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The time evolution of a wave packet is a tool to detect topological phase transitions in two-
dimensional Dirac materials, such as graphene and silicene. Here we extend the analysis to
HgTe/CdTe quantum wells and study the evolution of their electron current wave packet, using
2D effective Dirac Hamiltonians and different layer thicknesses. We show that the two different
periodicities that appear in this temporal evolution reach a minimum near the critical thickness,
where the system goes from normal to inverted regime. Moreover, the maximum of the electron
current amplitude changes with the layer thickness, identifying that current maxima reach their
higher value at the critical thickness. Thus, we can characterize the topological phase transitions in
terms of the periodicity and amplitude of the electron currents.

I. INTRODUCTION

The time evolution of wave packets can have interest-
ing behaviors due to quantum interference. Revivals oc-
cur when a well-localized wave-packet evolves in time to
recover, at least approximately, its initial waveform. This
event occurs periodically and the period is known as the
revival period. The phenomenon of quantum wave packet
revivals has been investigated theoretically in atomic sys-
tems, molecules, many body systems or 2D Materials [1–
11] and observed experimentally in among others, Ry-
dberg atoms or molecular systems [12–16]. Recently, it
has been shown how revival and classical periods reveal
quantum phase transitions in many-body systems [5, 6].
Furthermore, it has also been seen how both periods are
capable of detecting topological phase transitions (TPTs
for short) in two-dimensional materials such as graphene
[4] and silicene [7].

In this work, we focus on a particular zincblende het-
erostructure, the mercury telluride-cadmium telluride
(HgTe/CdTe) quantum wells (QWs). They have been
widely used to study the quantum spin Hall effect and
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new types of topological phases [17–20], and tradition-
ally are part of optical and transport experiments in-
volving spin-related observations [21–23]. At present,
HgTe/CdTe QWs appear together with other topological
insulators to construct low-dimensional quantum devices,
which can experimentally realize quantum anomalous
Hall effects [24–28]. One of the most interesting prop-
erties of these materials is that we can switch between
normal or inverted band structures by simply changing
the QW width (layer thickness in our jargon). In par-
ticular, we study the time evolution of electron current
wave packets in HgTe/CdTe QWs in magnetic fields, for
different values of the HgTe layer thickness to character-
ize TPTs. We analyze the periodicities in the dynamics
of the wave packets and the amplitude of the electron
currents. There are other ways to detect topological-
band insulator phase transitions, such as information or
entropic measures [29–33], or magneto-optical properties
[34–39]. In contrast to these methods, quantum revivals
provide an straightforward approach to TPTs that has
not been applied to HgTe/CdTe QWs so far.

This paper is organized as follows. In the next section
we will describe the 2D effective Dirac Hamiltonian for
surface states in HgTe/CdTe QWs. In the third section
we will study the relation between wave packet revivals
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λ α β δ µ ∆

(nm) (meV.nm) (meV.nm2) (meV.nm2) (meV) (meV)
5.5 387 -480 -306 9 1.8
6.1 378 -553 -378 -0.15 1.7
7.0 365 -686 -512 -10 1.6

TABLE I. Different values of the HgTe/CdTe QW expansion
parameters depending on the HgTe layer thicknesses λ [40,
42].

and classical periodicities with topological phase transi-
tion. The relation between the evolution of the electron
currents and the TPTs will be described in Section IV.
Section V briefly discusses the effect of spin-orbit inter-
action. The final section is devoted to conclusions.

II. HgTe/CdTe QUANTUM WELLS
LOW-ENERGY HAMILTONIAN

We shall use a 2D effective Dirac Hamiltonian to de-
scribe the surface states in HgTe/CdTe QWs, following
the prescription of the references [17–20],

H =

(
H+1 0
0 H−1

)
, Hs(k) = ϵ0(k)τ0 + ds(k) · τ , (1)

where τi are the Pauli matrices, s = ±1 is the spin and
H−1(k) = H∗

+1(−k) (temporarily reversed). It is conve-
nient to expand the Hamiltonian Hs(k) around the center
Γ of the first Brillouin zone [18],

ϵ0(k) = γ − δk2, ds(k) = (αskx, αky, µ− βk2), (2)

where α, β, γ, δ and µ are expansion parameters that de-
pend on the HgTe layer thickness λ, as can be found
in [40] and in Table II. Among all these parameters, we
highlight the mass or gap term µ related to the magnetic
moment, and the Wilson term βk2 (introduced to avoid
the Fermion doubling problem [41]). The parameter γ
can be neglected and we shall take it equals to zero in all
calculations.

