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Low-light Image Enhancement via CLIP-Fourier
Guided Wavelet Diffusion

Minglong Xue, Jinhong He, Wenhai Wang and Mingliang Zhou

Abstract—Low-light image enhancement techniques have sig-
nificantly progressed, but unstable image quality recovery and
unsatisfactory visual perception are still significant challenges.
To solve these problems, we propose a novel and robust low-
light image enhancement method via CLIP-Fourier Guided
Wavelet Diffusion, abbreviated as CFWD. Specifically, CFWD
leverages multimodal visual-language information in the fre-
quency domain space created by multiple wavelet transforms
to guide the enhancement process. Multi-scale supervision across
different modalities facilitates the alignment of image features
with semantic features during the wavelet diffusion process,
effectively bridging the gap between degraded and normal
domains. Moreover, to further promote the effective recovery
of the image details, we combine the Fourier transform based on
the wavelet transform and construct a Hybrid High Frequency
Perception Module (HFPM) with a significant perception of the
detailed features. This module avoids the diversity confusion of
the wavelet diffusion process by guiding the fine-grained structure
recovery of the enhancement results to achieve favourable metric
and perceptually oriented enhancement. Extensive quantitative
and qualitative experiments on publicly available real-world
benchmarks show that our approach outperforms existing state-
of-the-art methods, achieving significant progress in image qual-
ity and noise suppression. The project code is available at
https://github.com/hejh8/CFWD.

Index Terms—Low-light image enhancement, diffusion model,
multi-modal, Fourier transform, wavelet transform.

I. INTRODUCTION

LOW-Light image enhancement aims to enhance the qual-
ity and brightness of under-illuminated images. Due to

the complex lighting conditions in the real world, relevant in-
formation in captured images is often lost through appropriate
or significant masking. This poses a challenge to human visual
perception and impedes the development and deployment
of various downstream tasks, such as Target Detection [1],
Autonomous Driving [2] and Text Detection [3]. Therefore,
to address these challenges, low-light image enhancement
techniques have been vigorously developed, and many related
algorithms have been proposed. These techniques can be
broadly categorized into traditional model-based approaches
and data-driven deep learning-based approaches.

Traditional model-based low illumination image enhance-
ment methods mainly construct physical models through meth-
ods such as histogram equalization [4] and Retinex theory [5].
Their focus is on using manually designed prior knowledge
[6]–[9] to optimize the degradation parameters of the image
itself, and the effectiveness relies heavily on the accuracy of
the manually created prior. However, low-illumination image
enhancement is essentially a nonlinear problem with unknown

degradation, so it is more difficult to use an artificial prior to
adapt to various lighting conditions in an open scene.

With the development of deep learning, researchers have
explored a large number of data-driven-based network learning
methods [10]–[17]. Wei et al. [18] constructed a deep-learning
image decomposition algorithm based on the Retinex model.
xu et al. [19] utilized a signal-to-noise ratio-aware transformer
and a convolutional neural network (CNN) with spatially
varying operations for restoration. In addition, the recently
emerged diffusion model [20], [21] has attracted extensive
attention from researchers in the field of image restoration
[22]–[24] due to its powerful generative and generalization
capabilities. These methods essentially bridge the gap between
the degraded and normal domains to obtain a clear normal
image.

However, most existing methods such as GSAD and SNR-
Net tend to consider only supervising the enhancement process
from the image level, neglecting the detailed reconstruction of
the image and the role of multi-modal semantics in guiding
the feature space. Such unimodal supervision produces sub-
optimal reconstruction of uncertain regions and poorer local
structures, leading to the appearance of unsatisfactory visual
results. For example, as shown in Fig. 1, previous state-of-
the-art approaches can suffer from color distortion, excessive
noise, and redundant confusing information due to the lack
of effective constraints and guidance. It is worth noting that
diffusion models have diverse generative effects due to the
stochastic nature of the inference process but also indirectly
contribute to the difficulty of efficiently constraining noise and
redundant information in image restoration tasks.

Furthermore, for low-level visual tasks, the simple introduc-
tion of visual-language information does not reap significant
performance. This may be due to the fact that image corruption
creates difficulties for feature alignment, resulting in the in-
ability of the visual-language model to capture the fine-grained
gaps between degraded images and semantics effectively.
Considering the above issues, our overall goal is to explore
the introduction of multimodal semantics through frequency-
domain diffusion iterations based on the Contrast-Language-
Image-Pre-Training (CLIP) model to provide effective condi-
tion guidance and content constraints for the task of low-light
image enhancement, and to achieve the enhancement of low-
light image under different spatial illumination conditions.

Inspired by [25], we adopt the wavelet diffusion model
to establish a mapping between low-light and normal-light
images, and also propose a novel CLIP and Fourier transform
guided wavelet diffusion model (CFWD). Specifically, based
on the pre-trained visual-language model CLIP, we gradually
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Fig. 1. Visual comparison of our method with recent state-of-the-art methods.
Other methods suffer from contrast degradation and noise artifacts. our method
has the best visual perception.

introduce semantic information in the frequency domain space
of multiple wavelet transform decompositions, construct a
multilevel semantic guidance network to alleviate the difficulty
of multi-modal feature alignment, and impose multilevel con-
ditional constraints on the diffusion process to achieve metric-
friendly and perceptually oriented enhancement. In addition,
we combine the wavelet transform and Fourier transform
to construct a high-frequency hybrid space with significant
perceptual capabilities. Appearance restoration of degraded
images is explored from a spectral perspective, thus further
avoiding the generative diversity of diffusion models. Exten-
sive experimental results on public benchmark datasets show
that CFWD significantly improves image quality assessment
up to state-of-the-art while also providing better visualization.

