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Holomorphic Laplacian on the Lie ball and the

Penrose transform

Hideko SEKIGUCHI

Abstract

We prove that any holomorphic function f on the Lie ball of even dimension

satisfying ∆f = 0 is obtained uniquely by the higher-dimensional Penrose trans-

form of a Dolbeault cohomology for a twisted line bundle of a certain domain

of the Grassmannian of isotropic subspaces. To overcome the difficulties aris-

ing from that the line bundle parameter is outside the good range, we use some

techniques from algebraic representation theory.
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1 Introduction

We consider the holomorphic Laplacian ∆ = ∂2

∂z2
1

+ · · ·+ ∂2

∂z2n
on the Lie ball

D := {z ∈ C
n : |z tz|2 + 1− 2z tz > 0, |z tz| < 1},

which is the bounded symmetric domain of type D IV in the É. Cartan classification.

The goal of this article is to prove that any holomorphic function f on D satisfying

∆f = 0 can be obtained uniquely as the higher-dimensional Penrose transform of a

Dolbeault cohomology of a non-compact complex manifold X = SO0(2, 2m)/U(1, m)

when n = 2m.

To formulate our main results, let m > 1, G := SO0(2, 2m) be the identity compo-

nent of the indefinite orthogonal group of signature (2, 2m), K = SO(2)× SO(2m) a

maximal compact subgroup, and θ the corresponding Cartan involution of G. Let T be

a maximal torus of K, t its Lie algebra, and t∨ the dual space. We take the standard
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basis {e0, e1, . . . , em} in
√
−1t∨ such that ∆(gC, tC) = {±ei± ej : 0 ≤ i < j ≤ m}. One

has a decomposition of the complexified Lie algebra gC = so(2m+2,C) = p−+ kC+p+

as a kC-module with ∆(p+, tC) := {e0 ± ej : 1 ≤ j ≤ m}. The bounded sym-

metric domain D may be identified with the Harish-Chandra realization of G/K in

C
2m ≃ p− ⊂ GC/K exp(p+).

We set 1m+1 = e0 + · · ·+ em ∈
√
−1t∨, and define a θ-stable parabolic subalgebra

q = lC + u with lC ⊃ tC such that the roots α for lC and u are given by 〈α, 1m+1〉 = 0

and 〈α, 1m+1〉 > 0, respectively. Let Q be the parabolic subgroup of the complexified

Lie group GC = SO(2m + 2,C) with Lie algebra q, and L := G ∩ Q ≃ U(1, m).

Then the homogeneous space X := G/L = SO0(2, 2m)/U(1, m) is identified with the

set of indefinite Hermitian structures on R2m+2 of signature (1, m), and becomes a

complex manifold as an open set of GC/Q ≃ SO(2m+2)/U(m+1), the Grassmannian

of isotropic subspaces of C2m+2 equipped with non-degenerate quadratic form. For

λ ∈ Z, let Cλ denote the holomorphic character of LC ≃ GL(m+ 1,C) given by detλ,

and we form a GC-equivariant holomorphic line bundle Lλ := GC ×Q Cλ over GC/Q.

We shall use the same letter Lλ to denote its restriction Lλ|X ≃ G×L Cλ to the open

subset X ≃ G/L of GC/Q. With this notation, the canonical bundle ΩX of X is given

by Lm.

Let Hj

∂
(X,Lλ) be the j-th Dolbeault cohomology group with coefficients in Lλ,

which carries a natural Fréchet topology by the closed range theorem of the ∂̄ operator

[26]. We set

Sol (D,∆) = {f ∈ O(D) : ∆f = 0},

and equip it with the topology of uniform convergence on every compact sets. We

prove:

Theorem 1.1 (see Theorem 2.1). Let R be the cohomological integral transform (Pen-

rose transform) defined in (2.2) below. Then R gives a topological G-isomorphism:

R : H
m(m−1)

∂
(X,Lm−1) → Sol (D,∆).

