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Abstract

Multi-modal 3D object detectors are dedicated to
exploring secure and reliable perception systems
for autonomous driving (AD). Although achiev-
ing state-of-the-art (SOTA) performance on clean
benchmark datasets, they tend to overlook the com-
plexity and harsh conditions of real-world environ-
ments. With the emergence of visual foundation
models (VFMs), opportunities and challenges are
presented for improving the robustness and gen-
eralization of multi-modal 3D object detection in
AD. Therefore, we propose RoboFusion, a ro-
bust framework that leverages VFMs like SAM
to tackle out-of-distribution (OOD) noise scenar-
ios. We first adapt the original SAM for AD sce-
narios named SAM-AD. To align SAM or SAM-
AD with multi-modal methods, we then introduce
AD-FPN for upsampling the image features ex-
tracted by SAM. We employ wavelet decomposi-
tion to denoise the depth-guided images for fur-
ther noise reduction and weather interference. At
last, we employ self-attention mechanisms to adap-
tively reweight the fused features, enhancing infor-
mative features while suppressing excess noise. In
summary, RoboFusion significantly reduces noise
by leveraging the generalization and robustness of
VFMs, thereby enhancing the resilience of multi-
modal 3D object detection. Consequently, RoboFu-
sion achieves SOTA performance in noisy scenar-
ios, as demonstrated by the KITTI-C and nuScenes-
C benchmarks. Code is available at https://github.
com/adept-thu/RoboFusion.

1 Introduction
Multi-modal 3D object detection plays a pivotal role in au-
tonomous driving (AD) [Wang et al., 2023a; Song et al.,
2024a]. Different modalities often provide complementary
information. For instance, images contain richer semantic
representations, yet lack depth information. In contrast, point
clouds offer geometric and depth details, but they are sparse
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and lack semantic information. Therefore, effectively lever-
aging the advantages of multi-model while mitigating their
limitations contributes to enhancing the robustness and accu-
racy of perception systems [Song et al., 2023].

With the emergence of AD datasets [Geiger et al., 2012;
Caesar et al., 2020; Zhang et al., 2023c], state-of-the-
art (SOTA) methods [Liu et al., 2023; Bai et al., 2022;
Chen et al., 2022; Huang et al., 2020; Li et al., 2023;
Song et al., 2024b] on ‘clean’ datasets [Geiger et al., 2012;
Caesar et al., 2020] have achieved record-breaking perfor-
mance. However, they overlook the exploration of robust-
ness and generalization in out-of-distribution (OOD) scenar-
ios [Dong et al., 2023]. For example, the KITTI dataset
[Geiger et al., 2012] lacks severe weather conditions. When
SOTA methods [Chen et al., 2022; Li et al., 2023; Liu et al.,
2023] learn from these sunny weather datasets, can they truly
generalize and maintain robustness in severe weather condi-
tions like snow and fog?

The answer is ‘No’, as shown in Fig. 1 and verified in
Table 3. People often utilize domain adaptation (DA) tech-
niques to address these challenges [Wang et al., 2023b;
Tsai et al., 2023; Peng et al., 2023; Hu et al., 2023]. Although
DA techniques improve the robustness of 3D object detec-
tion and reduce the need for annotated data, they have some
profound drawbacks, including domain shift limitations, la-
bel shift issues, and overfitting risks [Oza et al., 2023]. For
instance, DA techniques may be constrained if the differences
between two domains are significant, leading to performance
degradation on the target domain.

Recently, both Natural Language Processing (NLP) and
Computer Vision (CV) have witnessed the appearance and the
power of a series of foundation models [Kirillov et al., 2023;
OpenAI, 2023; Zhao et al., 2023; Zhang et al., 2023a], re-
sulting in the emergence of new paradigms in deep learn-
ing. For example, a series of novel visual foundation models
(VFMs) [Kirillov et al., 2023; Zhao et al., 2023; Zhang et al.,
2023a] have been developed. Thanks to their extensive train-
ing on huge datasets, these models exhibit powerful general-
ization capabilities. These developments have inspired new
ideas, leveraging the robustness and generalization abilities
of VFMs to achieve generalization in OOD noisy scenarios,
much like how adults generalize knowledge when encounter-
ing new situations, without relying on DA techniques [Wang
et al., 2023b; Tsai et al., 2023].

ar
X

iv
:2

40
1.

03
90

7v
4 

 [
cs

.C
V

] 
 2

3 
A

pr
 2

02
4

https://github.com/adept-thu/RoboFusion
https://github.com/adept-thu/RoboFusion


Fog & Snow

SOTA

Detector


(a) Gaussian Distribution (b) Robustness Comparison (c) Performance

RoboFusion


0.00 60 80 100 140120

0.01

0.02

0.03

0.04

0.05

0.06

Large Gap

Small Gap

Clean KITTI Val Set

Noise KITTI-C Val Set

85.04

62.58

85.70

70

75

80

90

85

LoGoNet
Ours

K
IT

T
I M

od
er

at
e-

le
ve

l C
ar

 A
P

65

60

88.04Clean KITTI Train Set

Clean Noisy

Figure 1: (a) We employ Gaussian distributions to represent the distributional disparities among the datasets. Indeed, there exists a large gap
in data distribution between an OOD noise validation set and a clean validation set. Where the X-axis represents the set of mean pixel values
in a dataset, X = {xi | i = 1, 2, ..., N}, with xi = 1

H×W×3

∑H
i=1

∑W
j=1

∑3
k=1(Iijk), where N is the number of the dataset, H is the

height, W is the width, and Iijk denotes the pixel values for each image. (b) Visual foundation models (VFMs) like SAM [Kirillov et al.,
2023], show robust performance in many noisy scenarios. Yet, the current methods are not robust enough to predict 3D tasks for autonomous
driving perception. (c) To this end, we propose a robust framework, RoboFusion, which employs VFMs at the SOTA multi-modal 3D object
detection. Empirical results reveal that our method surpasses the Top-performing LoGoNet[Li et al., 2023] on the KITTI Leaderboard by a
margin of 23.12% mAP (Weather) on KITTI-C [Dong et al., 2023] noisy scenarios. Notably, our RoboFusion shows better performance with
LoGoNet [Li et al., 2023] in clean KITTI [Geiger et al., 2012] dataset.

Inspired by the success of VFMs in CV tasks, in this
work, we intend to use these models to tackle the challenges
of multi-modal 3D object detectors in OOD noise scenar-
ios. Therefore, we propose a robust framework, RoboFusion,
which leverages VFMs like SAM to adapt a 3D multi-modal
object detector from clean scenarios to OOD noise scenarios.
In particular, the adaptation strategies for SAM are as follows.
1) We utilize features extracted from SAM rather than infer-
ence segmentation results. 2) We propose SAM-AD, which is
a pre-trained SAM for AD scenarios. 3) We introduce a novel
AD-FPN to address the issue of feature upsampling for align-
ing VFMs with multi-modal 3D object detector. 4) To further
reduce noise interference and retain essential signal features,
we design a Depth-Guided Wavelet Attention (DGWA)
module that effectively attenuates both high-frequency and
low-frequency noises. 5) After fusing point cloud features
and image features, we propose Adaptive Fusion to further
enhance feature robustness and noise resistance through self-
attention to re-weight the fused features adaptively. We vali-
date RoboFusion’s robustness against OOD noise scenarios
in KITTI-C and nuScenes-C datasets [Dong et al., 2023],
achieving SOTA performance amid noise, as shown in Fig. 1.

2 Related Work
2.1 Multi-Modal 3D Object Detection
Currently, multi-modal 3D object detection has received con-
siderable attention on popular datasets [Geiger et al., 2012;
Caesar et al., 2020]. BEVFusion [Liu et al., 2023] fuse multi-
modal representations in a unified 3D or BEV space. Trans-
Fusion [Bai et al., 2022] builds a two-stage pipeline where
proposals are generated based on LiDAR features and further
refined using query image features. DeepInteraction [Yang
et al., 2022] and SparseFusion [Xie et al., 2023] further op-
timize the camera branch on top of TransFusion. Previous

methods are highly optimized to achieve the best performance
on clean datasets. However, they ignore common factors in
the real world (e.g., bad weather and sensor noise). In this
work, we consider a real-world robustness perspective and
design a robust multi-modal 3D perception framework, Robo-
Fusion.