For s = ±1, the energy of the valence and conduction
bands is

ϵ±(k) = ϵ0(k)±
√
α2k2 + (µ− βk2)2. (3)

To differentiate between band insulator and topological
insulator phases, one can use the Thouless-Kohmoto-
Nightingale-Nijs (TKNN) formula [43] providing the
Chern-Pontryagin number C. In the case of the HgTe
QWs (see [39] for more details),

Cs = s[sign(µ) + sign(β)]. (4)

The Chern number depends on the sign of the material
parameters µ and β, and on the spin s. Considering Table
II, only µ changes sign for different layer thicknesses λ,
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FIG. 1. HgTe/CdTe quantum well low-energy spectrum Es
n

for B = 0.05 T, as a function of the HgTe layer thickness λ.
The thin solid lines represent Landau levels n = ±1,±2,±3
(valence (−) and conduction (+)) for spin s = −1 (blue) and
s = +1 (red), and the thick lines represent edge states (n =
0). A vertical dashed black line indicates the HgTe thickness
λinv(0.05) = 6.173 nm ≃ λc where the band inversion for edge
states occurs for B = 0.05 T according to (15).

thus, the TPT is governed by sign(µ), or by sign(µ/β)
as can be found in the literature [40]. Namely, around
the critical HgTe layer thickness λc ≈ 6.1 nm, the system
goes from normal (λ < λc or µ/β < 0) to the inverted
(λ > λc or µ/β > 0) regimes.

We introduce the interaction with a perpendicular
magnetic field B along the z-axis using minimal coupling
p → P = p + eA, where A = (Ax, Ay) = (−By, 0)
is the electromagnetic potential in the Landau gauge,
e the electron charge, and p the momentum operator
(k → p/ℏ). Using Peierls’ substitution [44, 45], the
Hamiltonian (1) is written in terms of creation a† and
annihilation a operators [39],

H+1 =

(
γ + µ− (δ+β)(2N+1)

ℓ2B

√
2α
ℓB

a
√
2α
ℓB

a† γ − µ− (δ−β)(2N+1)
ℓ2B

)
,

H−1 =

(
γ + µ− (δ+β)(2N+1)

ℓ2B
−

√
2α
ℓB

a†

−
√
2α
ℓB

a γ − µ− (δ−β)(2N+1)
ℓ2B

)
,

(5)

with N = a†a and ℓB =
√

ℏ/(eB) the magnetic length.
The eigenvalues of both Hamiltonians H+1 and H−1

are

Es
n = γ − 2δ|n|−sβ

ℓ2B
+ sgn(n)∆s

n (6)

with

∆s
n =

√
2α2|n|
ℓ2B

+
(
µ− 2β|n|−sδ

ℓ2B

)2
, (7)
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for Landau level (LL) index n = ±1,±2,±3, . . . [valence
(−) and conduction (+)] , and

Es
0 = γ − sµ− δ − sβ

ℓ2B
, (8)

for the edge states n = 0 [34, 46, 47]. The associated
eigenvectors are spinors containing Fock states ||n|⟩, that
is,

|n⟩s =

(
As

n

∣∣|n| − s+1
2

〉
Bs

n

∣∣|n|+ s−1
2

〉 ) , (9)

with coefficients

As
n =

{
sgn(n)√

2

√
1 + sgn(n) cos θsn, n ̸= 0,

(1− s)/2, n = 0,

(10)

Bs
n =

{
s√
2

√
1− sgn(n) cos θsn, n ̸= 0,

(1 + s)/2, n = 0,

where

θsn = arctan

√2|n|α/ℓB
µ− 2β|n|−sδ

ℓ2B

 . (11)

Depending on sgn(n), the coefficients As
n and Bs

n can be
written as cos(θsn/2) and sin(θsn/2) [48].