In summary, the contribution of this paper can be sum-
marised as follows:

• We propose the method of CLIP-Fourier Guided Wavelet
Diffusion (CFWD). This is the first successful introduc-
tion of multi-modal into the diffusion model-based low-
light image enhancement work, which has a more realistic
visual perception enhancement performance and a more
stable generation effect.

• To further enhance the conditional guidance, we de-
signed a multi-level visual-language guidance network
by combining frequency domain space and multi-modal
for the first time. It effectively mitigates the multi-modal
feature alignment problem caused by image corruption
by gradually introducing visual-language information in
the frequency domain in combination with the wavelet
diffusion process. Meanwhile, the multilevel guidance of
the enhancement process is achieved, which significantly
improves the metric and visual perception.

• We construct high-frequency hybrid spaces with signif-
icant perceptual capabilities by exploring the effective
combination of wavelet transform and Fourier transform.
Effective constraints on the diversity of diffusion model
generation are achieved, and the enhancement perfor-
mance is effectively improved.

The remainder of this paper is structured as follows. In
Section II, the related works are discussed. Section III explains
the conventional conditional diffusion model. In Section IV,
the proposed novel model method is described in detail. The
relevant experimental setup and results are shown in Section
V. Section VI is the conclusion.

II. RELATED WORKS

A. Traditional Approaches

Low-light image enhancement has received extensive at-
tention from researchers as an important support for various
downstream tasks [1], [3], [26]. Traditional low-light image
enhancement techniques mainly focus on constructing phys-
ical models using two types of methods, adaptive histogram
equalisation [4] and Retinex theory [5], which are processed
by optimizing the parameter information of the image itself.
The former class of algorithms optimizes pixel brightness
based on the idea of histogram equalization, while the latter
class of methods obtains the desired reflectance map (i.e.,
the normal image) by estimating the light from the low-light
input and removing the effect of the estimated light. For
example, [27] achieved enhancement of non-uniform images
by balancing detail and naturalness through double logarithmic
transformation. [7] proposed a weighted variational model
using regularisation terms to estimate the image illumination
component and the reflection image. [28] used probing the
maximum value in the RGB channel to estimate the illumi-
nance of each pixel and subsequently enhanced the low-light
image using a manually designed structural prior.

B. Deep Learning Approaches

The rapid development of deep learning has also triggered
the enthusiasm of researchers to explore the field of low-
light image enhancement. Numerous low-light enhancement
algorithms through data-driven enhancement have been pro-
posed one after another [15], [16], [29]–[31]. Lore et al.
[32] proposed LLNet, the first network that applies deep
learning to image enhancement, which is trained on degraded
images through an encoder-decoder architecture. HDR-Net
[33] combines deep networks with the ideas of bilateral grid
processing and local affine color transformations with pairwise
supervision. [18] proposed Retinex-Net, which first introduced
Retinex theory to deep learning and constructed an end-to-end
image decomposition algorithm. Zhang et al. [34] proposed the
KinD method to improve the problem of producing unnatural
enhancement results in Retinex-Net by introducing training
loss and adjusting the network architecture. Enlightengan [14]
used a generative inverse network as the main framework
and was first trained using unpaired images. [12] constructed
pixel level by stepwise derivation of the curve estimation
convolutional neural network and designed a series of zero-
reference training loss functions. [19] utilizes a signal-to-
noise ratio aware transformer and a CNN model with spatially
varying operations for recovery. Although all these methods
have achieved remarkable results, they still face significant
challenges in terms of generation quality and enhanced gener-
alization performance due to the lack of effective supervision
and efficient reconstruction of the content.

Furthermore, Efficient cross-modal learning has opened up
new ideas for computer vision and has been greatly developed.
Radford et al. [35] proposed to learn a priori knowledge
from large-scale image-text data pairs in order to construct a
visual language model CLIP for efficient image classification
and task migration with zero-sample training. [36] efficiently
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Fig. 2. Representative visual examples by enhancing low-light images using CFWD. All of these images have either 2k resolution or 4k resolution.

performed region enhancement on backlit images by iteratively
learning the prompt text from a frozen pre-trained CLIP model.
To the best of our knowledge, compared to other methods, we
are the first to successfully introduce multi-modal learning in
a diffusion model-based low-light image enhancement method
and achieve significant performance improvements.

C. Diffusion Models Approaches

Recently, diffusion-based generative models [37] have
achieved amazing results with the exploration of many re-
searchers. Meanwhile, low-level visual tasks [38]–[42] have
also gained significant progress as a result. Saharia et al. [23]
adopt a direct cascading approach, integrating low-resolution
measurements and latent codes as inputs to train conditional
diffusion models for restoration. WeatherDiff [22] introduces
a block-based diffusion model aimed at recuperating images
taken in adverse weather conditions, employing guidance
across overlapping blocks during the inference stage.