2.2 Visual Foundation Models for 3D Object
Detection

Motivated by the success of Large Language Models (LLMs)
[OpenAI, 2023], VFMs start to be explored in CV commu-
nity. SAM [Kirillov et al., 2023] leverages ViT [Dosovit-
skiy et al., 2020] to train on the huge SA-1B dataset, con-
taining 11 million samples, which enables SAM to be gen-
eralized to many scenes. Currently, there have been a few
research endeavors aiming at integrating 3D object detectors
with SAM. For instance, SAM3D [Zhang et al., 2023b], as
a LiDAR-only method, solely transforms LiDAR’s 3D per-
spective into a BEV (Bird’s Eye View) 2D space to harness
the generalization capabilities of SAM, yielding sub-optimal
performance on ‘clean’ datasets. Another in progress work,
3D-Box-Segment-Anything 1, tries to utilize SAM for 3D ob-
ject detection. This indicates the highly attention of SAM
like foundation models in 3D scenes in the literature. Our
RoboFusion, as a multi-modal method, gives clear strategies
to leverage the generalization capabilities of VFMs to ad-
dress the OOD noise challenges inherent in existing 3D multi-
modal object detection methods.

3 RoboFusion
In this section, we present RoboFusion, a framework that har-
nesses the robustness and generalization capabilities of VFMs

1https://github.com/dvlab-research/3D-Box-Segment-Anything

https://github.com/dvlab-research/3D-Box-Segment-Anything
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Figure 2: The framework of RoboFusion. The LiDAR branch follows the baselines [Chen et al., 2022; Bai et al., 2022] to generate LiDAR
features. In the camera branch, first, we extract robust image features using a highly optimized SAM-AD and acquire multi-scale features
using AD-FPN. Second, the sparse depth map S is generated by the raw points and fed into a depth encoder to obtain depth features and
fused with multi-scale image features Fi to obtain depth-guided image features F̂i. Then wave attention is used to remove the mutation noise.
Finally, adaptive Fusion integrates point cloud features with robust image features with depth information via self-attention mechanism.

such as SAM [Kirillov et al., 2023] for multi-modal 3D ob-
ject detection. The overall architecture is depicted in Fig. 2
and comprises the following components: 1) SAM-AD &
AD-FPN module which obtains robust multi-scale image fea-
tures, 2) Depth-Guided Wavelet Attention (DGWA) mod-
ule which employs wavelet decomposition to denoise depth-
guided image features, 3) Adaptive Fusion module which
adaptively fuses point cloud features with image features.

3.1 SAM-AD & AD-FPN
Preliminaries. SAM [Kirillov et al., 2023], a VFM, achieves
generalization across diverse scenes due to its extensive train-
ing on the large-scale SA-1B dataset—with over 11 million
samples and 1 billion high-quality masks. Currently, SAM
family [Kirillov et al., 2023; Zhao et al., 2023; Zhang et al.,
2023a] primarily support 2D tasks. However, directly extend-
ing VFMs like SAM to 3D tasks presents a gap. To address
this, we combine SAM with multi-modal 3D models, merg-
ing 2D robust feature representations with 3D point cloud fea-
tures to achieve robust fused features.

SAM-AD. To further adapt SAM with AD (autonomous
driving) scenarios, we perform pre-training on SAM to ob-
tain SAM-AD. Specifically, we curate an extensive collection
of image samples from well-established datasets (i.e., KITTI
[Geiger et al., 2012] and nuScenes [Caesar et al., 2020]),
forming the foundational AD dataset. Following DMAE [Wu
et al., 2023], we perform pre-training on SAM to obtain
SAM-AD in AD scenarios, as shown in Fig. 3. We denote
x as a clean image from the AD dataset (i.e. KITTI [Geiger
et al., 2012] and nuScenes [Caesar et al., 2020]) and η as a set
of noise images generated by [Dong et al., 2023] based on x.
And the noise type and the severity are randomly chosen from
the four weather (i.e., rain, snow, fog, and strong sunlight)

and the five severities from 1 to 5, respectively. We employ
the image encoder of SAM [Kirillov et al., 2023] , Mobile-
SAM [Zhang et al., 2023a] as our encoder while the decoder
and the reconstruction loss are the same as DMAE [Wu et al.,
2023]. For FastSAM [Zhao et al., 2023], we adopt YOLOv8
2 to pre-train FastSAM on the AD dataset. To avoid overfit-
ting, we use random resizing and cropping as data augmenta-
tion. We also set the mask ratio as 0.75 and have trained 400
epochs on 8 NVIDIA A100 GPUs.

AD-FPN. As a promptable segmentation model, SAM has
three components: image encoder, prompt encoder and mask
decoder. Generally, the image encoder can provide high-
quality and highly robust image embedding for downstream
models, while the mask decoder is only designed to provide
decoding services for semantic segmentation. Furthermore,
what we require are robust image features rather than the
processing of prompting information by the prompt encoder.
Therefore, we employ SAM’s image encoder to extract robust
image features. However, SAM utilizes the ViT series [Doso-
vitskiy et al., 2020] as its image encoder, which excludes
multi-scale features and provides only high-dimensional low-
resolution features. To generate the multi-scale features re-
quired for object detection, inspired by [Li et al., 2022a],
we design an AD-FPN that offers ViT-based multi-scale fea-
tures. Specifically, leveraging height-dimensional image em-
bedding with stride 16 (scale=1/16) provided by SAM, we
produce a series of multi-scale features Fms with stride of
{32, 16, 8, 4}. Sequentially, we acquire multi-scale feature
Fi ∈ RH

4 ×W
4 ×Ci by integrate Fms in a bottom-up manner

similar to FPN [Lin et al., 2017].

2https://github.com/ultralytics/ultralytics

https://github.com/ultralytics/ultralytics 
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Figure 4: The architecture of Adaptive Fusion, which involves
adaptively re-weighting the fused features using self-attention.

3.2 Depth-Guided Wavelet Attention
Although SAM-AD or SAM has the capability to extract ro-
bust image features, the gap between 2D and 3D domains
still persists and cameras lacking geometric information in a
corrupted environment often amplify noise and give rise to
negative migration issues. To mitigate this problem, we pro-
pose the Depth-Guided Wavelet Attention (DGWA) module,
which can be split into two steps. 1) A depth-guided net-
work is designed, that adds geometry prior to image features
by combining image features and depth features from a point
cloud. 2) The features of an image are decomposed into four
wavelet subbands using the Haar wavelet transform [Liu et
al., 2020a], then attention mechanism allows to denoise in-
formative features in the subbands.

Formally, given image features Fi ∈ RH
4 ×W

4 ×Ci and raw
points P ∈ RN,Cp as input. We project P onto the image
plane to acquire a sparse depth map S ∈ RH×W×2. Next,
we feed S into the depth encoder DE(·), which consists of
several convolution and max pooling blocks, to acquire depth
features Fd ∈ RH

4 ×W
4 ×Ci . Afterward, we leverage convolu-

tion encode (Fi, Fd) to acquire depth-guided image features
F̂i ∈ RH

4 ×W
4 ×16, given by

F̂i = Conv(Concat(Fi, DE(S))). (1)

Subsequently, we employ discrete wavelet transform
(DWT), a reversible operator, to partition the input F̂i

into four subbands. Specifically, we encode the rows and
columns of the input separately into one low-frequency
band f̃LL

i ∈ RH
8 ×W

8 ×4 and three high-frequency bands

(f̃LH
i , f̃HL

i , f̃HH
i ) ∈ RH

8 ,W8 ,4, with the low-filter fL =
( 1√

2
, 1√

2
) and the high-filter fH = ( 1√

2
,− 1√

2
). In this state,

the low-frequency band retains coarse-grained information
while the high-frequency band retains fine-grained informa-
tion. In other words, it is easier to capture the mutation signal,
so as to filter the noise information. We concatenate the four-
subband features along channel dimension to acquire wavelet
features F̃i = [f̂LL

i , f̂LH
i , f̂HL

i , f̂HH
i ] ∈ RH

8 ×W
8 ×16. Next,

we perform wave-attention Attω to query informative fea-
tures in the wavelet features. Concretely, we employ F̂i as
a Query and F̃i as a Key/Value given by

Fatt = Attω(F̂i, F̃i) = σ(
F̂iW

q(F̃iW
k)T√

Ci

)F̃iW
v. (2)

Finally, we leverage the IDWT (inverse DWT) to convert
F̃i back to F̂i and integrate this converted F̂i and Fatt to ob-
tain denoise features Fout ∈ RH

16×
W
16×16 by

Fout = MLP (Concat(Fatt, F̂i)), (3)
where Fout preserves informative features and restrains re-
dundant mutation noise in the frequency domain.