The two zero Landau levels E+1
0 and E−1

0 belong to
different Hamiltonians, that is to spin s = +1 and s = −1
respectively. The level cross condition

E+1
0 = E−1

0 ⇒ Binv =
µ

eβ/ℏ
, (12)

gives the critical magnetic field Binv which separates the
quantum spin Hall and quantum Hall regimes [47]. For
instance, for a QW thickness λ = 7.0 nm (see Table II),
one obtains Binv ≃ 9.60 T. This band inversion is also
graphically represented in Figure 1.

It is convenient to perform a linear fit of the parameters
in Table II, in order to analyze the HgTe QWs spectrum
and properties for a continuous range of the thicknesses
λ,

µ(λ) = 77.31 − 12.53λ,

α(λ) = 467.49− 14.65λ,

β(λ) = 283.58− 138.16λ,

δ(λ) = 458.46− 138.25λ, (13)

where we use the Table II units and λ is in nanome-
ters. The coefficient of determination is R2 > 0.99 in all
cases. Using µ(λ) in (13), we can estimate the critical
HgTe thickness where the TPT occurs in the absence of
magnetic field, according to the criteria in eq.(4),

µ = 0 ⇒ λc = 6.17 nm. (14)

In addition, the linear fit (13) let us plot the low energy
spectra (6,8) as a function of the HgTe layer thickness
λ. Namely, in Figure 1, we extrapolate the linear fit (13)
to the interval [4 nm, 8 nm]. The band inversion formula
(12) together with the linear fit (13) yield the relation

λinv(B) =
368.31− 2.05B

59.7−B
(15)

between the applied magnetic field B (in Tesla) and the
HgTe layer thickness λinv(B) (in nanometers) at which
the band inversion E+1

0 = E−1
0 takes place. Note that

λinv(B) ≃ λc = 6.17 nm for low B ≪ 1 T, and that
E+1

0 = E−1
0 ≃ 0 meV at this point as shows Figure 1. The

thickness λinv(B), where the band inversion happens, is a
deviation of the critical thickness λc in eq.(14) for B > 0,
so it is a way to characterize TPTs when the external
magnetic field is non-null.

Higher Landau levels with |n| > 0 have a structural
change when the spinor components in eq.(10) have equal
module |As

n| = |Bs
n|, that is, when the angle (11) is

θsn = π/2, which implies µ = (2β|n| − sδ)/ℓ2B . The
valence and conduction band contributions interchange
their roles at this point, hence this is a way to define a
band inversion for higher Landau levels, or equivalently,
we can introduce the concept higher Landau level topo-
logical phase transition (HTPT, see [48] for more details).
The condition θsn = π/2 fixes a relationship between the
layer thickness and the magnetic field as it happens in
eq.(15),

λHTPT(B,n, s) =
77.31− 0.86B|n|+ 0.7Bs

12.53− 0.42B|n|+ 0.21Bs
n ̸= 0 .

(16)
This layer thickness is higher than λinv(B) in eq.(15)
for all B, n and s, and for low magnetic fields tends to
λHTPT(B << 1, n, s) ≃ λc. In Ref.[48] it has been shown
that quantum fluctuations and entanglement in higher
Landau levels grow at the layer thickness λHTPT. The
scope of the next section is to use the periodicities in the
wave packet evolution as TPT and HTPT markers, and
compare the critical thicknesses of this method with the
ones in eq.(16).

III. CLASSICAL AND REVIVAL TIMES IN THE
TOPOLOGICAL PHASE TRANSITIONS

DETECTION

The time evolution of a wave packet for the time-
independent Hamiltonian of the HgTe QW (see eq.(5))
is given by

|Ψ(t)⟩s =
∞∑

n=−∞
csn|n⟩se−iEs

nt/ℏ , (17)

where |n⟩s are the eigenvectors in (9), Es
n the energies

in (6), and csn = s⟨n|Ψ(0)⟩ with |Ψ(0)⟩ the initial wave
packet. For the sake of simplicity, we shall take s fixed,



4

n0=5

n0=10

n0=15

4 5 6 7 8

4

6

8

10

12

HgTe layer thickness λ (nm)

C
la
ss
ic
al
pe
ri
od
T
C
l
(p
s) λc

n0=5

n0=10

n0=15

4 5 6 7 8

0.1

0.5

1

5

HgTe layer thickness λ (nm)

