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Abstract 

Dislocations are the primary carriers of plasticity in metallic materials. Understanding the 

basic mechanisms for dislocation movement is paramount to predicting the material mechanical 

response. Relying on atomistic simulations, we observe a transition from non-Arrhenius to 

Arrhenius behavior in the rate of an edge dislocation overcoming the long-range elastic interaction 

with a prismatic loop in tungsten. Close to the critical resolved shear stress, the process shows a 

non-Arrhenius behavior at low temperatures. However, as the temperature increases, the activation 

entropy starts to dominate, leading to a traditional Arrhenius-like behavior. We have computed the 

activation entropy analytically along the minimum energy path following Schoeck’s method [1], 

which captures the cross-over between anti-Arrhenius and Arrhenius domains. Also, the Projected 

Average Force Integrator (PAFI) [2], another simulation method to compute free energies along 

an initial transition path, exhibits considerable concurrence with Schoeck’s formalism. We 

conclude that entropic effects need to be considered to understand processes involving dislocations 

bypassing elastic barriers close to the critical resolved shear stress. More work needs to be 

performed to fully understand the discrepancies between Schoeck’s and PAFI compared to 

molecular dynamics. 

Keywords: Activation Entropy, Activation Volume, Molecular Dynamics Simulation, 

Dislocation Dynamics, Arrhenius/Anti-Arrhenius 
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1. Introduction 

It is well known that dislocations within a crystalline material play a crucial role in the 

long-term plastic deformation. Thermally activated dislocation processes have been extensively 

studied in the literature [3–6]. The related free energy barrier for dislocation glide directly affects 

the time a dislocation will need to start moving. Thermal lattice vibrations and the stresses that 

cause the dislocation to move affect the rate for the dislocation to overcome free energy barriers 

posed by different types of obstacles [7]. By concentrating on the minimum energy pathway 

(MEP), transition state theory offers a formalism to estimate the rate of such processes [8,9]. 

Numerous phenomena in materials science, such as metallic alloy plasticity [10], or creep [11], 

depend on thermally activated mechanisms. Transition state theory [12] relates the activation free 

energy Δ𝐺𝐺 with the rate for the process at constant stress:  

Γ𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜈𝜈 exp �−
Δ𝐺𝐺
𝑘𝑘𝐵𝐵𝑇𝑇

� (1) 

where 𝜈𝜈 is a pre-exponential factor, 𝑘𝑘𝐵𝐵 Boltzmann constant, and 𝑇𝑇 the temperature. According to 

this expression, we need to compute both Δ𝐺𝐺 and 𝜈𝜈 to predict the rate at a given temperature with 

Δ𝐺𝐺 = Δ𝐸𝐸0 + Δ𝐸𝐸𝑒𝑒𝑒𝑒 + Δ𝐸𝐸𝑝𝑝 − 𝑇𝑇Δ𝑆𝑆, with anti-Arrhenius behavior occurring when the free energy 

barriers depend on temperature and the dependence is stronger than linear [13]. Atomistic methods 

can be used to compute the rate by running dynamic simulations to calculate the average time for 

the process, which is the inverse of the rate. Each term in the expression for Δ𝐺𝐺 can also be 

computed with atomistic methods. Δ𝐸𝐸𝑒𝑒𝑒𝑒 is the elastic activation energy, Δ𝐸𝐸𝑝𝑝 represents the plastic 

activation energy, and 𝑇𝑇Δ𝑆𝑆 is the entropic activation term. Δ𝐸𝐸0 is an activation potential energy at 

zero stress, that can be obtained relying on the nudged elastic band (NEB) algorithm [14,15]. The 

elastic activation energy expression Δ𝐸𝐸𝑒𝑒𝑒𝑒 = ∫ �𝜏̃𝜏𝑠𝑠𝜖𝜖̃𝑠𝑠 − 𝜏̃𝜏𝑖𝑖𝜖𝜖̃𝑖𝑖�𝑑𝑑𝑑𝑑𝑉𝑉  is a function of stress and strain 

at saddle point (𝜏̃𝜏𝑠𝑠𝜖𝜖̃𝑠𝑠) and initial (𝜏̃𝜏𝑖𝑖𝜖𝜖̃𝑖𝑖) state. We can assume that the strain at the initial state is 

zero so the elastic activation energy can be simplified as 𝜏̃𝜏𝑠𝑠 ∫ 𝜖𝜖̃𝑠𝑠𝑑𝑑𝑑𝑑𝑉𝑉  at constant stress which 

finally equals 𝜏̃𝜏𝑠𝑠Δ𝑉𝑉� . The plastic energy expression is a result of the permanent deformation 

occurring in each replica with respect to the initial replica, and it can be formulated as follows: 

Δ𝐸𝐸𝑝𝑝 = 𝜏𝜏𝑠𝑠� . (𝑏𝑏� ⊗ 𝑑̅𝑑)𝑙𝑙 ̅where 𝑏𝑏 is the burgers vector, 𝑙𝑙 is the dislocation line length, and 𝑑𝑑 is the 

average distance swept by the dislocation line due to the imposed stress. Additional details 
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regarding the effect of each energy term will be presented in Figure 9 in Section (3.3). Δ𝑆𝑆 is a more 

difficult term to obtain as it relates to the vibrational details of the system at the saddle point and 

the initial state. If the potential energy landscape is harmonic at both the saddle point and initial 

configuration, the rate expression can be simplified according to Vineyard’s work [7], and the pre-

exponential factor contains the entropy as independent of temperature. In cases where harmonicity 

does not hold, more complex approaches need to be used. This paper describes two of those 

approaches, projected average force integrator (PAFI) and Schoeck’s [1,2]. Theoretically, the 

contribution of the activation entropy for metallic diffusion was explored in 1952 by Dienes [16]. 

