms constructed at the atomic rather than the molecular level.

The Hecke category was given an algebraic construction using bimodules over
polynomial rings by Soergel [Soe92], [Soe07]. Then it was given a diagrammatic
presentation (via generators and relations) by Elias–Williamson [EW16] following
earlier work in special cases by Elias, Khovanov, and Libedinsky [Eli16], [EK10],
[Lib10]. Just as for categorified quantum groups, diagrammatics has paved the
way for a number of advances in the field, both computational and abstract. Ex-
amples include [EW14; Wil17; RW18; LW18]. It is a natural goal to extend this
diagrammatic technology to SH.

The singular Hecke category was given an algebraic construction by Williamson
[Wil11], and its objects are known as singular Soergel bimodules. The technology
to frame a diagrammatic presentation was produced in [ESW17], defining a 2-
category by generators and relations and an evaluation 2-functor F to singular
Soergel bimodules. As discussed in [ESW17], the 2-functor F is not faithful, and the
category from [ESW17] is missing many relations. A complete presentation is still
lacking outside of special cases1. Already there have been numerous applications
of this partial diagrammatic presentation, see e.g. [EL17b; Eli17].

Let us note that these diagrammatic 2-categories2 technically only form a full
sub-2-category of the (singular) Hecke category. They encode morphisms between
certain bimodules in H or SH called (singular) Bott–Samelson bimodules. One
obtains the entire (singular) Hecke category by taking the idempotent completion.

A crucial tool for studying the Hecke category is the double leaves basis, intro-
duced by Libedinsky [Lib08], [Lib15] in the context of algebraic Soergel bimod-
ules. Libedinsky proved that double leaves give a basis for Hom spaces between
Bott–Samelson bimodules (when Soergel’s Hom formula holds, see Section 1.2). In
[EW16], a diagrammatic construction of the double leaves morphisms was given,
followed by a convoluted proof that double leaves always span the diagrammatic
category. Combining these facts, [EW16] deduces that the functor from diagram-
matics to bimodules is an equivalence (when Soergel’s Hom formula holds).

Let us summarize once more the ingredients used in the Elias–Williamson con-
struction of, and proof of correctness of, the diagrammatic presentation of H.

(1) Diagrammatics for generating morphisms and some basic relations (e.g.
Frobenius relations).

(2) An evaluation functor to bimodules.
(3) The double leaves basis for morphisms between Bott–Samelson bimodules.
(4) A diagrammatic description of double leaves morphisms (they are linearly

independent in the diagrammatic category because the evaluation functor
sends them to a basis).

1For existing presentations in special types, see: dihedral type [Eli16], universal type [EL17a],
affine A2 [Eli17, Appendix]. For a partial presentation in type A building on unfinished work
of Elias–Williamson, see [EL17b, Section 2.4]. For further discussion on the status of singular
diagrammatics see [EMTW20, Chapter 24]. For a presentation of a category that is a quotient of
type A singular Soergel bimodules (but in a different language) see [QR16].

2Because we often want to compare H and SH in the same sentence, we refer to both as

2-categories, viewing the monoidal category H as a 2-category with one object. Otherwise, the
grammar of comparing a category to a 2-category becomes too difficult. We also do not distinguish
in the introduction between 2-categories, where composition of 1-morphisms is associative, and
bicategories, where composition is only associative up to natural isomorphism.
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(5) Additional relations (e.g. Jones–Wenzl relations, Zamolodchikov relations)
for the diagrammatic presentation, robust enough to achieve the next point.

(6) A diagrammatic proof that double leaves span all diagrams.

As discussed above, the first two ingredients are provided for SH in [ESW17].
The goal of this paper is to diagrammatically produce singular double leaves,

and prove that (after applying the evaluation functor) they provide a basis for
Hom spaces between singular Bott–Samelson bimodules in SH (when Williamson’s
Hom formula holds).3 These are the third and fourth ingredients above. We hope
to find the last two ingredients in future work.

One of the major motivations for the double leaves basis of H is that it is a cel-
lular basis, equipping the Hecke category with the structure of an (object-adapted)
cellular category, see [EL16]. For the reader new to cellular bases, one can think of
them as bases consisting of morphisms which factor in a nice way through distin-
guished objects; §1.2 will explain what they feel like, if not the precise details. The
double leaves basis allows for (relatively) efficient computations of local intersection
forms. These bilinear forms, which agree with the cellular forms, control decom-
positions [EMTW20, Cor. 11.75] of objects in both the Hecke category and in the
interesting categories on which the Hecke category acts. Computations of local
intersection forms allowed Williamson to disprove the expected bounds in Lusztig’s
conjecture [Wil17].

The singular double leaves basis of SH is not quite a cellular basis, but it is
something very close, a fibered cellular basis [EL16, Def. 2.17]. It is equally useful
for computing local intersection forms. Preliminary computations in affine type A
suggest that our singular double leaves basis is related to the double ladders basis
of [Eli15] after applying the geometric Satake equivalence, thus identifying certain
local intersection forms in SH with those appearing in the representation theory of
quantum groups. A formula for these local intersection forms was conjectured in
[Eli15, Conjecture 1.20], and has been proven in [MS22].

1.2. Light leaves and the Hom formula. The construction of the double leaves
basis is motivated by Soergel’s Hom formula, as we now explain. In the next section,
we discuss the singular setting, but for now, we stick to the ordinary Hecke category
H, i.e. Soergel bimodules.

Suppose B and B′ are two Soergel bimodules, which categorify elements b and
b′ in the Hecke algebra H . Soergel’s Hom Formula states that the graded rank of
Hom(B,B′) as a free left (or right) R-module is equal to the standard pairing (b, b′)
in H (see Definition 3.13 in [EMTW20]). There is a trick to compute this pairing
when b or b′ is self-dual under the Kazhdan–Lusztig involution: we can pretend
that the standard basis of H is orthonormal, see [EMTW20, Lemma 3.19]. Letting
{hx}x∈W denote this standard basis, we have

(1) b =
∑

cxhx, b′ =
∑

c′xhx, grkHom(B,B′) =
∑

cxc
′
x.

This suggests the following route for constructing an R-basis of Hom(B,B′). For
each x ∈W we define a cx-dimensional space of maps from B to some special object
Xx, and a c′x-dimensional space of maps from Xx to B′. By composition, we get a

3A diagrammatic description of a bases between indecomposable objects in the special case of
Grassmannian has been provided in [Pat22], albeit using a different parametrization from the one
in the present paper.



SINGULAR LIGHT LEAVES 5

subspace of Hom(B,B′), hopefully with dimension cxc
′
x. Taking the union over all

x, we may get a basis for Hom(B,B′). Note that cx, c
′
x are elements of Z[v, v−1],

representing graded dimensions rather than ordinary dimensions.
Let HBS ⊂ H denote the full subcategory of Bott–Samelson objects. Every ob-

ject in H is a direct summand of (a direct sum of grading shifts of) Bott–Samelson
objects. By describing all morphism spaces in HBS, we can use the Karoubi en-
velope construction to describe morphism spaces in H. So we focus on (1) as it
applies to Bott–Samelson objects BS(w), which are associated to expressions w.
An expression is a sequence of simple reflections, and its terminus is the product
of those reflections, an element of W . If w = (s1, . . . , sd) then

BS(w) = BS(s1)⊗ · · · ⊗ BS(sd).

The Deodhar defect formula gives a concrete formulation for how [BS(w)] can
be expressed in the standard basis:

(2) [BS(w)] =
∑

e⊂w

vdef(e)hterm(e).

This is a sum over all subexpressions e of w. Each subexpression contributes a
power of v times hx, where x is the terminus of the subexpression. The exponent
of v is the defect of the subexpression. See [EMTW20, Section 3.3.4] for details.

Thus one expects to construct a basis for morphisms between Bott–Samelson
objects by constructing a special morphism BS(w) → Xx for each subexpression
of w with terminus x, whose degree matches the defect of the subexpression. This
morphism is called a light leaf. Applying a duality functor to a light leaf BS(w′) →
Xx, we obtain a map Xx → BS(w′) called an upside-down light leaf. By composing
light leaves with upside-down light leaves, one obtains the double leaves basis for
Hom(BS(w),BS(w′)).

Now the Bruhat order enters the story. For any set of objects in a category, the
set of all linear combinations of morphisms factoring through those objects form
an ideal. Our objects {Xx}x∈W are chosen so that the ideal Hom<x of morphisms
which factor through {Xy}y<x agrees with the span of double leaves associated
to y for y < x. Moreover, End(Xx)/End<x(Xx) is spanned by the identity map.
This behavior is what makes the category an (object-adapted) cellular category
(see [EL16, Lemma 2.8]). Note that Hom<x also has an independent definition in
terms of the support of bimodules and bimodule maps (see [EKLP23b, Prop 3.25]).

The object Xx which is the target of a light leaf can be taken to be BS(x), asso-
ciated to a reduced expression x for x. There are many such reduced expressions,
though all are related by the braid relations. For each braid relation x → x′, H
has a morphism BS(x) → BS(x′), called an elementary rex move. An example is
the 2m-valent vertex from [EW16]. A rex move is a composition of elementary rex
moves along a sequence of braid relations. Rex moves descend to isomorphisms
modulo the ideal Hom<x. This permits us the flexibility to choose a different re-
duced expression x for each subexpression with terminus x. This flexibility is crucial
to the algorithm which constructs light leaves. When composing light leaves with
upside-down light leaves, the sources and targets may not match, but we use rex
moves to go between them. Changing the choices of reduced expressions or the
choices of rex moves will change the light leaves and the double leaves basis, but
in a well-understood upper-triangular fashion. In this way, the theory of reduced
expressions and braid relations enters the story.
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Let us explain the construction of light leaves. Deodhar’s definition of the defect
analyzes expressions and subexpressions one index at a time, viewing a subexpres-
sion as instructions for a stroll around the Bruhat graph. Correspondingly, light
leaves are constructed inductively, one index at a time.

Let w = (s1, . . . , sm) be an expression in S, and e = (e1, . . . , em) ∈ {0, 1}m be a
subexpression (or rather, the function which records which elements si are included
in the subexpression). Let (x1, . . . , xm) be the sequence of elements in W followed
by the Bruhat stroll of e, i.e. xi := se11 · · · seii . After k steps, we have constructed a
map

LLk : BS(s1, . . . , sk) → Xxk
.

To construct the next step, we only need to produce a single-step light leaf, a map

SLLk : Xxk
⊗ BS(sk+1) → Xxk+1

depending on ek+1, whose degree matches Deodhar’s formula for the contribution
of this step to the overall defect. Then we set

LLk+1 = SLLk ◦ (LLk ⊗ idBS(sk+1)).

The possible single-step light leaves one must construct are parametrized by the
triple (xk, sk+1, ek+1) in the large set W × S × {0, 1}. An incredible amount of
efficiency is gained by the next observation, which reduces to the case when W has
type A1. In type A1 there are only four possibilities, called elementary light leaves.
The observation is trivial but we state it anyway. For a, b, c ∈ W write a.b = c if
one obtains a reduced expression for c by concatenating reduced expressions for a
and b.

Lemma 1.1. Suppose that x = ys for x, y ∈W and s ∈ S. Then there exist z ∈W
with z < zs in the Bruhat order and {u, v} = {1, s} such that x = z.u and y = z.v.

Now we apply the observation with x = xk and s = sk+1. Let z and u be as in
the lemma. Then set

SLLk = idXz
⊗f,

where f is the elementary light leaf associated to the triple (u, sk+1, ek+1) in type
A1 (the parabolic subgroup generated by sk+1).

Again, this reduction to type A1 is possible because we can choose reduced
expressions at will. In particular, we can choose reduced expressions for xk and
xk+1 starting with z. At the (k + 2)-nd step this algorithm may necessitate a
different reduced expression for xk+1, and we go between them using rex moves.

1.3. Singular light leaves. All the moving parts from 1.2 have analogs for the
2-category of singular Soergel bimodules SH, with the combinatorics of elements
of W replaced by the combinatorics of double cosets. However, there are many
additional surprises. We give the construction of singular light leaves in Section 7.
Singular light leaves are constructed, as in the regular case, by categorifying the
singular Deodhar formula given in Corollary 3.7.

The theory of reduced expressions for double cosets was developed greatly by
the first two authors [EK23]. They introduced the singular braid relations between
reduced expressions, and proved the singular Matsumoto theorem, stating that any
two reduced expressions for the same double coset are related by braid relations. In
this paper, we construct a morphism between singular Bott–Samelson bimodules
for each braid relation, called a (singular) elementary rex move. By applying rex
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moves, we can go between any two Bott-Samelson bimodules for different reduced
expressions for the same double coset.

As before, flexibility in the choice of reduced expressions allows one to reduce
the construction of single-step light leaves to a more manageable collection of ele-
mentary light leaves. In Theorem 2.6 we prove an analogue of Lemma 1.1, thanks
to which it suffices to construct elementary light leaves for pairs of cosets called
Grassmannian pairs (see Definition 2.7). Grassmannian pairs can be associated to
each finite parabolic subgroup (not just those of rank 1) and there can be many
more than four of them. The elementary light leaves themselves are substantially
more complicated than in the non-singular setting, e.g. (124), but still tractable.

A new phenomenon is that one needs to sprinkle polynomials inside the diagrams
to define singular light leaves, accounting for the “polynomial factors” which appear
in the singular Deodhar formula. In the ordinary setting, the endomorphism ring
of Xx, modulo lower terms, is the polynomial ring R. All such endomorphisms
can be realized using the left action of polynomials, whence double leaves form a
basis over this left action. In the singular setting, the corresponding endomorphism
ring (modulo lower terms) will vary as the double coset varies, and the left action
of polynomials is not sufficient to generate the endomorphism ring. Polynomials
within the diagram are thus unavoidable. To avoid further confusion, we chose to
place polynomials in the middle of our double leaves as well. Our basis is a basis
of morphisms as a vector space, not as a module over a polynomial ring.

These polynomial sprinkles have a different flavor than anything before, and
bring algebra (joining combinatorics) back into the analysis of light leaves. For
this purpose we developed the theory of Demazure operators for double cosets
[EKLP23a] and the theory of singular Bruhat order [EKLP23b] in previous work.

The main result of this paper is Theorem 7.49. It says that an appropriate set
of singular double leaves is a basis for each 2-morphism space in SH. We also
prove (Theorem 7.51) that different choices of singular double leaves bases (e.g. for
different choices of reduced expressions) are related by an upper-triangular change
of basis matrix. Finally, we confirm (Theorem 7.52) that our basis does equip SH

with the structure of a fibered cellular 2-category.

1.4. Outline of the paper. Part 1 of the paper is primarily a condensed recol-
lection of background material from a variety of sources, but has some new results.

In Section 2 we recall the theory of reduced expressions for double cosets from
[EK23]. The notation introduced here will be used throughout the paper. Starting
with Section 2.3 we present new results, including the reduction to Grassmannian
coset pairs.

In Section 3 we recall the Hecke algebroid from Williamson’s thesis [Wil11]. We
describe the singular Deodhar formula in Section 3.3, which contains some new
material.

In Section 4 we recall the theory of singular Soergel bimodules from Williamson’s
thesis [Wil11]. In Section 4.5 we recall results from [EKLP23b] about various ideals
of lower terms.

In Section 5 we recall the diagrammatic calculus for singular Soergel bimodules,
introduced in [ESW17], and review the basics of Frobenius extensions.

Part 2 of the paper contains almost entirely new constructions and results, lead-
ing up to the construction of double leaves morphisms.
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In Section 6, we define morphisms associated to the braid relations, and prove
that certain of these morphisms are isomorphisms, and others are inclusions and
projections for a direct summand.

In Section 7 we describe the algorithm to construct light leaves and double leaves
morphisms, and we give many examples. The algorithm is complex enough that
we split it into several stages and substages that introduce different aspects of the
complexity. We state our main results in Section 7.10.

Finally, Section 8 contains the proofs of all the results stated in Section 6 and
Section 7. A crucial technique in these proofs is the identification of certain ele-
ments within singular Bott-Samelson bimodules on which light leaf morphisms can
be nicely evaluated. These elements are indexed by dual sequences, a new combina-
torial construction associated to paths of double cosets. Dual sequences are used to
define a total order on light leaves and a partial order on double leaves. We develop
the combinatorics of dual sequences in Section 8.7, and it should have independent
interest.

1.5. Acknowledgements. We would like to thank Geordie Williamson for many
helpful discussions across the years, and for writing a helpful erratum to his article
on singular Soergel bimodules. BE was partially supported by NSF grant DMS-
2201387, and appreciates the support given to his research group by NSF grant
DMS-2039316. NL was partially supported by FONDECYT-ANID grant 1230247.
HK was partially supported by Swedish Research Council.

New leaves sprouted during production: Clara and Gael

Part 1. Background material and Grassmannian reduction

2. Double cosets, expressions, and Grassmannian pairs

The first two sections recall concepts from [EK23], and we refer to that paper
for examples. The rest is largely new.

2.1. Expressions for double cosets. We fix a Coxeter system (W,S), and write ℓ
for the length function. For I ⊂ S, we denote by WI the subgroup of W generated
by I. When WI is finite, we say that I is finitary, we write wI for the longest
element of WI , and we set ℓ(I) := ℓ(wI).

For I, J ⊂ S, an (I, J)-coset is an element p in WI\W/WJ . When we discuss p
we really mean the triple (p, I, J). It might happen that (p, I, J) 6= (p′, I ′, J ′), even
though p = p′ as subsets of W , and we distinguish between p and p′ in this case.
If p is an (I, J)-coset we denote by p ∈ W and p ∈ W the maximal and minimal
elements in the Bruhat order in the set p. We define a length function on double
cosets by the formula

(3) ℓ(p) = 2ℓ(p)− ℓ(I)− ℓ(J).

A (singular) multistep expression is a sequence of finitary subsets of S of the
form

(4) L• = [[I0 ⊂ K1 ⊃ I1 ⊂ K2 ⊃ · · · ⊂ Km ⊃ Im]].

The length of the multistep expression L• is

(5) ℓ(L•) := −ℓ(I0) + 2ℓ(K1)− 2ℓ(I1) + 2ℓ(K2)− · · ·+ 2ℓ(Km)− ℓ(Im).
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Equalities are permitted, e.g. K1 = I1 is allowed. When we write a multistep
expression as [[K1 ⊃ I1 ⊂ · · · ]] we mean that I0 = K1. Similarly, [[· · · ⊂ Km]]
means that Im = Km. We call L• an (I, J)-expression if I0 = I and Im = J .

We say that L• as above is a reduced expression for an (I0, Im)-coset p if

(6) p = wK1w
−1
I1
wK2w

−1
I2

· · ·wKm
w−1

Im
and ℓ(p) = ℓ(L•).

We write L• ⇌ p when L• is a reduced expression for p. The notation ⇌ is also
used for non-reduced expressions; we will not have occasion to do so in this paper,
nor will we discuss which cosets are expressed by non-reduced expressions.

Notation 2.1. Let p be a (I,K) coset, q be a (I, J)-coset, and r be a (J,K) coset.
We write p = q.r when a reduced expression for q concatenates with a reduced
expression for r to yield a reduced expression for p.

Similarly, if x, y, z ∈W we write x = y.z if x = yz and ℓ(x) = ℓ(y)+ℓ(z). This is
equivalent to the expected statement about concatenations of reduced expressions.

For L ⊂ S and s ∈ S we use the notation Ls to denote L ∪ {s} when s /∈ L. A
(singular) singlestep expression I• = [I0, I1, . . . , Id] is a sequence of finitary subsets
of S such that, for all 1 ≤ i ≤ d, either Ii = Ii−1s or Ii = Ii−1 \ s for some s ∈ S.
We may also record a singlestep expression as e.g. I• = [I0+s+u− t+ t . . .], which
would indicate that I1 = I0s, I2 = I1u, I3 = I2 \ t, etcetera.

A singlestep expression is a particular kind of multistep expression. To each
singlestep expression, one can also associate a coarser multistep expression by re-
membering its local maxima and minima.

Throughout this paper, ordered lists could come in parentheses as in (s1, s2, . . .),
or in brackets like I•, or in double brackets as in (4). The delimiter indicates the
context; e.g., lists in single brackets are associated to a singlestep expression.

Notation 2.2. Let I, J ⊂ S and s ∈ S with I and Js finitary. Let q be an (I, Js)-
coset and p be an (I, J)-coset, with p ⊂ q. We call {p, q} a coset pair for (I, J, s).
We also refer to the sequences [p, q] and [q, p] as coset pairs, and disambiguate by
writing p ⊂ q.

Definition 2.3. Fixing I• = [I0, I1, . . . , Id], suppose that tk is an (I0, Ik)-coset for
0 ≤ k ≤ d. We say that t• = [t0, . . . , td] is a subordinate path of I•, and we write
t• ⊂ I•, if t0 contains the identity element, and [tk, tk+1] is a coset pair for (I0, J, s)
for all 0 ≤ k ≤ d− 1. Here, J (resp. Js) is either Ik or Ik+1, whichever is smaller
(resp. bigger).