In the case m = 2, via the double covering SU(2, 2) → G = SO0(2, 4), the group G

is of type A, X is biholomorphic to SU(2, 2)/U(1, 2), and D is biholomorphic to the

4-dimensional bounded symmetric domain of type A III. In this case, the bijectivity

of R in Theorem 1.1 was first proved in [4], and later generalized in [17] by a different

approach.

Theorem 1.1 in the case m ≥ 3 consists of the following assertions:

(a) the range of R satisfies the differential equation;
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(b) (surjectivity) the Penrose transform R constructs all the solutions;

(c) (injectivity) the kernel of R is zero;

(d) (non-vanishing) the m(m− 1)-th cohomology does not vanish;

(e) (cohomological purity) the j-th cohomology vanishes if j 6= m(m− 1);

(f) (topology) R is not only a bijection but also a topological isomorphism.

There have been various approaches to (a) in certain settings, e.g., Eastwood–

Penrose–Wells [4], Mantini [15], Marastoni–Tanisaki [16] for sufficiently positive pa-

rameter λ. We note that the representations on the cohomologies with coefficients

in the “good range” in the sense of Vogan [24] are well-understood by the Beilinson–

Bernstein theory [1] or by the algebraic representation theory (e.g., [24, 25]). However,

Theorem 1.1 needs to treat the parameter λ outside the good range for which the

general theory does not apply. It should be noted that there are counterexamples

to what we may expect from (c)–(d):

(c)′ the Penrose transform may have an infinite-dimensional kernel;

(d)′ the Dolbeault cohomologies of all degrees may vanish.

See, e.g., [18, 19] for (c)′; Kobayashi [6] and Trapa [23] for (d)′ for some classical groups.

In fact, (d) is a special case of a long-standing problem in algebraic representation

theory about when Zuckerman’s derived functor module Aq(λ) 6= 0 for singular λ

outside the good range.

For m ≥ 3, there are two minimal representations of the group G = SO0(2, 2m) in

the sense that their annihilator is the Joseph ideal [5] of the enveloping algebra U(gC),

and they are dual to each other in our setting, see e.g., [22]. Theorem 1.1 gives their

complex-geometric realization.

Corollary 1.2. For m ≥ 3, the two minimal representations of G = SO0(2, 2m) are

realized in the cohomologies H
m(m−1)

∂
(X,Lm−1) where q is taken to be lC+u or lC+u−.

Remark 1.3. Kobayashi–Ørsted [11] proposed yet another complex-geometric realiza-

tion of the minimal representation of O(p, q) by using Dolbeault cohomologies on a

non-compact complex manifold when p+ q is even and p, q ≥ 2. Our complex manifold

X is different from the one in [11] with p = 2.

Last but not least, the representation of G on the Fréchet space of Dolbeault co-

homologies in Theorem 1.1 contains the unique Hilbert space as its dense subspace on

which G acts as an irreducible unitary representation, to be denoted by π, by [24] and

by Proposition 4.4. In his paper [2], van Dijk classified “generalized Gelfand pairs”

(G,H) under the assumption that G/H is a semisimple symmetric space of rank one.

3



In particular, (G,H) = (SO0(2, 2n), SO0(2, 2n− 1)) is a generalized Gelfand pair, and

thus dimHomG(π,D′(G/H)) ≤ 1.

2 Penrose transform

The morphism in Theorem 1.1 is the higher-dimensional Penrose transform, of which

we review quickly from [18] the definition adapted to our specific situation.

Let K be a maximal compact subgroup of a linear reductive Lie group G, θ a

complexified Cartan involution, q = lC + u a θ-stable parabolic subalgebra of gC, and

X = G/L the open G-orbit in the flag variety GC/Q through the origin o = eQ, see

e.g., [10]. We consider a compact submanifold C := K/L ∩K ≃ KC/Q ∩KC in G/L,

and write ι : C →֒ X for the natural embedding. Let S denote the complex dimension

of C, and T be a maximal torus of L ∩K, hence that of K, too. We take a positive

system ∆+(kC, tC) containing the weights ∆(u ∩ kC, tC). For a dominant character µ

of T , we let Vµ denote the irreducible K-module with highest weight µ, and form a