In particular, an estimate of the entropy contribution caused by changes in vibrational frequencies 

around the saddle point was developed. Later, Dimelfi et al. [12] analyzed the entropy of a system 

with an internal strain field. By applying the principles of thermoelasticity in the continuum theory, 

they developed an analytical expression to calculate the change in entropy in a process involving 

strain evolution, which is applicable to elastic solids that exhibit non-linear behavior and 

anisotropy [12]. Later, Schoeck derived an analytical expression for the change in entropy as a 

function of solid materials' internal strain or stress fields [1] based on a second-order expansion of 

the Helmholtz free energy considering finite strains. We will use this analytical approach to 

rationalize the results from atomistic simulations. Ryu et al. [17] developed an approach to predict 

dislocation nucleation rate based on the Becker-Döring theory and umbrella sampling [18] 

simulations. Their findings revealed large activation entropies caused by anharmonic effects, 

leading to a substantial alteration in the nucleation rate by several orders of magnitude. In one case, 

under uniaxial tensile strain, Perez et al. [19] utilized atomistic simulations to explore the kinetics 

of plastic yield around small preexisting voids in copper single crystals, which were stabilized by 

strong entropic effects. In another study by Swinburne and Marinica, a path-based, accurate 

expression for free energy differences in the solid state was presented [2]. In a recent study, explicit 

calculations were performed to determine the anharmonic free energies, defined as the vibrational 

contribution beyond the quasiharmonic approximation, and entropies of Nb, Mo, Ta, and W in 

pristine systems. The ab initio computed values were employed to validate the previously 

established experimental data concerning the distinct trends observed in the behavior of body-

centered cubic (BCC) refractory elements in groups V and VI [20]. 

Several studies have been conducted regarding the relationship between temperature and 

the reaction rate for different processes than dislocation motion. One study examines self-
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interstitial atom diffusion in BCC vanadium, where below 600 K, temperature-dependent 

correlations cause non-Arrhenius behavior, while above 600 K, small migration barriers invalidate 

the Arrhenius expression [21]. Wang demonstrated that as the temperature rose, activation entropy 

for vacancy migration in Na β"-alumina decreased [22]. Also, Cantwell et al. [23] expressed a lack 

of mechanistic explanations for various forms of anti-thermal behavior. However, understanding 

such behavior could lead to significant advancements in fields like catalysis, nanocrystalline 

alloys, and high-efficiency engines [23]. The effect of non-Arrhenius behavior on grain growth in 

ceramics based on (K, Na)NbO3, and its influence on the piezoelectric properties, was also studied 

[24]. In another work, non-Arrhenius grain boundary migration, referred to as anti-thermal 

migration, was examined in an incoherent twin grain boundary in nickel [25]. Another study 

focused on the hot flow behavior of nickel-based superalloys by conducting compression tests at 

temperatures ranging from 1000-1150°C and specific strain rates. The researchers developed a 

modified Arrhenius constitutive relation with an activation energy map to obtain a more precise 

form of the model [26]. Furthermore, an experimental observation reported a non-Arrhenius 

transition behavior of grain growth in strontium titanate  (SrTiO3) [27]. It has also been found that 

the proportion of rapidly growing grains might show an anti-Arrhenius trend [28]. Investigating 

the alloy content effect on microstructure stability in copper and its alloys, specifically Cu and Cu–

Al, a distinct anti-thermal temperature dependence was observed [29]. 

The focus of this work is to investigate how the activation entropy influences the reaction 

rate of an edge dislocation overcoming a barrier posed by the long-range stress field of a sessile 

prismatic loop in BCC tungsten under a range of temperature and stress values. To achieve this 

goal, we employed three distinct approaches, namely, molecular dynamics (MD) simulations, 

PAFI [1,2], and the theoretical Schoeck’s expression [1]. Our objective is to compare the results 

obtained from these methods and draw conclusions about the interplay between activation entropy 

and enthalpy in dislocation glide.  
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2. Method 

In this study, we use MD and PAFI simulations as well as Schoeck's [1] analytical 

expression (Equation 2) to shed light on the thermal activation of an edge dislocation overcoming 

the long-range interaction with an 𝑎𝑎〈100〉 rhomboidal shape prismatic loop, of area equivalent to 

that of a circle with internal radius of 9.65 Å in tungsten (W). The center of mass of the prismatic 

loop is at a distance of 50.19 Å from the edge dislocation glide plane with the sample oriented in 

the 𝑥𝑥 = [111], 𝑦𝑦 = [11�0], and 𝑧𝑧 = [112�]. Table 1 defines the simulation box dimensions, which 

were also used for Schoeck‘s and PAFI calculations, and its schematic is shown in Figure 1. We 

use periodic boundary conditions in x and z and free surfaces in y. We have used Marinica et al. 

interatomic potential [30] in all the simulations presented in this work. 

We have obtained the minimum energy path of the process relying on the NEB algorithm 

[14,15]. As an initial guess for the path, we have interpolated linearly between initial and final 

configurations. This method is already implemented in LAMMPS [31] and allows us to obtain 

atomic configuration along the path, which will be used in PAFI and Schoeck’s formalisms to 

estimate the free energy and entropy, respectively. We also tried to use intermediate configurations 

obtained directly from the MD trajectory, but the results that we found were similar to the linear 

interpolation. 

 

Table 1. Simulation box configuration in Å   

Xmin Xmax Ymin Ymax Zmin Zmax 

-108.13 108.24 -12.62 197.62 -92.26 92.26 
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a) b) 

Fig.1. Molecular dynamics simulation a) 3-D atomic configuration showing atoms in a 

crystalline structure different from BCC according to a common neighbor analysis as 

implemented in Ovito [31], b) Dislocation line and burgers vector obtained using the 

dislocation extraction algorithm [32] as implemented in Ovito [33]. 

 

2.1. Molecular Dynamics simulation approach 

Throughout this work, we have used the LAMMPS software package [31]. In order to 

examine the behavior of edge dislocations at different shear stress values, we conducted a 

comprehensive investigation over a wide temperature range spanning from 20 to 700 K. The atoms 

belonging to the core of the prismatic loop were frozen so not to modify the energy landscape 

induced by any transition involving the dislocation loop. First, the sample was thermalized for 2 

ps at the target temperature using a Langevin thermostat with a damping coefficient of 1.0 ps-1 

applied in the whole system. Once thermalized, stress was applied, adding forces to the atoms in 

two parallel planes at both surfaces. We computed the waiting time for the dislocation to overcome 

the obstacle for different conditions of temperature, stress, and five independent realizations per 

condition. As stated above, we obtained the MEP using the NEB algorithm [34,35] at different 

applied stresses. To obtain the MEP at 120 MPa (above the critical resolved shear stress), the path 

was reconverged starting from the path at 110 MPa keeping the first replica frozen. 
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2.2. Theoretical calculation of the activation entropy by Schoeck’s formalism 

Schoeck developed an expression for the change in entropy induced by internal strain fields 

[1]. A key aspect of this derivation involves treating the solid as a continuum and utilizing the 

theory of elasticity for finite strains to describe the properties of defects as sources of internal strain 

[1]. Equation 2 presents the main result, with the change in entropy given as a function of the 

mechanical properties of the material and the internal strains.  