The terminus of the subordinate path is the final (I0, Id)-coset term(t•) = td.
Two subordinate paths t•, u• ⊂ I• are called coterminal if they have the same
terminus, i.e. td = ud.

Paths subordinate to an expression I• are the coset analogue of subexpressions,
and the sequence t• is analogous to the Bruhat stroll of [EW16, Section 2.4].

Definition 2.4. Let I, J ⊂ S be finitary and p ∈ WI\W/WJ and let I• be an
(I, J)-expression. We write p ≤ I• if there is some path t• subordinate to I• with
p = term(t•). If I• is an expression for q (not necessarily reduced) and p ≤ I• then
we write p ≤ q. In [EKLP23b, Theorem 2.16] it is proven that this definition is
independent of the choice of expression for q, and defines a partial order on double
cosets called the Bruhat order. Moreover, it agrees with other definitions of the
Bruhat order (cf. [Wil11, §2.1]), e.g. p ≤ q if and only if p ≤ q.
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2.2. Redundancy. Let p be a (I, J) coset. Let

(7) LR(p) := I ∩ pJp−1, RR(p) := J ∩ p−1Ip = p−1 LR(p)p,

and call these the left and right redundancy of p. These redundancy sets and the
subgroups they generate are of crucial importance in this paper. When no confusion
is possible we will use the abbreviation LR for LR(p) and RR for RR(p).

The following gives a good intuition for what redundancy is, and the proof is
trivial. If s ∈ I and t ∈ J are simple reflections such that sp = pt, then s ∈ LR(p)
and t ∈ RR(p).

Example 2.5. In this example, W is the symmetric group S11, andWJ
∼= S8×S3.

We set WI = S2 × S5 × S1 × S2 × S1, and let m be the double coset with minimal
element depicted below on the left.

(8)

The boxes represent WJ (on the bottom) and WI (on the top). The red lines on
the right indicate simple reflections that were removed from I or J to reach the
redundancy. As can be seen, the redundancy keeps track of which strands are in
the same box in both bottom and top.

We frequently use the following consequence of Howlett’s theorem, see [EK23,
Lemma 2.12, (2.8)]: for any (I, J)-coset p we have

(9) p = wI .p.(w
−1
RRwJ ) = (wIw

−1
LR).p.wJ .

2.3. Reduction to Grassmannian pairs. In this section, we state the analog for
double cosets of Lemma 1.1 from the introduction.

Theorem 2.6. Let p ⊂ q be a coset pair for (I, J, s). Let RQ = RR(q), and let n be
the (RQ, Js)-coset whose underlying set is WJs. Then there exists an (I,RQ)-coset
z and a (RQ, J, s) coset pair m ⊂ n such that

(10) z.m = p, z.n = q.

More precisely, m,n and z are determined by

(11) q.m = p, n = id, z = q.

We give more properties of m,n, and z in Proposition 2.9. First, we discuss
what makes the pair m ⊂ n manageable: it is a Grassmannian pair.

Notation 2.7. Let m ⊂ n be an (I, J, s) coset pair. We call it a (right) Grass-
mannian pair if I ⊂ Js and n is the (I, Js)-coset containing the identity.

To elaborate, for a Grassmannian pair, the underlying set of n is the entire par-
abolic group WJs, and m ⊂WJs. By [EK23, Lemma 5.21], any reduced expression
for m or n only involves subsets of Js. For all practical purposes, we can assume
that S = Js (which is finitary) for the purpose of studying m ⊂ n. In this case,
J ⊂ Js is a maximal parabolic subgroup. When WJs is the symmetric group, any
minimal representative for a coset WJs/WJ is a Grassmannian permutation. In
particular, m is a Grassmannian permutation, which motivated our choice of name.
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Example 2.8. This is an example within the symmetric group S21, where

WI = S3 × S7 × S1 × (S2)
×4 × S1 × S1, WJ = S4 × S8 × S3 × (S1)

×6.

The simple reflection s = s12 merges S8×S3 into S11. The (I, J, s) coset pair p ⊂ q
is below.
(12)

p = ⊂ q =

Below we factor these cosets as p = z.m and q = z.n. The parabolic subgroup
in the middle is WRQ for RQ = RR(q).

(13) ⊂

In both pictures, the coset above the middle is z, while the coset below is m on the
left, and n on the right. Note that n = id. Meanwhile, m is not the identity, but it
is the identity away from the most interesting 11 strands.

In [EK23, Section 4.10], techniques are given for discussing double cosets in
products of Coxeter systems. One can view both m and n as an “external product”
of double cosets mC ⊂ nC for each connected component C of Js. For only one
of these connected components is there a difference between mC and nC , namely
the component Cs containing s. On this component, the coset mCs

agrees with the
coset in Example 2.5. It is mCs

which is a Grassmannian permutation in the usual
sense of the name.

For other connected components, the cosets mC = nC contain the identity but
need not be trivial (i.e. length zero). For example, if C is the leftmost connected
component generating S4 then mC = nC has a reduced expression [{s2}+ s1 + s3].
Thus bothm and n have a reduced expression beginning with [RQ+s1+s3], merging
the initial S1 × S2 × S1 into S4.

The additional facts given in the next proposition are needed in the construction
of the double leaves basis §7.

Proposition 2.9. Let us continue with the terminology of Theorem 2.6. The coset
n has a reduced expression [[RQ ⊂ Js]], and n = wJs. The coset z satisfies z =
wI .z. We have

(14) LR(n) = RR(n) = RR(z) = RR(q) = RQ, RR(m) = RR(p).

The left redundancy of p lives inside I, while the left redundancy of m lives inside
RQ; instead of being equal, these redundancies are conjugate:

(15) LR(m) = q−1 LR(p)q.
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2.4. Proof of reduction to Grassmannian pairs. Several times in the proof
we tacitly use that x ∈ W is minimal in its (I, J)-coset if and only if its left descent
set LD(x) intersects I in the empty set, and its right descent set RD(x) intersects
J in the empty set (see [EK23, Lemma 2.12(5)]).

Proof of Theorem 2.6 and Proposition 2.9. That n = wJs and that [[RQ ⊂ Js]] is
a reduced expression for n follow immediately from the definitions. Since n is the
identity and RQ ⊂ Js, it is obvious that LR(n) = RR(n) = RQ.

Let LQ = LR(q). Let z be the (I,RQ)-coset containing q. Then q is minimal
in z, because its left descent does not intersect I, and its right descent does not
intersect Js, and RQ ⊂ Js. So q = z. Therefore we have
(16)
RR(z) = RQ∩z−1Iz = (RQ∩Js) ∩ q−1Iq = RQ∩(Js ∩ q−1Iq) = RQ∩RQ = RQ .

By (9) we deduce that

(17) z = wI .z.(w
−1
RQwRQ) = wI .z.

Let n be the (RQ, Js)-coset containing id, with underlying set WJs. Using (9)
and z = q and (17) we have

(18) q = wI .q.(w
−1
RQwJs) = (wI .z).(w

−1
RQwJs) = z.(w−1

RQwJs).

By [EK23, Proposition 4.3], this implies q = z.n.
By [EK23, Lemma 2.15], there exists y ∈WJs such that

(19) p = q.y.

We claim that y is minimal in its (RQ, J)-coset. Note that RD(y) ⊂ RD(p), see
[EK23, Lemmas 2.3 and 2.5]. But RD(p) ∩ J = ∅, and thus the same is true for y.
(In particular, RD(y) ⊂ {s}.) Now we show that LD(y)∩RQ = ∅. If t ∈ LD(y)∩RQ
then

(20) qtq−1 ∈ LD(q.y) ∩ qRQ q−1 = LD(p) ∩ LQ .

But LD(p) ∩ LQ is empty, since LQ ⊂ I and p is minimal in its (I, J)-coset.
Let m be the (RQ, J)-coset containing y. Since y ∈ WJs and RQ, J ⊂ Js, we

have m ⊂ WJs = n. By the previous paragraph, we have m = y. We claim that
z.m = p. By [EK23, Proposition 4.3], it suffices to prove the equality

(21) p = z.(w−1
RQm).

Using (17) to rewrite z and (9) to rewrite p and w−1
RQm, (21) is equivalent to

(22) wI .p.(w
−1
RR(p)wJ) = wI .q.m.(w

−1
RR(m)wJ ).

Since p = q.m, it remains to prove that

(23) w−1
RR(p)wJ = w−1

RR(m)wJ .

This is equivalent to RR(m) = RR(p), which states that

(24) J ∩m−1 RQm = J ∩ (m−1q−1Iqm).

Kilmoyer’s theorem (see [EK23, Lemma 2.14]) states that

(25) RQ = Js ∩ q−1Iq =WJs ∩ q
−1Iq.
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Thus

(26) mJm−1 ∩ RQ = mJm−1 ∩WJs ∩ q
−1Iq = mJm−1 ∩ q−1Iq.

The last equality holds since mJm−1 is already contained in WJs. Conjugating by
m, (26) implies (24).

It remains to prove (15). Above we proved that RR(p) = RR(m). Thus,

(27) LR(p) = pRR(p)p−1 = qmRR(m)m−1q−1 = q LR(m)q−1,

as desired. �

2.5. The core of a double coset. To place Theorem 2.6 in context, we recall
the notion of the core. Let p be an (I, J)-coset with left redundancy LR and right
redundancy RR. In [EK23, Proposition 4.28] it is proven that

(28) p = [[I ⊃ LR]] . pcore . [[RR ⊂ J ]]

for some (LR,RR)-coset called the core of p. An illustrative example is below.
Said another way, p has a singlestep reduced expression

(29) [I, . . . ,LR, . . . ,RR, . . . , J ]

which begins by removing the elements of I \ LR one by one and ends by adding
the elements of J \RR. The internal subword [LR, . . . ,RR] is a reduced expression
for pcore. By [EK23, Def. 4.26 and Prop. 4.28] we have that LR(pcore) = LR,
RR(pcore) = RR, and p = pcore.

One also has

(30) pcore = wLR.p
core = pcore.wRR,

(31) p = (wIw
−1
LR).p

core.(w−1
RRwJ ).

The equalities above are not found in [EK23] but can be proven quickly with (9).
Returning to the setup of Theorem 2.6, where n has reduced expression [[RQ ⊂

Js]], it is easy to deduce that

(32) q = [[I ⊃ LQ]] . qcore . n, z = [[I ⊃ LQ]] . qcore.

To conclude, the factorization of the coset pair p ⊂ q into z times a Grassmannian
coset pair m ⊂ n is compatible with the reduced expression of q which factors
through its core. The existence of reduced expressions factoring through the core
will also play a crucial role in the construction of light leaves in §7.

Example 2.10. We continue Example 2.5. Recall that m is the double coset with
minimal element depicted below on the left.

(33)

The picture on the right represents mcore.
A reduced expression for mcore is (see Remark 2.11)

(34) mcore
⇌ [LR(p)+s2−s4+s7−s6+s5−s5+s8−s8+s6−s7+s10−s9+s8−s8].
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Thus a reduced expression for m is

m⇌[I − s1 − s5]◦

[+s2 − s4 + s7 − s6 + s5 − s5 + s8 − s8 + s6 − s7 + s10 − s9 + s8 − s8]◦

[+s1 + s4 + s5 + s7 + s9].(35)

Remark 2.11. In a subsequent paper [EKLP24+] we explain how to find reduced
expressions for core cosets in type A (see also [Ko23, Section 3]). Here is a teaser.
For the coset mcore from Example 2.10, we can express it as a reduced composition
of other cosets as follows (colored for emphasis).

(36)

Each crossing of two groups of strands becomes an instance of [+si − sj ] in (34),
where i locates the top of the crossing and j locates the bottom.

3. The Hecke algebroid

Most results in this chapter come directly from Geordie Williamson’s thesis
[Wil08], which was adapted to the article [Wil11]. The thesis contains some addi-
tional exposition and useful details which are omitted in the later article. We refer
to [Wil11] whenever possible. Starting with Definition 3.5, the material is new.

3.1. Basics and bases. Let H be the Hecke algebra of the Coxeter system (W,S)
with standard basis {hw |w ∈ W} and Kazhdan–Lusztig basis {bw |w ∈ W} over
the ring Z[v, v−1]. For finitary I ⊆ S recall that wI is the longest element of the
parabolic subgroup WI . We define two polynomials in Z[v, v−1] associated to I.

(37) π+(I) :=
∑

w∈WI

v2ℓ(w), π(I) := v−ℓ(wI )π+(I).

If I ⊂ K we have [Wil11, Eq 2.9]

(38) bwI
bwK

= π(I)bwK
.

Define the Z[v, v−1]-module

IHJ := bwI
H ∩HbwJ

.

If p is an (I, J)-coset, define

hp = IhJp :=
∑

x∈p

vℓ(p)−ℓ(x)hx.

Then hp ∈ IHJ . Remember that the notation p is shorthand for the triple (p, I, J),
and henceforth we only write the superscripts I and J for emphasis. If p is an (I, J)-
coset with maximal element p, then the ordinary Kazhdan–Lusztig basis element
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bp is also in IHJ . We denote it as

bp = IbJp := bp.

The Hecke algebroid H is the Z[v, v−1]−linear category defined as follows. The
objects are finitary subsets I ⊆ S. The set of morphisms from J to I, denoted
H(J, I), is the module IHJ . Composition IHJ × JHK → IHK sends the pair
(h1, h2) to

(39) h1 ∗J h2 :=
1

π(J)
h1h2.

Note that bwI
is the identity map in H(I, I), by (38).

The Z[v, v−1]−module IHJ also has two bases. The standard basis of IHJ is the
set {hp} and the Kazhdan–Lusztig basis is the set {bp}, as p ranges amongst all
(I, J)-cosets.

Remark 3.1. Unlike the standard basis of the ordinary Hecke algebra, standard
basis elements hp are not invertible. As yet, there is no reasonable notion of a
“singular braid group.”

3.2. Generators of the Hecke algebroid. Suppose that I ⊂ J . If pid is the
(I, J)-coset containing the identity then pid = wJ and hpid

= bpid
. The same state-

ment holds if pid is the (J, I)-coset containing the identity. We define

(40) IbJ := IhJpid
, JbI := JhIpid

.

The elements IbIs and IsbI are generators of the Hecke algebroid, similar to the
Kazhdan–Lusztig generators bs of the Hecke algebra. Here is notation for iterated
products of these generators, which matches the fact that they will be categorified
by singular Bott–Samelson bimodules.

Notation 3.2. Let I• = [I0, . . . , Id] be a singlestep expression. Then

(41) bs(I•) =
I0bI1 ∗I1

I1bI2 ∗I2 · · · ∗Id−1

Id−1bId .

Similarly, when L• = [[I0 ⊂ K1 ⊃ · · · ⊂ Km ⊃ Im]] is a multistep expression, then

(42) bs(L•) =
I0bK1 ∗K1

K1bI1 ∗I1 · · · ∗Km

KmbIm .

Lemma 3.3. When L• = [[I0 ⊂ K1 ⊃ · · · ⊂ Km ⊃ Im]] is a multistep expression,
we have

(43) bs(L•) = bK1 ∗I1 bK2 ∗I2 · · · ∗Im−1 bKm
,

where we write bK for bwK
.

Proof. For any 1 ≤ i ≤ m we have Ii−1bKi = KibIi = bKi
. Thus

Ii−1bKi ∗Ki

KibIi = bKi
.

Applying this relation many times within (42) we obtain (43). �
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3.3. The singular Deodhar formula. Now we enunciate the key equations in
the Hecke algebroid that lead to the singular Deodhar formula, and which will be
categorified by the graded degrees of single-step singular light leaves. The following
is [Wil11, Prop. 2.8].

Proposition 3.4. Let I, J,K ⊆ S be finitary with J ⊂ K.

(1) When right-multiplying by KbJ we have

(44) IhKq ∗K
KbJ =

∑

p⊂q

vℓ(q)−ℓ(p) IhJp .

The sum is over all (I, J)-cosets p contained in q.
(2) When right-multiplying by JbK we have

(45) IhJp ∗J
JbK = vℓ(q)−ℓ(p) π(LR(q))

π(LR(p))
IhKq ,

where q is the (I,K)-coset containing p.

Note that (45) can be rewritten as

(46) IhJp ∗J
JbK = vℓ(q)−ℓ(p)−ℓ(LR(q))+ℓ(LR(p)) π

+(LR(q))

π+(LR(p))
IhKq .

Let us elaborate. An (I,K)-coset q splits into a disjoint union of smaller (I, J)-
cosets p. Multiplying by KbJ sends hq to a sum over hp, with each hp appearing once
with a power of v as its coefficient. When right multiplying to make the parabolic
bigger, an (I, J)-coset p is contained in a single (I,K)-coset q. Multiplication by
JbK sends hp to a multiple of hq. This time the coefficient of hq is not a monomial
but a rescaled ratio of Poincaré polynomials. This ratio will end up being the rank
of RLR(p) as a free module over RLR(q), these being two invariant subrings of a
polynomial ring R, see Section 4.1.

Definition 3.5. Let p ⊂ q be a coset pair (see Notation 2.2) for (I, J, s). We define
the defect and the polynomial factor of the pairs [p, q] and [q, p] as follows.

def([p, q]) = ℓ(q)− ℓ(p)− ℓ(LR(q)) + ℓ(LR(p)), poly([p, q]) =
π+(LR(q))

π+(LR(p))
,

def([q, p]) = ℓ(q)− ℓ(p), poly([q, p]) = 1.

Proposition 3.4 explains what happens at each step in an expression. Just as in
the Deodhar formula, we can extrapolate this into a formula for bs(I•) in terms of
the standard basis.

Definition 3.6. Given a path t• subordinate to I• (see Definition 2.3), we define
its defect and polynomial factor as

(47) def(t•) :=
∑

k

def([tk, tk+1]), poly(t•) :=
∏

k

poly([tk, tk+1]).

Corollary 3.7. Let I• be a singlestep expression. Then

(48) bs(I•) =
∑

t•⊂I•

poly(t•)v
def(t•)hterm(t•).

Proof. This is no more than an elaboration on the iteration of Proposition 3.4. �

We make two further observations on defects.
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Lemma 3.8. Let p ⊂ q be a coset pair for (I, J, s). Then

(49) def([q, p]) = def([p, q]) + ℓ(Js)− ℓ(J).

Proof. By (9) we have

ℓ(p) = ℓ(p) + ℓ(I) + ℓ(J)− ℓ(LR(p)), ℓ(q) = ℓ(q) + ℓ(I) + ℓ(Js)− ℓ(LR(q)).

From this it is easy to deduce that def([q, p])− def([p, q]) = ℓ(Js)− ℓ(J). �

Lemma 3.9. Let p ⊂ q be an (I, J, s) coset pair, and m ⊂ n be the associ-
ated Grassmannian coset pair from Theorem 2.6. Then def([p, q]) = def([m,n])
and def([q, p]) = def([n,m]). Also, poly([p, q]) = poly([m,n]) and poly([q, p]) =
poly([n,m]).

Proof. From Proposition 2.9 we get that LR(n) = RR(q), which is conjugate to
LR(q), and we get that LR(m) is conjugate to LR(p). Thus ℓ(LR(n)) = ℓ(LR(q))
and π+(LR(n)) = π+(LR(q)), and similarly for m and p. Now one can easily verify
the poly equalities. From (11) we also know that ℓ(q) + ℓ(m) = ℓ(p) + ℓ(n). Now

it is easy to verify that def([m,n]) = def([p, q]). Applying (49) to both p ⊂ q and
m ⊂ n we deduce that def([q, p]) = def([n,m]). �

4. Singular Soergel bimodules

Most definitions and results in this chapter come from Geordie Williamson’s
article [Wil11]. There was an error in Williamson’s definition of duality, which is
now fixed in an erratum. We also needed some results on the ideal of lower terms
which could not be found in Williamson’s work. We developed these results in
[EKLP23b], and recall them in Section 4.5.

4.1. Assumptions and notation. Let k be a field. We fix a realization V of W
over k (see [EW16, Definition 3.1]). As in [EKLP23a, §3.1], we make some technical
assumptions on our realizations. We require that V is faithful, balanced and that
generalized Demazure surjectivity holds. We further require that the realization is
reflection faithful, so that the category of singular Soergel bimodules is well behaved
(see [Wil11, §4.1]). We can always find a realization with k = R satisfying all these
properties (cf. [Soe07, Prop. 2.1]).

Remark 4.1. If the group W is infinite, such a realization may not exist over a
field of characteristic p. When the realization is not faithful or reflection faithful,
singular Soergel bimodules need not be well-behaved. The diagrammatic version
of the Hecke category should still behave well in characteristic p (or even over Z

if the group W is crystallographic), once it is properly defined. This is one of the
main motivations why such a diagrammatic description, of which the present work
is propaedeutic, is desirable.