R
ev
iv
al
ti
m
e
T
R
(n
s)

λc

FIG. 2. Classical period TCl (top, eq.(20)) and revival time
TR (bottom, eq.(21)) as a function of the layer thickness λ,
for three different initial wave packets n0 = 5, 10, 15. In
both figures, we set B = 0.05 T and s = +1, and lin-log
scale. The vertical dashed line indicates the critical thickness
λc = 6.17 nm.

and |Ψ(t)⟩s, Es
n, csn and λHTPT(B,n, s) will be referred

to as |Ψ(t)⟩, En, cn and λHTPT(B,n). We also select a
Gaussian-like initial wave packet, distributed around a
given energy En0

of the spectrum En, so that

cn =
1

σ
√
2π

e−(n−n0)
2/2σ2

, (18)

and we can Taylor expand the energy En around
the energy level n0 [3]. Therefore, the exponential
exp(−iEs

nt/ℏ) in (17) yields

exp

(
−iEn0

t

ℏ
− 2πi(n− n0)

t

TCl
− 2πi(n− n0)

2 t

TR
+ . . .

)
(19)

obtaining different time scales characterized by the clas-
sical period TCl = 2πℏ/|E′

n0
| and the revival time TR =

4πℏ/|E′′
n0
| up to second order in the series (the first

term exp(iEn0
t/ℏ) becomes an irrelevant global phase

in eq.(17)). In fact, the classical period is the time that
the wave packet needs to follow the expected semiclassi-
cal trajectory, and the revival time is the time that the
wave packet needs to return approximately to its initial
shape [3]. Quantum revivals are a consequence of the
quantum beats [49], representing interference effects of
the terms in (17). Notice that TCl << TR, and thus, a
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FIG. 3. Layer thicknesses λCl(B,n) and λR(B,n) in which
TCl and TR achieve their minimum value respectively, as a
function of the external magnetic field B and for different ini-
tial wave packets n0 ∈ [0, 30]. In both figures, we set s = +1
and a horizontal dashed line indicating the critical thickness
λc = 6.17 nm.

signal can be analyzed in these different regimes. Both
periods have been previously studied in 2D gapped Dirac
materials [4], and now we shall put the spotlight on HgTe
QWs. In particular, for the energies in (6), the classical
and revival periods are

TCl =2πℏℓ2B
[
−2sgn(n0)δ +

1
∆s

n0

(α2 − 2βχs
n0
)
]−1

,

(20)

TR =4πℏℓ4B sgn(n0)
[
− 4β2

∆s
n0

+ 1
(∆s

n0
)3 (α

2 − 2βχs
n0
)2
]−1

,

(21)

where χs
n = µ−(2β|n|−sδ)/ℓ2B is the denominator in (11)

and ∆s
n is defined in eq.(7). Both periods are a function

of the magnetic field B, the wave packet center n0, the
spin s and the layer thickness λ through the parameters
in equation (13). The dependence on s is small (mainly
for low magnetic fields) and we shall set s = +1 in this
section.

The wave packets time evolution is visualized with the
autocorrelation function A(t) = ⟨Ψ(t)|Ψ(0)⟩, which turns
into

A(t) =

∞∑
n=−∞

|cn|2e−iEnt/ℏ (22)
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FIG. 4. Layer thickness λCl(B,n) in which TCl achieve its
minimum value (solid lines) and layer thickness of HTPT
(dashed lines, see eq.(16)), as functions of the external mag-
netic field B and for different initial wave packets n0 ∈ [1, 10].
In both figures, we set s = +1 and we mark the critical thick-
ness λc = 6.17 nm in the vertical axis.

for a Gaussian wave packet like the one in eq.(17).
Throughout the article, we have selected an initial

wave packet localized around n0 = 5 and with standard
deviation σ =

√
n0/5 ≃ 0.45 in order to analyze the

wave packet evolution in (17). We have also set an ex-
ternal magnetic field of B = 0.05 T in order to observe
TPT phenomena around λinv(B) ≃ λc = 6.17 nm [39].
The last restriction will be more evident later when we
present Figures 3 and 9.