G-equivariant vector bundle Vµ := G ×K Vµ over the Riemannian symmetric space

G/K. We write ℓg for the action of g ∈ G on the line bundle Lλ over G/L. Then the

natural map

E0,S(G/L,Lλ)×G → E0,S(K/L ∩K, ι∗Lλ), (α, g) 7→ ι∗ℓ∗gα

induces the one for Dolbeault cohomologies:

HS
∂
(G/L,Lλ)×G → HS

∂
(K/L ∩K, ι∗Lλ), ([α], g) 7→ [ι∗ℓ∗gα].

By the Borel–Weil–Bott theorem, the target space is finite-dimensional, and is K-

isomorphic to the irreducible representation Vµλ
as far as µλ := Cλ⊗ΛS(kC/(q∩ kC)) is

∆+(kC, tC)-dominant. In turn, the above map yields a continuous G-homomorphism:

R : HS
∂
(G/L,Lλ) → C∞(G/K,Vµλ

), [α] 7→ (g 7→ [ι∗ℓ∗gα]),

which is referred to as a (higher-dimensional) Penrose transform, or to the Penrose

transform in short ([18, Thm. 2.6]).

In our setting, the compact submanifold C ≃ SO(2m)/U(m), S = m(m − 1), and

u = (u ∩ kC)⊕ (u ∩ pC) with

(2.1) ∆(u ∩ kC) = {ei + ej : 1 ≤ i < j ≤ m}, ∆(u ∩ pC) = {e0 + ej : 1 ≤ j ≤ m}.
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Then halves the sums of the roots in ∆(u, tC) and ∆(u∩kC, tC) are given respectively

by

ρ(u) =
m

2
1m+1, ρ(u ∩ kC) = 0⊕ m− 1

2
1m

in the standard coordinates t∗
C
≃ Cm+1. Since µλ = (m − 1, 0, . . . , 0) for λ = (m −

1)1m+1, one has a G-intertwining operator

(2.2) R : H
m(m−1)

∂
(G/L,Lm−1) → C∞(G/K,Vm−1).

Here, by an abuse of notation we write Vm−1 for the line bundle V(m−1,0,...,0) over

G/K, which is isomorphic to (ΩG/K)
m−1

2m where ΩG/K is the canonical bundle of G/K.

Trivializing the line bundle Vm−1 via the Harish-Chandra realization G/K
∼−→ D ⊂ p−

of the Hermitian symmetric space, one may identify F(G/K,Vm−1) with F(D) for

F = C∞ or O.

Now our theorem is formulated as follows.

Theorem 2.1. The higher-dimensional Penrose transform R in (2.2) is injective, and

its image coincides with Sol (D,∆) via the identification O(D) ≃ O(G/K,Vm−1) where

G = SO0(2, 2m). Moreover, R gives a G-equivariant topological isomorphism:

R : H
m(m−1)

∂
(G/L,Lm−1)

∼−→ Sol (D,∆).

Remark 2.2. For G = SO0(2, 2m + 1) or its covering group, the higher-dimensional

Penrose transform can be defined in a similar geometric setting, however, we do not

expect an analogous theorem holds. For instance, if m = 1, then via the double

covering Sp(2,R) → SO0(2, 3), one sees that the range of the Penrose transform does

not satisfy the differential equation ∆f = 0 as was proved in [18] in the Sp(n,R) case.

3 Differential operators on G/K

In this section we analyze the space Sol (D,∆) and see that it is realized naturally as

a G-submodule of O(G/K,Vm−1) and compute its K-type formula.