Notation 4.2. Let R = Sym(V ) be the symmetric algebra of V , graded so that
degV = 2. For each I ⊂ S finitary, one can consider the subring RI ofWI -invariant
polynomials. For any element w ∈W , the corresponding Demazure operator ∂w is
a k-linear map of degree −2ℓ(w).

Lemma 4.3. Let I ⊂ J be finitary subsets of S. Then RI is a free RJ -module of

graded rank π+(J)
π+(I) .
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Proof. Our assumptions ensure that the extension RJ ⊂ RI is Frobenius (see
[EKLP23b, Theorem 4.3]). The graded rank of the extension is computed in [Wil08,
Corollary 2.1.4]. �

Notation 4.4. For n ∈ Z, (n) denotes the grading shift of a graded vector space
by n. If V is concentrated in degree 0, then V (n) is concentrated in degree −n.

Notation 4.5. Given a Laurent polynomial with positive coefficients p =
∑
aiv

i ∈
N[v, v−1] and a Z-graded module M , we define4

p ·M :=
∑

M(−i)⊕ai .

If V is a Z-graded vector space, we denote by gd(V ) its graded dimension. This
is the Laurent polynomial defined by

gd(V ) :=
∑

dim(Vi)v
i ∈ N[v, v−1].

If p is a Laurent polynomial, we have

(50) gd(p · V ) = p · gd(V ).

4.2. Definitions.

Definition 4.6. Let (W,S) be a Coxeter system and R the polynomial ring of a
realization. Given a singular multistep expression

L• = [[I0 ⊂ K1 ⊃ I1 ⊂ K2 ⊃ · · · ⊂ Km ⊃ Im]],

the corresponding (singular) Bott–Samelson bimodule is the graded (RI0 , RIm)-
bimodule

(51) BS(L•) := RI0 ⊗RK1 R
I1 ⊗RK2 · · · ⊗RKm RIm(σ).

where

(52) σ = ℓ(K1) + . . .− ℓ(Im−1) + ℓ(Km)− ℓ(Im) =
1

2
(ℓ(L•) + ℓ(I0)− ℓ(Im)).

The length of an expression ℓ(L•) was defined in (5).

Notation 4.7. Let B be a graded (RK , RL)-bimodule. Let K ⊂ I and L ⊂ J . We
denote by

BRI RJ := RI ⊗RK B ⊗RL RJ

the restriction of B to a graded (RJ , RI)-bimodule.

The Bott–Samelson bimodule BS(L•) is an iterated tensor product of two kinds
of bimodules: the induction bimodule

BS([[I ⊂ K]]) = RI
RI RK

and the (shifted) restriction bimodule

BS([[K ⊃ I]]) = RI
RK RI (ℓ(K)− ℓ(I)).

For I ⊂ J ⊂ K, the tensor product of two induction bimodules (resp. restriction
bimodules) is naturally isomorphic to another induction bimodule (resp. restriction
bimodule). Because of this, the Bott–Samelson bimodule BS(I•) associated to a
singlestep expression is naturally isomorphic to the Bott–Samelson bimodule for

4We remark that this convention is opposite to [Wil11].
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the associated multistep expression (obtained by remembering the maxima and
minima).

Given a multistep expression L•, we denote by 1⊗L•
(or simply by 1⊗) the element

(53) 1⊗L•
:= 1⊗ 1⊗ . . .⊗ 1 ∈ BS(L•).

Note that deg(1⊗L•
) = − 1

2 (ℓ(L•) + ℓ(I0)− ℓ(Im)). It is an element of lowest degree
in BS(L•), and spans that degree of BS(L•) as a one-dimensional vector space.

Definition 4.8. We denote by Bim the bicategory defined as follows. The objects
in Bim are the finitary subsets I ⊂ S, identified with the graded algebras RI . The
category Bim(J, I) is the category of graded (RI , RJ)-bimodules. The composition
of 1-morphisms Bim(J, I)×Bim(K, J) → Bim(K, I) is given by the tensor product
over RJ .

Given M,N ∈ Bim(J, I), the morphism space is the graded (RI , RJ)-bimodule

(54) Hom(M,N) :=
⊕

i∈Z

Homi(M,N), Homi(M,N) := Hom0(M,N(i)).

Here Hom0(M,N(i)) denotes the space of degree zero (RI , RJ)-bimodule maps from
M to N(i). The (RI , RJ)-bimodule structure on Hom(M,N) is the obvious one.

If I• = [I0, . . . , Id] is an expression, then BS(I•) is an (RI0 , RId)-bimodule and
hence an object of Bim(Id, I0).

Definition 4.9. The bicategory of singular Bott–Samelson bimodules SBSBim
(which in the introduction we call SHBS

5) is the subbicategory of Bim with the
same objects, whose 1-morphisms have the form BS(I•) for various expressions
I•. Equivalently, SBSBim is the 2-full subbicategory in Bim generated by the
1-morphisms BS([I, Is]) and BS([Is, I]), for Is ⊂ S finitary.

Definition 4.10. The bicategory of singular Soergel bimodules SSBim (which in
the introduction we called SH6) is the additive closure of BSBim in Bim, that is,
SSBim has objects finitary subsets I ⊂ S and the category SSBim(J, I) is the
category of graded (RI , RJ)-bimodules consisting of the direct sums of shifts of
direct summands of Bott–Samelson bimodules.

4.3. Classification of singular Soergel bimodules. Singular Soergel bimod-
ules provide a categorification of the Hecke algebroid. That is, there is an iso-
morphism between the split Grothendieck group of SSBim(J, I) and IHJ ; for a
singular Soergel bimodule B, we let [B] denote the corresponding element of the
Hecke algebroid. If B ∈ Hom(J, I) and B′ ∈ Hom(K, J), we have

(55) [B ⊗RJ B′] = [B] ∗J [B′] ∈ IHK .

5Up to equivalence. See the next footnote.
6To be precise, what we denote by SH in the introduction is a 2-category (bi)equivalent

to SSBim. Note that the bicategory SSBim, as well as the bicategory SBSBim, is not a 2-
category because the tensor product of bimodules does not satisfy associativity strictly but only
up to natural isomorphism. However, the difference between bicategory and 2-category is not
important, as the coherence theorem says that every bicategory is equivalent to a 2-category.

In our case, such a 2-category SHBS for SBSBim can be defined as a quotient of Frob, by
identifying the 2-morphisms mapped to isomorphic bimodule morphisms under the evaluation
functor F : Frob → SBSBim (see Sections 5.4 and 5.5). Then the additive Karoubi envelope of
SHBS, which we denote by SH, is a 2-category equivalent to SSBim.
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Moreover,

(56) [BS([[I ⊂ K]])] = IbK and [BS([[K ⊃ I]])] = KbI .

It immediately follows that

(57) [BS(I•)] = bs(I•)

for every singlestep expression I•.

Remark 4.11. The isomorphism between the Grothendieck group and the Hecke
algebroid is embodied in the character map defined by Williamson. For the defi-
nition of the character map and more details on the above we refer to [EKLP23b,
§3.4] and [Wil11, §6].

If M is a (RI , RJ)-bimodule, then its dual DM := HomRI (M,RI), the space of
morphisms as left RI -modules, is an (RI , RJ)-bimodule. This defines the duality
functor

D := HomRI (−, RI) : Bim(J, I) → Bim(J, I).

The functor D preserves Bott–Samelson bimodules by [Wil11, Prop. 6.15] and, as
a consequence, the category of singular Soergel bimodules SSBim(J, I). Moreover,

[DB] = [B],

where the overline represents the bar involution on the Hecke algebroid.

Remark 4.12. Singular Bott–Samelson bimodules are isomorphic to their duals, but
it is often important to fix this isomorphism. This is equivalent to constructing a
non-degenerate bilinear form on BS(I•). For ordinary Bott–Samelson bimodules,
the intersection form defined in [EW14, §3.6] is such a bilinear form. An intersec-
tion form for one-sided singular Soergel bimodules (with I = ∅) in [Pat22, Appendix
A.1]. The technology developed in this paper makes it possible to define an inter-
section form for singular Soergel bimodules in general, and we hope to address this
topic in future work.

Moreover, on SSBim(J, I) the functor D is a anti-involution, i.e. for any B,B′ ∈
SSBim(J, I) we have D2B ∼= B and Hom(B,B′) ∼= Hom(DB′,DB).

Theorem 4.13. For every (I, J)-coset p, there exists a unique self-dual indecom-
posable singular Soergel bimodule Bp such that

(58) [Bp] ∈ hp +
∑

p′<p

N[v±]hp′ ,

where the sum is indexed by (I, J)-cosets p′ which are smaller in the Bruhat order.
Every indecomposable Soergel bimodule in SSBim(J, I) is isomorphic to Bp(m),

for some (I, J)-coset p and some m ∈ Z.
Moreover, for any reduced expression I• for p and for any decomposition of

BS(I•) into indecomposable Soergel bimodules, there is a unique summand contain-
ing 1⊗I•, and this summand is isomorphic to Bp.

Proof. The first two claims follow by [Wil11, Theorem 7.10], while the last claim
is proved in [EKLP23b, Prop. 3.3]. �

Corollary 4.14. Let I• be a singlestep expression, and p be an (I0, Id)-coset. If
Bp(k) is a direct summand of BS(I•) for some k ∈ Z, then p is the terminus of
some path subordinate to I•.



SINGULAR LIGHT LEAVES 21

Proof. If Bp(k) is a direct summand of B, then v−khp appears in B with positive
coefficient, by (58). By Corollary 3.7 and (57), if hp appears with nonzero coefficient
in [BS(I•)] then p is the terminus of a path subordinate to I•. �

4.4. Standard bimodules and the Soergel–Williamson Hom formula.

Definition 4.15 ([Wil11, Definition 4.4]). Let p be a (I, J)-coset. The (singular)
standard bimodule Rp is the graded (RI , RJ)-bimodule defined as follows. Let
K = LR(p) ⊂ J and L = RR(p) ⊂ I. As a left RI -module, Rp is RK . The right
action of f ∈ RJ on m ∈ Rp is given by

(59) m · f = (pf)m.

In words, we say that the right action is twisted by p. We also view Rp as a ring

via its identification with RK .

By [Wil11, Cor. 4.13] we have End(Rp) ∼= Rp as both an (RI , RJ)-bimodule and
a ring.

We rephrase now the Soergel–Williamson Hom formula [Wil11, Theorem 7.9] in
more convenient terms for our purposes.

Theorem 4.16. (Soergel–Williamson Hom Formula) Let B,B′ ∈ SSBim(J, I) and
assume that B′ is self-dual. If

[B] =
∑

cphp, and [B′] =
∑

c′php,

then the graded dimension of their morphism space is given by the formula

(60) gd(Hom(B,B′)) =
∑

cpc
′
p · gd(Rp).

Proof. For p an (I, J)-coset, we define

π(p) := vℓ(p)+ℓ(p)
∑

x∈p

v−2ℓ(x).

By [Wil11, Theorem 7.9] we have an isomorphism

(61) Hom(B,B′)(−ℓ(J)) ∼=
〈
[B], [B′]

〉
· RI ∼= 〈[B], [B′]〉 · RI

of graded left RI -modules, where the pairing 〈−,−〉 is defined in [Wil11], after
Remark 2.2. We can use [Wil11, Lemma 2.13] to expand the pairing, and obtain

(62) 〈[B], [B′]〉 =
∑

p

cpc
′
pv

ℓ(p)−ℓ(p)−ℓ(J) π(p)

π(J)
.

Let K be the left redundancy of p. By [Wil11, (2.1) and (2.3)] we have

(63) ℓ(p)− ℓ(p) + ℓ(J) = ℓ(K)− ℓ(I) and
π(p)

π(J)
=

π(I)

π(K)
.

Moreover, by Lemma 4.3 we also have an isomorphism

(64) Rp
∼= RK ∼= vℓ(I)−ℓ(K) π(I)

π(K)
·RI

of graded left RI -modules. So, we conclude that

(65) Hom(B,B′) ∼=
∑

p

cpc
′
pv

ℓ(I)−ℓ(K) π(I)

π(K)
·RI ∼=

∑

p

cpc
′
p ·Rp

and the claim follows. �
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Corollary 4.17. Let I• = [I0, . . . , Id], I
′
• = [I ′0, . . . , I

′
r] be singlestep expressions

with I = I0 = I ′0 and J = Id = I ′r. Then, the morphism space Hom(BS(I•),BS(I
′
•))

has graded dimension given by the formula

(66)
∑

p∈WI\W/WJ

∑

t•⊂I•,t
′
•⊂I′

•

term(t•)=term(t′•)=p

poly(t•)poly(t
′
•)v

def(t•)+def(t′•) · gd (Rp) .

Remark 4.18. It follows from [Wil11, Theorem 1.4] (thanks to the fact that Soergel’s
conjecture is now proven [EW14]) that for the reflection realization of W over R,
Soergel’s conjecture holds. That is, we have

[Bp] =
IbJp

for any (I, J)-coset p. In this case, it follows from Theorem 4.16 that the only
endomorphisms of Bp in degree 0 are multiplication by scalars. We will not need
this result in this paper.

4.5. Lower terms. Let B and B′ be two singular Soergel bimodules. For a double
coset p we denote by Hom<p(B,B

′) the ideal of morphisms which factor through
a direct sum of shifts of bimodules Bq, for q < p. Let Hom6<p(B,B

′) denote the
quotient Hom(B,B′)/Hom<p(B,B

′).
We recall two propositions from [EKLP23b] that characterize lower terms.

Proposition 4.19 ([EKLP23b, Prop 3.33]). Let I• and I ′• be reduced expressions
for a (I, J)-coset p. Then

Hom0
<p(BS(I•),BS(I

′
•)) = {f ∈ Hom0(BS(I•),BS(I

′
•)) | f(1

⊗
I•
) = 0}

where 1⊗I• is as in (53).

Proposition 4.20 ([EKLP23b, Prop 3.34]). Let I• and I ′• be reduced expressions
for a (I, J)-coset p. Assume further that I ′• is of the form

I ′• = [[I ⊃ LR(p)]] ◦K•

and consider the action of RLR(p) on BS(I ′•) restricted from that on BS(K•). If
f ∈ Hom<p(BS(I•),BS(I

′
•)), then Im f ∩ (RLR(p) · 1⊗I′

•
) = 0.

We conclude this section by using the results in [EKLP23b] to determine the
size of the space of morphisms modulo lower terms to a reduced Bott–Samelson
bimodule.

Proposition 4.21. Let B ∈ SSBim with [B] =
∑
cphp. Let I• be a reduced

expression for a (I, J)-coset p. Then we have

Hom6<p(B,BS(I•)) ∼= Hom6<p(B,Bp) ∼= cp · Rp

Proof. We know that all summands in BS(I•) other than Bp are smaller than p, so
they vanish modulo lower terms. This shows the first isomorphism.

By [EKLP23b, Lemma 3.32] we have Hom6<p(B,Bp) ∼= Hom(B,Rp(ℓ(p)−ℓ(J))).
Finally, by [Wil11, Theorem 7.9], we have

Hom(B,Rp(ℓ(p)− ℓ(J))) ∼= 〈[Bp], hp〉 ·Rp = cp ·Rp. �
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5. Singular diagrammatics and Frobenius extensions

This chapter contains no new material. We recall the diagrammatic calculus
introduced in [ESW17], primarily for the purpose of efficiently describing mor-
phisms between singular Soergel bimodules. We also discuss Demazure operators
and Frobenius extensions, which play a role for both the diagrammatics and the
proofs. Experts may wish to review the assumptions from Section 4.1.

5.1. Demazure operators. We assume familiarity with the Demazure operators
∂w : R → R associated with w ∈W . See [EKLP23a, §3.2] for a helpful review.

Let p be an (I, J)-coset. As in [EKLP23a, Definition 3.8] we set

(67) ∂p := ∂pw−1
J
.

Though a priori this is a map R → R, [EKLP23a, Lemma 3.9] proves that, when
restricted to the subring RJ , it has image contained in RI . By convention, ∂p is
always considered as a map RJ → RI .

A special case is when J ⊂ I, and p has underlying set WI . The operator
∂p = ∂wIw

−1
J

: RJ → RI is denoted ∂JI . We call it a trace map.

A second special case is when I ⊂ J and p has underlying set WJ . The operator
∂p is the inclusion map ιIJ : R

J →֒ RI .
In [EKLP23a, Corollary 3.19] it is proven that (for cosets p, q, r which are ap-

propriately composable)

(68) p.q = r =⇒ ∂p ◦ ∂q = ∂r,

In particular, given a reduced expression L• for p as in (4), one can view the

operator ∂p as an iterated composition of inclusion maps ιKi

Ii−1
and trace maps ∂IiKi

.

For any double coset expression L• one can consider the corresponding iterated
composition of inclusion and trace maps, and denote it by ∂L•

. See [EKLP23a,
Lemma 3.16] for more details. It is proven in [EKLP23a, Proposition 3.17] that
∂L•

= ∂p if L• is any reduced expression for p, and ∂L•
= 0 if L• is not a reduced

expression.
We note one other special case of (67). If pcore is the core of p, then

(69) ∂pcore = ∂p

as a map from RRR(p) to RLR(p). This is an easy consequence of (9).

5.2. Cubes of Frobenius extensions.

Definition 5.1. Let S be a finite set. Let P (S) be the power set of S, the set of
all subsets of S. Then P (S) is a poset under inclusion. Let F ⊂ P (S) be a subset
which is downward-closed: if I ∈ F and J ⊂ I then J ∈ F . Such an F is called a
partial cube.

Definition 5.2. A (partial) cube of (commutative) graded Frobenius extensions
indexed by a partial cube F is the data of:

• for each I ∈ F , a graded commutative ring RI , and an integer ℓ(I),
• for each I ⊂ J ∈ F , an injective ring homomorphism ιIJ : RJ → RI , and a
homogeneous RJ -linear map ∂IJ : R

I → RJ .

This data satisfies:

(1) For I ⊂ J ∈ F , ∂IJ is a Frobenius trace map, making RJ ⊂ RI a Frobenius
extension.
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(2) For I ⊂ J ⊂ K ∈ F , ιIK = ιIJ ◦ ιJK and ∂IK = ∂JK ◦ ∂IJ .

We recall Frobenius extensions below, but first we give the main example.

Definition 5.3. Fix a Coxeter system (W,S). Let k and V and {αs, α
∨
s } and R be

as in Section 4.1. Let F ⊂ P (S) be the set of all finitary subsets of S. The Soergel
cube is the cube of graded Frobenius extensions where

• For I ⊂ S finitary, RI is the invariant subring, and ℓ(I) is the length of the
longest element.

• For J ⊂ I ⊂ S finitary, ιJI : R
I → RJ is the inclusion map, and ∂JI =

∂wIw
−1
J

: RJ → RI is the Frobenius trace map.

That the Soergel cube satisfies the requirements for a cube of Frobenius exten-
sions follows from [EKLP23a, §4.1].

Let I ⊂ J ∈ F . That RJ ⊂ RI is a Frobenius extension with trace ∂IJ , by
definition, says that there exist dual bases {ci} and {di} for RI as a free RJ -module,
such that

(70) ∂IJ (ci · dj) = δij .

The coproduct element

(71) ∆I
J :=

∑

i

ci ⊗ di ∈ RI ⊗RJ RI

is independent of the choice of dual bases, so we sometimes write this element in
Sweedler notation as

∆I
J = ∆I

J(1) ⊗∆I
J(2).

Because it satisfies the property

(72) f ·∆I
J = ∆I

J · f

for any f ∈ RI , the map

(73) ∆: RI → RI ⊗RJ RI , ∆(f) = f ·∆I
J

is a morphism of RI -bimodules.
The element

(74) µI
J =

∑

i

cidi ∈ RI

is called the product-coproduct element for the extension. For the Soergel cube it
has a closed formula:

(75) µI
J =

∏

α∈Φ+
J
\Φ+

I

α.

Here, Φ+
I represents the set of positive roots of the form w(αs) for w ∈ WI and

s ∈ I. That is, µI
J is the product of all the positive roots for J which are not

positive roots for I. We write µI := µ∅
I .

In the Soergel context, for I ⊂ J finitary, note that

(76a) BS([[J ⊃ I ⊂ J ]]) = RI(ℓ(J)− ℓ(I)) as an (RJ , RJ) bimodule,

(76b) BS([[I ⊂ J ⊃ I]]) = RI ⊗RJ RI(ℓ(J)− ℓ(I)) as an (RI , RI) bimodule.
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The data of a graded Frobenius extension gives rise to four homogeneous bimod-
ule maps for each I ⊂ J ∈ F , which are independent of the choice of dual bases.
Two of these are (RJ , RJ)-bimodule maps:

(77a) ιIJ : R
J → BS([[J ⊃ I ⊂ J ]]), ∂IJ : BS([[J ⊃ I ⊂ J ]]) → RJ .