In Figure 2, we plot TCl and TR as a function of the
layer thickness λ for spin s = +1 (similar results can be
obtained for s = −1). Both periods reach a minimum
near the critical thickness λc = 6.17 nm, hence they are
useful magnitudes to identify TPTs. These minima sep-
arate from λc for larger values of the magnetic field B
as shows Figure 3, where we present the values of the
thickness λCl(B,n0) and λR(B,n0) in which TCl and TR
achieve their minimum value respectively, as a function
of the external magnetic field B and the center of the
wave packet n0 (spin s = +1 fixed). For instance, for
n0 = 5 we obtain the bounds |λCl(B,n0)−λc| < 0.14 nm
and |λR(B,n0) − λc| < 0.25 nm in a magnetic field
range B ≤ 0.5 T. For wave packets centered in high-
energy states (blue lines in Figure 3), the deviation from
λc is even higher, representing a criticality of the sys-
tem which differs from the band-insulator phase tran-
sition. In order to characterize the criticality of TCl
for magnetic fields B > 0.5 T, in Figure 4 we com-
pare the minimum thicknesses λCl(B,n0) (solid lines)
with the ones λHTPT (B,n0) in eq.(16) (dashed lines),
where the HTPTs occurs. Both solid and dashed lines
exhibit different behaviors when varying the magnetic
field B and the wave packet center n0. Therefore, it
seems that there is no correlation between the minimum
thicknesses λCl and the HTPT at λHTPT . Neverthe-
less, when the magnetic field approximates to zero, both
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FIG. 5. Autocorrelation function amplitude |A(t)|2 as a func-
tion of time in TCl = 3.75 ps (top) and TR = 79.80 ps
(bottom) units, for an initial wave packet with n0 = 5 and
σ =

√
n0/5 = 0.47. We set the HgTe parameters λ = λc,

B = 0.05 T, and s = +1.

thicknesses tend to λc = 6.17 nm at zero field, that is,
λHTPT(B,n0) ≃ λCl(B,n0) ≃ λc for all n0 ̸= 0 and
B << 1 T.

In Figure 5, we present the squared modulus of the
autocorrelation function for λ = λc and s = +1 in two
different time scales. The top panel displays the time in
units of the classical period TCl = 3.75 ps, where each
oscillation corresponds to one unit of the scale; whereas
the bottom panel shows the wave packet revivals at half
of the revival time TR/2 = 39.90 ps, and the time scale
is in TR units.

IV. ELECTRON CURRENT REVIVALS AND
TOPOLOGICAL PHASE TRANSITIONS

We have also identified topological phase transition by
analyzing how the electron current changes with the layer
thickness and the time evolution. The electron currents
of the HgTe QWs have been previously studied in refer-
ence [39], where the current operators are

jsx =
e

ℏ

(
sατx −

√
2
a† + a

ℓB
(βτz + δτ0)

)
,

jsy =
e

ℏ

(
ατy + i

√
2
a† − a

ℓB
(βτz + δτ0)

)
, (23)
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FIG. 6. Currents expected values ⟨ja⟩ as a function of time
in TCl = 3.75 ps (top) and TR = 79.80 ps (bottom) units, for
an initial wave packet with n0 = 5 and σ =

√
n0/5 = 0.47.

The red (blue) line correspond to the current in the x (y)
axis. We set the HgTe parameters λ = λc, B = 0.05 T, and
s = +1.

and the matrix elements in the eigenstate basis (9) are

⟨m|jsx|n⟩s =
esα

ℏ
Ξs,+
m,n −

√
2e

ℏℓB
Φs,+

m,n ,

⟨m|jsy|n⟩s = − i
eα

ℏ
Ξs,−
m,n + i

√
2e

ℏℓB
Φs,−

m,n , (24)

where

Ξs,±
m,n =(As

mBs
nδ|m|−s,|n| ±As

nB
s
mδ|m|+s,|n|) , (25)

Φs,±
m,n =((δ + β)As

mAs
n + (δ − β)Bs

mBs
n)

×
(√

|n|+1+
s−1
2 δ|m|−1,|n| ±

√
|n|− s+1

2 δ|m|+1,|n|

)
.