We begin with some useful results about parabolic Verma modules. Let gC =

so(2m+2,C) with m > 1, Cλ be a character of kC+p+ that takes the form (λ, 0, . . . , 0)

on tC ≃ Cm+1 for λ ∈ C. By [14, Lem. 10.1], for λ, ν ∈ C, one has

HomgC(U(gC)⊗U(kC+p+) C−ν , U(gC)⊗U(kC+p+) C−λ) 6= {0}

if and only if

(3.1) (λ, ν) = (m− ℓ,m+ ℓ) for some ℓ ∈ N.
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In turn, it follows from the duality theorem, see e.g., [12, Thm. 2.12] applied

to GC = G′
C

= SO(2m + 2,C), that there is a holomorphic gC-intertwining dif-

ferential operator between the gC-equivariant sheaves O(GC/KC exp(p+),Vm−ℓ) and

O(GC/KC exp(p+),Vm+ℓ). Such an operator is unique up to scalar multiplication, and

is given as the ℓ-th power of the holomorphic Laplacian on the Bruhat open cell p−.

(3.2) ∆ℓ : O(GC/KC exp(p+),Vm−ℓ) → O(GC/KC exp(p+),Vm+ℓ),

see [13]. See also Remark 3.3 for analogous operators in another real form.

In the case ℓ = 1, one has a G-intertwining operator

(3.3) ∆: O(D,Vm−1) → O(D,Vm+1).

Here is the K-structure of the kernel:

Proposition 3.1. The kernel of the holomorphic Laplacian ∆ is a G-submodule of

O(D,Vm−1) with the following K-structure:

Sol (D,∆)K -finite ≃
∞⊕

ℓ=0

Cℓ+m−1 ⊠ F SO(2m)(ℓ, 0, . . . , 0).

Remark 3.2. As we shall see in Theorem 2.1 and Proposition 4.4, the G-module

Sol (D,∆) is irreducible.

Proof of Proposition 3.1. Let Polℓ(p−) denote the space of homogeneous polynomials

in p− of degree ℓ. We set

H(p−) := {f ∈ Pol(p−) : ∆f = 0}, Hℓ(p−) := H(p−) ∩ Polℓ(p−).

Then SO(2m) acts irreducibly on Hℓ(p−) for every ℓ ∈ N when m > 1, and its highest

weight is given by (ℓ, 0, . . . , 0). Since the first factor SO(2) of K acts on Polℓ(p−) ≃
Sℓ(p+) as the character Cℓ, the irreducible decomposition of the K-module H(p−) is

given as
⊕∞

ℓ=0Hℓ(p−) ≃
⊕∞

ℓ=0Cℓ ⊠ F SO(2m)(ℓ, 0, . . . , 0). Now the proposition follows

from the observation that the K-module structure on the underlying (gC, K)-module

O(G/K,Vm−1)K -finite is given as the multiplicity-free direct sum Pol(p−)⊗(Cm−1⊠1) ≃
∞⊕
ℓ=0

Sℓ(p+)⊗ (Cm−1 ⊠ 1).

Remark 3.3. Let PR a minimal parabolic subgroup of GR = SO0(2m + 1, 1). Then

G = SO0(2, 2m) and GR = SO0(2m+ 1, 1) have the common complexifications GC =

SO(2m + 2,C). We may regard (GR, PR) as a real from of (GC, Q). Let I(λ) =
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IndGR

PR
(Cλ) be the unnormalized spherical principal series representation induced from

a character Cλ for λ ∈ C. Our parametrization is taken to be the same with the

one in the monograph [14] so that the trivial representation 1 of GR occurs as the

unique subrepresentation I(0) and also as the unique quotient of I(n), see [14, (2.11)].

Then the Knapp–Stein intertwining operator I(λ) → I(n − λ) has a pole at λ ∈
{n
2
, n
2
− 1, n

2
− 2, . . . } and its residue is a scalar multiple of the ℓ-th power of the

(Riemannian) Laplacian ∆ on the open Bruhat cell Rn [14, (4.29) and Remark 10.3] if

we set ℓ := n
2
− λ ∈ N. In particular, for n = 2m, the residue operator

∆: I(m− 1) → I(m+ 1)

is a GR-intertwining operator. This operator may be regarded as a “real form” of the

holomorphic differential operator (3.3).

Remark 3.4. With the notation of the classification [3] of irreducible unitarizable lowest

weight modules for g = so(2, n), one has A(λ0) =
n
2
and B(λ0) = n−1 if λ0 = (1−n)e0.