Moreover, for low-light image enhancement, researchers
have also recently favoured diffusion model-based approaches.
Fei et al. [24] utilize the a priori knowledge embedded in
a pre-trained diffusion model to address linear inverse prob-
lems effectively. Jiang et al. [25] advances a diffusion model
rooted in wavelet transform tailored for enhancing images
captured in low-light environments, achieving content stabi-
lization through forward diffusion and denoising processes
during training. [43] introduced a diffusion model with a
global structure-aware regularisation scheme for the enhance-
ment of degraded images. Different from CFWD, the existing
diffusion model approach does not allow for effective guidance
and supervision during the enhancement process, leading to
unnatural colours and numerous noises during inference. This
seriously affects human visual perception and downstream task
applications.

III. PRELIMINARY

Diffusion models [37], [44] to train Markov chains by
variational inference. It converts complex data into completely
random data by adding noise and gradually predicts the noise
to recover the expected clean image. Consequently, it usually

includes the forward diffusion process and reverse inference
process.

The forward diffusion process primarily relies on incre-
mentally introducing Gaussian noise with a fixed variance
{βt ∈ (0, I)}Tt=1 into the input distribution x0 until the T
time steps approximate purely noisy data. This process can be
expressed as:

q(x1, · · · , xT |x0) =

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI), (2)

where xt and βt are the corrupted noise data and the predefined
variance at time step t. Respectively, N denotes a Gaussian
distribution. Furthermore, each time step xt of the forward
diffusion process can be obtained directly by computing x0.

The reverse inference process is to recover the original
data from Gaussian noise. In contrast to the forward diffusion
process, The reverse inference process relies on optimising the
noise predictor to iteratively remove the noise and recover the
data until the randomly sampled noise x̂T ∼ N(0, I) becomes
clean data x̂0. Formulated as:

pθ(x̂0, · · · , x̂T−1|xT ) =

T∏
t=1

pθ(x̂t−1|x̂t), (3)

pθ(x̂t−1|x̂t) = N(x̂t−1;µθ(x̂t, t), σ
2
t I), (4)

where µθ is the diffusion model noise predictor, which is
mainly optimized by the editing and data synthesis functions
and used as a way to learn the conditional denoising process,
as follows:

µθ =
1

√
αt

(x̂t −
βt√
1− αt

ϵθ(x̂t, t)), (5)

where ϵθ is a function approximator intended to predict ϵ from
x̂t, αt = 1− βt, αt=

∏t
i=1 αi.

IV. METHOD

As shown in Fig. 3, inspired by [25], our proposed method
employs the wavelet diffusion model as a generative frame-
work to reduce the consumption of computational resources.
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Fig. 3. The overall workflow of our proposed CFWD. It first transforms the low-light input IL and normal image IH to the wavelet low-frequency
domain (A) for diffusion inference via the K-discrete wavelet transform (K-DWT). We embed a multiscale visual guidance network to iteratively perform
appearance guidance and content constraints by combining multiple wavelet domains in the inference process. In addition, the decomposed three high-frequency
information {VL, HL, DL} we effectively augment by a high-frequency perception module (HFPM). Finally, the final enhancement result IE is obtained by
inverse discrete wavelet transform (K-IDWT).

Meanwhile, we implement iterative guidance of the diffusion
process to drive the appearance enhancement by effectively
combining the visual-language and wavelet domains at mul-
tiple levels, which effectively mitigates the feature alignment
difficulties of the visual-language model in the low-light image
enhancement task. In addition, we explore the advantageous
combination of wavelet transform and Fourier transform to
construct a high-frequency perception module to guide the
content reconstruction of diffusion models and bridge the gap
between degraded and normal domains. Through the effective
combination of multi-modal, frequency domain and diffusion
models, we achieve high-quality visual enhancement effects
and metric results. In this section, we first introduce the
generative framework of this paper, i.e., the wavelet diffu-
sion model, and then analyse in detail the multiscale visual-
language guidance network and the high-frequency perception
module.

A. Wavelet Diffusion Model

Existing diffusion models require high computational re-
sources and are slow in efficiency. Therefore, we reduce the
consumption of computational resources by transferring the
diffusion process to the wavelet low-frequency domain via
discrete wavelet transform. Specifically, in this part, the low-
light image IL ∈ RH×W×C and the normal image IH ∈
RH×W×C are decomposed using the multiple discrete wavelet
transform (K-DWT), where each time it is decomposed into

four subbands:

{AK , V K , HK , DK} = K-DWT(I), (6)

Where AK ∈ R
H

2K
× W

2K
×C denotes the low-frequency domain

of the image after K-DWT. The V K , HK , and DK denote the
high-frequency domain of the image in the vertical, horizontal,
and diagonal directions, respectively.

Therefore, each discrete wavelet transform performed on an
image is equivalent to downscaling its low-frequency domain
to one-fourth of the original image. By shifting the diffusion
process to take place in the wavelet low-frequency domain, we
can significantly reduce the consumption of computational re-
sources due to the substantial reduction in spatial dimensions.