The grading shifts above are chosen so that these maps are both homogeneous of
(negative) degree ℓ(I)− ℓ(J).

The other two are (RI , RI)-bimodule maps:

(77b) m : BS([[I ⊂ J ⊃ I]]) → RI , ∆ : RI → BS([[I ⊂ J ⊃ I]]).

These are both homogeneous of (positive) degree ℓ(J) − ℓ(I). Above, m is the
multiplication map m(f ⊗ g) = fg, and ∆ was defined in (73).

Remark 5.4. The functors of induction, i.e. tensoring with RI = BS([[I ⊂ J ]]) as
an (RI , RJ)-bimodule, and shifted restriction, i.e. tensoring with RI(ℓ(J)− ℓ(I)) =
BS([[J ⊃ I]]) as an (RJ , RI)-bimodule, are biadjoint up to shift. The four maps
above are the units and counits of this biadjunction.

Later in the paper we will need the following concept.

Definition 5.5. Let I ⊂ J ∈ F . Homogeneous bases {ai} and {bi} for RI as a
free RJ -module are called almost dual bases if

(78) ∂IJ (ai · bj) ≡ δij modulo m,

where m represents the homogeneous maximal ideal of RJ .

Given almost dual bases {ai} and {bi}, one can construct dual bases {ai} and
{b′i}, where {bi} and {b′i} are related by unitriangular change of basis (with respect
to an ordering by degree), see [EKLP23a, Lemma 4.7].

5.3. Diagrammatics for the Soergel cube: remarks. In [ESW17] they de-
scribe a 2-category Frob by generators and relations, associated to any cube of
Frobenius extensions. It comes equipped with a 2-functor F to singular Bott–
Samelson bimodules (in the case of the Soergel cube).

In general, there is no guarantee that F should be full. However, all the singular
double leaves we construct in §7 will be in the image of F . We prove that double
leaves form a basis under reasonable assumptions (e.g. for faithful realizations over
a field), and thus F is full in this case.

The functor F is rarely expected to be faithful; there are more relations one
must impose upon Frob to obtain a presentation for SBSBim. These relations
are unknown in general. See [EMTW20, Chapter 24] for remarks on the status of
singular Soergel diagrammatics. We will not need any of the additional relations
in this paper.

5.4. Diagrammatics for the Soergel cube. We now define the graded 2-category
Frob following [ESW17].

The objects of Frob are finitary subsets of S; therefore, finitary subsets will label
the regions of our string diagrams. The 1-morphisms are singlestep expressions
I•. We encode (the identity morphism of) an object with a sequence of oriented
strands, colored by simple reflections. An s-colored strand separates I and Is for
some I ⊂ S, and the orientation is such that Is is to the right of the strand.
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Example 5.6. Let I• = [Jsu, Ju, Jtu, Jstu, Jst]. It is drawn as

(79) idI• = Jsu Ju Jtu Jstu Jst

We often use ± notation for singlestep expressions, as in [EK23, Notation 5.1].
Continuing the above example, we have

(80) [(Jsu)− s+ t+ s− u] := [Jsu, Ju, Jtu, Jstu, Jst].

The notation [Jsu, Ju, . . .] records the region labels, while the notation [(Jsu) −
s+ . . .] emphasizes the sequence of oriented colored strands.

Remark 5.7. As a helpful mnemonic for the color-sighted, s is for “strawberry” and
t is for “teal.”

Note that an upward s-colored strand means different things in different contexts:
it could be a 1-morphism from I to Is, or a 1-morphism from I ′ to I ′s, for I, I ′

distinct. This is disambiguated by the region labels. Note that only one region
requires a label, as the labels on other regions are determined by the coloring of
the strands. Even the orientation on the strands is redundant information given
one region label, though it helps one’s visual understanding of a picture.

The 2-category Frob will be cyclic, see [EMTW20, p.131]. This means that the
category possesses oriented cups and caps, denoted as follows. Under the evaluation
functor, they will go to the units and counits of adjunction with the same name
from (77). By convention, the bottom boundary of a diagram is the source of the
morphism, and the top boundary is the target.

(81) m =
I

Is

, ∆ =
Is

I

, ∂ =
Is

I

, ι =
I

Is

.

The degree of clockwise cups and caps is ℓ(Is) − ℓ(I) > 0, and the degree of
counterclockwise cups and caps is ℓ(I)− ℓ(Is) < 0.

All 2-morphisms will be cyclic with respect to these cups and caps, so that
isotopic diagrams represent the same 2-morphism. With this assumption, we now
give an isotopy presentation (see [EMTW20, Proposition 7.18]) of the category.

The 2-morphisms will be monoidally generated by two kinds of maps (in addition
to cups and caps). For each s, t ∈ S and I ⊂ S such that Ist is finitary, there is
the (up-facing) crossing map from [I, It, Ist] to [I, Is, Ist].

(82) Ist

It

Is

I

The degree of the crossing is zero. For each f ∈ RI homogeneous with I ⊂ S
finitary, there is the polynomial map, whose degree is the degree of f .

(83) f
I
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By cyclicity, one can define the left-facing crossing [Is, I, It] → [Is, Ist, It]:

(84) := .

Right-facing (sideways) and down-facing crossings are defined similarly. Down-
facing crossings also have degree zero. The degree of a sideways crossing (right- or
left-facing) is ℓ(I) + ℓ(Ist) − ℓ(Is) − ℓ(It), which one can remember as “big plus
small minus mediums.”

Remark 5.8. The advantage of using the same picture (ignoring region labels) for
both the 1-morphisms I → Is and It → Ist is that a crossing looks like the
transverse union of two differently-colored 1-manifolds (with boundary). Indeed,
any diagram in Frob is a tranverse union of colored 1-manifolds, decorated with
polynomials and region labels.

The relations between 2-morphisms in Frob are the following. First, there are
relations stating that polynomials add and multiply as expected. Next is the poly-
nomial sliding relation, which says for f ∈ RIs ⊂ RI that

(85) f
I Is

=
I

f
Is

.

As a consequence, polynomials slide from region to region within End(I•) precisely
as they slide between tensor factors in BS(I•).

Associated to the Frobenius extension for I ⊂ Is we have the circle evaluation
relations

(86)
Is

I

= µI
Is , I

f
Is

= ∂I
Is(f) .

for any f ∈ RI , and the idempotent decomposition relation

(87) =
∆(1)

∆(2)

.

Here, ∆ = ∆I
Is ∈ RI ⊗RIs RI is the coproduct element as in (71), and Sweedler

notation means that the right-hand side is a sum of diagrams with polynomials. It
makes sense to put elements of this tensor product in the diagram because of the
polynomial sliding relation, see the discussion around (85).

Associated to a square of Frobenius extensions I ⊂ Ist we have the easy Reide-
meister II relation

(88) =

and the hard Reidemeister II relations

(89) = µI
Ist , g = ∂∆I

Ist(g)(1) ∂∆I
Ist(g)(2).
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Above we have

(90) µI
Ist =

µIµIst

µIsµIt
=

∏

α∈Φ+
Ist

\(Φ+
Is

∪Φ+
It
)

α,

while the element ∂∆I
Ist(g) ∈ RIs⊗RIstRIt can be described by one of the following

four equivalent formulas (see [ESW17, page 11]).

∂∆I
Ist(g) = ∆Is

Ist(1) ⊗ ∂IIt(g ·∆
Is
Ist(2))(91)

= ∂IIs(g ·∆
It
Ist(1))⊗∆It

Ist(2)

= ∂IIs(∆
I
Ist(1))⊗ ∂IIt(g ·∆

I
Ist(2))

= ∂IIs(g ·∆
I
Ist(1))⊗ ∂IIt(∆

I
Ist(2)).(92)

Associated to a 3D cube I ⊂ Istu of Frobenius extensions we have the Reide-
meister III relations (easy and hard)

(93) = , = ∗ .

Above, ∗ represents the polynomial µI
Istu ∈ RI , where

(94) µI
Istu =

∏

α∈Φ+
Istu

\(Φ+
Ist

∪Φ+
Isu

∪Φ+
Itu

)

α.

This ends the definition of Frob.

5.5. Evaluation.

Definition 5.9. Let F denote the graded 2-functor Frob → SBSBim defined
below. On objects, it sends I to I, for I ⊂ S finitary. On 1-morphisms, it sends
I• 7→ BS(I•). Cups and caps are sent to the corresponding structure maps for the
Frobenius extension, see (77) and (81). Finally, the crossing from (82) is sent to
the natural isomorphism

(95) RI ⊗RIs RIs
RIst → RI

RIst → RI ⊗RIt RIt
RIst , 1⊗ 1 7→ 1 7→ 1⊗ 1.

It helps to know what happens to the other crossings under F . The down-facing
crossing also goes to a natural isomorphism which preserves the 1-tensor. The
right-facing sideways crossing goes to a map RIs ⊗RIst RIt → RI , which is just
multiplication.

(96) F : 7→ (f ⊗ g 7→ fg) .

The left-facing sideways crossing goes to the map RI → RIs ⊗RIst RIt from (92):

(97) F : 7→
(
f 7→ ∂∆I

Ist(f)
)
.
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5.6. Duality.

Definition 5.10. The duality functor D is a contravariant, monoidally-covariant
autoequivalence of Frob. It fixes all objects and 1-morphisms. It flips all 2-
morphisms upside-down, and then reverses the orientation. Polynomials are fixed
by D.

Lemma 5.11. The duality functor is well-defined, and preserves degree.

Proof. We need only confirm that D preserves each of the relations above. This is
actually a trivial exercise. The only relation which is not obviously fixed by D is
(87), where ∆(1) and ∆(2) are swapped. However, the element ∆ ∈ RI ⊗RIs RI is
independent of the choice of dual bases, and by swapping the two bases one swaps
these two Sweedler symbols. �

Remark 5.12. One would like a result stating that duality on Frob intertwines
with duality on SSBim, via the evaluation functor F . However, the objects of
Frob are self-dual by construction, whereas singular Bott–Samelson bimodules are
only isomorphic to their duals. To construct a natural isomorphism D◦F → F ◦D,
one would need to fix isomorphisms between singular Bott–Samelson bimodules
and their duals, see Remark 4.12. Again, we hope to address this in future work.

Part 2. Construction of double leaves

6. Rex moves

As in [EK23], we write I• ⇌ I ′• whenever these are both reduced expressions for
the same double coset p. It was proven in [EK23, Theorem 5.30] that any two such
expressions are related by a sequence of double coset braid relations.

In this chapter we recall the double coset braid relations and construct degree
zero morphisms in Frob associated to each. Compositions of these we call rex
moves. We also prove various properties of rex moves.

6.1. Elementary rex moves. There are three kinds of braid relation found in
[EK23]: the up-up relations, the down-down relations, and the switchback relations.
Let us construct a diagram for each relation.

Whenever Ist is finitary, the up-up relation states that

[I + s+ t]⇌ [I + t+ s].

To this relation we associate the pair of morphisms

(98) I Ist I Ist.

The first is a morphism from the left-hand side to the right-hand side, and the other
is vice versa. Note that these are inverse isomorphisms by (88).

Whenever Ist is finitary, the down-down relation states that

[Ist− s− t]⇌ [Ist− t− s].

Similarly, we associate to this the pair of inverse isomorphisms

(99) .
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A switchback relation has the form

(100) [I+u0−ud]⇌ [I−u1+u0−u2+u1−u3+u2 · · ·−ud−1+ud−2−ud+ud−1],

for some sequence (u0, . . . , ud) called a rotation sequence. There is one such relation
for each finitary subset L = Iu0 and each pair u0, ud ∈ L with ud 6= wLu0wL. For
details, see [EK23, §5, §6]. Note that {ui} need not be distinct, and possibly
u0 = ud which will force us to change our color scheme.

To this relation we associate a pair of degree zero morphisms, whose construction
is clear from the following examples. To put it in words anyway, the strands +u0
and −ud appear in both the source and target, and correspond to vertical lines
in the diagram. The remaining inputs or outputs are paired with each other in
counterclockwise caps or cups. Unlike the previous relations, these are not inverse
isomorphisms.

Example 6.1. (see [EK23, Example 5.20]) Let W = S10 and I = S \ s3. Set
u0 = s3 and ud = s6. Then d = 2 and u1 = s9. The switchback relation is

(101) [I + s3 − s6]⇌ [I − s9 + s3 − s6 + s9],

with corresponding elementary rex moves

(102) .

Example 6.2. (see [EK23, §6.2]) Let W be the dihedral group I2(5) with simple
reflections S = {s, t}. Let u0 = ud = s (so ud is not teal in this example), and
I = {t}. Then d = 4 and the switchback relation is

(103) [I + s− s]⇌ [I − t+ s− s+ t− t+ s− s+ t],

with corresponding elementary rex moves

(104) .

Example 6.3. (see [EK23, Example 6.4]) Let W have type E7. We number the
simple reflections S as in [EK23, §6.5.2]. Let I = S \ s2, with u0 = s2 and ud = s3.
Then d = 4 and the switchback relation is

(105) [I + s2 − s3]⇌ [I − s6 + s2 − s5 + s6 − s7 + s5 − s3 + s7],

with corresponding elementary rex moves

(106) .

The following lemma should not be obvious to the reader, and is proven as part
of Theorem 6.11.

Lemma 6.4. Elementary rex moves have degree zero.
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6.2. Rex moves.

Definition 6.5. Let I• be a singlestep expression. Apply a sequence of braid
relations to I• to obtain I ′•. Composing the corresponding sequence of elementary
rex moves, we get a morphism I• → I ′• in Frob called a rex move. Applying F , we
get a morphism BS(I•) → BS(I ′•) which we also call a rex move.

Example 6.6. The reduced expressions [∅, s, ∅, t, ∅, s, ∅] and [∅, t, ∅, s, ∅, t, ∅] can
be related by a sequence of four braid relations, as in [EK23, (1.8)]. Here is the
corresponding rex move in singular calculus. For pedagogical reasons we draw it
twice, noting the second time how it is the composition of four elementary rex
moves.

(107)

This is the morphism which is encoded by the 6-valent vertex, an elementary rex
move in ordinary Soergel calculus, see [EMTW20, Theorem 24.46].

6.3. Rex moves and direct summands. The elementary rex moves associated to
switchback relations are not isomorphisms, but as we prove here, they are inclusions
from and projections to a direct summand.

Theorem 6.7. The rex move in Frob corresponding to the composition

(108) [I + u0 − ud] → [I − u1 + u0 − u2 + u1 · · · − ud + ud−1] → [I + u0 − ud]

is the identity morphism.

We prove the theorem later in this section.

Corollary 6.8. Inside SSBim, the bimodule BS([I+u0−ud]) is a direct summand
of BS([I − u1 + u0 − u2 + u1 · · · − ud + ud−1]).

Proof. In any additive idempotent-complete category with objects M and N , the
statement that M is a summand of N is equivalent to the existence of morphisms
i : M → N and p : N →M such that p ◦ i = idM . �

Note that all finitary subsets of S in sight are subsets of Iu0. For the purpose
of proving Theorem 6.7, we will assume that S = Iu0.

Notation 6.9. Here is the abusive notation which we use for the rest of §6.3. We
let S = Iu0. We write ûi for S \ ui, so that I = û0 and J = ûd.

Using Example 6.3 where d = 4 to illustrate the point, Theorem 6.7 states that

(109)

û0

S
ûd

û1 û2 û3

=

û0 S ûd

.

Theorem 6.7 is a consequence of a more general circle evaluation lemma.
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Lemma 6.10. Let S be finitary. Let d ≥ 2 and ui ∈ S for 0 ≤ i ≤ d, with ui
distinct from ui+1 for all 0 ≤ i ≤ d− 1. Let I = S \ u0, and M = S \ {ud−1, ud}.
Consider the expressions

(110) K• := [I + u0 − ud], L• := [I − u1 + u0 − u2 + u1 · · · − ud + ud−1].

Both are well-defined, and L• is not necessarily reduced. Let g be any polynomial
in RM . Then we have

(111)

û0

S
ûd

û1 ûd−1

g
= ∂L′

•
(g∆ûd

S,(1))

û0 S ûd

∆ûd

S,(2),

as endomorphisms of K•, where the left-hand side factors through L•. On the right-
hand side, Sweedler notation indicates the action of an element of Rû0 ⊗RS Rûd

which is a sum of pure tensors. The expression L′
• equals [I − u1 + u0 − u2 +

u1 · · ·−ud], so that L• = L′
• ◦ [+ud−1]. See §5.1 for a reminder on what ∂L′

•
means.

Note that L′
• is an (I,M)-expression, so the input to ∂L′

•
is an element of RM .

Implicitly, we have included ∆ûd

S,(1) from Rûd into RM .

We prove Lemma 6.10 in Section 8.5.

Proof of Theorem 6.7. Let us apply Lemma 6.10 with g = 1. Let K• and L• be
the two reduced expressions in the statement of the theorem.

While Lemma 6.10 introduces the expression L′
•, the operators ∂L•

and ∂L′
•
both

agree with the application of ∂w for the same w ∈ W . The only difference is that
∂L•

begins with the inclusion map Rûd →֒ RM . Since we have implicitly applied

this inclusion map to ∆ûd

S,(1), we use ∂L•
below instead of ∂L′

•
.

So the right-hand side of (109) when g = 1 is equal to

(112) ∂L•
(∆ûd

S,(1))⊗∆ûd

S,(2).

But L• is a reduced expression for the (û1, ûd)-coset containing wS (not surprising,
since K• is also a reduced expression for this coset). By [EKLP23a, Prop. 3.17] we

have ∂L•
= ∂ûd

S . Then by [ESW17, Equation (2.2) with f = 1], we know that

(113) ∂ûd

S (∆ûd

S,(1))⊗∆ûd

S,(2) = 1⊗ 1,

as desired. �

6.4. Rex moves and 1-tensors. Let us now discuss the images of the rex moves
under the functor F . Recall the definition of the 1-tensor 1⊗ from Equation (53).

Theorem 6.11. If φ is the image of a rex move under F , then φ(1⊗) = 1⊗.
Moreover, rex moves have degree zero.

Proof. For up- or down-facing crossings, this is immediate from the definition of F .
The diagram associated to the elementary rex move

φ : [I + u0 − ud] → [I − u1 + u0 − u2 + u1 · · · − ud + ud−1]

is built entirely of right-facing crossings and counterclockwise cups, see e.g. the
left-hand sides of (102),(104),(106). These generators preserve 1⊗, and thus so
does φ. Note that the source and the target are reduced expressions for the same
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double coset, so they have the same length. Therefore the 1-tensors in source and
target have the same degree, and φ must have degree zero.

Finally, consider the diagram associated to the elementary rex move (see e.g.
the right-hand sides of (102),(104),(106))

ψ : [I − u1 + u0 − u2 + u1 · · · − ud + ud−1] → [I + u0 − ud].

Since duality preserves degree, ψ also has degree zero. For degree reasons it will
send 1⊗ 7→ λ1⊗ for some scalar λ. By (109), the composition ψ ◦ φ is the identity
map, sending 1⊗ 7→ 1⊗. Therefore λ = 1, as desired. �

Corollary 6.12. Let I• be a reduced expression for p, and consider any rex move
φ : I• → I•. Then φ ≡ id modulo the ideal End<p(BS(I•)).

Proof. By Proposition 4.19, the ideal End<p(BS(I•)) intersects End0(BS(I•)) in
the set of morphisms which kill 1⊗. By Theorem 6.11, any rex move preserves 1⊗,
and thus id−φ kills 1⊗, and lives in End<p(BS(I•)). �

By this corollary, rex moves in SSBim are isomorphisms modulo lower terms.

Remark 6.13. In order for the diagrammatic category to behave correctly, one
requires that rex move endomorphisms are equal to the identity modulo lower terms.
This is not true in Frob, but requires relations specific to the Soergel setting. For
dihedral groups, it is a consequence of the Elias–Jones–Wenzl relation [Eli16, (6.8)].
For non-singular diagrammatics, one needs the Zamolodchikov relations for larger
Coxeter groups. We do not address the question of what it takes to prove the
analogous result for singular Soergel diagrammatics in this paper.

7. Construction of light leaves and double leaves

In this chapter, we describe the algorithmic process of constructing light leaf
morphisms and the double leaves basis. We will do it in five stages. It is complicated
enough that we prefer not to intersperse too much motivation and lose the flow.
Let us just briefly motivate our starting point.

Recall from Definition 2.3 the notion of a subordinate path t• ⊂ I•. At the k-th
step either [Ik, Ik+1] = [J, Js] or [Ik, Ik+1] = [Js, J ] for some J and s. Moreover,
either [tk, tk+1] = [p, q] or [tk, tk+1] = [q, p], for some (I, J, s)-coset pair p ⊂ q,
where I = I0. Our singlestep light leaf will be some morphism

ELL([p, q]) : Xp ⊗ [J, Js] → Xq or ELL([q, p]) : Xq ⊗ [Js, J ] → Xp,

where Xp and Xq are some reduced expressions for p and q respectively. Thanks to
Theorem 2.6 we need only construct this map when p ⊂ q is a Grassmannian pair,
for reasons the reader will soon see. This is where we begin.