Δ𝑆𝑆 = �𝛼𝛼𝑉𝑉𝐾𝐾 𝑉𝑉𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 −
1
2
�
𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 (2) 

with 𝛼𝛼𝑉𝑉 = 3𝛼𝛼 where 𝛼𝛼 and 𝛼𝛼𝑉𝑉 are the linear and volumetric thermal expansion coefficients of the 

material, 𝑑𝑑𝑑𝑑 is the volume element, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖is the 4th-order tensor with the elastic constants and, 

𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑙𝑙𝑙𝑙, and 𝑉𝑉𝑖𝑖𝑖𝑖 represent the elastic strain components of the second-order Green’s strain tensor 

[1]. Although the tungsten ground state crystal structure is BCC and isotropic, the elastic constants 

deviate from the cubic symmetry in the current configuration with the free surface and the 

dislocations. In this case, we obtain seven independent components in the stiffness tensor, 𝐶𝐶11, 

𝐶𝐶22, 𝐶𝐶13, 𝐶𝐶31, 𝐶𝐶33, 𝐶𝐶44 and 𝐶𝐶66. Also, since we do not have external stress with hydrostatic 

component, the first term of Equation 2 would be zero [1], which we have verified computing the 

term. Although its contribution increases the total entropy, denoted as S, it does not modify the 

entropy change (ΔS) between each replica along the MEP and the initial state. Hence, we 

concluded that the first term can be neglected. Since we are interested in studying the temperature 

dependence of the free energy, we find a mathematical expression depending on both temperature 

and strain for the seven aforementioned elastic constants, shown below in GPa. Thus, from 

numerical simulations for the specific case of tungsten (see Supplementary Material) we obtain: 

𝐶𝐶11 =  (0.315068  𝑉𝑉𝑥𝑥𝑥𝑥2 − 0.038698 𝑉𝑉𝑥𝑥𝑥𝑥 − 0.000317)(0.000103 𝑇𝑇3   

− 0.646466  𝑇𝑇2  +  1064.446719 𝑇𝑇 − 1604185.571516) 
(3) 

𝐶𝐶22 =  0.345𝑇𝑇 + 600.83 (4) 

𝐶𝐶31 =  (4.299493 𝑉𝑉𝑧𝑧𝑧𝑧 + 0.096801)( 0.000490 𝑇𝑇2 − 0.527812 𝑇𝑇 

+ 1222.310181) 
(5) 

𝐶𝐶13 =  0.0334𝑇𝑇 +  109.23 (6) 
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𝐶𝐶33  = (0.073300 𝑉𝑉𝑧𝑧𝑧𝑧2  +  0.004982 𝑉𝑉𝑧𝑧𝑧𝑧  +  0.000147) (−0.001104 𝑇𝑇3  

+  2.497100 𝑇𝑇2 − 3101.287910  𝑇𝑇 +  4270935.703701) 
(7) 

𝐶𝐶44 =  −0.01095𝑇𝑇 +  79.92538 (8) 

𝐶𝐶66 =  0.0543𝑇𝑇 + 189.68068 (9) 

  

 Upon examination of Equations (3-9), a notable observation arises when stress versus strain 

components are plotted. It becomes apparent that, in the majority of cases the relationship does not 

follow Hooke's law and exhibits a nonlinear trend (see Supplementary Material). To address this 

issue, we employed nonlinear regression techniques to capture both the strain and temperature 

dependencies of the elastic constants. Now, we can rewrite Equation 2 in discretized form as 

follows: 

Δ𝑆𝑆 =
−1
2 ��

𝜕𝜕𝐶𝐶11
𝜕𝜕𝜕𝜕

(𝑉𝑉11𝑉𝑉11)𝑛𝑛

𝑁𝑁

𝑛𝑛=1

∀𝑛𝑛 + �
𝜕𝜕𝐶𝐶22
𝜕𝜕𝜕𝜕

(𝑉𝑉22𝑉𝑉22)𝑛𝑛

𝑁𝑁

𝑛𝑛=1

∀𝑛𝑛

+ �
𝜕𝜕𝐶𝐶13
𝜕𝜕𝜕𝜕

(𝑉𝑉11𝑉𝑉33)𝑛𝑛

𝑁𝑁

𝑛𝑛=1

∀𝑛𝑛 + �
𝜕𝜕𝐶𝐶31
𝜕𝜕𝜕𝜕

(𝑉𝑉33𝑉𝑉11)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+ �
𝜕𝜕𝐶𝐶33
𝜕𝜕𝜕𝜕

(𝑉𝑉33𝑉𝑉33)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+ �
𝜕𝜕𝐶𝐶44
𝜕𝜕𝜕𝜕

(𝑉𝑉12𝑉𝑉12)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+ �
𝜕𝜕𝐶𝐶44
𝜕𝜕𝜕𝜕

(𝑉𝑉13𝑉𝑉13)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+ �
𝜕𝜕𝐶𝐶66
𝜕𝜕𝜕𝜕

(𝑉𝑉31𝑉𝑉31)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

� 

 

(10) 

Substituting Equations (3-9) into Equation (10), we have the final expression for entropy, 

which is a second order function of temperature. Also, it should be noted that the entropy values 

were not highly sensitive to 𝐶𝐶22. To avoid confusion between volume and strain symbols, we 

denote the volume with symbol ∀ which represents the atomic volume in equations 10 and 11. 
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Δ𝑆𝑆 =
−1
2 ��[(0.315068  𝑉𝑉112 − 0.038698𝑉𝑉11 − 0.000317)(0.000309 𝑇𝑇2   