Furthermore, we constrain the content diversity of the sam-
pling process by performing forward diffusion in the wavelet
low-frequency domain AK

H of the normal image IH and using
the wavelet low-frequency domain AK

L of the degraded image
IL as a conditional guide. Accordingly, Eq. 3 can be rewritten
as:

pθ(x̂0:T |x̃) = p(x̂T )

T∏
t=1

pθ(x̂t−1|x̂t, x̃). (7)

B. Multiscale visual-language Guidance Network

Most of the existing low-light image enhancement algo-
rithms reconstruct the appearance by image-level supervision
through a single modality, which leads to difficulties in content
reconstruction and significant degradation of the visual quality
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Fig. 4. Detailed architecture of our proposed High Frequency Perception
Module (HFPM). DS Conv denotes depth-wise separable convolution, and
DFT denotes Discrete Fourier Transform.

of the enhancement process. Meanwhile, simply applying
visual-language models in low-level visual tasks does not
obtain good performance. This may be due to their inability
to capture fine-grained gaps in multi-modal semantics in
degraded images, resulting in difficulties in aligning image
features with text features.

Therefore, we explore a combined frequency-domain dif-
fusion and multi-modal approach to appearance guidance.
The visual-language prompts are used in conjunction with
the diffusion model to guide the appearance reconstruction
of the wavelet domain of the image. Then, the enhancement
results are used for multilevel semantic guidance to promote
feature alignment between the image and the visual-language
prompts, reaching a two-way iterative optimization effect. The
image AK

L is first combined with visual-language prompts
during the diffusion process, then performing coarse-grained
feature alignment to obtain preliminary enhancement results
ÂK

L . Using ÂK
L after initially bridging the gap between the

weak and normal light domains of IL, we iteratively instruct its
multiple wavelet low-frequency domains Âk

L(k ∈ [1,K − 1])
with the visual-language positive prompts Tp and negative
prompts Tn, expecting the low-light image to be enhanced
in the direction of positive prompt Tp and away from negative
prompt Tn. As shown in Fig. 5, when we set the wavelet
transform scale K = 2, through multi-scale semantic iterative
guidance, the image is gradually enhanced in the desired
direction. This further promotes the feature alignment between
the image and the positive prompt Tp and keeps moving
away from the negative prompt Tn, realizing bidirectional
appearance recovery.

We achieve alignment between images and prompt text
features by freezing the latent space of the pre-trained visual-
language model CLIP. By driving appearance recovery through
visual-language prompts {Tp, Tn}, we significantly improve
the contrast and illumination of the image and achieve stable
sampling of the diffusion model. In addition, this section
exploits cosine similarity to optimize network training, which

𝑇n 𝑇𝑃Image feature

Stage 1 Stage 2

Stage 3Stage 4

Fig. 5. The multiscale visual-language guidance network gradually promotes
the alignment of image features with the positive prompts Tp and continuously
moves away from the negative prompts Tn. Stage 1 indicates without visual-
language guidance.

can be formulated as follows:

LSimilarity 1 =

K∑
k=1

(
cos(Φimage(Â

k
L),Φtext(Tn))

cos(Φimage(Âk
L),Φtext(Tp))

+ cos(Φimage(Â
k
L),Φtext(Tp))),

(8)

where Φtext is the text encoder, and Φimage is the image
encoder. Along with the visual-language guidance, we use in-
verse discrete wavelet transform to recover the image until the
final enhancement result IE is obtained. At the same time, we
employ the learned prompts [36] set to perform fine-grained
multi-modal feature alignment on the final enhancement result,
further expecting the enhancement result to reduce the distance
from the target image, i.e.:

LSimilarity 2 =
ecos(Φimage(IE),Φtext(Tn))∑

i∈{Tp,Tn} e
cos(Φimage(IE),Φtext(Ti))

. (9)

Thus, we can generalize the multiscale visual-language
guidance loss as:

Lvlg = LSimilarity 1 + LSimilarity 2. (10)

C. High Frequency Perception Module

Diffusion models have strong generative diversity, which
becomes a limitation of algorithm performance for image
enhancement and restoration tasks. Most of the current low-
light image enhancement algorithms based on the diffusion
model rely on image-level supervision with content recon-
struction losses such as MSE and SSIM to achieve stable
sampling of content. However, this does not provide significant
content reconstruction of degraded images, which leads to
content missing and visual degradation. Therefore, in order to
further constrain the diffusion model, it is necessary to avoid
generating content diversity and achieve visually oriented
enhancement. Inspired by [45], we explore the restoration of
image high-frequency information from a frequency domain
perspective.
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The high-frequency perception module designed in this pa-
per is shown in Fig. 4. Compared with the low-frequency infor-
mation, the high-frequency information generated by the dis-
crete wavelet transform contains only the details and contours
of the image, which can reduce the content interference for the
Fourier transform and increase the ability to perceive the de-
tails of the image. Thus, we double-transform the image high
frequency to construct the hybrid frequency domain space. We
first perform detail enhancement [25] on the wavelet high-
frequency information generated from the low-light image
IL to obtain more contour structures and image parameters.
Specifically, three high-frequency subbands {V K