Accordingly, the lowest weight (gC, K)-module L(−(λ0 + ze0)) = L((n − 1 − z)e0) is

unitarizable if and only if z ≤ 0 or z ∈ {n
2
, n− 1}. Its Z(gC)-infinitesimal character is

given by (n−1−z)e0−ρG. The underlying (gC, K)-module of Sol (D,∆) is isomorphic

to L((n
2
− 1)e0) corresponding to the first reduction point z = A(λ0).

4 Generalized Blattner formula

In this section we examine the K-type formula of the Dolbeault cohomology group.

We recall K = SO(2) × SO(2m). Irreducible K-modules are parametrized by

µ0 ∈ Z and µ = (µ1, . . . , µm) ∈ Zm satisfying µ1 ≥ · · · ≥ µm−1 ≥ |µm|. We write

Cµ0
⊠ F SO(2m)(µ) for the irreducible K-module with highest weight (µ0;µ1, . . . , µm).

Proposition 4.1. As a K-module, H
m(m−1)

∂
(G/L,L−1)K -finite is multiplicity-free, and

its K-type formula is given by

∞⊕

ℓ=0

Cℓ+m−1 ⊠ F SO(2m)(ℓ, 0, . . . , 0).

Remark 4.2. In connection to the theory of visible actions on complex manifolds ([8]),

Kobayashi raised a cohomological multiplicity-free conjecture in the general setting for

branching problems of Zuckerman’s derived functor modules [9, Conj. 4.2]. We observe

that both (G,K) and (G,L) are reductive symmetric pairs, hence Proposition 4.1 gives

an evidence of his conjecture.
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The proof of Proposition 4.1 is based on a combinatorial computation of a general-

ized Blattner formula as in [6, Chap. 4]. Since the statement of this section is purely

algebraic, we need only the underlying (gC, K)-modules of the cohomologies, namely,

Zuckerman’s derived functor modules. As an algebraic analogue of the Dolbeault coho-

mology with coefficients in a G-equivariant holomorphic vector bundle over the complex

manifold G/L, Zuckerman introduced a derived functor Rj
q ≡ (RgC

q )j (j ∈ N) as a co-

homological parabolic induction. We follow [6, 7, 25] for the normalization so that Rj
q

is a covariant functor from the category of metaplectic (lC, (L ∩K)˜ )-modules to the

category of (gC, K)-modules and that if ν ∈ h∗
C
/W (lC) is the Z(lC)-infinitesimal char-

acter of an (lC, (L ∩K)˜ )-module V then the Z(gC)-infinitesimal character of RS
q (V )

equals ν ∈ h∗
C
/W (gC).

Retain the setting as in Section 2. By an abuse of notation, we write Cλ−ρ(u) for

the metaplectic (lC, (L∩K)˜ )-character with its differential λ1m+1−ρ(u) when λ ∈ Z.

Since λ1m+1 − ρ(u) = (λ− m
2
)1m+1, one has the following (gC, K)-isomorphisms [26]:

(4.1) Hj

∂
(G/L,Lλ)K -finite ≃ Rj

q(Cλ−ρ(u)) = Rj
q(C(λ−m

2
)1m+1

) for all j,

which has Z(gC)-infinitesimal character (λ− m
2
)1m+1 + ρl = λ1m+1 + (0,−1, . . . ,−m).

Then the generalized Blattner formula for Zuckerman’s derived functor modules asserts

the following identity

(4.2)
∑

i

(−1)i dimHomK(π,RS−i
q (Cλ−ρ(u)))

=
∑

j

(−1)j dimHomL∩K(H
j(u ∩ kC, π), S(u ∩ pC)⊗ Cµλ

),

for any π ∈ K̂, where S = dimC(u ∩ kC) = m(m− 1) and S(u ∩ pC) denotes the space

of symmetric tensors.