3.3 Adaptive Fusion
Following the incorporation of image depth features within
the DGWA module, we propose the Adaptive Fusion tech-
nique to combine point cloud attributes with robust image
features enriched with depth information. Specifically, differ-
ent types of noise affect LiDAR and images to different de-
grees, which raises a corruption imbalance problem. There-
fore, considering the distinct influences of various noises on
LiDAR and camera, we employ self-attention to re-weight the
fused features adaptively as shown in Fig. 4. The corruption
degree of modality-specificity is dynamic, and self-attention
mechanism allows adaptive re-weighting features to enhance
informative features and suppress redundant noise.

4 Experiments
4.1 Datasets
We perform experiments on both the clean public benchmarks
(KITTI [Geiger et al., 2012] and nuScenes [Caesar et al.,



Table 1: Comparison with SOTA methods on KITTI validation and
test sets for car class with AP of R40.

Method
AP3D(%) (validation set) AP3D(%) (test set)

mAP Easy Mod. Hard mAP Easy Mod. Hard

Voxel R-CNN 86.84 92.38 85.29 82.86 83.19 90.90 81.62 77.06
VFF 86.91 92.31 85.51 82.92 83.62 89.50 82.09 79.29

CAT-Det 83.58 90.12 81.46 79.15 82.62 89.87 81.32 76.68
LoGoNet 87.13 92.04 85.04 84.31 85.87 91.80 85.06 80.74

Focals Conv-F - - - - 83.47 90.55 82.28 77.59
Baseline* 86.75 92.05 85.51 82.70 - - - -

RoboFusion-L 88.87 93.30 88.04 85.27 85.58 91.75 84.08 80.71
RoboFusion-B 88.45 93.22 87.87 84.27 85.32 91.98 83.76 80.23
RoboFusion-T 88.08 93.28 87.60 83.36 85.09 91.68 83.70 79.89

∗ denotes our reproduced results based on the officially released
codes.

2020]) and the noisy public benchmarks (KITTI-C[Dong et
al., 2023] and nuScenes-C [Dong et al., 2023]).

KITTI
The KITTI dataset provides synchronized LiDAR point
clouds and front-view camera images, consists of 3,712 train-
ing samples, 3,769 validation samples and 7,518 test sam-
ples. The standard evaluation metric for object detection is
the mean Average Precision (mAP), computed using recall at
40 positions (R40).

nuScenes
The nuScenes dataset is a large-scale 3D detection benchmark
consisting of 700 training scenes, 150 validation scenes, and
150 testing scenes. The data are collected using six multi-
view cameras and a 32-channel LiDAR sensor. It includes
360-degree object annotations for 10 object classes. To eval-
uate the detection performance, the primary metrics used are
the mean Average Precision (mAP) and the nuScenes detec-
tion score (NDS).

KITTI-C and nuScenes-C
In terms of data robustness, [Dong et al., 2023] has designed
27 types of common corruptions for both LiDAR and cam-
era, with the aim of benchmarking the corruption robust-
ness of existing 3D object detectors. [Dong et al., 2023]
has established corruption robustness benchmarks 3, includ-
ing KITTI-C and nuScenes-C, by synthesizing corruptions
on public datasets. Specifically, we utilize KITTI-C and
nuScenes-C in our work. It is worth noting that Ref. [Dong
et al., 2023] has only added noise to the validation dataset and
kept the train and test datasets clear.

4.2 Experimental Settings
Network Architecture.
Our RoboFusion consists of three variants: RoboFusion-L,
RoboFusion-B, and RoboFusion-T, which utilize the mod-
els SAM-B [Kirillov et al., 2023], FastSAM [Zhao et al.,
2023], and MobileSAM [Zhang et al., 2023a], respectively.
It is noteworthy that due to the convolutional operations of
FastSAM in RoboFusion-B which is capable of generating
multi-scale features, the AD-FPN module is not employed.

3https://github.com/thu-ml/3D Corruptions AD

Table 2: Comparison with SOTA methods on nuScenes validation
and test sets.

Method LiDAR Camera validation set test set
NDS mAP NDS mAP

FUTR3D VoxelNet ResNet-101 68.3 64.5 - -
BEVFusion-mit VoxelNet Swin-T 71.4 68.5 72.9 70.2
DeepInteraction VoxelNet ResNet-50 72.6 69.9 73.4 70.8

CMT VoxelNet ResNet-50 72.9 70.3 74.1 72.0
SparseFusion VoxelNet ResNet-50 72.8 70.4 73.8 72.0

TransFusion VoxelNet ResNet-50 71.3 67.5 71.6 68.9
Baseline* VoxelNet ResNet-50 70.8 67.3 - -

RoboFusion-L VoxelNet SAM 72.1 69.9 72.0 69.9
RoboFusion-B VoxelNet FastSAM 71.9 69.4 71.8 69.4
RoboFusion-T VoxelNet MobileSAM 71.3 69.1 71.5 69.1

∗ denotes our reproduced results based on the officially released
codes.

Table 3: Comparison with SOTA methods on KITTI-C validation
set. The results are evaluated based on the car class with AP of R40

at moderate difficulty. ‘S.L.’, ‘D.’, ‘C.O.’, and ‘C.T.’ denotes Strong
Sunlight, Density, Cutout, and Crosstalk, respectively.

Rai Clean Weather Sensor
mAP Snow Rain Fog S.L. D. C.O. C.T.

SECOND† 81.59 64.33 52.34 52.55 74.10 78.32 80.18 73.59 80.24
PointPillars† 78.41 49.80 36.47 36.18 64.28 62.28 76.49 70.28 70.85
PointRCNN† 80.57 59.14 50.36 51.27 72.14 62.78 80.35 73.94 71.53
PV-RCNN† 84.39 65.83 52.35 51.58 79.47 79.91 82.79 76.09 82.34
SMOKE† 7.09 4.51 2.47 3.94 5.63 6.00 - - -

ImVoxelNet† 11.49 3.22 0.22 1.24 1.34 10.08 - - -
EPNet† 82.72 46.21 34.58 36.27 44.35 69.65 82.09 76.10 82.10

Focals Conv-F† 85.88 50.40 34.77 41.30 44.55 80.97 84.95 78.06 85.82
LoGoNet* 85.04 62.58 51.45 55.80 67.53 75.54 83.68 77.17 82.00

RoboFusion-L 88.04 85.70 85.29 86.48 85.53 85.50 85.71 83.17 84.12
RoboFusion-B 87.87 84.70 84.11 85.54 84.00 85.15 84.34 81.30 82.45
RoboFusion-T 87.60 84.60 84.67 84.79 84.17 84.75 84.11 81.21 83.07

†: Results from Ref. [Dong et al., 2023].
* denotes re-implement result.

Since KITTI and nuScenes are distinct datasets with varying
evaluation metrics and characteristics, we provide a detailed
description of our RoboFusion settings for each dataset.

RoboFusion in KITTI and KITTI-C. We validate our
RoboFusion on the KITTI dataset using Focals Conv [Chen
et al., 2022] as the baseline. The input voxel size is set to
(0.05m, 0.05m, 0.1m), with anchor sizes for cars at [3.9, 1.6,
1.56] and anchor rotations at [0, 1.57]. We adopt the same
data augmentation solution as Focals Conv-F.

RoboFusion with nuScenes and nuScenes-C. We vali-
date our RoboFusion on the nuScenes dataset using Trans-
Fusion [Bai et al., 2022] as the baseline. The detection range
for the X and Y axis is set at [-54m, 54m] and [-5m, 3m]
for the Z axis. The input voxel size is set at (0.075m, 0.075m,
0.2m), and the maximum number of point clouds contained in
each voxel is set to 10. It is noteworthy that the Adaptive Fu-
sion module is applied exclusively to Focals Conv rather than
TransFusion, while TransFusion uses its own fusion module.