For a Gaussian wave packet (17), the electron current
expected value is

s⟨Ψ(t)|jsa|Ψ(t)⟩s =
∞∑

m,n=−∞
csmcsne

−i(Es
n−Es

m)t/ℏ⟨m|jsa|n⟩ ,

(26)
where a = x, y and the bar indicates complex conjuga-
tion. From now on we identify jsa ≡ ja and choose s = +1
for simplicity. We plot both currents in Figure 6, for the
same values λ = λc, B = 0.05 T, s = +1, n0 = 5,
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< jx> (meV·nm)

<
j y
>

(m
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FIG. 7. Parametric plot of the currents expected values
(⟨jx⟩,⟨jy⟩) in the time intervals t ∈ [0, TR/4] (blue) and t ∈
[TR/4, TR/2] (yellow), for an initial wave packet with n0 = 5
and σ =

√
n0/5 = 0.47. We set the HgTe parameters λ = λc,

B = 0.05 T, and s = +1, so that the revival time is TR =
79.80 ps.

σ = 0.47, as in the previous section. The results are sim-
ilar to the autocorrelation in Figure 5. We observe oscil-
lations in two different time scales, the classical ones (top
panel) and the revivals (bottom panel). After half of the
revival time TR/2 in the bottom panel, the electron cur-
rents reach again their maximum initial values revealing
the quantum revival phenomenon. This is more evident
in the phase space plot of Figure 7, where both currents
decrease to zero at t = TR/4, and then they grow reach-
ing their initial value at t = TR/2. Notice that there is
a phase difference of π/2 rad between the currents ⟨jx⟩
and ⟨jy⟩, which is also depicted in Figure 7. The behav-
ior shown in Figure 6 is also found in graphene [4, 50],
and in 2D gapped Dirac materials under magnetic fields
[39], as silicene [51].

We have repeated the calculations of Figure 6 for differ-
ent values of the layer thickness λ, in order to study the
impact of this parameter on the electric currents. We
select the maximum of the electron current amplitudes
Maxt∈[0,TR/2]|⟨ja⟩| (maximum in the time domain) for
different thicknesses λ, and plot them in Figure 8. Both
current maxima reach their higher value at the critical
thickness. Therefore, measuring the amplitudes of the
electron currents is another way to characterize TPTs
in HgTe QWs. For higher magnetic fields, this maximal
behavior deviates from the critical thickness λc.

In Figure 9, we plot the layer thickness λja(B,n0) in
which the dots Maxt∈[0,TR/2]|⟨ja⟩| of Figure 8 achieve a
maximum in the λ domain, against the external magnetic
field B and for an initial wave packet with n0 = 5. The
maxima λja are close to the critical thickness λc in a re-
gion of the magnetic field, i.e. |λja(B,n0)−λc| < 0.1 nm
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an initial wave packet with n0 = 5 and σ =

√
n0/5 = 0.47.

The red (blue) dots correspond to the current in the x (y)
axis. We set the parameters B = 0.05 T, and s = +1.
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FIG. 9. Layer thickness λja(B,n0) in which the dots
Maxt∈[0,TR/2]|⟨ja⟩| of Figure 8 achieve a maximum in the λ
domain, as a function of the external magnetic field B. The
red and blue dots correspond to the directions a = x and
a = y respectively, and the yellow line depicts the thicknesses
where TCl achieves its minimum (retrieved from Figure 3).
We set s = +1 and an initial wave packet with n0 = 5 and
σ =

√
n0/5 = 0.47. The horizontal dashed line indicates the

critical thickness λc = 6.17 nm.

for all B < 0.5 T and n0 = 5. When increasing the
magnetic field above B ≃ 0.5 T, the maxima λja (red
and blue dots in Figure 9) start growing in a similar way
to the thickness λCl where TCl achieves its minimum in
Figure 3.

