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We investigate the stability of the skyrmion crystal phase in a tetragonal polar system with the
Dzyaloshinskii-Moriya interaction by focusing on the symmetry of ordering wave vectors forming
the skyrmion crystal. Our analysis is based on numerical simulations for an effective spin model,
which is derived from the weak-coupling regime in the Kondo lattice model on a polar square lattice.
We show that a hybrid square skyrmion crystal consisting of Bloch and Néel spin textures emerges
even under polar C4v symmetries when the ordering wave vectors correspond to low-symmetric wave
vectors in momentum space, which is in contrast to the expectation from the Lifshitz invariants. We
also show the instability toward the anti-skyrmion crystal and rhombic skyrmion crystal depending
on the direction of the Dzyaloshinskii-Moriya vector in momentum space. Furthermore, we show
that the regions of the skyrmion crystal phases are affected by taking into account the symmetric
anisotropic exchange interaction. Our results open the potential direction of engineering the hybrid
skyrmion crystal and anti-skyrmion crystal phases in polar magnets.

I. INTRODUCTION

Spatial inversion symmetry is one of the important fac-
tors in determining physical properties in solids. When
the spatial inversion symmetry is broken, the system ac-
quires various properties like chirality and polarity, which
become the origin of parity-breaking phenomena, such as
the Edelstein effect [1–5], nonlinear Hall effect [6–9], and
piezoelectric effect [10]. Such breaking of the spatial in-
version symmetry also leads to exotic states of matter,
such as odd-parity multipole orderings [11–18] and un-
conventional superconductors [19–27]. In this way, non-
centrosymmetric systems provide a fertile platform to ex-
plore attracting quantum states and their related physi-
cal properties in condensed matter physics.

The lack of spatial inversion symmetry often affects the
stability of magnetic phases in magnetic materials. The
most familiar example is the Dzyaloshinskii-Moriya (DM)
interaction that originates from the relativistic spin–orbit
coupling [28, 29]. The DM interaction tends to favor the
single-Q spiral spin configuration by combining the fer-
romagnetic exchange interaction. It also becomes the
origin of multiple-Q spin configurations, which are ex-
pressed as a superposition of multiple spiral waves. Es-
pecially, a skyrmion crystal (SkX), which is characterized
by a multiple-Q state, emerges by further considering the
effect of an external magnetic field [30–32]. The SkX
has been extensively studied in both theory and experi-
ments [33–38], since it exhibits not only parity-breaking
physical phenomena but also topological ones, such as
the topological Hall effect [39–41].

A variety of SkXs have been so far found in noncen-
trosymmetric magnets, which are classified into Bloch
SkXs, Néel SkXs, and anti-SkXs depending on the sign
of the topological charge and helicity of skyrmion [42].
From the energetic viewpoint, their emergence is ex-
pected from the Lifshitz invariants that correspond to
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the energy contribution by the DM interaction [30, 31,
43, 44]. Since the form of the Lifshitz invariants is deter-
mined by the crystallographic point-group symmetry, one
can find what types of SkXs are realized once the symme-
try of the materials is identified. For example, the Bloch
SkXs appear in the chiral point groups [33–37, 45, 46], the
Néel SkXs appear in the polar point group [47–50], and
anti-SkXs appear in the point groups D2d and S4 [51–54].
Furthermore, the hybrid SkX, which is characterized by
a superposition of Bloch- and Néel-type windings, has
been identified in synthetic multilayer magnets [55–57].
In the present study, we investigate the possibility of

the emergent hybrid SkX and anti-SkX under polar sym-
metry, which are not expected from the Lifshitz invari-
ants. By focusing on the symmetry of ordering wave
vectors constituting the SkX, we find that the instabil-
ity toward such SkXs is brought about by the DM vec-
tor lying on the low-symmetric wave vectors, which has
been recently observed in EuNiGe3 [58, 59]. We demon-
strate that such a situation naturally happens in the
Kondo lattice model with the antisymmetric spin–orbit
coupling (ASOC) on a polar square lattice, where long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion [60–62] plays an important role. Then, we construct
the magnetic phase diagrams in a wide range of model
parameters by performing the simulated annealing for an
effective spin model with momentum-resolved DM inter-
action. We show that three types of SkXs are realized in
an external magnetic field depending on the direction of
the DM vector: square SkX (S-SkX), rhombic SkX (R-
SkX), and anti-SkX. In the S-SkX, the constituent order-
ing wave vectors are orthogonal to each other, while they
are not in the R-SkX and anti-SkX. Moreover, we find
that the induced SkXs are characterized as the hybrid
SkXs to have both Bloch and Néel spin textures. We
also discuss the effect of symmetric anisotropic exchange
interaction on the SkX phases. The present results pro-
vide another possibility of material design in terms of the
SkXs by taking into account the symmetry of the order-
ing wave vectors.
The rest of this paper is organized as follows. In Sec. II,
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we introduce the Kondo lattice model in a tetragonal po-
lar system and derive the RKKY interaction. We show
that there is a directional degree of freedom in terms
of the DM vector at low-symmetric wave vectors. In
Sec. III, we construct an effective spin model and out-
line numerical simulated annealing used to investigate
the ground-state phase diagram. Then, we show the in-
stability toward three types of SkXs in Sec. IV. We ex-
amine the effect of additional magnetic anisotropy on the
stability of the SkX in Sec. V. We summarize the results
of this paper in Sec. VI.