7.1. First stage: Elementary light leaves for [m,n]. In this section §7.1 the
running assumption is that I, Js ⊂ S are finitary subsets such that I ⊂ Js. We
let [m,n] be a Grassmannian pair for (I, J, s). To recall, this means that m is an
(I, J)-coset, n is the (I, Js)-coset containing the identity, and m ⊂ n. In particular,
a reduced multistep expression for n is [[I ⊂ Js]].

By [EK23, Proposition 4.28], the coset m has a reduced expression which factors
through a reduced expression for its core mcore, see §2.4 for more details.
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Notation 7.1. For the rest of section §7.1 we fix a reduced expression K• for the
(LR(m),RR(m))-coset mcore. We also fix enumerations

(114) I \ LR(m) = {t1, . . . , tl}, J \ RR(m) = {u1, . . . , ur},

which will determine an enumeration

(115) Js \ I = {v1, . . . , vk}

as in Lemma 7.2 below. Associated with the multistep reduced expressions

(116) m⇌ [[I ⊃ LR(m)]] ◦K• ◦ [[RR(m) ⊂ J ]], n⇌ [[I ⊂ Js]],

the enumerations above determine singlestep reduced expressions
(117)
m⇌ Xm := [I−t1−. . .−tl]◦K•◦[RR(m)+u1+. . .+ur], n⇌ Xn := [I+v1+. . .+vk].

Let I• be the (possibly non-reduced) expression Xm ◦ [J, Js].

Lemma 7.2. For each simple reflection t ∈ S, one of the following is true.

• t ∈ I. Then t appears an even number of times in I•, alternating as in
[I . . .− t . . .+ t . . .− t . . .+ t . . .]. In particular, −t comes before +t.

• t ∈ Js \ I. Then t appears an odd number of times in I•, alternating as in
[I . . .+ t . . .− t . . .+ t . . .− t . . .]. In particular, +t comes before −t.

• t /∈ Js. Then ±t does not appear in I•.

There is a unique enumeration of Js \ I as {v1, . . . , vk}, so that i < j implies that
the first appearance of +vi in I• comes to the left of the first appearance of +vj.

The proof of this lemma is completely straightforward, but we postpone most
proofs from this chapter to Section 8 to avoid distracting the flow.

Definition 7.3. We now construct a diagram

(118) ELL([m,n]) : Xm ◦ [J, Js] = I• → Xn

in Frob, built entirely from left-facing crossings and counterclockwise caps. For
each t ∈ Js, the underlying t-colored 1-manifold in the diagram has the following
form, depending on whether t ∈ I or t ∈ Js \ I:

(119) t ∈ I : , t ∈ Js \ I : .

These are then superimposed upon each other transversely, so that no two strands
cross more than once (and the rules of Frob are obeyed, e.g. no triple intersections).
The same rules apply to the case t = s as to any other simple reflection t ∈ Js.

Lemma 7.4. There exists a diagram (given by an explicit construction) that meets
the criteria of Definition 7.3. The corresponding morphism in Frob has degree
equal to def([m,n]).

See §8.1 for the proof. We now give several prototypical examples. In all of
them, we assume m ⊂ n is an (I, J, s) Grassmannian coset pair.

Example 7.5. In this example I = {s} and J = {t}, Js = {s, t} generates a finite
dihedral group withms,t ≥ 6. Letm be the (s, t)-coset with maximal element ststst,



SINGULAR LIGHT LEAVES 35

and note that LR(m) = RR(m) = ∅. One can chooseXm = [s, ∅, t, ∅, s, ∅, t, ∅, s, ∅, t].
We have

(120) ELL([m,n]) = I

J

Js .

Example 7.6. We continue Example 2.10. Recall that W is the symmetric group
S11, and WJ

∼= S8 × S3, and s = s8, so that WJs = W . We set WI = S2 × S5 ×
S1 × S2 × S1. Let m be depicted on the left below, with mcore on the right.

(121)

A reduced expression for mcore was given in (34), which we repeat here.

(122) mcore
⇌ [LR(p)+s2−s4+s7−s6+s5−s5+s8−s8+s6−s7+s10−s9+s8−s8].

Choosing the lexicographic order on I \ LR(m) and J \ RR(m), we get

Xm =[I − s1 − s5]◦

[+s2 − s4 + s7 − s6 + s5 − s5 + s8 − s8 + s6 − s7 + s10 − s9 + s8 − s8]◦

[+s1 + s4 + s5 + s7 + s9](123)

Note that I• = Xm ◦ [+s8]. The corresponding elementary light leaf is
(124)

ELL([m,n]) = I

LR(m) RR(m) J

Js .

Example 7.7. Consider the Grassmannian coset pair m ⊂ n from Example 2.8.
This is essentially the same as the previous example (which is mCs

⊂ nCs
), except

there is an exterior product with other cosetsmC = nC for whichmC = id. One can
follow the same algorithm form as formCs

, and the result will be extremely similar.
In this particular example, there are two new simple reflections in J \RR(m) which
were not in (J ∩ Cs) \ RR(mCs

), which we denote using the colors black and gray
below. The picture below is ELL([m,n]). The new s-black and s-gray crossings
have degree zero, as black and gray live in a different connected component from s.

(125)

Example 7.8. Whenever I ⊂ J and m contains the identity element, the inclusion
[m,n] is reduced in the sense of [EK23, Definition 2.29]. In this case, mcore is the
identity (I, I)-coset, and Xm = [[I ⊂ J ]]. The elementary light leaf is the identity
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map.

(126) ELL([m,n]) =
I J Js

Example 7.9. Whenever I 6⊂ J then s ∈ I, since I ⊂ Js. If m is the (I, J)-coset
containing the identity element, LR(m) = I ∩ J = I \ s. In this case, mcore is the
identity (I ∩ J, I ∩ J)-coset, and Xm = [[I ⊃ I \ s ⊂ J ]]. The elementary light leaf
is as below.

(127) ELL([m,n]) =
I

I \ s J

Js

Example 7.10. Let S = {s, t, u, c} have type D4, where c is the hub of the Dynkin
diagram. Let J = S \ s, and I = {s, c}. Let n be the unique (I, Js)-coset.

Then there are four (I, J)-cosets with minimal elements

m1 = id, m2 = tcs, m′
2 = ucs, m3 = utcs.

The (I, J)-coset m1 falls under the regime of Example 7.9, so

(128) ELL([m1, n]) = .

A reduced expression for mcore
2 and the corresponding reduced expression for m

are

mcore
2 ⇌ [I + t− s], Xm = [I + t− s+ u].

We have

(129) ELL([m2, n]) = .

The case of m′
2 is the same, swapping t and u. Swapping these colors will change

the reduced expression Xn for n, as required by the enumeration in Lemma 7.2.
The effect of changing Xn is that the t and u strands need not cross.

The core of m3 is an (s, c)-coset, two reduced expressions for which are

mcore
3 ⇌ [{s}+ t− t+ u− u+ c− s]⇌ [{s}+ t+ u− u− t+ c− s].

To these one composes with [I−c] on the left and [{c}+t+u] on the right to obtain
Xm. The two choices above give rise to two different options for ELL([m3, n]),
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namely
(130)

ELL([m3, n]) = or .

There are more reduced expressions than these, e.g. one can swap t and u (which
would necessitate a different choice of Xn).

Remark 7.11. We are being overly rigid in our construction of light leaves for the
sake of algorithmic simplicity. In particular, consider the enumeration {v1, . . . , vk}
specified in Lemma 7.2. In the typeD examples above, if one choosesXn = [I+u+t]
instead of [I+t+u], then one can draw very similar pictures except with an upward-
facing crossing between t and u strands on top. This upward-facing crossing is an
isomorphism in Frob between [I + u + t] and [I + t + u], and it is a rex move.
For all practical purposes, we can add such upward crossings willy-nilly without
affecting the essential properties of elementary light leaves. Indeed, later stages in
the algorithm we pre- and post-compose elementary light leaves with arbitrarily
chosen rex moves, which can have the effect of adding such crossings. We have
chosen the rigid presentation of elementary light leaves above only for the sake of
giving cleaner proofs.

Remark 7.12. There are other ways we are being unnecessarily rigid in our choices
of reduced expression. In Example 7.7, one could choose a reduced expression for
both Xm and Xn which starts by adding the black and gray strands. The resulting
map ELL([m,n]) would be (124) tensored on the left with the identity map of the
black and gray strands. This version of ELL([m,n]) is related to the one in (125)
by pre- and post-composition with rex moves which are isomorphisms.

Remark 7.13. The two choices of ELL([m3, n]) in (130) are related by precompo-
sition with rex moves which happen to be isomorphisms. More generally, when
different rexes for m differ by switchback relations which are not isomorphisms,
then precomposition with a rex move will not transform one version of ELL([m,n])
to another! The difference between two versions of ELL([m,n]) (after pre- and
post-composition with suitable rexes so they have the same source and target) is
in the span of “lower terms,” in a sense which is difficult to explain until later in
the paper. This comes out in the wash as part of Theorem 7.51.

7.2. First stage continued: sprinkling polynomials.

Definition 7.14. For f ∈ RLR(m) we define the elementary light leaf with polyno-
mial ELLP([m,n], f) to be the morphism obtained from ELL([m,n]) by adding f
to the leftmost LR(m)-region in the domain.

Polynomials are sprinkles flavoring the diagram. For example, one modifies (124)
to obtain

(131)

f

.
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7.3. First stage completed: elementary light leaves for [n,m]. Now we
discuss how to construct a map ELL([n,m]) : Xn ⊗ [Js, J ] → Xm. By flipping
ELL([m,n]) upside-down and reversing orientation we already have a map Xn →
Xm ⊗ [J, Js]. The map we desire is related to this one by adjunction. Continuing
Example 7.6 we would have
(132)

ELL([n,m]) = I

Js

J

LR(m) RR(m)

.

Let us state this construction more formally.

Notation 7.15. Let DELL([m,n]) := D(ELL([m,n])), where D is the duality
functor of Definition 5.10.

Definition 7.16. Define ELL([n,m]) : Xn ⊗ [Js, J ] → Xm as

(133) ELL([n,m]) = (Idm ⊗y) ◦ (DELL([m,n])⊗ Id[−s]).

When we draw schematic diagrams, we use a trapezoid to represent an elemen-
tary light leaf, whether ELL([m,n]) or ELLP([m,n], f).

ELL([m,n])

Applying the duality functor one obtains an upside-down trapezoid.

DELL([m,n])

We have defined

(134) ELL([n,m]) := DELL([m,n]) .

We will not need to place a polynomial within ELL([n,m]). By convention,

ELLP([n,m], 1) := ELL([n,m]).

Lemma 7.17. We have deg(ELL([n,m])) = def([n,m]).

Proof. The duality functor D preserves degree, and the clockwise cap has degree
ℓ(Js)− ℓ(J) so

deg(ELL([n,m])) = deg(ELL([m,n])) + ℓ(Js)− ℓ(J).

We conclude the proof by Lemma 7.4 and (49). �
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We will give more examples in §7.7, but first we must discuss a very special case.

Example 7.18. Let m ⊂ n be the unique (I, J, s) Grassmannian coset pair for
which m = wJs. That is, m is maximal in n, and the step [n,m] is forward in
the sense of [EK23, Definition 2.21], and def([n,m]) = 0. Then n has a reduced
expression [[I ⊂ Js]], while m has a reduced expression X ′

m = [[I ⊂ Js ⊃ J ]],
which is also the source of ELL([n,m]). It seems desirable to let ELL([n,m]) be
the identity map of X ′

m in this case, and sometimes it is. Indeed, we can allow this
as an exception to our general algorithm, defining ELL([n,m]) to be the identity in
this case, and the corresponding light leaves will satisfy all the desired properties
for our proofs in the next chapter to work verbatim, e.g. Lemma 8.10 holds.

However, our overly rigid construction above requires something different: it
requires the target of ELL([n,m]) to be a reduced expression Xm for m factoring
through mcore. We conjecture that ELL([n,m]) is a rex move (see Remark 8.3 for
how one might prove this), though we will not need this statement. Regardless,
Lemma 8.14 states that postcomposing ELL([n,m]) with a rex move Xm → X ′

m

yields the identity map of X ′
m (at least after applying the evaluation functor). We

give several subexamples below.
Later on we postcompose elementary light leaves with rex moves, so we lose

nothing by assuming ELL([n,m]) is the identity. We do not make this assumption
(outside of §8.11).

Example 7.19. Let I = J = ∅, let n = {id, s} and m = {s}. Then we have
Xm = [∅, s, ∅] and Xn = [∅, s] and

(135) ELL([m,n]) = .

Consequently we have

(136) ELL([n,m]) = = .

Example 7.20. We continue Example 7.5, assuming that ms,t = 6, so that m
contains the longest element. Then

(137) ELL([n,m]) = = .

This is the elementary rex move associated to a switchback relation, and if we
post-compose it with its upside-down flip, we get the identity map by Theorem 6.7.

Example 7.21. In Example 7.10, the coset m3 is maximal in n. As an exercise,
the reader should take either version of ELL([m,n]) from (130), use it to construct
ELL([n,m]), and then post-compose with rex moves until one obtains the identity
map of [I + t+ u− s].

7.4. Second stage: singlestep light leaves. In this subsection we fix an (I, J, s)-
coset pair p ⊂ q which is not necessarily a Grassmannian coset pair. We construct
light leaves for [p, q] and [q, p].
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Notation 7.22. Theorem 2.6 constructs an (I,RR(q))-coset z, and a (RR(q), J, s)-
coset pair m ⊂ n such that z.m = p and z.n = q. We fix reduced expressions Xm

and Xn as in Notation 7.1. We fix any reduced expression Z• for z, and set

(138) Xp := Z• ◦Xm, Xq := Z• ◦Xn.

Definition 7.23. We define the single step light leaf as

(139) SSLL([p, q]) = idZ•
⊗ELL([m,n]), SSLL([q, p]) = idZ•

⊗ELL([n,m]).

Moreover, we define the single step light leaf with polynomial as

(140) SSLLP([p, q], f) = idZ•
⊗ELLP([m,n], f).

Here, f ∈ RLR(m). By convention, SSLLP([q, p], 1) = SSLL([q, p]).

Schematically, we have

(141) SSLL([p, q])

z n

z m

:=

z n

z m

ELL([m,n]) .

Recall from (15) that

(142) LR(m) = q−1 LR(p)q.

Lemma 7.24. We have deg(SSLL([p, q])) = def([p, q]) and deg(SSLL([q, p])) =
def([q, p]).

Proof. Clearly, we have

deg(SSLL([p, q])) = deg(ELL([m,n])), deg(SSLL([q, p])) = deg(ELL([n,m])).

In view of Lemma 7.4 and Lemma 7.17, the current lemma follows from Lemma 3.9.
�

Remark 7.25. It would be more consistent with Definition 7.14 if we had defined
SSLLP([p, q], f) so that f ∈ RLR(p), and f is placed in the leftmost region of Xp

labeled by LR(p). However, there need not be a region of Xp labeled by LR(p) at

all! Instead, RLR(p) and RLR(m) are isomorphic via multiplication by q. If desired,

one can define an “action” of g ∈ RLR(p) on SSLL([p, q]) by placing q−1(g) in the
region labeled LR(m); to whit

(143) “SSLLP([p, q], g)” := SSLLP([p, q], q−1(g)).

Alternatively, p has some other reduced expression which starts with [[I ⊃ LR(p)]].
One could place polynomials in the LR(p) region in this expression, apply a rex
move to Xp, and then apply SSLL([p, q]). These two different ways for RLR(p) to
act will “agree modulo lower terms,” a fact we do not discuss or need in this paper,
but hope to address in future work.

Remark 7.26. It is important to note that the reduced expression Xp above (resp.
Xq) does not depend only on p, but also on q and some other choices. If a given
double coset p appears in multiple contexts, the meaning of Xp may vary.
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7.5. Third stage: light leaves with polynomials. Let I• = [I0, . . . , Id] be any
singlestep expression. We now inductively construct a light leaf with polynomials
LLP(t•, f•) for a subordinate path t• ⊂ I• with an associated sequence of polyno-
mials f•.

Definition 7.27. Let t• ⊂ I• be a subordinate path. We say that a sequence
f• = [f1, . . . , fd] of polynomials in R is adapted to t• if for all 0 ≤ k ≤ d−1 we have

(144)

{
fk+1 = 1 whenever tk ⊃ tk+1,

fk+1 ∈ RLT whenever tk ⊂ tk+1, where LT = t−1
k+1 LR(tk)tk+1.

Note the compatibility between t−1
k+1 LR(tk)tk+1 and (142).

Definition 7.28. Let t• ⊂ I•, and f• be adapted to t•. Let LLP(t≤0, f≤0) denote
the identity map of the identity 1-morphism of I0. For each 0 ≤ k ≤ d let I≤k =
[I0, . . . , Ik] and t≤k = [t0, . . . , tk]. Suppose that we have already constructed the
light leaf with polynomials map

(145) LLP(t≤k, f≤k) : I≤k → X ′
tk .

Recall that the singlestep light leaf is a map

(146) SSLLP([tk, tk+1], fk+1) : Xtk ⊗ [Ik, Ik+1] → Xtk+1
.

Above, Xtk and X ′
tk

are certain reduced expressions for tk, but not necessarily the
same reduced expression. We define LLP(t≤k+1, f≤k+1) as the composition

I≤k+1 = I≤k ⊗ [Ik, Ik+1]

X ′
tk

⊗ [Ik, Ik+1]

Xtk ⊗ [Ik, Ik+1]

Xtk+1

LLP(t≤k, f≤k)⊗ id

rex⊗ id

SSLLP([tk, tk+1], fk+1)

LLP(t≤k+1, f≤k+1)

where rex denotes some chosen rex move, see Definition 6.5. Finally, we set
LLP(t•, f•) = LLP(t≤d, f≤d).
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In the schematic below, SSLLPk+1 represents SSLLP([tk, tk+1], fk+1).

(147) LLP(t≤k+1, f≤k+1)I0

I≤k Ik

Ik+1

Xtk+1

:=

LLP(t≤k, f≤k)

rex

SSLLPk+1

I0

I≤k

Ik

Ik+1

X′
tk

Xtk

Xtk+1

7.6. Fourth stage: fixing the polynomials. We now choose our polynomials
wisely.

Notation 7.29. Let I• = [I0, . . . , Id] be a singlestep expression. For 0 ≤ j < d we
call j an ascending index if Ij ⊂ Ij+1. When a subordinate path t• is understood,
for each ascending index j we set

(148) LTj = tj+1
−1 LR(tj)tj+1, RTj+1 = RR(tj+1).

Lemma 7.30. We have LTj ⊂ RTj+1.

Proof. Let m ⊂ n be the Grassmannian coset pair associated to tj ⊂ tj+1. As we
have noted earlier, LTj = LR(m) and RTj+1 = LR(n). We have LR(m) ⊂ LR(n)
by [EK23, Lemma 3.1]. �

Notation 7.31. For each finitary subset L we choose a polynomial PL such that
∂L(PL) = 1. The existence of PL is guaranteed by our assumption of generalized
Demazure surjectivity, see [EKLP23a, S. 3.2].

We will be interested in PRTj+1
for each ascending index j (see Remark 8.28).

Definition 7.32. Let I• be a singlestep expression. A sprinkled subordinate path is
a pair (t•, y•) ⊂ I•, where t• ⊂ I• is a subordinate path, and y• = (yj) is a sequence
of elements of W , defined only for ascending indices j, such that yj ∈ WRTj+1

is
minimal in its right coset WLTj

yj.

Definition 7.33. For a sprinkled path (t•, y•), we define LL(t•, y•) := LLP(t•, f•),
where f• is the adapted sequence of polynomials such that

(149) fj := ∂LTj
∂yj

(PRTj+1
) whenever Ij ⊂ Ij+1.

The reason to choose these particular polynomials is the following lemma.

Lemma 7.34. Let t• ⊂ I• be a subordinate path and assume that j is an ascending
index. The polynomials fj = ∂LTj

∂yj
(PRTj+1

), ranging over yj ∈ WRTj+1
minimal

in its right coset WLTj
yj, form a basis for a vector space of graded dimension

poly([tj , tj+1]).
Consequently, if one fixes t• and sums over all sprinkled subordinate paths of the

form (t•, y•), one has

(150)
∑

(t•,y•)

vdeg(f•) = poly(t•).
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Proof. By Theorem 8.15, the polynomials {fj} form a basis for RLTj over RRTj+1 .
It remains to verify that poly([tj , tj+1]) agrees with the graded rank of RLTj over
RRTj+1 . This follows directly from Lemma 4.3. �

We apologize that in our naming conventions, sprinkles seem to refer both to
the polynomials fj sprinkled in a diagram (our preferred interpretation), and the
elements yj of W which index and determine them.