𝑁𝑁

𝑛𝑛=1

− 1.292932  𝑇𝑇 +  1064.446719  )(𝑉𝑉11𝑉𝑉11)]𝑛𝑛 ∀𝑛𝑛

+ � 0.345(𝑉𝑉22𝑉𝑉22)𝑛𝑛

𝑁𝑁

𝑛𝑛=1

∀𝑛𝑛 + � 0.0334(𝑉𝑉11𝑉𝑉33)𝑛𝑛

𝑁𝑁

𝑛𝑛=1

∀𝑛𝑛

+ �[(4.299493𝑉𝑉33 + 0.096801)(0.00098 𝑇𝑇
𝑁𝑁

𝑛𝑛=1

− 0.527812 )(𝑉𝑉33𝑉𝑉11)]𝑛𝑛∀𝑛𝑛

+ �[(0.073300 𝑉𝑉332  +  0.004982 𝑉𝑉33  
𝑁𝑁

𝑛𝑛=1

+  0.000147)(−0.003312 𝑇𝑇2  + 4.9942 𝑇𝑇

− 3101.287910)(𝑉𝑉33𝑉𝑉33)]𝑛𝑛∀𝑛𝑛 −� 0.01095(𝑉𝑉12𝑉𝑉12)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

−� 0.01095(𝑉𝑉13𝑉𝑉13)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

+ � 0.0543(𝑉𝑉31𝑉𝑉31)𝑛𝑛∀𝑛𝑛

𝑁𝑁

𝑛𝑛=1

� 

(11) 

 

We computed the crystalline systems' atomic-level elastic strain and the deformation 

gradient tensors using OVITO [32,36]. We have performed the NEB simulations with 31 replicas 

along the MEP. Since the position of the saddle point is unknown, the number of replicas needs to 

be large enough not to skip the maximum. In principle, the saddle point in the free energy 

landscape might not correspond with the maximum of enthalpy, i.e., the reaction coordinate may 

be different. The atomic volume is computed for every atom using a Voronoi tessellation [33] 

excluding the atoms at the surface. This data allows us to estimate the entropy following Equation 

(11).  

For visualization purposes, the Dislocation Extraction Algorithm (DXA) analysis was 

used, which effectively detects and characterizes dislocation lines within an atomistic crystal 

structure. DXA identifies the Burgers vectors associated with each dislocation and generates a 

visual representation of the dislocations in the form of line segments [32]. 
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Once we compute the entropy using Schoeck’s approach, incorporating the barrier values 

obtained from the NEB along the path, we can determine the Gibbs free energy and subsequently 

calculate the reaction rate using (TST), following Equation 1.  

 

2.3. PAFI method 

The PAFI algorithm is a free energy calculation method based on transition paths. It 

enables the computation of anharmonic free energy profiles for intricate processes without the 

need to define any functions for collective variables or to converge towards a minimum free energy 

pathway [2,37]. PAFI estimates the partition function for the atomic configurations along the 

minimum energy path. It constrains the forces to remain on the hyperplane of the replica 

perpendicular to the path, while taking into account the temperature dependence of the reaction 

pathway [2]. It runs dynamics in the canonical ensemble in each configuration using Langevin 

dynamics with the constrains mentioned above [38]. The idea to use PAFI in this work is to 

compute the free energy barrier and investigate the rate of reaction through TST. In PAFI 

simulations, we use a friction coefficient of 100 ps-1, which implies a strong damping [39]. 

We use Schoeck's [1] analytical expression (Equation 11) and PAFI [2] to rationalize the 

results in terms of changes in the activation free energy and rate of reaction to compare with MD 

and understand the effect of the different terms in the expression for the free energy. 

 

3. Results 

First, we computed the critical resolved shear stress (𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) for the process, which was 

found to be 118 MPa. NEB simulations were subsequently performed at different shear stresses of 

0, 56, 100, 110, and 120 MPa, applied to the top and bottom planes in the x [111] direction, to 

compute the variation of the enthalpy along the path with fitted splines in Figure 2. The change in 

entropy along the MEP was computed for 31 replicas as mentioned in section 2.2. The resulted 

NEB replicas are used as an input to run Schoeck’s and PAFI computations for entropy and free 

energy. Additionally, MD simulations were carried out to estimate the rate of the edge dislocation 

to overcome the interaction with the loop. 
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Fig.2. Enthalpy along the path at 56, 100, 110, and 120MPa resulting from NEB 

 

3.1. Entropy calculation with Schoeck's formalism 

 The entropy profiles obtained using Schoeck’s discretized formalism (Equation 11) are 

illustrated in Figure 3, which includes fitted splines to actual data points. It is evident that the 

majority of entropy values at temperatures lower than 0.3Tm of tungsten are negative. Considering 

differences in simulation setup, negative entropy is compatible with recent studies on the entropy 

of refractory alloys [20] for this range of temperatures. Moreover, as the shear stress increases, a 

combination of positive and negative entropy values emerges, leading to a more scattered 

distribution of data points. Notably, if the entropic term is comparable to the change in enthalpy, 

the fluctuation in entropy values will significantly influence the free energy barrier. Consequently, 

this effect could introduce a non-monotonic trend, which will be further discussed in section 3.2.  
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Fig.3. Entropy versus reaction coordinate in at 0, 56, 100, 110 and 120 MPa at 

100 K. 

 

3.2. Free Energy Barrier Computation 

We computed the free energy along the MEP with Schoeck’s formalism and compare it 

with PAFI at three different temperatures and two stresses, shown in Figure (4-a). Looking at the 

inset plot, PAFI shows relatively higher activation free energies compared to Schoeck’s at each 

temperature at 120 MPa. 

Figures (4-b to d) compare free energy barriers at T=180 and 240 K and 100 and 120 MPa 

shear stresses computed by Schoeck’s formalism and PAFI. Comparing the two methods at 180 K 

and 100 MPa (Figure 4-b), Schoeck’s predicted values result in a slightly higher barrier than PAFI, 

while the barrier at lower temperatures (30 and 60 K) is rather close for both methods, which is 

shown in Figure A.3 of the supplementary material.  