II. EFFECTIVE SPIN INTERACTIONS IN
ITINERANT ELECTRON SYSTEMS

Let us start with the Kondo lattice model on a two-
dimensional square lattice under the C4v point group,
which consists of the itinerant electrons and classical lo-
calized spins [63, 64]. The Hamiltonian is given by

H =
∑
kσ

(εk − µ)c†kσckσ + JK
∑

kqσσ′

c†kσσσσ′ck+qσ′ · Sq

+
∑
k

gk · c†kσσσσ′ckσ′ , (1)

where c†kσ and ckσ are the creation and annihilation op-
erators of an itinerant electron at wave vector k and
spin σ, respectively. Sq represents the Fourier trans-
form of a localized spin Si at site i with the fixed
length |Si| = 1. The first term represents the hop-
ping term of itinerant electrons, where εk is the energy
dispersion and µ is the chemical potential. We take
εk = −2t1(cos kx + cos ky) − 4t2 cos kx cos ky with the
nearest-neighbor hopping t1 and next-nearest-neighbor
hopping t2; we set the lattice constant of the square lat-
tice as unity and choose t1 = 1 and t2 = −0.8, although
the choice of the hopping parameters does not affect the
following results at the qualitative level. The second term
stands for the Kondo coupling between itinerant electron
spins and localized spins, where JK is the exchange cou-
pling constant and σ = (σx, σy, σz) is the vector of Pauli
matrices. The third term stands for the Rashba ASOC
that originates from the spin–orbit coupling under po-
lar symmetry; gk = α(sin ky,− sin kx) = −g−k; α is the
amplitude of the ASOC.

By supposing the situation where JK is small enough
compared to the bandwidth of itinerant electrons, we de-
rive the effective spin Hamiltonian in the weak-coupling
region. Within the second-order perturbation in terms
of JK, the spin Hamiltonian is given by [64]

HRKKY = −J2
K

∑
q,ν,ν′

χνν′
(q)Sν

qS
ν′

−q, (2)

where ν, ν′ = x, y, z. χνν′
(q) with q = (qx, qy) repre-

sents the spin-dependent magnetic susceptibility of itin-
erant electrons, which depends on the hopping parame-
ters, ASOC, and the chemical potential. Under the C4v
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FIG. 1. Contour plots of the normalized bare susceptibility
χ̃(q) = λ(q)/λmax derived from the Kondo lattice model in
Eq. (1) with t1 = 1, t2 = −0.8, and α = 0.5 at (a) µ = −3, (b)
µ = −2.5, (c) µ = −1.4, and (d) µ = −1.3. The wave vectors
that give λmax are (a) q = (0, π/4), (b) q = (2π/5, 3π/20),
(c) q = (π/12, 11π/20), and (d) q = (π/20, 17π/30) and their
symmetry-related wave vectors. The arrows represent the di-
rection of the DM vector at each wave vector, whose lengths
stand for the magnitude of the DM interaction.

symmetry, nonzero components in χνν′
(q) are generally

given by [65]

χ(q) =

 Re[χxx(q)] Re[χxy(q)] −iIm[χzx(q)]
Re[χxy(q)] Re[χyy(q)] iIm[χyz(q)]
iIm[χzx(q)] −iIm[χyz(q)] Re[χzz(q)]

 ,

(3)

where χνν′
(q) = Re[χνν′

(q)] + Im[χνν′
(q)]. The effec-

tive interaction J2
Kχ

νν′
(q) corresponds to the q compo-

nent of the generalized RKKY interaction [64, 66]; the

antisymmetric imaginary components in χνν′
(q) corre-

spond to the DM interaction, while the symmetric real
components correspond to the isotropic and anisotropic
exchange interactions. The DM vector at q is given by
Dq = J2