Training and Testing Details.
Our RoboFusion is meticulously trained from scratch us-
ing the Adam optimizer and incorporates several foundation
models as image encoders including SAM, FastSAM and

https://github.com/thu-ml/3D_Corruptions_AD


Table 4: Comparison with SOTA methods on nuScenes-C valida-
tion set with mAP. ‘S.L.’, ‘D.’, ‘C.O.’, and ‘C.T.’ denotes Strong
Sunlight, Density, Cutout, and Crosstalk, respectively.

Method Clean Weather Sensor
mAP Snow Rain Fog S.L. D. C.O. C.T.

PointPillars† 27.69 25.87 27.57 27.71 24.49 23.71 27.27 24.14 25.92
SSN† 46.65 43.70 46.38 46.50 41.64 40.28 46.14 40.95 44.08

CenterPoint† 59.28 52.49 55.90 56.08 43.78 54.20 58.60 56.28 56.64
FCOS3D† 23.86 11.44 2.01 13.00 13.53 17.20 - - -

PGD† 23.19 12.85 2.30 13.51 12.83 22.77 - - -
DETR3D† 34.71 22.00 5.08 20.39 27.89 34.66 - - -

BEVFormer† 41.65 26.29 5.73 24.97 32.76 41.68 - -
FUTR3D† 64.17 55.50 52.73 58.40 53.19 57.70 63.72 62.25 62.66

TransFusion† 66.38 58.87 63.30 63.35 53.67 55.14 65.77 63.66 64.67
BEVFusion† 68.45 61.87 62.84 66.13 54.10 64.42 67.79 66.18 67.32

DeepInteraction∗ 69.90 62.14 62.36 66.48 54.79 64.93 68.15 66.23 68.12
CMT∗ 70.28 63.46 62.56 61.44 66.26 63.59 69.65 68.70 68.26

RoboFusion-L 69.91 67.24 67.12 67.58 67.01 67.24 69.48 69.18 68.68
RoboFusion-B 69.40 66.33 66.07 67.01 65.54 66.71 69.02 69.01 68.04
RoboFusion-T 69.09 65.82 65.96 66.45 64.34 66.54 68.58 68.20 68.17

†: Results from Ref. [Dong et al., 2023].
* denotes re-implement result.

Table 5: Performance of different VFMs on RoboFusion. ‘RCE’
denotes Relative Corruption Error [Dong et al., 2023]. ‘mAP
(Weather)’ denotes the average value across four types of weather
corruptions, Snow, Rain, Fog, and Strong Sunlight.

Method Model Size FPS (A100) mAP (Weather ) mAP (Clean) RCE (%)

RoboFusion-L 97.54M 3.1 67.24 69.91 0.04
RoboFusion-B 81.01M 3.5 66.33 69.40 0.04
RoboFusion-T 13.94M 6.0 65.82 69.09 0.05

DeepInteraction 57.82M 4.9 62.14 69.90 0.10
TransFusion 36.96M 6.2 58.37 66.38 0.12

MobileSAM. To enable effective training on the KITTI and
nuScenes datasets, we utilize 8 NVIDIA A100 GPUs for net-
work training. Additionally, the runtime is evaluated on an
NVIDIA A100 GPU. Specifically, for KITTI, our RoboFu-
sion based on Focals Conv[Chen et al., 2022] involves train-
ing for 80 epochs. For nuScenes, our RoboFusion based on
TransFusion [Bai et al., 2022] has 20 epochs of training. Dur-
ing the model inference stage, we employ a non-maximal
suppression (NMS) operation in the Region Proposal Net-
work (RPN) with an IoU threshold of 0.7. We select the top
100 region proposals to serve as inputs for the detection head.
After refinement, we apply NMS again with an IoU threshold
of 0.1 to eliminate redundant predictions. For additional de-
tails regarding our method, please refer to OpenPCDet 4 .

4.3 Comparing with state-of-the-art
We conduct evaluations on the clean datasets KITTI and
nuScenes, as well as the noisy datasets KITTI-C and
nuScenes-C. While SOTA methods are primarily focused on
achieving high accuracy, we place greater emphasis on the ro-
bustness and generalization of the methods. These factors are
crucial for the practical deployment of 3D object detection
in AD scenarios, making the evaluation on the noisy datasets
more important in our perspective.

4https://github.com/open-mmlab/OpenPCDet

Results on the clean benchmark.
As shown in Table 1, we compare our RoboFusion with
SOTA methods, including Voxel R-CNN [Deng et al., 2021],
VFF [Li et al., 2022b], CAT-Det[Zhang et al., 2022] , Focals
Conv-F [Chen et al., 2022], and LoGoNet [Li et al., 2023] on
the KITTI validation and test sets. As shown in Table 2, we
also compare our RoboFusion with SOTA methods, including
FUTR3D [Chen et al., 2023], TransFusion [Bai et al., 2022],
BEVFusion [Liu et al., 2023], DeeepInteraction [Yang et al.,
2022], CMT [Yan et al., 2023] and SparseFusion [Xie et al.,
2023], on the nuScenes test and validation sets. Our Robo-
Fusion has achieved SOTA performance on the clean bench-
marks (KITTI and nuScenes).

Results on the noisy benchmark.
In the real-world AD scenarios, the distribution of data of-
ten differs from that of training or testing data, as shown in
Fig. 1 (a). Specifically, Ref. [Dong et al., 2023] provides a
novel noisy benchmark that includes KITTI-C and nuScenes-
C, which we primarily use to evaluate the weather and sensor
noise corruptions, including rain, snow, fog, and strong sun-
light, density, cutout, and so on. In addition, comparisons
of our RoboFusion with SOTA methods in other settings are
presented in the Appendix 5.

As shown in Table 3, SOTA methods, including SECOND
[Yan et al., 2018], PointPillars [Lang et al., 2019], PointR-
CNN [Shi et al., 2019], PV-RCNN [Shi et al., 2020], SMOKE
[Liu et al., 2020b], ImVoxelNet [Rukhovich et al., 2022],
EpNet[Huang et al., 2020], Focals Conv-F[Chen et al., 2022],
and LoGoNet[Li et al., 2023], experience a significant de-
crease in performance on the noisy scenarios, particularly for
weather conditions such as snow and rain. It can be attributed
to the fact that the ‘clean’ KITTI dataset does not include ex-
amples in snowy or rainy weather. On the other hand, VFMs
like SAM-AD have been trained on a diverse range of data
and exhibit robustness and generalization to OOD scenarios,
leading to higher performance on our RoboFusion metric.
Furthermore, multi-modal methods like LoGoNet, and Focals
Conv-F demonstrate better robustness and generalization in
sensor noise scenarios, while LiDAR-only methods like PV-
RCNN [Shi et al., 2020] are more robust in weather noise sce-
narios. This observation motivates our research on adaptive
fusion schemes for point cloud and image features. Overall,
in the KITTI-C [Dong et al., 2023] dataset, our RoboFusion’s
performance is nearly on par with the clean scene, indicating
high level of robustness and generalization.

As shown in Table 4, SOTA methods including PointPillars
[Lang et al., 2019], SSN [Zhu et al., 2020], CenterPoint [Yin
et al., 2021], FCOS3D [Wang et al., 2021], PGD [Wang et
al., 2022a], DETR3D [Wang et al., 2022b], BEVFormer [Li
et al., 2022c], FUTR3D [Chen et al., 2023], TransFusion [Bai
et al., 2022], BEVFusion[Liu et al., 2023], DeepInteraction
[Yang et al., 2022] and CMT [Yan et al., 2023] in nuScenes-
C show relatively higher robustness than in KITTI-C when
faced with weather noise. However, BEVFusion performs
well in the presence of snow, rain, and strong sunlight noise
but experiences a significant performance drop in foggy sce-
narios. In contrast, our method exhibits strong robustness and

5https://arxiv.org/abs/2401.03907

https://github.com/open-mmlab/OpenPCDet
https://arxiv.org/abs/2401.03907


Table 6: Impacts of different SAM usages on KITTI and KITTI-C
validation sets for car class with AP of R40. ‘S.L.’ denotes Strong
Sunlight.