Furthermore, Figures (4-c) and (d) present the free energy barrier for different temperatures 

at 120 MPa shear stress, slightly higher than the critical resolved shear stress value. We observe 

that the free energy barrier increases as the temperature increases from 180 to 240 K and the values 

for PAFI are slightly higher than Schoeck's for most replicas. The energy difference grows 



 
 

 13 

significantly as the reaction coordinate approaches the end. This phenomenon will be discussed 

later in the paper. Notably, as the temperature increases, a minimum of free energy develops 

between the initial state and the saddle point. Hence, the barrier must be measured accordingly, 

from the new minimum to the saddle point.  

  
a) b) 

  
c) d) 

Fig.4.  Free energy landscape computed by PAFI and Schoeck’s methods for a) at 30 K, 60 K 

and180 K, at 100, 110, and 120 MPa respectively. Comparing plot for the mentioned methods at 

constant shear stress of 100 MPa at b) 180 K. the same case near critical resolved shear stress at 120 

MPa for temperatures of c) 180 K d) 240 K  

 

As a general trend, we observe considerable consistency between Schoeck's and PAFI 

results throughout Figure 4. 



 
 

 14 

Figure 5 specifically shows the activation free energy dependence with temperature at both 

100 and 120 MPa. At 100 MPa, Schoeck’s method demonstrates higher maximum values than 

PAFI's. At 120 MPa (Figure 5-b), the results from both methods are closer; the maximum values 

of PAFI are higher than Schoeck's, which is in contrast to Figure (5-a). Close to the 𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  value, 

the activation free energy of PAFI fluctuates significantly more than the values obtained from 

Schoeck's approach. The trends, however, remain similar in both approaches. In Figure (5-c) we 

have compared the activation free energy for Schoeck’s at 100, 110, and 120, for a broader 

temperature range (50 to 700 K), which exhibits stronger nonlinearity as shear stress is increased. 

Based on Equation 11, we understand that the Gibbs free energy formalism should exhibit 

third-order dependence on temperature. Consequently, the optimal fitting curves for Schoeck's 

activation free energy under different stresses (100, 110, and 120 MPa) can be described as 

follows: 

Δ𝐺𝐺𝑎𝑎100𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −3.357 × 10−9𝑇𝑇3 − 3.461 × 10−6𝑇𝑇2 + 0.006082𝑇𝑇 + 0.5999 (12) 

Δ𝐺𝐺𝑎𝑎110𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −1.339 × 10−9𝑇𝑇3 − 5.304 × 10−6𝑇𝑇2 + 0.006278𝑇𝑇 + 0.1000 (13) 

Δ𝐺𝐺𝑎𝑎120𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −5.273 × 10−8𝑇𝑇3 + 2.7 × 10−5𝑇𝑇2 − 0.001445𝑇𝑇 − 0.005427 (14) 

 

Comparing Equations 12 to 14, we understand that at 120 MPa the activation free energy 

expression has the lowest constant term which represents the barrier value at 0 K, i.e., the enthalpic 

barrier obtain with NEB, which is negative as the barrier is nullified above the 𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Following 

the same process, we can find the activation free energy expressions for PAFI keeping the same 

third order temperature dependence. The main reason behind this behavior will be discussed in 

section (3.3). 

Δ𝐺𝐺𝑎𝑎100𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −1.906 × 10−7𝑇𝑇3 +  8.673 × 10−5𝑇𝑇2  −  0.009226𝑇𝑇 +  0.3402 (15) 

Δ𝐺𝐺𝑎𝑎120𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −1.52 × 10−7𝑇𝑇3 + 5.68 × 10−5𝑇𝑇2 − 0.00565𝑇𝑇 + 0.144 (16) 
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a) b) 

 
c) 

Fig.5. Activation free energy versus temperature resulting from a) 100, b) 120 MPa shear stress c) 

comparing plot of Schoeck’s 

 

 

3.3. Rate of reaction calculation 

To compute the rate of reaction, in Schoeck’s and PAFI methods, for the dislocation to 

overcome the barrier, we rely on transition state theory (TST) [40,41]: 
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Γ = ω0 � exp�−
Δ𝐺𝐺𝑎𝑎∗(𝑇𝑇, 𝜏𝜏)
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝑑𝑑𝑑𝑑
𝐿𝐿0

𝐿𝐿𝑑𝑑

0

 (17) 

 

where 𝜔𝜔0 is the pre-factor related to the attempt frequency, 𝐿𝐿0 is the critical dislocation length for 

the segment to hop, 𝐿𝐿𝑑𝑑 is the total dislocation length equal to 184.521 (Å) in our simulation box, 𝜏𝜏 

is the imposed shear stress, ΔG𝑎𝑎
∗ (𝑇𝑇, 𝜏𝜏) is the activation free energy. The relation is fairly linear at 

low temperatures, presenting a maximum in all cases at temperatures between 400 and 600 K. For 

PAFI at 100 and 120 MPa the trend is non-monotonic and did not show any clear transition from 

linear to nonlinear behavior increasing stress (Figure 5-a and 5-b). In fact, it seems like the 

dependence of the activation free energy on temperature as given by Schoeck’s formalism does not 

hold for PAFI. Moreover, based on Equation 2, we have determined that the temperature derivatives 

of elastic constants, which are influenced by the strain components, play a crucial role in defining 

the activation free energy. These factors collectively contribute to changes in the rate of reaction in 

response to variations in temperature at different stress levels. 

In this study, a series of semi-analytical calculations, combined with the implementation of 

PAFI and MD simulations, were conducted in order to compute the rates for the dislocation to 

overcome the free energy barrier. The results are presented in Figure 6, showing the logarithm of 

the rate versus the inverse temperature. The reaction rate given by MD is quantified as the reciprocal 

of the average dislocation waiting times among the five independent simulations. The results of MD 

are presented for different shear stress levels, namely 100, 110, 120, and 125 MPa in the main and 

inset plots. When considering the cases of 100 and 110 MPa, both of which fall below the 𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

threshold, it is observed that a close-to-linear trend emerges in the log-scale plot at elevated 

temperatures.  