Remark 7.35. When I0 = ∅, we have RTj+1 = LTj = ∅ for all j with Ij ⊂ Ij+1.
The only valid choice of yj is the identity element of W , and fj is the identity
element of R. Sprinkles only appear in the truly singular context.

7.7. Examples. Here we illustrate the first four stages via examples. The first
example is special.

Example 7.36. Let I• ⇌ p be a reduced expression. Then there is a unique
subordinate path t• ⊂ I• with term(t•) = p, namely the forward path of I• (see
[EKLP23b, Lemma 2.22]). For the forward path t•, each ELL([m,n]) associated to
tj ⊂ tj+1 is the identity map (see Example 7.8) and each ELL([n,m]) associated to
tj ⊃ tj+1 can be taken to be the identity map (see Example 7.18 and Lemma 8.14).
Moreover, for each Ij ⊂ Ij+1, since LR(tj) = LR(tj+1) (see [EK23, Definition
2.24]) we have LTj = RTj+1. Therefore, for a sprinkled path (t•, y•) ⊂ I• with
terminus p, each element yj is the identity element in W , each polynomial fj is 1,
and LL(t•, y•) is a rex move without polynomials.

We give a few examples of light leaves LL(t•, y•) which live in Hom(BS(I•), Yp).
Here, t• is a path subordinate to I• with terminus p, and Yp is some reduced
expression for p. Elementary light leaves are not expected to form a basis for any
particular morphism space; this is the role of double leaves, to be defined in the next
section. However, when p contains the identity so that it is minimal in the Bruhat
order, light leaves should7 form a basis for Hom(BS(I•), Yp) as a free module over
Rp, which acts by postcomposition, placing polynomials within a region of Yp. We
try to illustrate this principle, and show why it requires the existence of polynomial
sprinkles.

Example 7.37. In the next series of examples, we will use only one simple reflection
s. First consider when I• = [s, ∅], a reduced expression for the (s, ∅)-coset p =
{id, s}. It has a unique subordinate path, the forward path, so the only light leaf
is the identity map.

s

We have BS(I•) = R as an (Rs, R)-bimodule, whose endomorphism ring is R = Rp.
So indeed, this morphism space is spanned by the unique light leaf, up to placing
polynomials in the region labeled ∅.

Example 7.38. Now consider I• = [∅, s, ∅] and p = {id}. There is a unique
subordinate path t• with terminus p, and no sprinkles can appear, see Remark

7This is because of Proposition 8.32, which states that light leaves form a basis for morphisms
modulo lower terms, together with the fact that there are no lower terms in this case.
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7.35. The light leaf associated to t• is

(151)
s

,

related to the previous case by adjunction. The morphism space is related to the
previous one by adjunction, so it is also free of rank 1 over R = Rp, which acts by
placing polynomials on top.

Example 7.39. We consider one more morphism space related to the previous by
adjunction, where the situation is fundamentally different. Let I• = [s, ∅, s]. It
is a non-reduced expression, with a unique subordinate path t• having terminus
p = {id, s}, which has a length 0 reduced expression [s]. In this case, t1 ⊂ t2 and
LT1 = ∅ while RT2 = {s}. Thus there are two choices for sprinkles, y1 = id and
f1 = Ps, or y1 = s and f1 = ∂s(Ps) = 1. So there are two light leaves:

(152)
s
,

Ps

s
.

Again, the morphism space in question is free of rank 1 over R, but in this case
Rp = Rs, so it is free of rank 2 over Rp (which acts by placing polynomials on
top of the diagram). Because the polynomial ring we can postcompose with is too
small, we are forced to keep extra polynomials sprinkled in our light leaves as we go.
This is the most basic illustration of the concept: every time one loses “polynomial
degrees of freedom” when following a subordinate path, we make up for it with
polynomial sprinkles.

We now give examples where S = {s, t} and mst = 3, so that W ∼= S3. Our
examples will be for (I, J)-expressions with I = {s} and J = {t}.

Example 7.40. We start with an easy extension of the earlier examples. Let
I• = [I − s+ s+ t− s]. There is a unique path t≤3 subordinate to [I − s+ s+ t],
with terminus t3 equal to the (I, S)-coset containing all of W . So there are two
paths subordinate to I• corresponding to the two (I, J)-cosets inside t3: one with
t4 = sts and one with t4 = st. The only step for which the redundancy increases is
the second step +s, so only y2 has the potential to be nontrivial. In all, this leads
to four light leaves:
(153)

s
,

Ps

s
,

s
,

Ps

s
.

Example 7.41. Now let I• = [I−s+t−t+s−s+t]. Note that [I−s+t−t+s−s]
is a reduced expression for the (I, ∅)-coset containing the longest element sts.

We will record subordinate paths by listing the maximal elements of each coset.
Every subordinate path t• has t0 = s, t1 = s, and t2 = st. These first three indices
are as in the forward path of a reduced expression, and the corresponding light leaf
is the identity map. The ascending indices are 1, 3, and 5, and LTj = ∅ for each
one. Since RT2 = ∅ we have y1 = id. Here are the options for how a sprinkled
subordinate path might continue:
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(1) The forward path continues as

t3 = st, t4 = sts, t5 = sts, t6 = sts

We have y3 = id since RT4 = ∅. However, RT6 = {t}, so y5 ∈ {id, t}. The
Grassmannian pair associated to [t5, t6] is [p, q] for the (t, ∅)-coset p = {id, t}
and the (t, t)-coset q = {id, t}. The corresponding elementary light leaves
(with polynomials) are just like those in Example 7.39. The singlestep light
leaf is the same but tensored with an identity map of [I + t − s]: it is a
morphism from [I + t− s− t+ t] to [I + t− s].

Since t≤5 is the forward path of a reduced expression, the corresponding
light leaf may be taken to be the identity map. However, we must apply a
rex move to reach the source of the final singlestep light leaf.

Two conclude, the two sprinkled subordinated paths with the forward
subordinate path have the following light leaves:

(154) s , s Pt .

(2) Another path continues as

t3 = st, t4 = sts, t5 = st, t6 = st

Again y3 = id, but now RT6 = ∅ so y5 = id. Only the first four steps
are reduced. The Grassmannian pair associated to [t4, t5] is [q, p] for the
(∅, ∅)-coset p = {s} and the (∅, s)-coset q = {id, s}, as in Example 7.38.
The Grassmannian pair associated to [t5, t6] is [p′, q′] for the (∅, ∅)-coset
p′ = {t} and the (∅, t)-coset q′ = {id, t}, as in Example 7.39 but without
the need for any polynomials (they could be forced to another region)!

The corresponding light leaf is

(155) .

(3) The final path continues as

t3 = s, t4 = s, t5 = s, t6 = st

This time RT4 = {s}, so y3 ∈ {id, s}. Meanwhile, y5 = id as above. The
corresponding light leaves are

(156)
s

, Ps

s
.

7.8. Fifth stage: double leaves.

Definition 7.42. Let I• and I ′• be singlestep (I, J)-expressions. A triple of the
form (p, (t•, y•), (t

′
•, y

′
•)) is called a coterminal sprinkled triple for (I•, I

′
•) if (t•, y•)

(resp., (t•, y
′
•)) is a sprinkled subordinate path of I• (resp., I ′•), and term(t•) =

term(t′•) = p.
A quadruple (p, (t•, y•), (t

′
•, y

′
•), g), where in addition g is a polynomial in Rp =

RLR(p), is called a coterminal sprinkled quadruple for (I•, I
′
•).
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Remark 7.43. Note that p can appear within a coterminal sprinkled triple for (I•, I
′
•)

if and only if p ≤ I• and p ≤ I ′•, see Definition 2.4. There are finitely many such p
for each pair (I•, I

′
•).

Definition 7.44. Let Yp be a reduced expression for p of the form

[[I ⊃ LR(p)]] . pcore . [[RR(p) ⊂ J ]].

We define the singular double leaf DLL(p, (t•, y•), (t
′
•, y

′
•), g) associated to the coter-

minal sprinkled quadruple (p, (t•, y•), (t
′
•, y

′
•), g) as the composition

(157) I•
LL(t•,y•)
−−−−−−→ Xp

rex
−−→ Yp

g
−→ Yp

rex
−−→ X ′

p

D(LL(t′•,y
′
•))−−−−−−−−→ I ′•.

The reduced expressions Xp and X ′
p are the targets of LLP(t•, y•) and LLP(t′•, y

′
•)

respectively. The maps rex are some chosen rex moves between these different
reduced expressions for p, see Definition 6.5. The map g in the middle places the
polynomial g in the leftmost LR(p)−region in Yp.

Remark 7.45. We would like to emphasize that Yp is a special choice of reduced
expression for p, designed so that the object Yp (which we are using as a proxy for

the bimodule BS(Yp)) admits an obvious action of Rp = RLR(p). For any reduced
expression of p, say Xp, we have End6<p(BS(Xp)) ∼= Rp, see Proposition 4.21, but
it is not always so easy to find Rp as a subring of End(BS(Xp)) itself.

We typically denote a coterminal sprinkled triple with a capital letter like T ,
and write DLL(T, g), where g ∈ Rp, for the double leaf associated to the coterminal
sprinkled quadruple (T, g).

Example 7.46. We continue Examples 7.40 and 7.41, and consider double leaves
from I• = [I−s+ t− t+s−s+ t] to I ′• = [I−s+s+ t−s]. There are a total of ten
double leaves: 2× 2 which factor through p1 with p1 = sts, and 3× 2 which factor
through p2 with p2 = st. The cosets p1 and p2 have unique reduced expressions, so
no rex moves are necessary to link the light leaves into double leaves.

Here are three prototypical double leaves.

(158)

Ps

Pt

g
g

Ps Ps

Ps

g
.

The first double leaf factors through p1, and g ∈ Rs. The second and third factor
through p2, and g ∈ R. One obtains all other double leaves by replacing some of
the polynomials Ps or Pt with 1.

7.9. Loose conclusion, and a silly choice of basis. With notation as in Defi-
nition 7.42, fix a coterminal sprinkled triple T = (p, (t•, y•), (t

′
•, y

′
•)). As g ranges

among all polynomials in Rp, we think of the set {DLL(T, g)} of double leaf mor-
phisms as forming a free Rp-module of rank 1, generated by DLL(T, 1). This
Rp-module lives inside Hom(I•, I

′
•), and we refer to it as Rp · DLL(T, 1).

Indeed, fixing p but letting the other data vary, Theorem 7.49 below will imply
that

{DLL(p, (t•, y•), (t
′
•, y

′
•), 1)}
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is a basis for a free Rp-module inside Hom(I•, I
′
•), even after applying the evaluation

functor to bimodules. Moreover, Theorem 7.49 effectively states that the space
Hom(BS(I•),BS(I

′
•)) is spanned (freely) by these free Rp-modules as p varies. We

find this to be a satisfying way to think of our result.
Phrasing this theorem is somewhat awkward, as the ring Rp varies when p varies.

To describe a basis for Hom(BS(I•),BS(I
′
•)), we need to choose which ring we are

defining a basis over. One could choose RI or RJ , but the most unifying choice is
k. For this purpose alone, we make the fairly pointless choice of a basis of each Rp

as a vector space.

Notation 7.47. For each double coset p we fix a basis Bp of Rp over k consisting
of homogeneous elements.

For fixed T , the elements {DLL(T, b)} for b ∈ Bp form a k-basis for Rp·DLL(T, 1).
Changing the basis Bp will change the basis {DLL(T, b)} of Rp ·DLL(T, 1) in exactly
the same way, simultaneously, for each coterminal sprinkled triple T associated to
p.

Remark 7.48. Recall that Rp = RLR(p) is an (RI , RJ)-bimodule, and is free as a
left RI-module or a right RJ -module. To obtain a basis for Rp ·DLL(T, 1) as a left
RI-module, we could choose a basis for Rp as a left RI-module, and consider the
double leaves {DLL(T, c)} as c ranges among this basis. It is easy to observe that
the left RI -action on End(Yp) matches the left RI-action on Rp, using (85).

Similarly, we can obtain bases of Rp ·DLL(T, 1) as a right RJ -module. However,
it is false that the right RJ -action on End(Yp) matches the right RJ -action on Rp.
This is only true modulo End<p(Yp).

7.10. Conclusion.

Theorem 7.49. After applying the functor F , the set of double leaves

{DLL(T, b)}

yields a k-basis of Hom(BS(I•), BS(I
′
•)), as T = (p, (t•, y•), (t

′
•, y

′
•)) ranges over

the set of coterminal sprinkled triples for (I•, I
′
•), and b ranges over Bp.

The proof comprises the bulk of §8, concluding in §8.10.

Remark 7.50. One can easily adapt Theorem 7.49 to obtain a basis for this mor-
phism space as a left RI -module, or a right RJ -module, see Remark 7.48.

The set {DLL(T, b)} depends on a large number of choices: the data chosen in
Notation 7.1 for each elementary light leaf, the choice of reduced expression for
z in Notation 7.22, the choice of rex moves, the choice of basis Bp, the choice of
polynomials PL. All these choices have been omitted from our notation. Different
choices will yield different bases, but any choice does indeed yield a basis.

We now ask about the relationship between these different bases. We have
already discussed the boring choice of Bp in § 7.9. Our second theorem states
that the other choices yield bases which are related by a unitriangular change of
basis matrix. We are vague here, because the partial order which governs this
unitriangularity requires a fair amount of work to describe.

Theorem 7.51. Fix sequences I• and I ′• as in Definition 7.42. Let ≺3 denote the
partial order on coterminal sprinkled triples from Definition 8.37. Let {DLL(T, g)}
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and {DLL′(T, g)} denote two families of double leaf morphisms, as (T, g) ranges
among coterminal sprinkled quadruples, which are produced using potentially differ-
ent choices of reduced expressions, rex moves, and polynomials PL. Then

(159) DLL
′(T, g) = DLL(T, g) +

∑

U≺3T

DLL(U, hU )

for some polynomials hU such that (U, hU ) is a coterminal sprinkled quadruple.

Our third theorem packages this basis into a convenient framework.

Theorem 7.52. Let I, J be finitary. A double leaves basis equips SBSBim(J, I)
with the structure of a fibred cellular category in the sense of [EL16, Definition
2.17].

In summary, this says that our basis factors nicely through a family of objects
Yp, that the span of basis elements factoring through q < p forms an ideal, and
that End(Yp)/End<p(Yp) is spanned by the identity map over Rp. We prove the
result in §8.11.

8. Proofs

8.1. Sinister diagrams. We give a name to the kind of diagrams desired by Def-
inition 7.3.

Definition 8.1. A diagram in Frob is called sinister if:

(1) The 1-manifold of each color looks like one of the options in (119).
(2) Only left-facing crossings and counterclockwise caps appear.
(3) No two strands cross more than once.
(4) No polynomials appear.

If the target is an identity 1-morphism, so that each color looks like the left diagram
in (119), then the sinister diagram is a sinister cap diagram.

Our running example of a sinister diagram is the one we used in (124):
(160)

ELL = .

We typically use the name ELL for a sinister diagram, since the main examples are
elementary light leaves.

For any sinister diagram ELL, we can twist all strands in the target down to the
left to obtain a sinister cap diagram

E

LL. In the example above,

E

LL equals
(161)

.

Clearly ELL and

E

LL are related by adjunction, and determine each other. We
focus on the construction of sinister cap diagrams.
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In any sinister cap diagram, the bottom boundary L• evidently satisfies:

(162) Each s ∈ S appears an even number of times, alternating −s then +s.

Lemma 8.2. Let L• be any singlestep expression satisfying (162). The algorithm
in the proof constructs a well-defined sinister cap diagram with boundary L•.

Proof. Let

E

LL be a hypothetical sinister cap diagram with bottom boundary L•.
In this proof, a strand refers to a connected component of the 1-manifold obtained
from

E

LL by considering just one color. Each strand meets L• twice, and we call
these two boundary points the start and end based on the orientation. By (119),
the start is to the right of the end.

There are two total orders on the set of strands: start-order, which orders the
strands from right to left based on their start, and end-order, which orders the
strands from right to left based on their end. For example, the end-order in (161)
is “red1, teal1, olive1, red2, etcetera.” These orders are determined by L•.

It is also determined by L• whether two strands will cross one or zero times in
any sinister cap diagram. Two strands will cross if and only if they are in the same
relative position in start-order as in end-order. For example, a strand colored s will
cross a strand colored t if and only if they alternate as in

(163) [. . .− s . . .− t . . .+ s . . .+ t . . .], ,

or the same with s and t swapped.
To construct

E
LL, work from right to left along L•, building a partial diagram

one input ±s at a time. The starting point is the empty diagram. A partially
constructed diagram will look like this:

(164)

At each stage there is a collection of unfinished strands which we call dangling, that
meet the diagonal dashed line. These strands are all aiming down, and waiting in
line to eventually hit the bottom. Crucially, they already appear in end-order; no
further crossings of dangling strands are required.

Now we consider the next input from L•. Suppose it is upward-oriented, part
of strand X (the yellow strand below). Based on where X will hit bottom again,
it has a place it should be in line amongst the dangling strands. It goes upwards,
using left-crossings to cross as many dangling strands as it needs to (possibly none)
until it reaches its proper place in end-order. Then X does a counterclockwise cap,
and is now facing downwards, becoming a dangling strand.

(165)

For this to work, the dangling strands which cross X must appear to the right
of those which do not, so that X may cross them without other dangling strands



50 SINGULAR LIGHT LEAVES

getting in the way. This is guaranteed by the fact that the dangling strands appear
in end-order.

Now suppose the next input is downward-oriented (as the red strand below). It
must be one of the dangling strands coming down to hit the bottom. Indeed, it
must be the first dangling strand, since they are waiting in end-order. So we merely
connect this strand to the bottom boundary and continue.

(166)

Clearly, the property that the dangling strands appear in end-order is preserved
by either step of the algorithm. Thus this algorithm makes sense, producing a
well-defined diagram, which is sinister by construction. �

Remark 8.3. Indeed, there is a unique sinister cap diagram with bottom boundary
L• up to isotopy. We do not need this fact, so we content ourselves with a sketch of
the proof, since making such proofs precise (i.e. constructing isotopies) is tedious.

The timeline of a strand X is the sequence of crossings and its (single) cap, in
the order they appear as one travels X from start to end. For example, in (161)
the timeline of the yellow strand is “cross red2, cross blue1, cap, cross red3, cross
blue2,” where red2 represents the second red component from the right. In the
algorithm above, the timeline of every strand X is as follows: first cross all strands
Y which appear before X in start-order, then cap, then cross all strands Z which
appear after X in start-order (of course, only crossing those strands which X is
required to cross). Moreover, the strands Y appear in end-order, while the strands
Z appear in start-order. In this way, the timeline of X is determined by L•.

We claim that for any sinister cap diagram for L• and any strand X , the timeline
for X will be determined from L• in the same way. Returning to the diagram in
(163), if X and Y cross, and Y comes before X in start-order (in (163), X is red and
Y is teal) then the crossing occurs before the cap in the timeline for X . Similarly, if
X and Z cross and X precedes Z in start-order, the crossing comes after the cap in
the timeline for X . So the timeline for X has the schematic order ({Yi}, cap, {Zj})
as above. We need to argue that the order on {Yi} and {Zj} is as expected.

A strand switches from pointing upward to pointing downward exactly once, at
the cap. If Y1, Y2 < X in start-order and Y1 < Y2 in end-order, we need to show
that Y1 crosses X before Y2 does (in the timeline for X). Suppose to the contrary
that Y2 crosses first. Then Y1 and Y2 must cross each other after they have both
crossed X . However, both Y1 and Y2 have already had their caps (by applying the
previous paragraph to Yi), so both are pointed down and remain that way until
they hit the bottom. Therefore, they are not permitted to cross with a left-facing
crossing. The argument for the order on {Zj} is similar.

Having done the combinatorial work, we leave to the reader the topological proof
that a sinister cap diagram is determined up to isotopy by its timelines.

Remark 8.4. There are many other diagrams, allowing various cups, caps, and
crossings, which would give the same morphism as ELL in Frob. For example, one
could apply oriented Reidemeister moves (88) and (the first relation in) (93). We
chose to be rigid in order to give a clearer definition, and to avoid needing to prove
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that all such diagrams are equal (another topological annoyance). However, the
reader should think that any “reasonable” way to connect up the boundary points
obeying (119) should give the same morphism ELL.

Lemma 8.5. The degree of the sinister cap diagram constructed in Lemma 8.2,
with bottom boundary L•, satisfies

(167) ℓ(L•) + 2 deg(

E

LL) = 0.