L , HK
L , DK

L }
are feature-extracted using depth-wise separable convolutions,
and then the detail contours of D are enhanced using V,H
combined with cross-attention. Subsequently, the enhanced
three high-frequency subbands {V̂ K

L , ĤK
L , D̂K

L } are obtained
by dilation convolutions [46] and depth-wise separable con-
volutions. After detail enhancement of the high-frequency
information of IL, we perform discrete Fourier transform
DFT(·) on {V̂ K

L , ĤK
L , D̂K

L } and {V K
H , HK

H , DK
H} obtained

by the decomposition of the normal image IH to obtain the
spectrum, i.e.:

ampL, phaL = DFT({V̂ K
L , ĤK

L , D̂K
L }), (11)

ampH , phaH = DFT({V K
H , HK

H , DK
H}), (12)

where amp, pha denote the amplitude and phase of the image,
respectively.

To further obtain an enhancement that is consistent with
human perception, the method proposed in this paper employs
the L1 loss to minimize the information difference between
the high-frequency information spectrograms of normal and
low-light images:

Lspectral = ϑ1Lamp + ϑ2Lpha, (13)

Lamp =
1

K

K∑
i=1

∥ ampiL − ampiH ∥1, (14)

Lpha =
1

K

K∑
i=1

∥ phaiL − phaiH ∥1, (15)

where ϑ1 and ϑ2 are the weighting parameters for the ampli-
tude and phase losses, and i is the scale of the current wavelet
transform.

D. Model Training

In CFWD, the loss function can be divided into three main
parts: diffusion loss, multi-scale semantic guided loss and con-
tent reconstruction loss. Among them, diffusion loss is used to
optimize the noise prediction of the diffusion model. In order
to initially constrain the content diversity, this paper shifts
the diffusion process to the wavelet low-frequency domain to
carry out and minimize their L2 distances. Accordingly, the
objective function is denoted as:

Ldiff = Et∼[1,T ]Ex0∼p(x0)Ezt∼N(0,I)

∥ ϵt − ϵθ(xt, x̃, t) ∥2 +||ÂK
L −AK

H ||2.
(16)

For content reconstruction loss, in addition to optimizing the
spectral loss of details, we perform content reconstruction by
combining MSE loss and SSIM loss to minimize the content
difference between the recovered image IL content and the
reference image IH content, i.e. :

Lcontent =

4∑
l=0

γl ∥ Φl
image(IE)− Φl

image(IH) ∥2

+ (1− SSIM(IE , IH)),

(17)

where γl is the weight of layer l of the image encoder in the
ResNet101 CLIP model.

Accordingly, by combining multiple losses, we significantly
enhance the model performance and obtain a satisfactory
visual perception, with the total loss denoted as:

Ltotal = Ldiff + Lvlg + Lspectral + Lcontent. (18)

V. EXPERIMENTS

A. Experimental Settings

Dataset. Our network is trained and evaluated on the LOLv1
dataset [18], which contains 500 real-world low/normal light
image pairs, of which 485 image pairs are used for training,
and 15 image pairs are used for evaluation. In addition,
we employ two other real-world pairwise datasets, LOLv2-
Real captured [47], and LSRW [48], to evaluate the perfor-
mance of our proposed network. Specifically, the LOLv2-
Real captured dataset contains 689 low/normal light image
pairs for training and 100 for testing. Most low-light images
were collected by varying the exposure time and ISO and
fixing other camera parameters. The LSRW dataset contains
5,650 image pairs captured in a variety of scenarios. 5,600
image pairs were randomly selected as the training set, and
the remaining 50 pairs were used for evaluation. To evaluate
the generalization ability of the proposed method in this paper,
we tested our method on the BAID [49] test dataset, which
consists of 368 backlit images with 2K resolution. In addition,
we also tested on two unpaired datasets, LIME [28] and DICM
[50].

Implementation Details. We implemented our method with
PyTorch on two NVIDIA RTX 3090 GPUs. The network was
set up with a total of 2 × 105 iterations, using the Adam
optimizer, with the initial learning rate set to 1×10−4, and the
batch size and patch size set to 16 and 256×256, respectively.

Evaluation Metrics. For the real-world paired datasets we
tested, we used two full-reference distortion measures, PNSR
and SSIM [51], as well as two perceptual metrics, LPIPS
[52] and FID [53], to evaluate the performance and visual
satisfaction of our approach. Higher PSNR or SSIM implies
more realistic restoration results, while lower LPIPS or FID
indicates higher quality details, brightness and hue. In addition,
for the unpaired datasets LIME and DICM, we used three
non-reference perceptual metrics: NIQE [54], BRISQUE [55],
and PI [56] to evaluate the visual quality of the enhancement
results. The lower the metrics, the better the visual quality.

Comparison Methods. To verify the effectiveness of the
method proposed in this paper, we compared it with the
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TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON LOLV1 [18] , LOLV2-REAL CAPTURED [47] , AND LSRW DATASETS [48]. THE BEST AND

SECOND PERFORMANCE ARE MARKED IN RED AND BLUE, RESPECTIVELY.