We are particularly interested in the case λ = m − 1 with m ≥ 2. Then µλ =

Cλ ⊗ ΛS(kC/(q ∩ kC)) amounts to (m − 1) ⊕ 01m. On the other hand, the parameter

of the metaplectic (lC, (L∩K)˜ )-character Cλ−ρ(u) = C(m
2
−1)1m+1

, see (4.1), lies in the

weakly fair range with respect to q, namely, 〈λ1m+1 − ρ(u), α〉 ≥ 0 for any α ∈ ∆(u).

The general theory [26] guarantees neither the irreducibility nor the non-vanishing of

RS
q (Cλ−ρ(u)) in the weakly fair range, but implies RS−i

q (Cλ−ρ(u)) = 0 for i 6= 0 and the

unitarizability of RS
q (Cλ−ρ(u)) unless it vanishes. In particular, the left-hand side of

(4.2) is equal to dimHomK(π,RS
q (Cλ−ρ(u))).

Let us compute the alternating sum in the right-hand side of (4.2). We recall

(K,L ∩ K) = (SO(2) × SO(2m),T × U(m)). The first factor SO(2) ≃ T sits in the
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center of K, hence it does not affect the computation of the Weyl group W (kC, tC)

below. We recall u ∩ kC from (2.1), and set

∆+(w) :=∆+(kC, tC) ∩ w ·∆−(kC, tC),

ℓ(w) :=#∆+(w),

W l∩k
K :={w ∈ W (kC, tC) : ∆

+(w) ⊂ ∆(u ∩ kC)},(4.3)

={w ∈ W (kC, tC) : wµ is dominant for ∆+(lC ∩ kC, tC)

whenever µ is dominant for ∆+(kC, tC)}.

Let µ0 ∈ Z and µ ∈ Zm satisfy µ1 ≥ · · · ≥ µm−1 ≥ |µm|. For π = Cµ0
⊠F SO(2m)(µ),

the j-th cohomology group Hj(u ∩ kC, π) is isomorphic to

(4.4) Cµ0
⊠

⊕

w∈W l∩k

K

ℓ(w)=j

FL∩K(w(µ+ ρc)− ρc)

as (L ∩K)-modules by Kostant’s Borel–Weil–Bott theorem.

On the other hand, since u∩pC is isomorphic to C1⊠Cm as an L∩K ≃ T×U(m)-

module, one has

(4.5) S(u ∩ pC) ≃
∞⊕

ℓ=0

Cℓ ⊠ Sℓ(Cm) =
∞⊕

ℓ=0

Cℓ ⊠ FU(m)(ℓ, 0, . . . , 0).

To compute the alternating sum in the right-hand side of (4.2), we compare irre-

ducible (L∩K)-modules occurring in (4.4) and (4.5). Then the following combinatorial

result plays a key role.

Lemma 4.3. For µ0 ∈ Z, µ ∈ Zm satisfying µ1 ≥ · · · ≥ µm−1 ≥ |µm| and w ∈ W l∩k
K ,

the following two conditions are equivalent:

(i) µ0 = ℓ+m− 1, w(µ+ ρc)− ρc = (ℓ, 0, . . . , 0),

(ii) w = e, µ0 = ℓ+m− 1, and µ = (ℓ, 0, . . . , 0).

Proof. Let us verify (i) ⇒ (ii). By the definition (4.3), any element w ∈ W l∩k
K is of the

form

wµ = (µ1, . . . , µ̂j1, . . . , µ̂j2r , . . . , µm,−µj2r , . . . ,−µj1)

for some 1 ≤ j1 < j2 < · · · < j2r ≤ m with 0 ≤ r ≤ m
2
. If r > 0, then the last

component of w(µ + ρc) − ρc amounts to −(µj1 + m − j1) which is negative, whence

w(µ+ ρc)− ρc 6= (ℓ, 0, . . . , 0). Thus the implication (i) ⇒ (ii) follows.

The converse is implication (ii) ⇒ (i) is obvious.
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Proof of Proposition 4.1. Suppose π is a K-type of the form Cµ0
⊠F SO(2m)(µ1, . . . , µm)

with µ1 ≥ · · · ≥ µm−1 ≥ |µm|. Then it follows from (4.4) and Lemma 4.3 that the

right-hand side of (4.2) equals



1 if µ0 + 1−m ∈ N and µ = (µ0 + 1−m, 0, . . . , 0),

0 otherwise.