Solution AP3D(%) APWeather(%)

mAP Easy Mod. Hard Snow Rain Fog S.L.

Offline 80.41 88.76 77.38 75.11 - - - -
No optim 86.45 91.86 84.80 82.71 45.11 47.77 63.10 79.21

Optim 88.00 92.41 86.77 84.81 57.43 54.27 68.81 82.07

Table 7: Influence of pre-training on SAM at KITTI-C validation
set for car class with AP of R40 at moderate difficulty. ‘S.L.’, ‘D.’,
‘C.O.’, and ‘C.T.’ denotes Strong Sunlight, Density, Cutout, and
Crosstalk, respectively.

VFM Weather Sensor
Snow Rain Fog S.L. D. C.O. C.T.

SAM 57.43 54.27 68.81 82.07 84.21 83.04 84.06
SAM-AD 80.68 81.68 81.67 83.48 84.71 84.17 84.12

generalization in both weather and sensor noise scenarios in
nuScenes-C.

4.4 Ablation Study
Performance of Different VFMs on RoboFusion.
In order to analyze the noise robustness and FPS perfor-
mance of different-sized VFMs, SAM, FastSAM and Mobile-
SAM, we conduct comparative experiments of RoboFusion-
L, RoboFusion-B and RoboFusion-T with SOTA methods,
DeepInteraction [Yang et al., 2022] and TransFusion [Bai et
al., 2022], on the nuScenes-C [Dong et al., 2023] validation
set, as shown in Table 5. Specifically, our RoboFusion ex-
hibits remarkable robustness to weather noise scenarios. Fur-
thermore, our RoboFusion-T has a similar FPS to TransFu-
sion [Bai et al., 2022]. Overall, we have presented a viable
application of SAM in 3D object detection tasks.

Impacts of Different SAM usages.
As shown in Table 6, our RoboFusion-L is experimented
upon. Specifically, the first row is the offline usage, which
involves loading pre-saved image features during training. It
implies that certain online data augmentation cannot be uti-
lized. The second (No optim) and the third (Optim) rows are
online usages, where the former omits fine-tuning and keeps
the model parameters fixed, the latter follows fine-tuning and
updating. Therefore, offline usage perform worse than on-
line usages. Additionally, fine-tuning the weights of SAM
has demonstrated superior performance, resulting in a perfor-
mance improvement in the presence of snow, rain, and fog
noise scenarios.

Influence of Pre-training on SAM.
As shown in Table 7, to investigate the scientific value of pre-
trained VFMs like SAM, FastSAM, and MobileSAM in AD
scenarios, we conduct our RoboFusion-L with SAM evalua-
tion on SAM and SAM-AD. Through pre-training, SAM-AD
has gained a better understanding of AD scenarios than the
original SAM. The pre-training strategy effectively improves
the performance of our RoboFusion, demonstrating a signifi-
cant improvement in the snow, rain, and fog noise scenarios.

Table 8: Roles of SAM3DFusion-L modules on KITTI-C valida-
tion set for car class with AP of R40 at moderate difficulty. ‘A.F.’
denotes Adaptive Fusion module. ‘S.L.’ denotes strong sunlight.

Method SAM-AD AD-FPN DGWA A.F. Snow Rain Fog S.L. FPS(A100)

a) 34.77 41.30 44.55 80.97 10.8
b) ✓ 80.68 81.68 81.67 83.48 4.0
c) ✓ ✓ 82.32 83.60 82.39 83.98 3.6
d) ✓ ✓ ✓ 83.99 85.63 84.01 84.81 3.4
e) ✓ ✓ ✓ ✓ 85.29 86.48 85.53 85.50 3.1

Roles of Different Modules in RoboFusion.
As shown in Table 8, we present ablation experiments for dif-
ferent modules of our RoboFusion-L, built upon SAM-AD,
including AD-FPN, DGWA, and Adaptive Fusion. Lever-
aging the strong capabilities of SAM-AD in AD scenarios,
SAM-AD has a significant improvement from baseline Focals
Conv [Chen et al., 2022] (34.77%, 41.30%, 44.55%, 80.97%)
to (80.68%, 81.68%, 81.67%, 83.48%). Subsequently, AD-
FPN, DGWA, and Adaptive Fusion achieve even higher per-
formance on the foundation of SAM-AD. This further high-
lights the substantial contributions of diverse modules within
our RoboFusion framework in addressing OOD noise scenar-
ios in AD.

5 Conclusions
In this work, we propose a robust framework RoboFusion to
enhance the robustness and generalization of multi-modal 3D
object detectors using VFMs like SAM, FastSAM, and Mo-
bileSAM. Specifically, we pre-train SAM for AD scenarios,
yielding SAM-AD. To align SAM or SAM-AD with multi-
modal 3D object detectors, we introduce AD-FPN for feature
upsampling. To further mitigate noise and weather interfer-
ence, we apply wavelet decomposition for depth-guided im-
age denoising. Subsequently, we utilize self-attention mech-
anisms to adaptively reweight fused features, enhancing in-
formative attributes and suppressing excess noises. Extensive
experiments demonstrate that our RoboFusion effectively in-
tegrates VFMs to boost feature robustness and address OOD
noise challenges. We anticipate this work to lay a strong foun-
dation for future research on building robust and dependable
foundation AD models.

Limitation and Future Work. First, RoboFusion has
a heavy reliance on the representation capability of VFMs.
This raises the baseline models’ generalization ability, but in-
creases their complexities. Second, the inference speed of
RoboFusion-L and RoboFusion-B is relatively slow due to
the limitations of SAM and FastSAM. However, the infer-
ence speed of RoboFusion-T is competitive with some SOTA
methods (e.g. TransFusion) without VFMs. In the future,
for improving the real-time application ability of VFMs, we
will attempt to incorporate SAM only in the training phase
to guide a fast-speed student model, meanwhile explore more
noise scenarios.
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A Appendix

A.1 Broader Impacts
Our work aims to develop a robust framework to address out-
of-distribution (OOD) noise scenarios in autonomous driv-
ing (AD). To the best of our knowledge, RoboFusion is the
first method that leverages the generalization capabilities of
visual foundation models (VFMs) like SAM [Kirillov et al.,
2023], FastSAM [Zhao et al., 2023], and MobileSAM [Zhang
et al., 2023a] for multi-modal 3D object detection. Although
existing multi-model 3D object detection methods achieve
the state-of-the-art (SOTA) performance of ‘clean’ datasets,
they overlook the robustness of real-world scenarios[Song et
al., 2024a]. Therefore, we believe it is valuable to combine
VFMs and multi-modal 3D object detection to mitigate the
impact of OOD noise scenarios.

A.2 More Results
Specific classes AP on the nuScenes-C validation set.
As shown in Table 9, we present a comparison of Specific
classes AP between TransFusion and our RoboFusion-L on
the nuScenes-C validation set, encompassing scenarios with
snow, rain, fog, and strong sunlight noise. It is evident from
the results that RoboFusion-L exhibits superior performance.