Proof. We consider the contribution to degree from each step of the algorithm.
When a dangling strand connects to the bottom, the degree is unchanged. Suppose
a new upward-oriented strand X colored t is added, with K labeling the region
to its left, and Kt the region to its right. We claim that the degree is shifted
by ℓ(K) − ℓ(Kt). This should be clear from the following picture, where pluses
and minuses indicate the contribution to the degree from the cap and the sideways
crossings. Only two terms do not cancel.

(168)

−

+
+

+
− −

+

+
− −

Overall, the degree is determined by L•. If we write L• as a multistep expression,
in the form

L• = [[K1 ⊃ I1 ⊂ K2 ⊃ I2 ⊂ . . . ⊃ Im−1 ⊂ Km]],

then

(169) deg(

E

LL) = ℓ(I1)− ℓ(K2) + ℓ(I2)− . . .+ ℓ(Im−1)− ℓ(Km).

Meanwhile, by (5) we have

(170) ℓ(L•) := ℓ(K1)− 2ℓ(I1) + 2ℓ(K2)− · · · − 2ℓ(Im−1) + ℓ(Km),

from which it is easy to conclude

(171) ℓ(L•) + 2 deg(

E

LL) = ℓ(K1)− ℓ(Km).

But K1 = Km since the top boundary of

E

LL is empty, so (167) follows. �

8.2. Well-definedness of elementary light leaves, and degree calculations.

Proof of Lemma 7.2. By [EK23, Lemma 5.21], only simple reflections in Js will
appear in any reduced expression for p or q. The alternating nature of the appear-
ances of ±t is just due to the fact that they separate subsets which contain t from
subsets which do not. The unicity of the enumeration of Js \ I is clear, so long as
each vi does appear in I•. But the latter is straightforward: one must add vi at
some point to get from a set which doesn’t contain it to a set which does. �

Proof of Lemma 7.4. Using the notation of the previous section, this lemma can
be rephrased as: there is a sinister diagram ELL([p, q]) with bottom boundary
Xp ⊗ [J + s] and top boundary Xq. Equivalently, we can consider the sinister
cap diagram

E

LL([p, q]) obtained by twisting all strands in the target down to the
left. This was constructed in Lemma 8.2. It remains to confirm that the degree of
ELL([p, q]) agrees with def([p, q]).
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The bottom boundary of

E

LL([p, q]) is

(172) L• = [[K1 = Js ⊃ I = I1 ⊂ K2 ⊃ I2 ⊂ . . . ⊃ Im−1 ⊂ J ⊂ Js = Km]]

(possibly I1 = K2 and Im−1 = J) where

(173) Xp = [[I1 ⊂ K2 ⊃ . . . ⊂ Km−1 ⊃ Im−1 ⊂ J ]]

is a reduced expression for p. As a composition of expressions we have

(174) ℓ(L•) = ℓ(Xp)+ ℓ([[Js ⊃ I]])+ ℓ([[J ⊂ Js]]) = ℓ(Xp)+ 2ℓ(Js)− ℓ(I)− ℓ(J).

By (167) we have ℓ(L•) = −2 deg(

E

LL([p, q])). Meanwhile, ℓ(Xp) = ℓ(p). Also,

(175) ℓ(p) = 2ℓ(p)− ℓ(I)− ℓ(J), ℓ(p) = ℓ(p) + ℓ(I) + ℓ(J)− ℓ(LR(p)),

with the latter equality following from (9). Elementary manipulation gives us

(176) deg(

E

LL([p, q]) = −ℓ(p) + ℓ(I) + ℓ(J)− ℓ(Js) = −ℓ(p) + ℓ(LR(p)) − ℓ(Js).

The morphism ELL([p, q]) is obtained from

E

LL([p, q]) by adding clockwise cups
on the left, a unit of adjunction associated to the extension RJs ⊂ RI . So

(177) deg(ELL([p, q])) = deg(

E

LL([p, q]))+ℓ(Js)−ℓ(I) = −ℓ(p)+ℓ(LR(p))−ℓ(I).

By definition the defect of p ⊂ q is

def([p, q]) = ℓ(q)− ℓ(p)− ℓ(LR(q)) + ℓ(LR(p)).

These two formulas match since q is the identity and LR(q) = I. �

Exercise 8.6. In Lemma 6.4 we proved that the rex moves attached to switchback
relations have degree zero. One can also prove this using a relationship between
these rex moves and sinister diagrams, which we wish to point out. Our running
example will be the right picture in (106), which we denote by φ. By twisting one
output strand down to the left and the other down to the right, we obtain a sinister
cap diagram.
(178)

φ =  

E

LL =

It is a good exercise to use the degree computations for sinister cap diagrams to
prove that φ has degree zero, using only that the source and target of φ are both
reduced expressions for the same double coset.

8.3. Degree comparisons. In this section we compare the degree of singular light
leaves with the singular Deodhar formula Corollary 3.7 and with the graded rank
of morphism spaces between Bott–Samelson bimodules.

Lemma 8.7. Let I• be an (I, J) singlestep expression and p an (I, J) coset. We
have the equality
(179)∑

(t•,y•)⊂I•
term(t•)=p

vdeg(LL(t•,y•)) =
∑

t•⊂I•
term(t•)=p

poly(t•)v
def(t•) = gd (Hom6<p(BS(I•),BS(Yp))) .
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Proof. The second equality follows from Proposition 4.21 and Corollary 3.7.
Let p ⊂ q be a coset pair. Recall from Lemma 7.24 that deg(SSLL([p, q])) =

def([p, q]) and deg(SSLL([q, p])) = def([q, p]). Fix t• ⊂ I•. By construction we have

deg(LLP(t•, 1•)) =
∑

k

deg(SSLL[tk, tk+1])

from which we deduce that deg(LLP(t•, 1•)) = def(t•).
Let At• be the set of all allowable sprinkles y•, i.e. sequences of elements in W

that make (t•, y•) a sprinkled subordinate path. To prove the first equality it is
enough to prove that

(180)
∑

y•∈At•

vdeg(LL(t•,y•)) = poly(t•)v
def(t•).

Dividing both sides by vdeg(LLP(t•,1•)) = vdef(t•), this is equivalent to

(181)
∑

y•∈At•

vdeg(y•) = poly(t•).

This equality was proven in Lemma 7.34, see (150). �

Lemma 8.8. For I• and I ′• singlestep expressions, the sum of vdeg(DLL(T )), as T
ranges over all coterminal sprinkled quadruples for (I•, I

′
•), is equal to the Laurent

polynomial in (66), and equal to the graded dimension of Hom(BS(I•),BS(I
′
•)).

Proof. We have to sum the degrees of DLL(T ) associated to all coterminal sprinkled
quadruples T = ((t•, y•), (t

′
•, y

′
•), p, b) . By construction (given that rex moves have

degree zero), this is the sum, over all (I, J)-cosets p of



∑

(t•,y•)⊂I•
term(t•)=p

vdeg(LL(t•,y•))







∑

(t′•,y
′
•)⊂I′

•

term(t′•)=p

vdeg(DLL(t′•,y
′
•))




∑

b∈Bp

vdeg b.

By definition Bp is a graded basis of Rp so we deduce that
∑

b∈Bp
vdeg b = gd(Rp).

Also note that the duality functor preserves degrees, so D can be removed from
the second parenthetical term. The desired result now follows from Lemma 8.7 and
Corollary 4.17. �

8.4. Evaluation of elementary light leaves. We begin the process of proving
Theorem 7.49. Throughout, we identify a light leaf morphism in Frob with its
image under the evaluation functor F , a morphism between singular Bott–Samelson
bimodules. Our first major goal is to prove the linear independence of light leaves.
We want to find certain elements of Bott–Samelson bimodules which a given light
leaf morphism sends to 1⊗. This enables a unitriangularity argument for linear
independence in §8.9.

Throughout this section, [p, q] is a Grassmannian (I, J, s)-coset pair.

Lemma 8.9. Let p ⊂ q be as above. Then DELL([p, q])(1⊗) = 1⊗.

Proof. By Lemma 7.4, the diagram for DELL([p, q]) consists only of counterclock-
wise cups and rightward crossings, both of which preserve 1⊗. �

Lemma 8.10. Let p ⊂ q be as above. Then ELL([q, p])(1⊗) = 1⊗.
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Proof. This follows from Lemma 8.9 and the fact that clockwise caps also preserve
1⊗. �

Evaluation of light leaves ELL([p, q], f) requires more work. The source of this
morphism is BS(I•) = BS(Xp) ⊗ BS([J, Js]), and BS([J, Js]) is RJ viewed as an
(RJ , RJs)-bimodule. For b ∈ RJ we write

1⊗p ⊗ b ∈ BS(Xp)⊗ BS([J, Js])

for the corresponding element of BS(I•). There is also an endomorphism of BS(I•)
coming from multiplication by b in the appropriate tensor factor, which we denote

idp ⊗b ∈ End(BS(Xp)⊗ BS([J, Js])).

Meanwhile, the target of ELL([p, q]) is BS(Xq), which is isomorphic to RI as an
(RI , RJs)-bimodule. We write 1⊗q for the element 1 ∈ RI , and mq for the subbi-

module of positive degree elements of RI .
Let LR = LR(p) and RR = RR(p). Since LR ⊂ I, there is a Frobenius extension

RI ⊂ RLR. Moreover, one can find almost dual bases (see Definition 5.5) for the
Frobenius extension RI ⊂ RLR where one of the bases is in the image of RJ under
the Demazure operator ∂p; part of this claim is the fact that ∂p sends RJ to RLR.

This is the main result of [EKLP23a], which we recall below as Theorem 8.15. The
following lemma uses these dual bases.

Lemma 8.11. Let {fi} and {gi} be almost dual bases for RLR over RI such that
gi is in the image of RJ under ∂p. Let bi ∈ RJ be such that ∂p(bi) = gi. Then we

have

(182) ELL([p, q], fi)(1
⊗
p ⊗ bj) ≡ δij1

⊗
q modulo mq.

Proof. By Lemma 8.9, 1⊗p ⊗ 1 is the image of 1⊗q under DELL([p, q]). There-

fore, 1⊗p ⊗ bj is the image of 1⊗q under (idp ⊗bj) ◦ DELL([p, q]). We conclude that

ELL([p, q], fi)(1
⊗
p ⊗ bj) is the image of 1⊗q under the diagram (183).

(183) bjfi

We resolve this diagram using the following algorithm.

Algorithm 8.12. This algorithm resolves any diagram of the form (183), with the
added generality that ELL([p, q]) can be replaced by any sinister diagram (which
is then composed with its dual, with polynomials inside).

The algorithm works from right to left, tracking a changing polynomial which
we denote h, living on a horizontal symmetry line in the middle of the diagram.
For this proof, the word “segment” will refer to a segment of a 1-manifold, which
is a neighborhood of where it meets the symmetry line. This polynomial h will
always live in a region where every segment to its right is oriented upwards. We
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begin with the diagram above, and h = bj . We proceed by examining the segment
to the left of h.

(1) If the segment to the left of h is pointing upwards, then slide h across it
using (85). Doing this repeatedly to (183) will produce

(184) bjfi .

(2) If the segment X to the left of h is pointing downwards, then X is part of
a counterclockwise circle. Since every segment to the right of h is oriented
upwards, we can apply easy Reidemeister II relations (88) to pull the circle
tight around h. So (184) becomes

(185) bjfi

Now we can apply (86), removing the circle of X , and replacing h with
∂KL (h). Here, K is the region containing h, while L is the region that was
to the left of X .

(186) ∂•bjfi

(3) If h enters a region with an existing polynomial (e.g. fi) then it absorbs
that polynomial (e.g. replace h with h · fi). Continue by examining the
segment to its left.

At each step, the property that only upward-oriented segments appear to the right
of h is preserved. Iterate this algorithm until every counterclockwise circle has been
removed, and what remains is the identity map of Xq with a polynomial hlast.
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For example, the next two steps in the algorithm are

(187) ∂•bjfi

and

(188) ∂•∂•bjfi .

The question which remains is: what is the final polynomial hlast which appears?
The operations which have been applied to h are:

(1) Inclusion RK →֒ RL, whenever h was slid across an upward strand from a
K-labeled region to an L-labeled region.

(2) The Demazure operator ∂KL , whenever h was squeezed in a circle to get
across a downward strand from a K-labeled region to an L-labeled region.

But these operations are precisely ∂[L,K], see §5.1. By composing them along any
subsequence I ′• within the expression I•, we end up applying ∂I′

•
. This concludes

the algorithm.

We return to the case of ELL([p, q]) and the proof of Lemma 8.11. In the process
of moving bj to the region containing fi, we have applied ∂pcore ◦ ∂[[RR⊂J]]. This is

just the map ∂p : R
J → RLR, see (69). To get from there to the far left, we apply

the Frobenius trace ∂[[I⊃LR]] = ∂LRI . Thus we conclude that (183) is equal to

(189) ∂LRI (fi∂p(bj)) = ∂LRI (figj) ≡ δij1
⊗
q modulo mq,

by the assumption that fi and gj were almost dual bases. �

Remark 8.13. Without needing to compute anything, one can use degree arguments
to say that ELL([p, q], fi)(1

⊗
p ⊗ bj) is either

(1) zero, because it has degree less than 1⊗q ,

(2) a scalar multiple of 1⊗q , because it has degree equal to 1⊗q ,

(3) an element of mq, because it has degree greater than 1⊗q .

So Lemma 8.11 only has interesting content when bi and bj have the same degree.
Restricting the degree does not help to illuminate the proof, however.
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8.5. Circle evaluation lemma and consequences. We interrupt the discussion
of light leaves to prove the circle evaluation lemma, Lemma 6.10, which follows
from Algorithm 8.12.

Proof of Lemma 6.10. We need to resolve the diagram

(190)

û0

S
ûd

û1 ûd−1

g
.

Our first step is to apply the hard R2 relation (89) to the neighborhood of the
region containing g. We obtain

(191)

û0

S
ûd

û1

∗ ∆ûd

S,(2)
.

Here ∗ represents ∂Mûd−1
(g∆ûd

S,(1)), via the second line of (91). Each term in this

Sweedler sum is a tensor product of the morphism

(192)

û0

S
ûd

û1

∗

with an identity map and a polynomial. We can resolve (192) using Algorithm 8.12.

The result is precisely ∂L′
•
(g∆ûd

S,(1)) on the left of a red identity strand. Overall, we

obtain the right-hand side of (111). �

Until now we have not used the results from Section 6, which relied upon the
lemma just proven. Now we can use Theorem 6.11 to prove the following lemma.

Lemma 8.14. Continue the assumptions and notation of Example 7.18. Let rex
denote a rex move Xm → X ′

m. Then after applying the evaluation functor we have

(193) F(rex ◦ELL([n,m])) = F(idX′
m
).

Proof. Both the morphism ELL([n,m]) : X ′
m → Xm and a rex move Xm → X ′

m

have degree zero. By Lemma 8.10, ELL([n,m]) preserves the one-tensor, and by
Theorem 6.11, rex preserves the one-tensor. Thus their composition is an endo-
morphism of X ′

m = BS([[I ⊂ Js ⊃ J ]]) which preserves the one-tensor. This
Bott-Samelson bimodule is a grading shift of RI ⊗RJs RJ , which is cyclic as a bi-
module and generated by the one-tensor. Thus any bimodule endomorphism which
preserves the one-tensor is the identity map. �
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8.6. Dual sprinkles. Let us now recall from [EKLP23a] the construction of a pair
of almost dual bases of the extension RI ⊂ RLR(p) that could be used for Lemma
8.11. Recall that Demazure surjectivity implies that for any finitary I there exists
an element PI ∈ R such that ∂I(PI) = 1.

Theorem 8.15 ([EKLP23a, Theorem 4.14]). Let I, J, L ⊂ S be such that I∪J ⊂ L
and L is finitary. Pick PI , PL ∈ R such that ∂I(PI) = 1 and ∂L(PL) = 1. Let p be
an (I, J)-coset contained in WL, and let LR = LR(p). Let y ∈ WI be a minimal
representative for its coset WLRy, and let x ∈ WL be arbitrary. We say that x is
dual to y (with respect to p) if

(194) y−1.p.wJ .x = wL.

Then x is dual to y if and only if x = y◦, where

(195) y◦ = wJp
−1ywL.

Moreover,

(196) ∂LRI (∂LR∂y(PI) · ∂p∂J∂x(PL)) = δx,y◦ +mI .

Here, mI represents the ideal of positive degree elements in RI . In particular,

(197) {∂LR∂y(PI)}, {∂p∂J∂y◦(PL)}

are almost dual bases for RLR over RI , where y ranges among minimal coset rep-
resentatives for right cosets in WLR\WI .

Remark 8.16. This theorem is the first of many uses of the operation y 7→ y◦. We
take this opportunity to emphasize that not every x ∈ WL has the form y◦ for
some y (minimal in its coset WLRy), but that (196) applies to any element x ∈WL

regardless.

Remark 8.17. Note that the choices of PI and PL are independent. By varying PI

but fixing PL, one obtains a family of bases (the left side of (197)) which are all
almost dual to the same basis (the right side of (197)).

We can summarize the results of §8.4 in the light of Theorem 8.15.

Proposition 8.18. Let I• be a singlestep expression and t• ⊂ I• be a subordinate
path with terminus p. Use Notation 7.29.

(1) If Ik ⊃ Ik+1 then

(198) SSLL([tk, tk+1])(1
⊗) = 1⊗.

(2) If Ik ⊂ Ik+1, let x ∈ WIk+1
be arbitrary, and let y be a minimal coset

representative for a coset in WLTk
\WRTk+1

. Then

(199) SSLLP([tk, tk+1], ∂LTk
∂y(PRTk+1

))(1⊗tk ⊗ ∂Ik∂x(PIk+1
)) = δx,y◦1⊗ +m.

Here, m represents the elements of BS(Xtk+1
) of strictly higher degree than

1⊗, and y◦ = wIk tk
−1tk+1ywIk+1

.

Proof. For the first claim, let m ⊂ n be the Grassmannian coset pair associ-
ated to tk+1 ⊂ tk. Lemma 8.10 implies that ELL([n,m]) preserves 1⊗. Since
SSLL([tk, tk+1]) = idZ•

⊗ELL([n,m]) for some Z•, it also preserves 1⊗.
Similarly, one can analyze ELL([m,n]) using Lemma 8.11 and Theorem 8.15.

Note from Theorem 2.6 thatm = tk+1
−1tk, which explains the relationship between
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the formula for y◦ above and the formula in (195). We obtain the desired result by
tensoring with idZ•

on the left. �

Proposition 8.18 motivates the definition below. Remember that an ascending
index j relative to an expression I• is an index for which Ij ⊂ Ij+1.

Definition 8.19. Let (t•, y•) ⊂ I• be a sprinkled subordinate path. For any
ascending index j, we define y◦j to be the dual of yj with respect to mj , where

[mj , nj] is the Grassmannian pair associated to [tj , tj+1], that is, we let

(200) y◦j := wIj tj
−1tj+1yjwIj+1 .

We call the sequence y◦• the dual sequence of (t•, y•).

We emphasize that both y• and y◦• are only defined for ascending indices.
Let (t•, y•) be a sprinkled subordinate path. For an ascending index j, the

corresponding single step light leaf is the map SSLLP([tj , tj+1], fj) where fj =
∂LTj

∂yj
(PRTj+1

). As seen in (199), y◦j helps to define bk = ∂Ik∂y◦
j
(PIk+1

), a poly-

nomial which is suitable for plugging into SSLL([tj , tj+1]). We think of these poly-
nomials bk as “dual sprinkles.”

Notation 8.20. Let (t•, y•) be a sprinkled subordinate path. For each ascending
index j, let PIj+1 be as in Theorem 8.15. For every k let

(201) b(y◦k) :=

{
1 if Ik ⊃ Ik+1

∂Ik∂y◦
k
(PIk+1

) if Ik ⊂ Ik+1,

and let

(202) b(t•, y•) := 1⊗ b(y◦1)⊗ b(y◦2)⊗ . . .⊗ b(y◦d) ∈ BS(I•).

We are gearing up for Proposition 8.26 which states that LL(t•, y•) applied to
b(u•, z•) is equal to 1⊗ when (t•, y•) = (u•, z•), and is equal to zero when one is
bigger than the other for some particular total order. This crucial result will be used
to prove linear independence of light leaves, and most of the remaining theorems
will fall to its hand. First, we need to develop the theory of dual sequences.

8.7. Dual sequences. At the moment it is not obvious that the dual sequence y◦•
necessarily contains very much information about (t•, y•). For example, one might
imagine that nonequal sprinkled subordinate paths have the same dual sequence.
We prove this is not the case in Lemma 8.25. First we initiate a running example
illustrating that dual sequences contain a great deal of information.

Example 8.21. Let W have type A2, with simple reflections s and t. Let I• =
[∅, s, st, s, ∅, s, st]. When I0 = ∅, recall from Remark 7.35 that yj = 1 for all valid
j, so a sprinkled subordinate path is determined just by t•. We claim that there
are six (sprinkled) subordinate paths t•, one for each element of W , and they are
uniquely determined by their dual sequences.