LOLv1 LOLv2-Real captured LSRW
Methods Reference

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PNSR↑ SSIM↑ LPIPS↓ FID↓

RetinexNet BMVC’18 26.316 0.844 0.219 48.037 17.715 0.652 0.436 133.905 15.609 0.414 0.454 108.350

DSLR TMM’20 14.816 0.572 0.375 104.428 17.000 0.596 0.408 114.306 15.259 0.441 0.464 84.930

DRBN CVPR’20 16.774 0.462 0.417 126.266 18.466 0.768 0.352 89.085 16.734 0.507 0.457 80.727

Zero-DCE CVPR’20 14.861 0.559 0.385 87.270 18.194 0.649 0.390 84.123 15.858 0.454 0.421 65.690

MIRNet ECCV’20 24.138 0.830 0.250 69.179 20.020 0.820 0.233 49.108 16.470 0.477 0.430 93.811

Zero-DCE++ TPAMI’21 14.682 0.472 0.407 87.552 17.461 0.490 0.427 81.727 16.210 0.457 0.431 59.959

EnlightenGAN TIP’21 17.483 0.651 0.390 95.028 18.676 0.678 0.364 84.044 17.081 0.470 0.420 69.184

ReLLIE ACM MM’21 11.437 0.482 0.375 95.510 14.400 0.536 0.334 79.838 13.685 0.422 0.404 65.221

RUAS CVPR’21 16.405 0.499 0.382 102.013 15.351 0.495 0.395 94.162 14.271 0.461 0.501 78.392

DDIM ICLR’21 16.521 0.776 0.376 84.071 15.280 0.788 0.387 76.387 14.858 0.486 0.495 71.812

CDEF TMM’22 16.335 0.585 0.407 90.620 19.757 0.630 0.349 74.055 16.758 0.465 0.399 62.780

SCI CVPR’22 14.784 0.526 0.392 84.907 17.304 0.540 0.345 67.624 15.242 0.419 0.404 56.261

URetinex-Net CVPR’22 19.842 0.824 0.237 52.383 21.093 0.858 0.208 49.836 18.271 0.518 0.419 66.871

SNRNet CVPR’22 24.609 0.841 0.262 56.467 21.480 0.849 0.237 54.532 16.499 0.505 0.419 65.807

Uformer CVPR’22 19.001 0.741 0.354 109.351 18.442 0.759 0.347 98.138 16.591 0.494 0.435 82.299

Restormer CVPR’22 20.614 0.797 0.288 72.998 24.910 0.851 0.264 58.649 16.303 0.453 0.427 69.219

Palette SIGGRAPH’22 11.771 0.561 0.498 108.291 14.703 0.692 0.333 83.942 13.570 0.476 0.479 73.841

UHDFour ICLR’23 23.093 0.821 0.259 56.912 21.785 0.854 0.292 60.837 17.300 0.529 0.443 62.032

CLIP-LIT ICCV’23 12.394 0.493 0.397 108.739 15.262 0.601 0.398 100.459 13.483 0.405 0.425 77.065

NeRCo ICCV’23 22.946 0.785 0.311 76.727 25.172 0.785 0.338 84.534 19.456 0.549 0.423 64.555

WeatherDiff TPAMI’23 17.913 0.811 0.272 73.903 20.009 0.829 0.253 59.670 16.507 0.487 0.431 96.050

GDP CVPR’23 15.904 0.540 0.431 112.363 14.290 0.493 0.435 102.416 12.887 0.362 0.412 76.908

GSAD NeurIPS’23 27.629 0.876 0.188 43.659 28.805 0.894 0.201 41.456 19.418 0.542 0.386 57.219

WCDM TOG’23 26.316 0.844 0.219 48.037 28.875 0.874 0.203 45.395 19.281 0.552 0.350 45.294

CFWD(Ours) - 29.185 0.872 0.197 40.987 29.855 0.891 0.193 34.814 19.566 0.572 0.374 47.606

TABLE II
QUANTITATIVE COMPARISON OF 2K RESOLUTION BACKLIGHT IMAGES

FROM THE BAID [49] DATASET.

Methods PSNR↑ SSIM↑ LPIPS↓ FID↓
Zero-DCE++ 16.021 0.832 0.240 47.030
EnlightenGAN 17.957 0.866 0.125 47.045
SCI 16.639 0.768 0.197 41.458
SNRNet 17.325 0.754 0.398 63.463
CLIP-LIT 21.611 0.883 0.159 27.926
UHDFour 18.541 0.713 0.319 36.025
WCDM 26.042 0.915 0.130 15.870

CFWD(Ours) 26.918 0.917 0.118 14.852

State-of-the-art methods in recent years, including RetinexNet
[18], DSLR [57], DRBN [58], Zero-DCE [12], Zero-DCE++
[59], MIRNet [60], EnlightenGAN [14], ReLLIE [61], RUAS
[62], DDIM [44], SCI [63], URetinex-Net [64], SNRNet
[19], Palette [65], Uformer [66], Restormer [67], CDEF [68],
UHDFour [69], CLIP-LIT [36], NeRCo [70], WeatherDiff
[22], GDP [24], WCDM [25] and GSAD [43].

B. Results

Quantitative Comparison. Firstly, we compare our method
with all state-of-the-art methods on the LOLv1 [18], LOLv2-
Real captured [47], and LSRW [48] test sets. As shown

TABLE III
QUANTITATIVE COMPARISON ON LIME [28] AND DICM [50] DATASETS.