Table 9: Comparison with TransFusion on nuScenes validation
‘Snow, Rain, Fog, and Strong Sunlight’ noisy scenarios. ‘T.F.’,
‘R.F.’, ‘S.L.’, ‘C.V.’, ‘Motor.’, ‘Ped.’, and ‘T.C.’ are short for Trans-
Fusion, RoboFusion-L, Strong Sunlight, construction vehicle, mo-
torcycle, pedestrian, and traffic cone, respectively.

mAP Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

Sn
ow

T.F. 63.30 84.55 58.41 25.50 62.31 56.00 70.19 69.98 43.69 84.24 78.16
R.F. 67.12 87.21 60.88 29.47 67.45 58.99 75.12 71.45 48.28 86.23 86.12

+3.82 +5.14 +4.93 +4.59 +7.96

R
ai

n T.F. 63.35 85.37 56.87 25.12 64.65 55.10 71.99 68.21 44.13 83.87 78.14
R.F. 67.58 86.79 60.44 30.21 65.41 58.12 75.47 71.39 50.87 88.91 88.23

+4.23 +5.09 +6.74 +5.04 +10.09

Fo
g

T.F. 53.67 80.23 48.51 18.04 50.69 53.03 62.24 54.53 25.27 80.63 66.48
R.F. 67.01 87.56 59.03 29.36 66.10 57.23 74.33 72.01 49.50 87.08 87.91

+13.34 +10.52 +11.32 +15.41 +12.09 +17.48 +24.23 +21.43

S.
L

. T.F. 55.14 81.99 48.07 19.78 51.09 52.57 63.68 55.09 26.98 82.68 69.49
R.F. 67.24 87.67 57.74 31.00 64.29 58.94 75.23 70.23 50.82 88.70 87.82

+12.10 +11.22 +13.20 +11.55 +15.14 +23.30 +18.33

Roles of Different Modules in RoboFusion.
To assess the roles of different modules in RoboFusion, we
conduct an ablation study on the original SAM rather than
SAM-AD, as shown in Table 10, where a) is the results of
the baseline [Chen et al., 2022], b)-e) shows the performance
of our RoboFusion-L under different modules. According to
Table 10, SAM and AD-FPN modules significantly improve
the performance in OOD noisy scenarios. It is worth noticing
that DGWA module significantly improves the performance,
especially in snow noisy scenarios. By Table 10, the impact
of fog noise on point clouds is relatively minor. But, us-
ing A.F. (Adaptive Fusion) module to dynamically aggregate
point cloud features and image features exhibits significant
enhancements in fog-noise scenarios.

Table 10: Roles of RoboFusion modules on KITTI-C validation
set for car class with AP of R40 at moderate difficulty. ‘A.F.’ denotes
Adaptive Fusion module. ‘S.L.’ denotes Strong Sunlight.

Method SAM AD-FPN DGWA A.F. Snow Rain Fog S.L.

a) 34.77 41.30 44.55 80.97
b) ✓ 57.43 54.27 68.81 82.07
c) ✓ ✓ 59.81 56.59 69.68 83.20
d) ✓ ✓ ✓ 66.45 58.11 70.53 84.01
e) ✓ ✓ ✓ ✓ 68.47 59.07 74.38 84.07

More Results on the KITTI-C validation set.
Besides the experimental results mentioned in the main text,
we test our RoboFusion on KITTI-C and nuScenes-C [Dong
et al., 2023] to extend our work to a wider range of noise
scenarios, including Gaussian, Uniform, Impulse, Moving
Object, Motion Blur, Local Density, Local Cutout, Local
Gaussian, Local Uniform, and Local Impulse, as shown in
Tables 11, 12, and 13. From these Tables, compared with
LiDAR-only methods including SECOND [Yan et al., 2018],
PointPillars [Lang et al., 2019], PointRCNN [Shi et al., 2019]
and PV-RCNN [Shi et al., 2020], Camera-Only methods in-
cluding Smoke [Liu et al., 2020b], ImVoxelNet [Rukhovich
et al., 2022], and multi-modal methods including EPNet
[Huang et al., 2020], Focals Conv [Chen et al., 2022], and
LoGoNet [Li et al., 2023], our RoboFusion-L, RoboFusion-
B, and RoboFusion-T consistently outperform across vari-
ous noise scenarios and achieve the best overall performance.
Overall, our RoboFusion demonstrates superior performance
in weather-noisy (i.e. Snow, Rain, Fog, and Strong Sunlight)
scenarios and exhibits better results across a broader range of
scenarios, which shows remarkable robustness and generaliz-
ability.

Performance Comparison Analysis with the LoGoNet.
In addition, to provide a clearer analysis of performance
across different noise scenarios, we present a more detailed
comparative study of our RoboFusion-L and LoGoNet [Li et
al., 2023] on the KITTI-C validation dataset, as shown in Ta-
ble 14. It is worth noting that LoGoNet is a SOTA multi-
modal 3D detector known for its exceptional robustness and
high accuracy. [Dong et al., 2023] provides noise at vary-
ing levels, with the KITTI-C dataset including 5 severities.
It is evident that our method demonstrates a high degree of
robustness, exhibiting the most stable results with the vari-
ance of noise severities. For instance, when considering snow
conditions, the performance of our RoboFusion-L shows a
marginal variation from 86.69% to 83.67% across severities
from 1 to 5. In contrast, LoGoNet’s performance drops from
55.07% to 45.02% over the same severity range. Further-
more, in the presence of moving object noise, our method
outperforms LoGoNet. In summary, our RoboFusion exhibits
remarkable robustness and generalization capabilities, mak-
ing it well-suited to diverse noise scenarios.

More Results on the nuScenes-C validation set.
As depicted in Table 15, compared with LiDAR-only meth-
ods including PointPillars [Lang et al., 2019], and Center-
Point [Yin et al., 2021], Camera-Only methods FCOS3D



Table 11: Comparison with SOTA methods on KITTI-C validation set. The results are evaluated based on the car class with AP of R40

at moderate difficulty. The best one is highlighted in bold.‘S.L.’ denote Strong Sunlight. ‘RCE’ denotes Relative Corruption Error from
Ref.[Dong et al., 2023].

Corruptions
LiDAR-Only Camera-Only LC Fusion

SECOND † PointPillars † PointRCNN † PV-RCNN † SMOKE † ImVoxelNet † EPNet † Focals Conv † LoGoNet * RoboFusion (Ours)
L B T

None(APclean) 81.59 78.41 80.57 84.39 7.09 11.49 82.72 85.88 85.04 88.04 87.87 87.60

Snow 52.34 36.47 50.36 52.35 2.47 0.22 34.58 34.77 51.45 85.29 84.70 84.60
Rain 52.55 36.18 51.27 51.58 3.94 1.24 36.27 41.30 55.80 86.48 85.54 84.79
Fog 74.10 64.28 72.14 79.47 5.63 1.34 44.35 44.55 67.53 85.53 84.00 84.17Weather

S.L. 78.32 62.28 62.78 79.91 6.00 10.08 69.65 80.97 75.54 85.50 85.15 84.75

Density 80.18 76.49 80.35 82.79 - - 82.09 84.95 83.68 85.71 84.34 84.11
Cutout 73.59 70.28 73.94 76.09 - - 76.10 78.06 77.17 83.17 81.30 81.21

Crosstalk 80.24 70.85 71.53 82.34 - - 82.10 85.82 82.00 84.12 82.45 83.07
Gaussian (L) 64.90 74.68 61.20 65.11 - - 60.88 82.14 61.85 76.56 78.32 76.52
Uniform (L) 79.18 77.31 76.39 81.16 - - 79.24 85.81 82.94 85.05 83.04 84.11
Impulse (L) 81.43 78.17 79.78 82.81 - - 81.63 85.01 84.66 85.26 85.06 85.46

Gaussian (C) - - - - 1.56 2.43 80.64 80.97 84.29 82.16 84.63 82.17
Uniform (C) - - - - 2.67 4.85 81.61 83.38 84.45 83.30 85.20 83.30

Sensor

Impulse (C) - - - - 1.83 2.13 81.18 80.83 84.20 83.51 84.55 82.91

Moving Obj. 52.69 50.15 50.54 54.60 1.67 5.93 55.78 49.14 14.44 49.30 49.12 49.90Motion Motion Blur - - - - 3.51 4.19 74.71 81.08 84.52 84.17 84.56 84.18

Local Density 75.10 69.56 74.24 77.63 - - 76.73 80.84 78.63 83.21 82.53 83.22
Local Cutout 68.29 61.80 67.94 72.29 - - 69.92 76.64 64.88 77.22 75.27 76.23

Local Gaussian 72.31 76.58 69.82 70.44 - - 75.76 82.02 55.66 79.02 78.32 78.33
Local Uniform 80.17 78.04 77.67 82.09 - - 81.71 84.69 79.94 84.69 83.70 84.37

Object

Local Impulse 81.56 78.43 80.26 84.03 - - 82.21 85.78 84.29 85.26 85.08 85.06

Average(APcor) 71.68 66.34 68.76 73.41 3.25 3.60 70.35 74.43 71.89 81.72 81.31 81.12
RCE (%) ↓ 12.14 15.38 14.65 13.00 54.11 68.65 14.94 13.32 15.46 7.17 7.46 7.38

†: Results from Ref. [Dong et al., 2023].
* denotes re-implement result.