Thus the proposition is shown by (4.1).

As we have mentioned, the general theory [25] of Zuckerman’s derived functor does

not guarantee the irreducibility of RS
q (Cλ−ρ(u)) because λ − ρ(u) is not in the good

range, namely, 〈λ1m+1 − ρ(u) + ρl, α〉 is not necessarily positive for all α ∈ ∆(u) as

λ1m+1−ρ(u)+ρl = (m−1, m−2, . . . , 0,−1). Nevertheless, in our specific setting, one

has the following irreducibility result:

Proposition 4.4. The G-module H
m(m−1)

∂
(G/L,Lm−1) is non-zero and irreducible.

Proof. Our proof utilizes the multiplicity-free K-type formula in Proposition 4.1. Let

Wℓ := Cℓ+m−1⊠F SO(2m)(ℓ, 0, . . . , 0). Suppose V is an irreducible (gC, K)-submodule in

H
m(m−1)

∂
(G/L,Lm−1)K -finite. Since theK-type formula in Proposition 4.1 is multiplicity-

free, the K-type of V is of the form ⊕ℓ∈JWℓ for some subset J ⊂ N. We shall show

J = N. Assume it were not the case. Since the underlying (gC, K)-module of the

G-module H
m(m−1)

∂
(G/L,Lm−1) is unitarizable, it is completely reducible. Therefore,

by replacing J with N \ J if necessary, we may find N ∈ J such that N + 1 6∈ J .

Then V ∩ ⊕ℓ≤NWℓ would be a (gC, K)-submodule of V because the SO(2m)-type in

pCWℓ := C-span{Xv : X ∈ pC, v ∈ Wℓ} must be either Wℓ+1 or Wℓ−1 but WN+1 6⊂ V

by the choice of N .

On the other hand, the G-module H
m(m−1)

∂
(G/L,Lm−1) cannot have a non-trivial

finite-dimensional submodule except for the trivial one-dimensional representation be-

cause it is unitarizable. But the trivial one-dimensional representation cannot be

a submodule because the Z(gC)-infinitesimal character of the cohomology is (m −
1, m − 2, . . . , 0,−1) in the Harish-Chandra parametrization. Hence the proposition

is proved.

5 Proof of Theorem 2.1 and Corollary 1.2

This section completes the proof of our main results. We have seen in Section 2 that

the Penrose transform is a G-intertwining operator:

R : H
m(m−1)

∂
(G/L,Lm−1) → C∞(G/K,Vm−1).

10



Since ∆(u∩pC) ⊂ ∆(p+), X has aK-equivariant holomorphic fiber bundle structure

over C, one has from [20, 21] that R is non-zero on W0 = Cm−1 ⊠ C, and ImageR ⊂
O(G/K,Vm−1).

By the irreducibility of the G-module H
m(m−1)

∂
(G/L,Lm−1) given by Proposition

4.4, one sees thatR is injective. SinceO(G/K,Vm−1) isK-multiplicity-free, one obtains

the following proposition from Propositions 3.1 and 4.1.

Proposition 5.1. The Penrose transform R in (2.2) induces a (gC, K)-isomorphism

between the underlying (gC, K)-modules of H
m(m−1)

∂
(G/L,Lm−1) and Sol (D,∆).

Now Theorem 2.1 follows from the general argument on the maximal globalization

as in [18] because both the G-module H
m(m−1)

∂
(G/L,Lm−1) and Sol (D,∆) are the

maximal globalizations of their underlying (gC, K)-modules.

Since the G-module H
m(m−1)

∂
(G/L,Lm−1) is irreducible (Proposition 4.4), and its

underlying (gC, K)-module is a lowest weight module [20, 21] with the K-type formula

as in Proposition 4.1, it is identified with one of the two minimal (gC, K)-module, see

[22]. The same argument applies if we replace q = lC + u by lC + u−. Thus Corollary

1.2 is also shown.
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