 In the transition from 100 to 110 MPa, the magnitude of the slope of the best-fit line 

decreases from 0.27 to 0.13 eV. At 120 MPa and temperatures below 50 K, the negative slope 

changes to positive, with T = 50 K acting as the crossover point (inset plot in Figure 6). The 

positively sloped exponential line is referred to as a non-Arrhenius or anti-thermal relation. The 

black, orange, and green lines are for 100, 110, and 120 MPa shear stresses, respectively, obtained 

with Schoeck’s approach. Schoeck’s and PAFI show similar crossover points at 300 K and 200 K, 
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respectively. We have used attempt frequencies of 1.62×1030 s-1, 2.1×1027 s-1, and 2.08×1018 s-1 for 

stress values of 100, 110 and 120 MPa for Schoeck’s fitting to the MD values. Also, 1×1025 s-1 

prefactor was defined for PAFI to match the crossover rate value at 120 MPa as given by MD. These 

prefactors are in the high range, as it has been observed in strained materials [19,42]. Figure 6 shows 

the non-monotonic temperature behavior of Schoeck’s results at 120 MPa while monotonic for 100 

and 110 MPa, which follows the MD simulation trend. PAFI results also display non-monotonic 

rates. Although, neither PAFI nor Schoeck’s predict the rates obtained with MD, showing higher 

slopes, they capture the trend with crossovers from Arrhenius to anti-Arrhenius. However, there is 

a noticeable disparity of around 250 K in the crossover point compared to MD.  

 

 
Fig.6. Rate of reaction versus temperature inverse fitted curves for atomistic simulation, 

PAFI and Schoeck’s approaches in range of stress  

 

Table 2 summarizes the results, highlighting the substantial impact of the shear stress on 

the predicted barrier value for dislocation crossing. It also shows the free energy expressions that 

are used to draw the dashed curves. An increase in shear stress leads to a decrease in the slope 
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observed in the Arrhenius portion of the plots depicted in the figure, which is clearly shown for 

MD and Schoeck’s following the actual rate values. This decrease indicates that the waiting time 

for dislocation crossing tends to decrease. Such a trend is more dominant around the 𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  value 

(120 MPa).  

 

Table 2. Fitted expressions rate plots for Atomistic Simulation, PAFI, and Schoeck 

 

Shear Stress 

Value 

𝜏𝜏 (𝑀𝑀𝑀𝑀𝑀𝑀) 

Rate fitting 

Atomistic 

Simulation 

100 Γ = 7.06 × 1010exp �−
0.27
𝑘𝑘𝐵𝐵𝑇𝑇

� 

110 Γ = 2.11 × 1010exp �−
0.13
𝑘𝑘𝐵𝐵𝑇𝑇

� 

120 Γ = 1013 exp�−
3.68 × 10−9𝑇𝑇3 − 2.38 × 10−6𝑇𝑇2 

−0.0003𝑇𝑇 − 0.0033
𝑘𝑘𝐵𝐵𝑇𝑇

� 

125 Γ = 1013 exp�−
9.43 × 10−10𝑇𝑇3 − 5.59 × 10−7𝑇𝑇2 

 −0.00066𝑇𝑇 − 0.000769
𝑘𝑘𝐵𝐵𝑇𝑇

� 

PAFI 120 Γ = 1 × 1025 exp�−
−1.52 × 10−7𝑇𝑇3 + 5.68 × 10−5𝑇𝑇2

−0.00565𝑇𝑇 + 0.143691
𝑘𝑘𝐵𝐵𝑇𝑇

� 

Schoeck’s 

100 

Γ

= 1.62

× 1030 exp

⎝

⎛−
−3.357 × 10−9𝑇𝑇3 − 3.461 × 10−6𝑇𝑇2

+0.006082𝑇𝑇+ 0.5999
𝑘𝑘𝐵𝐵𝑇𝑇

⎠

⎞ 

110 

Γ

= 2.1 × 1027 exp

⎝

⎛−
−1.339 × 10−9𝑇𝑇3 − 5.304 × 10−6𝑇𝑇2

+0.006278𝑇𝑇+ 0.1000
𝑘𝑘𝐵𝐵𝑇𝑇

⎠

⎞ 
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Table 2. Fitted expressions rate plots for Atomistic Simulation, PAFI, and Schoeck 

 

Shear Stress 

Value 

𝜏𝜏 (𝑀𝑀𝑀𝑀𝑀𝑀) 

Rate fitting 

120 Γ = 2.08 × 1018exp

⎝

⎛−
−5.273 × 10−8𝑇𝑇3 + 2.7 × 10−5𝑇𝑇2

−0.001445𝑇𝑇− 0.005427
𝑘𝑘𝐵𝐵𝑇𝑇

⎠

⎞ 

 

 

In Figure 7 the rate versus stress plot obtained from MD is shown. The activation volume 

can then be computed as 𝑉𝑉𝑎𝑎 = 𝜕𝜕Δ𝐺𝐺𝑎𝑎
𝜕𝜕𝜕𝜕

�
𝑇𝑇
. Basically, examining Equation 1, we can determine the 

activation volume as the stress derivative of the free energy expression. We can obtain 𝑉𝑉𝑎𝑎 from MD, 

where it corresponds to the slope of the curves in Figure 7. For instance, at 400 K and 110 MPa, this 

activation volume is calculated to be 1311 Å³, which is considerably smaller than the simulation cell 

volume. Furthermore, an slight decrease in activation volume is observed when the temperature 

increases, as depicted in Figure 7. 

In Figure 8, we have plotted the activation entropy values against stress at various 

temperatures. This plot clearly illustrates the dependence of activation entropy on both stress and 

temperature. There is an increase in activation entropy by increasing stress from 100 to 120 MPa. 

The linear fits for each temperature have been included to illustrate the increasing trend with respect 

to stress values. 

Analyzing the breakdown of the free energy as explained in Section 1, it became evident 

that four distinct terms - potential, elastic, plastic, and entropic - play a role. To assess the 

significance of each term, Figure (9-a) presents the energy distribution along the path for the latter 

three terms, while Figure (9-b) illustrates the distribution of potential energy at various stress levels 

along the NEB coordinate. From a theoretical standpoint, Figure (9-a) demonstrates that the most 

significant contributing term to the activation free energy is the plastic energy shown in red, yellow, 

and green, in contrast to the elastic and entropic terms which are relatively small. In Figure (9-b), 

the term Δ𝐸𝐸0 is shown, as obtained from NEB with no applied stress and with the values for 100, 



 
 

 20 

110, and 120 MPa adding the elastic and plastic work components. The discrepancy comes from 

the uncertainty in computing the elastic and plastic terms.[30] 

 
Fig.7. Rate versus stress from 300 to 600 K obtained from MD simulations. Dashed lines are 

linear fits as a guide to the eyes with an estimate of the average slope related to 𝑉𝑉𝑎𝑎. 