Table 12: Comparison with SOTA methods on KITTI-C validation set. The results are evaluated based on the car class with AP of R40 at
easy difficulty. The best one is highlighted in bold. ‘S.L.’ denotes Strong Sunlight. ‘RCE’ denotes Relative Corruption Error from Ref.[Dong
et al., 2023].

Corruptions
Lidar-Only Camera-Only LC Fusion

SECOND † PointPillars † PointRCNN † PV-RCNN † SMOKE † ImVoxelNet † EPNet † Focals Conv † LoGoNet * RoboFusion (Ours)
L B T

None(APclean) 90.53 87.75 91.65 92.10 10.42 17.85 92.29 92.00 92.04 93.30 93.22 93.28

Snow 73.05 55.99 71.93 73.06 3.68 0.30 48.03 53.80 74.24 88.77 88.18 88.31
Rain 73.31 55.17 70.79 72.37 5.66 1.77 50.93 61.44 75.96 88.12 88.57 87.75
Fog 85.58 74.27 85.01 89.21 8.06 2.37 64.83 68.03 86.60 88.96 88.16 88.09Weather

S.L. 88.05 67.42 64.90 87.27 8.75 15.72 81.77 90.03 80.30 89.79 89.23 90.36

Density 90.45 86.86 91.33 91.98 - - 91.89 91.14 91.85 92.90 92.08 92.12
Cutout 81.75 78.90 83.33 83.40 - - 84.17 83.84 84.20 85.94 85.75 84.75

Crosstalk 89.63 78.51 77.38 90.52 - - 91.30 92.01 88.15 91.71 91.54 92.07
Gaussian (L) 73.21 86.24 74.28 74.61 - - 66.99 88.56 64.62 80.96 84.30 83.23
Uniform (L) 89.50 87.49 89.48 90.65 - - 89.70 91.77 90.75 92.89 91.28 91.63
Impulse (L) 90.70 87.75 90.80 91.91 - - 91.44 92.10 91.66 91.90 91.95 92.30
Gaussian (C) - - - - 2.09 3.74 91.62 89.51 91.64 91.94 92.08 91.57
Uniform (C) - - - - 3.81 7.66 91.95 91.20 91.84 92.01 92.14 92.93

Sensor

Impulse (C) - - - - 2.57 3.35 91.68 89.90 91.65 91.96 92.04 91.33

Moving Obj. 62.64 58.49 59.29 63.36 2.69 9.63 66.32 54.57 16.83 53.09 51.94 51.70Motion Motion Blur - - - - 5.39 6.75 89.65 91.56 91.96 91.99 92.09 92.06

Local Density 87.74 82.90 88.37 89.60 - - 89.40 89.60 89.00 92.02 92.42 92.42
Local Cutout 81.29 75.22 83.30 84.38 - - 82.40 85.55 77.57 87.30 87.49 87.79

Local Gaussian 82.05 87.69 82.44 77.89 - - 85.72 89.78 60.03 89.56 89.41 89.62
Local Uniform 90.11 87.83 89.30 90.63 - - 91.32 91.88 88.51 91.59 91.53 91.75

Object

Local Impulse 90.58 87.84 90.60 91.91 - - 91.67 92.02 91.34 92.09 91.97 90.69

Average(APcor) 83.10 77.41 80.78 83.92 4.74 5.69 81.63 83.91 80.93 88.27 88.20 88.12
RCE(%)↓ 8.20 11.78 11.85 8.87 54.46 68.07 11.54 8.78 12.07 5.39 5.39 5.53

†: Results from Ref. [Dong et al., 2023].
* denotes re-implement result.



Table 13: Comparison with SOTA methods on KITTI-C validation set. The results are evaluated based on the car class with AP of R40

at hard difficulty. The best one is hightlighted in bold. ‘S.L.’ denotes Strong Sunlight. ‘RCE’ denotes Relative Corruption Error from
Ref.[Dong et al., 2023].

Corruptions
Lidar-Only Camera-Only LC Fusion

SECOND † PointPillars † PointRCNN † PV-RCNN † SMOKE † ImVoxelNet † EPNet † Focals Conv † LoGoNet * RoboFusion (Ours)
L B T

None(APclean) 78.57 75.19 78.06 82.49 5.57 9.20 80.16 83.36 84.31 85.27 84.27 83.36

Snow 48.62 32.96 45.41 48.62 1.92 0.20 32.39 30.41 45.57 64.26 62.49 62.74
Rain 48.79 32.65 45.78 48.20 3.16 0.99 34.69 35.71 50.12 66.07 64.89 63.18
Fog 68.93 58.19 68.05 75.05 4.56 1.03 38.12 39.50 60.47 80.03 78.37 77.29Weather

S.L. 74.62 58.69 61.11 78.02 4.91 8.24 66.43 78.06 73.62 80.02 77.52 81.61

Density 77.04 72.85 77.58 81.15 - - 79.77 82.38 81.98 83.06 83.03 83.05
Cutout 70.79 67.32 71.57 74.60 - - 73.95 76.69 76.18 76.96 77.00 77.38

Crosstalk 76.92 67.51 69.41 80.98 - - 79.54 83.22 80.36 82.94 83.22 83.08
Gaussian (L) 61.09 71.12 56.73 62.70 - - 56.88 77.15 59.98 74.45 75.03 73.81
Uniform (L) 75.61 74.09 72.25 78.93 - - 75.92 81.62 80.68 81.74 81.79 82.44
Impulse (L) 78.33 74.65 76.88 81.79 - - 79.14 83.28 82.51 83.13 83.16 83.24
Gaussian (C) - - - - 1.18 1.96 78.20 79.01 82.22 82.86 83.05 81.32
Uniform (C) - - - - 2.19 3.90 79.14 81.39 82.37 83.22 83.03 82.06

Sensor

Impulse (C) - - - - 1.52 1.71 78.51 78.87 82.16 82.75 83.00 81.59

Moving Obj. 48.02 45.47 46.23 50.75 1.40 4.63 50.97 45.34 13.66 43.56 42.62 42.89Motion Motion Blur - - - - 2.95 3.32 72.49 77.75 82.50 83.12 83.06 82.92

Local Density 71.45 65.70 71.09 75.39 - - 74.36 77.30 76.83 81.71 81.24 81.15
Local Cutout 63.25 56.69 63.50 68.58 - - 66.53 72.40 60.62 71.95 72.07 73.78

Local Gaussian 68.16 73.11 65.65 68.03 - - 72.71 78.52 54.02 76.38 76.41 76.26
Local Uniform 76.67 74.68 74.37 80.17 - - 78.85 81.99 77.44 82.04 82.06 82.33

Object

Local Impulse 78.47 75.18 77.38 82.33 - - 79.79 83.20 82.21 82.99 83.16 82.99

Average(APcor) 67.92 62.55 65.18 70.95 2.64 2.88 67.41 71.18 69.27 77.16 76.81 76.75
RCE(%)↓ 13.55 16.80 16.49 13.98 52.54 68.62 15.89 14.59 17.83 9.51 9.71 7.93

†: Results from Ref. [Dong et al., 2023].
* denotes re-implement result.

Table 14: Performance comparison of our RoboFusion-L with LoGoNet on KITTI-C with 5 noise severities. The results are reported based
on the car with AP of R40 at moderate difficulty. ‘S.L.’ denotes Strong Sunlight. The better one is marked in bold.