V. SPIN-ORBIT COUPLING EFFECTS

The model Hamiltonian (1) does not couple the spin
s = ±1 blocks. It is known [52] that two different
atoms in each unit cell breaks bulk inversion symme-
try and leads to additional terms coupling of the spin
blocks (spin-orbit interaction). In particular, terms de-
scribing the strong bulk inversion asymmetry (BIA) and

structural inversion asymmetry (SIA) have been consid-
ered in the literature (see e.g. [20, 53, 54]) and lead
to novel effects. In HgTe/CdTe QWs these two types of
terms are sometimes ignored because BIA terms are small
when compared with the gap, and the QW are symmet-
ric, which minimizes SIA. However, let us analyze how
would a coupling term of this type affect our results. For
it, let us consider the simplest spin-orbit interaction by
adding to the Hamiltonian (1) a coupling BIA term pro-
portional to ∆ that leads to the four-band effective model
in 2× 2 block matrix form:

H∆ =

(
H+1 −i∆τy
i∆τy H−1

)
. (27)

The values of the spin-orbit coupling ∆ for HgTe layer
thickness λ = 5.5, 6.1 and 7.0 nm are given in table II.
As we did in Eq. (13) for other Hamiltonian parameters,
we can perform a linear fit

∆(λ) = 2.52− 0.13λ, (28)

which provides a dependence of the spin-orbit coupling
∆ on the HgTe layer thickness λ. The diagonalization
of the Hamiltonian H∆ yields four eigenvalues E(ℓ)

n , ℓ =
1, 2, where we keep calling n > 0 conduction and n < 0
valence bands. We are ordering energies as

E(2)
|n| > E(1)

|n| > E(2)
−|n| > E(1)

−|n|. (29)

so that they tent to the energies Es
n of the uncoupled case

(6) as

E(2)
n

∆→0−→ E−1
n , E(1)

n
∆→0−→ E+1

n , (30)

in a neighborhood of the critical thickness λc. In figure 10
we give the relative difference |T−T∆|/T for the classical
and revival times with (T∆) and without (T ) spin-orbit
coupling ∆. In particular we are comparing

T∆
Cl =

2πℏ
|E(2)′

n0 |
with TCl =

2πℏ
|E−1′

n0 |
(31)

and

T∆
R =

4πℏ
|E(2)′′

n0 |
with TR =

4πℏ
|E−1′′

n0 |
. (32)

We see that the spin-orbit coupling ∆ has hardly any ef-
fect on classical and revival times near the critical thick-
ness λc. Revival times are more sensitive than classi-
cal times to spin-orbit coupling away from critical point.
Both, classical and revival, times remain minimal at λc

in the presence of coupling. For the considered BIA
constant interaction term, we do not expect any major
differences between the coupled and uncoupled case in
the analysis of electron currents revivals either, although
the spin-orbit coupling introduces spin mixing and one
should adopt a different scheme than the one followed in
section IV where we have treated both spins separately.
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FIG. 10. Relative difference of the classical/revival times
(top/bottom figure) with (T∆

Cl/R) and without (TCl/R) spin-
orbit coupling ∆. Both plots are presented as a function of
the layer thickness λ, for three different initial wave packets
n0 = 5, 10, 15. In both figures, we set B = 0.05 T, and s = −1
for the case without spin coupling. The vertical dashed line
indicates the critical thickness λc = 6.17 nm.

VI. CONCLUSIONS

In summary, we have shown that the time evolution
of a wave packet is useful to detect TPTs in HgTe QWs,
which corroborates the results previously found in [7] for
other 2D materials (silicene, germanene, tinene and in-
dinene). Using the 2D effective Dirac Hamiltonian for
surface states in HgTe/CdTe QWs, it is possible to ana-
lyze the time evolution of electron current wave packets.
As a general result, the classical and revival time appear
as two different periodicities in this temporal evolution,
and reach their minima at different values of the layer
thickness, depending on the external magnetic field and
the Landau level where the packet is centered at. In ad-
dition, we have investigated how the maximum of the
electron current amplitude changes with the thickness λ,
identifying that current maxima reach their higher value
at the critical thickness, so we can characterize the TPTs
in terms of the amplitude of the electron currents. The
effect of spin-orbit coupling has been addressed in section
V. For small magnetic fields, we have seen that spin-orbit
coupling has a negligible effect on the classical and revival
times in the vicinity of the topological transition point λc.
Both classical and revival times take minimal values at
λc as for the uncoupled case.

As a proposal for future work, this quantum revival
analysis could be extended to non-topological anisotropic
materials like phosphorene, which also present criticality
when its energy gap is closed by an external electric field
[39].
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