 

 
Fig.8. Activation entropy vs stress for temperatures from 50 to 700 K in Schoeck’s method  
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a) 

 
b) 

Fig.9. a) Energy components along the MEP resulted from theoretical computations compared 

to entropic energy at 150 K and 100 MPa predicted b) Energy change associated with the 

displacement of a dislocation line adjacent to a prismatic loop. 
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In Figure 10-a, we compare the contributions of each energy term to the activation volume 

prediction based on theoretical calculations. As mentioned earlier, in Figure 7, the activation 

volume is the stress derivative of the activation free energy at constant temperature [17], 

𝑉𝑉𝑎𝑎 = 𝜕𝜕Δ𝐺𝐺𝑎𝑎
𝜕𝜕𝜕𝜕

�
𝑇𝑇

= ∫ �𝜖𝜖̃𝑠𝑠 − 𝜖𝜖̃𝑖𝑖�𝑑𝑑𝑑𝑑𝑉𝑉 + (𝑏𝑏� ⊗ 𝑑̅𝑑)𝑙𝑙 − 𝑇𝑇 𝜕𝜕Δ𝑆𝑆𝑎𝑎
𝜕𝜕𝜕𝜕

. As shown above, the activation entropy 

values depend on stress. The two entropic and plastic terms vary with temperature, generally 

exhibiting an increasing trend up to 500 K, followed by a slight decrease. Also Figure 10-b shows 

the activation volume change with respect to stress. 

 

 
a) 
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b) 

Fig.10. a) contribution of each terms in activation free energy expression (Equation 1) in 

activation volume value b) activation volume values versus stress values for different 

temperatures 

 

Figure 11 illustrates the computed activation entropy values corresponding to PAFI and 

Schoeck’s approaches at 120 MPa versus temperature. PAFI’s values do not follow a clear trend, 

unlike Schoeck’s. As indicated by Equation 11, we anticipate a second-order dependence of the 

activation entropy on temperature for each stress level, as shown in Fig. 11 with lines being best 

fits to the data (equations 18 to 20) at 100, 110, and 120 MPa, respectively. In the range of 

temperatures studied, ∆𝑆𝑆𝑎𝑎 is not monotonic, presenting a minimum at around 300 K, which 

coincides with the crossover temperature between the Arrhenius and anti-Arrhenius behavior of the 

rates. 
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Fig.11 Activation entropy values for different temperatures predicted by Schoeck’s and 

PAFI methods at 100, 110, and 120 MPa 

 

 

Δ𝑆𝑆𝑎𝑎100𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 3.113 × 10−08 𝑇𝑇2 − 2.24 × 10−05𝑇𝑇 − 0.001311 (18) 

Δ𝑆𝑆𝑎𝑎110𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 3.343 × 10−08𝑇𝑇2 −  2.566 × 10−05𝑇𝑇 − 0.0001108 (19) 

Δ𝑆𝑆𝑎𝑎120𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 2.466 × 10−08𝑇𝑇2 − 1.788 × 10−05𝑇𝑇 − 0.001037 (20) 

 

4. Discussion 

In this paper, we have investigated the effects of stress and temperature on the free energy 

barrier, activation entropy, activation volume, and rate of reaction of an edge dislocation 

overcoming the far field interaction with a prismatic loop in BCC tungsten. We compared the 

results from MD, PAFI, and theoretical Schoeck's formalism. These methods were applied across 

various stress values around the critical resolved shear stress of BCC tungsten to visualize how the 

mentioned properties change with varying temperatures. 



 
 

 25 

Both Schoeck’s and PAFI predict similar trends for the free energy landscape between 

initial and saddle point states for the shear stresses tested in this study. The free energy landscape 

computed by Schoeck’s closely resembles the predictions made by PAFI at 100 and 120 MPa 

along the minimum energy path, encompassing a total of 31 replicas, although PAFI data point 

exhibit noisier trends than Schoeck. As we approach the end of the reaction coordinate, PAFI 

exhibits higher values than Schoeck’s. The energy difference between the initial and final states 

primarily stems from changes in plastic energy, reflected in the MEP at different stresses. 

Consequently, this discrepancy is likely due to the deviation of PAFI from the MEP obtained with 

NEB. Both methods use an initial MEP to compute free energies, with the major difference being 

in how the free energy is computed. Schoeck’s requires the calculation of the entropy depending 

on temperature, elastic constants as a function of temperature, strain components, and atomic 

volume. In terms of computation cost, Schoeck is more time-effective than PAFI. The atomic 

strains were computed by Ovito along with the atomic volumes. However, PAFI requires the 

estimation of the partition function for each replica running dynamics, which becomes more 

computationally expensive. Somehow, PAFI also deviates from the expected Arrhenius trend at 

lower stress values. We demonstrated in Figure 2 that as the stress values increase from 56 to 120 

MPa, the barrier height decreases. Furthermore, the computed entropy values along the path 

exhibit an increase as the shear stress is raised (see Figure 8).  Within the Schoeck’s formalism, 

the components of the elastic constant tensor have been shown to exhibit strain dependence, along 

with sensitivity to temperature, both of which notably impact the entropy values.   

The rate of reaction analysis from MD results reveals that in the proximity of τCRSS, we 

observe a change in the trend from anti-Arrhenius to Arrhenius behavior as the temperature 

increases. This shift is attributed to the very small or null enthalpy barrier that the dislocation needs 

to overcome. As a result, the entropic term plays a significant role in defining the mechanism of 

dislocation motion. The temperature at which the crossover from anti-Arrhenius to Arrhenius 

occurs is approximately 50 K in MD. In Schoeck’s and PAFI rate plots, a similar behavior is 

observed, but at higher crossover temperatures around 300 K and 200 K, respectively. In PAFI, 

we observe that the results for the rate near τCRSS, specifically at 120 MPa, exhibit more variability 

compared to Schoeck's still showing the crossover in trends. Furthermore, according to Schoeck’s 

approach, the rate is not Arrhenius even for stresses significantly lower than τCRSS but the cross-

over appears in an extremely low-rate regime (see Fig. A.4 supplementary material). 
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Another notable difference among the methods was the barrier height, which is higher in 