Severity
Corruptions

1 2 3 4 5
APs

Snow 55.07 / 86.69 52.98 / 86.55 53.08 / 85.94 51.14 / 83.61 45.02 / 83.67 51.45 / 85.29
Rain 57.29 / 87.84 56.90 / 87.75 56.76 / 86.49 55.05 / 85.24 53.01 / 85.07 55.80 / 86.48
Fog 75.93 / 87.31 69.69 / 86.58 64.77 / 84.71 64.69 / 84.56 62.58 / 84.51 67.53 / 85.53

Weather

S.L. 82.03 / 87.26 80.53 / 86.53 76.75 / 84.66 71.12 / 84.61 67.31 / 84.46 75.54 / 85.50

Density 86.60 / 86.81 84.59 / 86.59 84.05 / 85.60 82.74 / 85.27 82.42 / 84.30 83.68 / 85.71
Cutout 82.18 / 87.64 80.02 / 86.21 77.41 / 83.25 74.66 / 80.81 71.59 / 77.94 77.17 / 83.17

Crosstalk 84.22 / 84.41 83.38 / 84.38 81.41 / 84.13 80.78 / 83.79 80.22 / 83.90 82.00 / 84.12
Gaussian (L) 84.69 / 85.41 82.52 / 84.66 77.43 / 81.39 47.28 / 73.58 17.31 / 57.79 61.85 / 76.56
Uniform (L) 84.77 / 85.77 84.64 / 85.42 84.39 / 85.47 82.32 / 85.00 78.59 / 83.59 82.94 / 85.05
Impulse (L) 84.45 / 84.95 84.73 / 82.88 84.92 / 82.20 84.63 / 80.51 84.56 / 80.29 84.66 / 82.16

Gaussian (C) 84.53 / 85.77 84.47 / 85.42 84.31 / 85.47 84.18 / 85.32 83.96 / 84.32 84.29 / 85.26
Uniform (C) 84.74 / 85.57 84.57 / 85.08 84.54 / 82.96 84.36 / 82.53 84.05 / 80.36 84.45 / 83.30

Sensor

Impulse (C) 84.53 / 85.70 84.26 / 83.63 84.38 / 83.54 83.95 / 82.42 83.86 / 82.28 84.20 / 83.51

Moving Obj. 58.89 / 78.46 12.78 / 67.86 0.43 / 41.07 0.06 / 36.28 0.07 / 22.85 14.44 / 49.30
Motion

Motion Blur 84.64 / 85.23 84.53 / 84.98 84.56 / 84.72 84.45 / 83.00 84.43 / 82.96 84.52 / 84.17

Local Density 82.31 / 85.23 81.66 / 84.87 80.15 / 82.70 76.53 / 82.08 72.52 / 81.21 78.63 / 83.21
Local Cutout 76.77 / 82.94 72.46 / 81.31 65.87 / 78.14 59.14 / 74.12 50.17 / 69.61 64.88 / 77.22

Object
Local Gaussian 84.45 / 86.81 81.12 / 86.25 67.13 / 82.72 33.33 / 76.01 12.27 / 63.31 55.66 / 79.02
Local Uniform 84.51 / 85.91 84.35 / 85.65 81.95 / 85.23 79.62 / 84.66 69.25 / 81.99 79.94 / 84.68
Local Impulse 84.53 / 85.65 84.47 / 85.13 84.32 / 85.18 84.40 / 85.16 83.72 / 85.16 84.29 / 85.25

APc 79.35 / 85.56 75.73 / 84.38 72.93 / 81.77 68.22 / 79.92 63.34 / 76.97 71.81 / 81.72

Clean 85.04 / 88.04



Table 15: Comparison with SOTA methods on nuScenes-C validation set with mAP. ‘D.I.’ refers to DeepInteraction [Yang et al., 2022].
The best one is highlighted in bold. ‘S.L.’ denotes Strong Sunlight. ‘RCE’ denotes Relative Corruption Error from Ref.[Dong et al., 2023].

Corruptions
Lidar-Only Camera-Only LC Fusion

PointPillars† CenterPoint† FCOS3D† DETR3D† BEVFormer† FUTR3D† TransFusion† BEVFusion† D.I.* RoboFusion (Ours)
L B T

None(APclean) 27.69 59.28 23.86 34.71 41.65 64.17 66.38 68.45 69.90 69.91 69.40 69.09

Snow 27.57 55.90 2.01 5.08 5.73 52.73 63.30 62.84 62.36 67.12 66.07 65.96
Rain 27.71 56.08 13.00 20.39 24.97 58.40 65.35 66.13 66.48 67.58 67.01 66.45
Fog 24.49 43.78 13.53 27.89 32.76 53.19 53.67 54.10 54.79 67.01 65.54 64.34Weather

S.L. 23.71 54.20 17.20 34.66 41.68 57.70 55.14 64.42 64.93 67.24 66.71 66.54

Density 27.27 58.60 - - - 63.72 65.77 67.79 68.15 69.48 69.02 68.58
Cutout 24.14 56.28 - - - 62.25 63.66 66.18 66.23 69.18 69.01 68.20

Crosstalk 25.92 56.64 - - - 62.66 64.67 67.32 68.12 68.68 68.04 68.17
FOV lost 8.87 20.84 - - - 26.32 24.63 27.17 42.66 39.48 39.30 39.43

Gaussian (L) 19.41 45.79 - - - 58.94 55.10 60.64 57.46 57.77 57.07 56.00
Uniform (L) 25.60 56.12 - - - 63.21 64.72 66.81 67.42 64.57 64.25 64.99
Impulse (L) 26.44 57.67 - - - 63.43 65.51 67.54 67.41 65.64 65.45 65.44

Gaussian (C) - - 3.96 14.86 15.04 54.96 64.52 64.44 66.52 66.73 66.75 66.53
Uniform (C) - - 8.12 21.49 23.00 57.61 65.26 65.81 65.90 65.77 65.76 65.56

Sensor

Impulse (C) - - 3.55 14.32 13.99 55.16 64.37 64.30 65.65 64.82 64.75 64.56

Compensation 3.85 11.02 - - - 31.87 9.01 27.57 39.95 41.88 39.54 41.28Motion Motion Blur - - 10.19 11.06 19.79 55.99 64.39 64.74 65.45 67.21 66.52 66.42

Local Density 26.70 57.55 - - - 63.60 65.65 67.42 67.71 66.74 66.59 65.88
Local Cutout 17.97 48.36 - - - 61.85 63.33 63.41 65.19 66.82 66.53 66.76

Local Gaussian 25.93 51.13 - - - 62.94 63.76 64.34 64.75 65.08 65.17 64.77
Local Uniform 27.69 57.87 - - - 64.09 66.20 67.58 66.44 66.71 66.19 65.40

Obeject

Local Impulse 27.67 58.49 - - - 64.02 66.29 67.91 67.86 66.53 66.87 66.67

Average(APcor) 22.99 49.78 8.94 18.71 22.12 56.88 58.77 61.35 62.92 63.90 63.43 63.23
RCE (%) ↓ 16.95 16.01 62.51 46.07 46.89 11.34 11.45 10.36 9.97 8.58 8.59 8.47

†: Results from Ref. [Dong et al., 2023].
* denotes re-implement result.

[Wang et al., 2021], DETR3D [Wang et al., 2022b], and
BEVFormer [Li et al., 2022c] and multi-modal methods in-
cluding FUTR3D [Chen et al., 2023], TransFusion [Bai et
al., 2022], BEVFusion [Liu et al., 2023] and DeepInterac-
tion [Yang et al., 2022], our RoboFusion demonstrates supe-
rior performance across more noise scenarios in AD on av-
erage. For instance, our RoboFusion-L excels in 10 noise
scenarios, including Weather (Snow, Rain, Fog, Strong Sun-
light), Sensor (Density, Cutout, Crosstalk), Motion (Compen-
sation, Motion Blur), and Object (Local Cutout), outperform-
ing DeepInteraction [Yang et al., 2022] which achieves the
best performance only in 5 of these noise scenarios. Over-
all, our method exhibits not only exceptional robustness in
weather-induced noise scenarios, but also shows remarkable
resilience across a broader noise include sensor, motion and
object noise.

A.3 Visualization
As shown in Fig. 5, we provide visualization results between
our RoboFusion-L and LoGoNet on the KITTI-C dataset.
Overall, compared to SOTA methods like LoGoNet [Li et al.,
2023], our method enhances the robustness of multi-modal
3D object detection by leveraging the generalization capabil-
ity and robustness of VFMs to mitigate OOD noisy scenarios
in AD.

A.4 More Limitations
Although we have mentioned the two main limitations in the
‘Conclusions’ section of the main text, our RoboFusion still

has other limitations. Our method does not achieve the best
performance in all noisy scenarios. For instance, as shown in
Table 11, our method does not show the best in ‘Moving Ob-
ject’ noisy scenarios. Furthermore, we conduct experiments
only on the corruption datasets [Dong et al., 2023] rather than
real-world datasets. It is valuable to construct a real-world
corruption dataset, but it must be an expensive work.
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