OUR METHOD PERFORMS THE BEST CONSISTENTLY.

DICM LIME
Metheds

NIQE↓ BRISQUE↓ PI↓ NIQE↓ BRISQUE↓ PI↓

DRBN 4.369 30.708 3.782 4.562 29.564 3.573

Zero-DCE 3.414 36.452 2.911 3.771 18.481 2.759

MIRNet 4.021 22.104 3.391 4.378 28.623 2.998

RUAS 5.119 41.897 4.127 4.702 29.601 3.479

DDIM 3.899 19.787 3.013 3.899 24.474 3.059

EnlightenGAN 3.439 14.175 2.719 3.656 14.854 2.832

SCI 3.519 25.289 2.824 4.163 17.094 2.908

URetinex-Net 4.774 24.544 3.565 4.694 29.022 3.313

SNRNet 4.070 26.179 3.926 5.691 34.187 4.636

CLIP-Lit 3.557 26.991 2.589 3.989 19.422 2.813

NeRCo 3.329 19.586 2.890 3.803 21.164 2.888

UHDFour 4.231 13.174 3.186 4.627 15.930 3.344

GDP 4.358 19.294 2.887 4.186 22.022 3.109

GSAD 3.735 20.296 2.894 4.578 26.356 3.492

WCDM 3.364 15.862 2.364 3.597 14.474 2.605

CFWD(Ours) 3.322 10.955 2.699 3.568 10.141 2.686

in Table I, our method achieves state-of-the-art quantization
performance in several metrics compared to all methods. In
particular, the significant improvements in PSNR and FID
provide compelling evidence for the superior perceived quality
of our method. Specifically, for two distortion metrics, our
method obtains all firsts in PSNR evaluation, achieving per-
formance improvements of 1.556dB, 0.98dB, and 0.11dB in
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Fig. 6. Visual comparison of our method with State-of-the-art methods on LOLv1 [18](row 1), LOLv2-Real captured [47](row 2), and LSRW [48](row 3)
datasets from various years in recent years. Our method is closer to a normal image, best viewed by zooming in.

the LOLv1, LOLv2-Real captured, and LSRW datasets, re-
spectively. Furthermore, our method achieves the second-best
SSIM quantisation performance on the LOLv1 and LOLv2-
Real captured datasets. Compared to the third-place WCDM,
our method has a significant improvement of 0.028 (LOLv1)
and 0.017 (LOLv2-Real captured ), respectively, while for
the first-place GSAD, we only have a small difference of
0.004 and 0.003. For two perceptual metrics (i.e., LPIPS
and FID), our method meets the quantitative criteria on the
LOLv2-Real captured dataset and is well ahead of competing
methods. We are also significantly competitive on the LOLv1
and LSRW datasets, obtaining three second-place as well as
one first-place quantitative performances. This indicates that
the method proposed in this paper can generate recovered
images with satisfactory visual quality, further demonstrating
the effectiveness of our method. Table II also provides a
quantitative comparison of some state-of-the-art methods on
the BAID [49] test dataset. From the evaluation metrics, our
method outperforms all the state-of-the-art methods, which
indicates that our proposed method is more effective in terms
of generalisation ability and high-resolution low-light image
restoration.

Meanwhile, we performed evaluation comparisons with
competing methods on two unpaired datasets LIME [28] and
DICM [50] to validate the effectiveness and generalization of
our method. We evaluated the effectiveness of our method
in terms of visual quality by combining three non-reference
perceptual metrics, NIQE, BRISQUE and PI, with lower
metrics resulting in better visual quality. As shown in Table III,
our method meets the quantification criteria on both datasets
compared to other competing methods. Specifically, we obtain
the best performance for all quantitative assessments for both
NIQE and BRISQUE, while for the PI metrics, we also
have the second-best results. This further demonstrates the
better generalisability of our approach in real-world scenarios
and enhancements that are more in line with human visual
perception.

Visual Comparison. Fig. 6 is shown to compare our
method with State-of-the-art methods on the paired dataset.
The images in rows 1-3 are selected from the LOLv1, LOLv2-
Real captured, and LSRW test sets. The visualization of
the BAID dataset is then shown in Fig. 7. Through these
comparisons, it is easy to see that previous methods seem to
suffer from incorrect exposure, color distortion, noise ampli-
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Fig. 7. Visual comparison of 2K resolution backlight images of our method and competing methods on BAID [49] test set. It is best viewed by zooming in.

fication, or artefacts, which affect the overall visual quality.
For example, EnlightenGAN and GDP suffer from generation
artefacts and noise amplification, while SNRNet and WCDM
suffer from color distortion. In addition GSAD fails to produce
similar colours and contrast as the reference image. In contrast,
our method consistently produces visually pleasing results
with improved color and brightness without overexposure or
underexposure. We attribute this to the improved appearance
of the multilevel visual-language guidance network. At the
same time, CFWD effectively improves contrast, reconstructs
sharper details, and brings the visual effect closer to the
original image due to the effective constraints imposed by the
high-frequency perceptual module on the content structure.