Schoeck’s and PAFI compared to MD. This leads to a steeper slope of the rate plots. While 

theoretical computations indicate a higher expected temperature for the minimum rate, the 

computational cost is significantly lower than that of MD. Additionally, this method can provide 

separate insights into entropy, enthalpy, elastic, and plastic energy contributions in the deformation 

mechanism. It is worth noting that MD was utilized to obtain temperature and stress values for 

determining the dislocation waiting time across the barrier, yet it could not display individual 

components as calculated using the Schoeck’s formalism. The assessment of activation volume 

was conducted using both MD and Schoeck’s methods, as depicted in Figures 7 and 10. Although 

PAFI could compute free energy and entropy values, it fails to correctly compute activation 

volume since it shows noisy activation free energy profiles in most of the stress values shown in 

Figure (5-a) and (5-b). The MD results indicate that higher temperatures lead to a reduction in the 

activation volume. However, a more comprehensive insight into the results, accounting for each 

energy component contribution through Schoeck's approach, reveals that the plastic and entropic 

terms play a pivotal role in determining the activation volume, while the contribution of elastic 

terms appears to be negligible.  

A potential explanation for the difference in rates between Schoeck's, PAFI, and MD is the 

difference in the path followed by the system to overcome the energy barrier. The MEP reported 

here was obtained starting from a linear interpolation between initial and final configurations. The 

energy landscape with dislocations is potentially rough and might lead to significant deviations 

from the linearly interpolated guess. As mentioned in section 2, we also tried as initial input for 

the NEB snapshots from the MD trajectory, but the results did not vary significantly. Still, an 

accurate MEP seems crucial for the prediction of the transition rates, although in configurations 

involving dislocations the task is far from trivial. Besides, the rate of reaction that PAFI and 

Schoeck’s compute is based on the transition state theory which accounts for thermodynamic 

properties, while MD computes the rate based on the observation of the waiting time from a 

dynamic trajectory at different temperatures and stresses. Future work will analyze the detail role 

of the path in the estimation of the free energy and the calculation of the rates. 

Schoeck’s formalism has deep consequences on our ability to model ensemble of 

dislocations at the mesoscale. Current methodologies are based on elastic energies to study the 
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evolution of an ensemble of dislocations. However, following Schoeck's theory, materials with a 

strong dependence of its elastic constants on temperature and with strong thermal expansion might 

show an important entropic component that will modify the free energy landscape and therefore 

the driving force. The analysis of the role of entropy on mesoscale models and how it compares 

with the enthalpic terms will also be the subject of future work. 

As a last remark, our analysis seems to imply that between the purely thermally activated 

regime at low temperatures and applied stresses and the phonon drag regime at high temperatures 

and/or higher stresses, there is a regime dominated by the activation entropy. How important this 

intermediate regime is will be material dependent, related to the dependence of the elastic constants 

with temperature (and potentially strain), and could significantly alter the behavior of dislocations 

overcoming barriers induced by long-range interactions. 

 

5. Summary and concluding remarks 

In this study, we have presented a comprehensive investigation into the behavior of an edge 

dislocation overcoming the interaction with an 𝑎𝑎〈100〉 prismatic loop in pure tungsten under 

specific temperature conditions and line defect configurations at different stress levels, specifically 

near the critical resolved shear stress. Our analysis involves a combination of theoretical 

calculations following Schoeck’s formalism to obtain entropy changes induced by internal strains, 

molecular dynamics simulations, and Projected Average Force Integrator (PAFI) simulations. We 

computed the activation enthalpy using the nudged-elastic band method for different applied 

stresses and the activation entropy following Schoeck’s approach. Relying on transition state 

theory (TST) we computed the rates for the dislocation to overcome the far field interaction with 

a prismatic loop and compared the results with MD. We also used PAFI to predict the activation 

free energy and TST to predict the rate for the dislocation-obstacle bypass. We checked the 

temperature and shear stress effects on the activation entropy, activation enthalpy, activation 

volume, and activation free energy. We observe that the activation enthalpy and free energy 

decrease as the shear stress increases, while its magnitude exhibits a third order dependence on 

temperature according to the theoretical approach. Also, the contribution of the activation entropy 

on the activation volume was found to be highly temperature dependent while the elastic and 

plastic energies almost did not change with temperature. 
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Schoeck’s formalism and PAFI results agree remarkably well at 120 MPa and were able 

to replicate the observed trends in the rate obtained with MD, while PAFI’s noisy trend in 

activation free energy leads to large uncertainty in the rate prediction at other stress values. In 

addition, for the purpose of comparing the three different approaches, as presented in Figure 6, we 

highlight that while all three methods successfully capture the Arrhenius/non-Arrhenius transition 

near the critical resolved shear stress, PAFI and Schoeck’s methods show different crossover 

temperatures and barrier values compared to MD. A deeper analysis of the transition path or other 

causes of lower rates (such as re-crossings) is needed to fully understand this discrepancy. Also, 

assessing the performance of these three methods, we understand that Schoeck’s method exhibited 

lower computational time compared to PAFI and MD to obtain changes in entropy, the rate of 

reaction, and activation volume. 
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Supplementary Material 

 

Strain distribution: 

In Figure A-1 the strain tensor components, resulted from 120MPa shear stress, has been 

shown versus atomic ID which is important for curve-fitting and selection of the proper relation. 

 

  

(a) 
(b) 

 

  

(c) 
(d) 
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(e) (f) 

Fig. (A.1). Strain components for different atoms in the simulation cell 

 

Stress strain curves for actual data of different components are shown in Figure (A.2). The 

fitted curves include extrapolation beyond strain value of 0.039 in order to capture corresponding 

elastic constant expressions which are in fact strain derivatives of stress or tangent to curves at each 

point (Equations 3-9). 

  
(a) (b) 
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(c) 

Fig. (A.2). Stress vs strain curves for different component 

 

 

Figure A.3 shows the free energy landscape computed by PAFI and Schoeck’s formalism 

at low temperatures. 

  
a) b) 

Fig. (A.3). Free energy landscape computed by PAFI and Schoeck’s methods 
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Figure A.4 shows the Schoeck predicted rate of reaction for the temperature range from 

50 to 700 K. 

 
Fig. (A.4). Rate of reaction versus inverse temperature for Schoeck approach 
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