Any subordinate path t• starts with t0 = {id} ⊂ t1 = {id, s} ⊂ t2 = W . So any
dual sequence has y◦0 = s and y◦1 = ts. Next is t2 ⊃ t3 ⊃ t4, where t4 = {w} for
some w ∈ W . The final steps are t4 ⊂ t5 = {w,ws} ⊂ t6 =W .

The element y◦4 contains some information about w: we have y◦4 = s if w < ws
and y◦4 = id if ws > w. The element y◦5 contains the rest of the information, being
equal to either ts if w ∈ {id, s}, or t if w ∈ {t, ts}, or id if w ∈ {st, sts}.
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We need the following lemma to use Proposition 8.18 with our dual sequence.

Lemma 8.22. For any sprinkled subordinate path (t•, y•) ⊂ I•, and any ascending
index j we have y◦j ∈ WIj+1 .

Proof. Since tj ⊂ tj+1, with the former being an (I0, Ij)-coset and the later an
(I0, Ij+1)-coset, it is clear from Howlett’s theorem ([EK23, Lemma 2.12]) that tj is

obtained from tj+1 by right multiplying by an element of WIj+1 . Thus tj
−1tj+1 ∈

WIj+1 . By definition of a sprinkled subordinate path, yj ∈ WRTj+1
⊂ WIj+1 . Also

wIj , wIj+1 ∈WIj+1 , so the overall product lives in WIj+1 . �

We define now a dominance order on the set of sprinkled paths. We fix a total
order ⊳ on the Coxeter group W compatible with length, that is, such that x ⊳ y
whenever ℓ(x) < ℓ(y).

Definition 8.23. Let (t•, y•) and (u•, z•) be coterminal sprinkled paths subordi-
nate to I•. Let y

◦
• and z◦• be the respective dual sequences.

We write (t•, y•) ≺ (u•, z•) if there exists j with Ij ⊂ Ij+1 such that y◦j ⊳ z
◦
j , and

for all i < j such that Ii ⊂ Ii+1 we have y◦i = z◦i .

That is, we compare (t•, y•) with other sprinkled paths using the lexicographic
order on y◦• induced by the order ⊳ on elements. By nature of the lexicographic
order, ≺ is transitive.

Example 8.24. We continue Example 8.21, identifying a subordinate sprinkled
path with the element w for which t4 = {w}. Then ≺ becomes an unusual total
order on W :

sts ≺ ts ≺ s ≺ st ≺ t ≺ id .

In the next lemma, we prove that ≺ is a total order on coterminal sprinkled
paths. It is important to emphasize that this relation ≺ is only intended to compare
sprinkled paths with the same terminus. For example, if [I0 ⊃ I1 ⊃ · · · ⊃ Id] then
there are no sprinkles at all, i.e. y• is the empty sequence. In this case, the sequence
t• is determined uniquely by its terminus, so there is no comparison to be made
anyway.

Lemma 8.25. Let (t•, y•) and (u•, z•) be coterminal sprinkled paths subordinate
to I• which are not equal. Then y◦• 6= z◦• . Consequently, ≺ is a total order.

Proof. Suppose first that t• = u•. Then yj 6= zj for some ascending index j.
Directly from the definition (200) we have y◦j 6= z◦j , as desired.

Assume now t• 6= u•. We need to show that there exists an ascending index j
with y◦j 6= z◦j . Though the lexicographic order examines these sequences from left
to right, we will find the difference between them by examining from right to left.

Let j be the biggest index with tj 6= uj. Clearly j < d. If Ij ⊃ Ij+1 then tj
is the unique coset containing tj+1, and uj is the unique coset containing uj+1.
But tj+1 = uj+1, so tj = uj , a contradiction. We conclude that Ij ⊂ Ij+1, and
tj 6= uj ⊂ tj+1.

Let m ⊂ n and m′ ⊂ n be the Grassmannian pairs corresponding to tj ⊂ tj+1

and uj ⊂ tj+1 respectively. Note that n is the (RTj+1, Ij+1) coset containing the
identity, whereas m and m′ are determined by tj and uj, and are nonequal. Recall
from Theorem 2.6 that

(203) m = tj+1
−1tj and m′ = tj+1

−1uj.
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Plugging this into (200) we get

(204) y◦j = wIjm
−1yjwIj+1 and z◦j = wIjm

′−1
zjwIj+1 .

If it were the case that y◦j = z◦j , then taking the inverse of both sides of (204)
and setting them equal yields

(205) y−1
j m = z−1

j m′.

But m and m′ are (RTj+1, Ij)-cosets, and yj, zj ∈WRTj+1
, so m and m′ are equal.

This is a contradiction.
Given that ≺ is transitive, it will be a total order if any two non-equal elements

are comparable (and inequivalent). This is what we have just shown. �

8.8. Evaluation of light leaves. Recall the meaning of b(t•, y•) from Notation 8.20.

Proposition 8.26. Let (t•, y•) and (u•, z•) be coterminal sprinkled paths subordi-
nate to I•. We have

(206) LL(t•, y•)(b(u•, z•)) =

{
1⊗ if (t•, y•) = (u•, z•)

0 if (t•, y•) ≺ (u•, z•)

Proof. Light leaves are built from single step light leaves and rex moves. Thus the
case (t•, y•) = (u•, z•) follows by iterating Proposition 8.18 and Theorem 6.11.

In case (t•, y•) ≺ (u•, z•), let j be the smallest index such that y◦j 6= z◦j . While

(t<j , y<j) and (u<j, z<j) may be different, we have b(t<j , y<j) = b(u<j, z<j), since
the definition of b only uses the dual sequence and the overarching expression I•.
Thus, as in the previous paragraph, we have

LL(t<j , y<j)(b(u<j , z<j)) = LL(t<j , y<j)(b(t<j , y<j)) = 1⊗.

By the inductive construction of light leaves, the next piece of LL(t•, y•) will be
SSLLP([tj , tj+1], ∂LTj

∂yj
(PRTj+1

)). If we apply this to 1⊗ ⊗ b(y◦j ), we get the one-

tensor by (199). Instead, we apply it to 1⊗⊗ b(z◦j ). Let f be the result, an element
of BS(Xtj+1). Even though z◦ was built using a potentially different subordinate
path, Lemma 8.22 implies that z◦j ∈ WIj+1 , so we can apply Proposition 8.18 part
(2). By (199), since z◦j 6= y◦j , we have f ∈ m.

However, by construction of ≺ we have y◦j ⊳ zj
◦, so ℓ(y◦j ) ≤ ℓ(zj

◦). Then
deg b(z◦j ) ≤ deg b(y◦j ), meaning that the degree of f is at most the degree of the
one-tensor. Any element of m with such a degree is zero, as desired. �

Note that Proposition 8.26 says absolutely nothing about LL(t•, y•)(b(u•, z•))
when (u•, z•) ≺ (t•, y•). These will be mysterious and unknown elements of the
target bimodule.

We have now developed a crucial technical tool, Proposition 8.26. Remember
that light leaves depend on a number of choices in their construction, as do the
elements b(u•, z•) above. This is as good a place as any to summarize the various
choices made and dependencies on these choices.

Given a sequence I•, the set of sprinkled paths (t•, y•) is a combinatorial object
independent of any choices. The dual sequence y◦• , and the total order ≺, are also
purely combinatorial and choice-independent.

The elements b(u•, z•) ∈ BS(I•) depend only on a choice of PIk+1
for each as-

cending index k. The light leaves LL(t•, y•) depend on a host of choices. Some
are combinatorial: choices of reduced expressions, choices of rex moves between
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reduced expressions. Others are algebraic: a choice of PRTj+1
for each ascending

index j, which are used to define the adapted sequence of polynomials f•.
The crucial point is that the choice of PIk+1

when defining b is independent of
the choices made when defining LL, see Remark 8.17. Thus (206) will hold for any
possible choices.

Remark 8.27. Changing the choices above will certainly change the mysterious
values of LL(t•, y•)(b(u•, z•)) when (u•, z•) ≺ (t•, y•).

Remark 8.28. One can vary the choice of PIk+1
when defining b(u•, z•) as (u•, z•)

varies, and can vary the choice of PRTj+1 as (t•, y•) and j vary. Still (206) will hold.

8.9. Linear independence of light leaves. Consider an expression I• = [I0, . . . , Id]
and a subordinate path t• with terminus p, and a sprinkling y• which is irrelevant
for this discussion. The light leaf LL(t•, y•) is a morphism from I• to Xtd , where
Xtd is some reduced expression for p. Different such light leaves with the same
terminus may be morphisms to different reduced expression for p, and it is unwise
to compare morphisms which live in different Hom spaces.

Instead, recall in our construction of double leaves that we have fixed one partic-
ular reduced expression Yp of p, which double leaves factor through. We now force
our light leaves to have Yp as a target, so we can compare and sum them.

Notation 8.29. For each subordinate sprinkled path (t•, y•) ⊂ I• we choose a rex
move rex(t•, y•) such that its target is Yp and its source is the target of LL(t•, y•).
We consider the following set of morphisms

(207) LL(p, I•) := {rex(t•, y•) ◦ LL(t•, y•) | (t•, y•) ⊂ I•, term(t•) = p}.

Below we will apply the functor F to LL(p, I•), to get a family of morphisms
between singular Bott–Samelson bimodules.

Recall that the reduced expression Yp factors through LR(p), so there is an action

of RLR(p) on BS(Yp) by placing polynomials in the appropriate region.

Lemma 8.30. Let F ∈ Hom(BS(I•),BS(Yp)) be a linear combination

(208) F :=
∑

i

λiLL(t
i
•, y

i
•)

for distinct elements LL(ti•, y
i
•) ∈ LL(p, I•), with nonzero coefficients λi ∈ RLR(p).

Let k be such that (tk• , y
k
•) is maximal with respect to the order ≺. Then we have

(209) F (b(u•, z•)) =

{
λk · 1⊗ if (tk• , y

k
• ) = (u•, z•)

0 if (tk• , y
k
• ) ≺ (u•, z•).

In particular, the maximal sprinkled path with nonzero coefficient in F agrees with
the maximal (u•, z•) for which F (b(u•, z•)) 6= 0.

Proof. This follows immediately from Proposition 8.26, since when
∑

LL(ti•, y
i
•) is

applied to b(u•, z•) in the regime (tk• , y
k
•) � (u•, z•), at most one term survives. �

Recall the definition of the ideal of lower terms Hom<p and of the quotient
Hom6<p from Section 4.5.

Theorem 8.31. For an (I, J)-coset p and an expression I•, the set F(LL(p, I•))
is linearly independent in Hom6<p(BS(I•),BS(Yp)) as a left module for RLR(p).
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Proof. First we note that Proposition 8.26 will still hold with LL(t•, y•) replaced by
the composition rex(t•, y•) ◦ LL(t•, y•) ∈ LL(p, I•). There are two easy arguments
for this fact. The first is that rex moves preserve 1⊗, see Theorem 6.11. The second
is that Proposition 8.26 was proven for arbitrary constructions of light leaves, and
one could well have chosen Xtd = Yp in the first place, and let rex(t•, y•) be the
identity map. Indeed, for the remainder of this proof, we shorten rex(t•, y•) ◦
LL(t•, y•) to LL(t•, y•) for brevity.

Let F ∈ Hom(BS(I•),BS(Yp)) be a nonzero linear combination

F :=
∑

i

λiLL(t
i
•, y

i
•)

as in Lemma 8.30. We need to show that F(F ) 6∈ Hom<p(BS(I•),BS(Yp)).
Let k be such that (tk• , y

k
•) is maximal with respect to the order ≺. Then by

Lemma 8.30 we have F (b(tk• , y
k
• )) = λk1

⊗, where λk is nonzero. Now Proposi-
tion 4.20 immediately implies that F(F ) 6∈ Hom<p(BS(I•),BS(Yp)). �

Proposition 8.32. The set F(LL(p, I•)) is a basis of Hom6<p(BS(I•),BS(Yp)) as

a module over RLR(p).

Proof. We know from Theorem 8.31 that the set F(LL(p, I•)) is linearly indepen-
dent in Hom6<p(BS(I•),BS(Yp)) over RLR(p). By Lemma 8.7, the graded ranks of
Hom6<p(BS(I•),BS(Yp)) and of its submodule generated by F(LL(p, I•)) are equal.
We conclude by the graded Nakayama Lemma that the two modules coincide. �

Corollary 8.33. The set of flipped light leaves

DLL(p, I•) := {DLL(t•, y•) ◦ D rex(t•, y•)}

evaluates to an RLR(p)-basis for Hom6<p(BS(Yp),BS(I•)).

Proof. This follows immediately from Proposition 8.32 and the fact thatD preserves
the ideal of lower terms Hom<p. �

Theorem 8.34. For an (I, J)-coset p and an expression I•, let LL(p, I•) be a
collection of light leaves, and let LL′(p, I•) be another collection of light leaves, made
using different choices (of rex, of rex move, of PRTj+1

). Then the change of basis

matrix between F(LL(p, I•)) and F(LL′(p, I•)) within Hom6<p(BS(I•),BS(Yp)) is
unitriangular (i.e. upper triangular with ones on the diagonal) with respect to the
total order ≺.

Proof. Fix some sprinkled path (t•, y•), and write LL
′(t•, y•) ∈ LL′(p, I•) as a

linear combination with respect to the basis LL(p, I•) (we omit the evaluation
functor for simplicity of notation). That is,

(210) LL
′(t•, y•) =

∑

i

λiLL(t
i
•, z

i
•),

where we assume that λi 6= 0 for all i appearing in the sum. Let k be such that
(tk• , y

k
•) is maximal with respect to the order ≺.

By Lemma 8.30, the maximal (u•, z•) such that LL′(t•, y•) applied to b(u•, z•)
is nonzero is (u•, z•) = (tk• , y

k
•). But by Proposition 8.26, this maximal (u•, z•)

is also (t•, y•). Thus (t•, y•) is the maximal index with nonzero coefficient in the
sum (210), proving upper triangularity of the change of basis matrix. Moreover,
evaluating on b(t•, y•) using Lemma 8.30 and Proposition 8.26 gives λk = 1, proving
unitriangularity. �
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8.10. Double leaves. We combine light leaves and flipped light leaves to obtain a
basis of the Hom-spaces in SBSBim.

Lemma 8.35. Let p be an (I, J)-coset, and I• and I ′• be two expressions which
begin in I and end in J . Within Hom(BS(I•),BS(I

′
•)), the span of all double leaves

which factor through q with q ≤ p (i.e. associated to coterminal sprinkled quadruples
with terminus q) is equal to Hom≤p(BS(I•),BS(I

′
•)).

Proof. We prove by induction on p (with respect to the Bruhat order). Our ar-
gument has no need for a base case. Suppose that all morphisms in Hom<p

are spanned by double leaves, and let F ∈ Hom≤p(BS(I•),BS(I
′
•)). So we can

write F =
∑
Gi ◦ Hi, with Hi ∈ Hom(BS(I•), Bqi) ⊂ Hom(BS(I•),BS(Yqi)) and

G ∈ Hom(Bqi ,BS(I
′
•)) ⊂ Hom(BS(Yqi),BS(I

′
•)), where qi ≤ p for all i.

From Proposition 8.32, we can write each Hi as an RLR(qi)-linear combination
of light leaves modulo terms lower than qi. Similarly, from Corollary 8.33 we can
write Gi as a linear combination of flipped light leaves modulo terms lower than
qi. So we can write F as a linear combination of double leaves modulo terms lower
than p. By induction, the terms smaller than p are a linear combination of double
leaves, hence we conclude that F is a linear combination of double leaves. �

Remark 8.36. The argument of the above lemma applies to any finite downward-
closed subset of the Bruhat order on double cosets, not just {≤ p}.

Proof of Theorem 7.49. Thanks to Soergel’s hom formula and Lemma 8.8 it is
enough to show that double light leaves {DLL(T, b)} span the morphism space in
question, as T ranges over the set of coterminal sprinkled triples and b ranges over
Bp. By letting p in Lemma 8.35 be sufficiently large (or taking any sufficiently large
downward-closed subset as in Remark 8.36), we obtain the desired conclusion. �

Definition 8.37. Let T = (p, (t•, y•), (t
′
•, y

′
•)) and U = (q, (u•, z•), (u

′
•, z

′
•)) be two

coterminal sprinkled triples associated to I• and I ′•. We write U �3 T if either

• q < p, or
• q = p and (u•, z•) � (t•, y•) and (u′•, z

′
•) � (t′•, y

′
•).

Unlike the total order ≺ on sprinkled subordinate paths, the relation ≺3 on
coterminal sprinkled triples is only a partial order.

Proof of Theorem 7.51. Lemma 8.35 applies to both versions of the double leaves
basis. As a consequence, the change of basis matrix is block upper triangular, with
blocks indexed by (I, J)-cosets p.

Fix p. Let T = (p, (t•, y•), (t
′
•, y

′
•)). A double leaf DLL′(T, g) is equal to G◦g◦H ,

where G = LL
′(t•, y•) andH = DLL

′(t′•, y
′
•). By Theorem 8.34, G can be rewritten

as LL(t•, y•) plus a linear combination (over Rp) of LL which are strictly smaller
with respect to ≺, all modulo Hom<p. Similarly with H . Thus, modulo Hom<p,
DLL

′(T, g) can be written as DLL(T, g) plus a sum of various DLL(U, hU ) for
U ≺3 T . Since lower terms Hom<p belong to lower blocks, this suffices to prove
unitriangularity within each block. �

8.11. A fibered cellular category. The notion of a fibered cellular category can
be found in [EL16, Definition 2.17]. We will recall this definition as we demonstrate
how it applies to SBSBim(J, I), thus proving Theorem 7.52.

A fibered cellular category is a k-linear category for some commutative base ring
k (in [EL16], k is denoted by R). It comes equipped with a set of objects Λ which
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also has a relation ≤ giving it the structure of a poset. For SBSBim(J, I), the set Λ
is the collection of objects BS(Yp), in bijection with the set of (I, J)-cosets p, and
is equipped correspondingly with the Bruhat order. The relation ≤ is required to
have the descending chain condition, which the Bruhat order does.

For each object X and each λ ∈ Λ we need finite sets M(λ,X) and E(X,λ)
which are in fixed bijection with each other. We also need a map c which transforms
elements of M or E into morphisms; notationally e.g. cU ∈ Hom(X,λ) for U ∈
E(X,λ). In our case, any object X = BS(I•) is a Bott-Samelson bimodule for some
(I, J)-expression, and E(BS(I•),BS(Yp)) and M(BS(Yp),BS(I•)) are in bijection
with the set of sprinkled paths {(t•, y•)} subordinate to I• with terminus p. In
fact, it is easiest to set E(BS(I•),BS(Yp)) equal to the set of light leaves LL(p, I•),
which is already a subset of Hom(BS(I•),BS(Yp)), so that c does nothing. Similarly,
M(BS(Yp),BS(I•)) can be defined as the set of morphisms obtained from LL(p, I•)
via the duality functor.

For each λ ∈ Λ we need a commutative free k-algebraAλ inside End(λ), equipped
with an involution ι. In our case, Ap := Rp, viewed as a ring acting on BS(Yp), and
ι is trivial.

Then for S ∈M(λ, Y ) and a ∈ Aλ and U ∈ E(X,λ) one defines the composition

cS,a,U := cS ◦ a ◦ cU .

In our case, for a ∈ Rp, and T being the coterminal sprinkled triple associated to
S and U , this is exactly the definition of DLL(T, a).

This data is required to satisfy four conditions. The first states that {cS,ai,U}
forms a basis for each Hom space, as ai ranges over a k-basis for Aλ. In our case,
this is exactly the main theorem of our paper.

The second is that the bijection between M(λ,X) and E(X,λ), together with
the involution ι on Aλ, extends to an anti-automorphism of the category. This
is just the duality functor, flipping diagrams upside-down. Note that duality acts
trivially on Rp ∈ End(BS(Yp)).

The fourth condition states that E(λ, λ) consists of a single element whose as-
sociated map is the identity, and similarly for M(λ, λ). In our case, since Yp is
a reduced expression for p, it has a unique sprinkled path with terminus p, see
Example 7.36. The associated light leaf could in theory be any rex move from Yp
to itself, but by Lemma 8.14 one valid choice is the identity map, and that is the
choice we make.

Finally, the third condition is the cellular condition, which we choose not to re-
call. The purpose of object-adapted cellular categories is that the cellular condition
is a consequence (see [EL16, Lemma 2.8]) of an easier property: that c(E(X,λ))
spans all maps X → λ modulo the ideal spanned by basis elements associated
to µ < λ. In our case, this amounts to the fact that LL(p, I•) is a basis for
Hom6<p(BS(I•),BS(Yp)), which was proven in Proposition 8.32.
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