The visual presentation of the DICM and LIME datasets is
shown in Fig. 8. It is clear that our model skilfully adjusts the
illumination conditions to optimally improve the contrast of
the degraded images while vigilantly avoiding overexposure.
This successful balance confirms the generalisability of our
proposed method to unseen scenes as well as the satisfaction
with the visual results.

C. Ablation Study

To verify the validity of the proposed method, in this
subsection, we will conduct an ablation study of the multiscale
visual-language guidance network and the high-frequency per-
ception module, and explore the optimal parameter pairing of
the network. All the ablation studies are performed entirely on
the LOLv1 dataset.

Multiscale visual-language Guidance Network. Benefit-
ting from the efficient visual-language prior to CLIP, our
method can learn different modalities and thus produce better
perceptual and metric results. In order to investigate the effect
of the level M of the visual-language guidance network on
our method, we fixed the number of wavelet transforms to
2 and verified its effectiveness by gradually increasing the
level of visual-language guiding. As shown in Table IV, when
M=0, it indicates that we give up the multimodal learning,
and by comparison, we find that after multimodal visual-
language guiding, we effectively improve the performance of
the network. Meanwhile, with the gradual increase of M, the
performance of the network steadily improves. This indicates

that multilevel visual-language guidance can iteratively guide
the fine-grained alignment of image features with text features
during the enhancement process and bring significant network
performance improvement.

TABLE IV
RESULTS OF AN ABLATION STUDY AT THE PROMPT NETWORK SCALE.

Prompts Scale PSNR↑ SSIM↑ LPIPS↓ FID↓

M=0 26.705 0.856 0.227 49.926

M=1 27.809 0.866 0.225 48.501

M=2 28.512 0.871 0.216 43.167

M=3 29.212 0.872 0.197 40.987

Hybrid Frequency Domain Perception Module. Due to
the obvious differences in the feature information contained
in the frequency domain space at different stages, we tested a
series of combined experiments on the high-frequency percep-
tion module, resulting in three HFPM versions. Specifically,
HFPM v1 uses the wavelet low-frequency domain for Fourier
transform to capture image features, HFPM v2 uses only
the high-frequency space of the first wavelet transform to
construct a mixed-frequency domain to capture image infor-
mation, and HFPM v3 performs Fourier transforms on all
the wavelet high-frequency domains obtained from multiple
wavelet transforms to form a multi-group mixed frequency
domain space. By combining multiple sets of mixed-frequency
domain spaces, it can effectively acquire high-frequency fea-
tures. As shown in the Table V, the performance of the network
using the HFPM v1 version is the worst, which may be due to
the fact that the wavelet low-frequency domain contains more
structural information, which causes more content loss and
feature interference when performing the Fourier transform,
resulting in a more chaotic feature learned by the model.
In addition, compared with HFPM v2, HFPM v3 has better
quantitative results, for the wavelet high-frequency domain,
we only need the contour and detail information of the image,
therefore, with the combination of multi-group mixing space
constraints, we can obtain more detail information to constrain
the diversity of the diffusion model content.
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Fig. 8. Visual comparison on the DICM [50] (row 1), LIME [28] (row 2) datasets among State-of-the-art low-light image enhancement approaches.

TABLE V
ABLATION STUDIES OF THE OPTIMAL EFFECTIVENESS OF OUR HYBRID

FREQUENCY DOMAIN PERCEPTION MODULE.

Versions PSNR↑ SSIM↑ LPIPS↓ FID↓

HFPM v1 27.638 0.862 0.215 43.193

HFPM v2 28.282 0.868 0.209 41.185

HFPM v3 29.212 0.872 0.197 40.987

D. Discussion

Despite the excellent performance and visual perception
of our proposed low-light image enhancement method, the
method still has some non-negligible limitations and goals
that need to be further explored. Firstly, the wavelet diffusion
model-based low-light enhancement method still has a large
computational overhead, which is not conducive to realistic
deployment. Second, multiscale visual-language guidance in-
creases the complexity of prompt text design and also carries
the risk of augmenting redundant content to some extent.
Finally, the loss function required for the enhancement process
is more complex, making it difficult to seek the optimal set of
weighting parameters.

In the future, we will investigate a more effective diffusion
framework based on the above issues and formulate a more
model-compliant visual-language learning network to formu-

late the appropriate visual-language prompts and remove the
risk of redundant content. In addition, the further compact
design of the loss function will be the core of our exploration,
and through the corresponding research, we believe that the
proposed method has further performance space.

VI. CONCLUSIONS

We first successfully introduce multimodal into a diffusion
model-based approach for low-light image enhancement and
propose a wavelet diffusion model based on CLIP and Fourier
transform guidance. By combining the generative power of the
diffusion model and the visual-language prior to driving the
degraded images for appearance restoration, the visual per-
ception and metric performance are significantly enhanced. In
addition, we design a novel high-frequency perception module
that effectively constrains the diversity of diffusion model-
generated content by exploring the advantages of combining
the wavelet and Fourier transforms for double transformation,
constructing a hybrid frequency-domain space that is acutely
aware of the image structure and provides guidance similar
to the target result. Extensive experiments conducted on pub-
licly available benchmark datasets show that our method has
better stability and generalisability to provide enhancement of
degraded images that approximate the reference image.
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