K(Im[χyz(q)], Im[χzx(q)]).
The magnetic instability of the spin model in Eq. (2)

occurs at the wave vector that gives the maximum eigen-
value of χ(q) in Eq. (3). We show the contour plot of the
largest eigenvalues for magnetic susceptibility in each q,
λ(q), at α = 0.5 for several µ in Fig. 1; we set µ = −3 in
Fig. 1(a), µ = −2.5 in Fig. 1(b), µ = −1.4 in Fig. 1(c),
and µ = −1.3 in Fig. 1(d). We take the grids of k
and q are 24002 and 1202, respectively. We normalize
the magnetic susceptibility as χ̃(q) = λ(q)/λmax, where
λmax represents the largest eigenvalues for all q. χ̃(q)
exhibits the maximum value at q = (0, π/4) in Fig. 1(a),
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q = (2π/5, 3π/20) in Fig. 1(b), q = (π/12, 11π/20) in
Fig. 1(c), and q = (π/20, 17π/30) in Fig. 1(d). It is
noted that χ̃(q) becomes maximum at the other wave
vectors that are connected to the above wave vectors by
the rotational and/or mirror symmetries under the point
group C4v. For example, χ̃(q) also becomes maximum at
q = (π/4, 0) in the case of Fig. 1(a), while χ̃(q) becomes
maximum at q = (−3π/20, 2π/5) and q = (3π/20, 2π/5)
in the case of Fig. 1(b). The spiral state with these or-
dering wave vectors is chosen as the ground state.

In the following, we focus on the behavior of the imag-
inary part of the magnetic susceptibility, which corre-
sponds to the DM interaction. We show the momentum-
resolved DM vectors Dq/J

2
K = (Im[χyz(q)], Im[χzx(q)])

as the arrows in Fig. 1, where the length and direction
of the arrows express the magnitude and direction of the
DM vectors, respectively. One finds that the direction of
the DM vectors in each wave vector is fixed to the direc-
tion perpendicular to q̂z×q (q̂z represents the unit vector
along the qz direction) when q lies on the high-symmetric
⟨100⟩ and ⟨110⟩ lines, while it is arbitrary for the other q.
This is attributed to the presence of the mirror plane on
the high-symmetric ⟨100⟩ and ⟨110⟩ lines, which imposes
the constraint on the direction of the DM vector.

The above result indicates that the spiral plane realized
in the ground state depends on the position of ordering
wave vectors that give the maximum magnetic suscepti-
bility. When the ordering wave vectors lie on the high-
symmetric ⟨100⟩ and ⟨110⟩ lines as found in Fig. 1(a),
the spiral plane is parallel to q; the cycloidal spiral state
becomes the ground state, which is expected from the Lif-
shitz invariants under the C4v symmetry. On the other
hand, such a situation qualitatively changes once the or-
dering wave vectors lie on the low-symmetric points ex-
cept for ⟨100⟩ and ⟨110⟩ lines as found in Figs. 1(b)–
1(d); there is no constraint on the spiral plane owing
to the arbitrariness of the DM vector direction. In
other words, the proper-screw spiral state with the spi-
ral plane perpendicular to q is possible, which is usu-
ally expected under the chiral point group like O and
D4 rather than the polar one. For example, in the case
of Fig. 1(b), the spiral plane lies perpendicular to Dq

at q = (2π/5, 3π/20), where Dq is given by Dq =
J2
K(Im[χyz(q)], Im[χzx(q)]) = J2

K(−0.00703,−0.05785);
the spiral state is neither proper-screw nor cycloidal.
Such a situation also happens in EuNiGe3, where the
observed spiral state is characterized by a superposition
of the proper-screw and cycloidal spiral waves [58, 59].

III. EFFECTIVE SPIN MODEL AND METHOD

The results in Sec. II indicate that there is a possibil-
ity of realizing the hybrid SkX and anti-SkX when the
ordering wave vectors lie on low-symmetric ones, which
makes the direction of the DM vector arbitrary. We con-
sider such a situation in order to investigate the stability
of these unconventional SkXs in the ground state. For

that purpose, we analyze an effective spin model of the
Kondo lattice model in Eq. (1) [67], which is given by

Heff =−
∑
η

[JSQη · S−Qη + iDQη · (SQη × S−Qη )

+
∑

ν=x,y

Γν
Qη

Sν
Qη

Sν
−Qη

]−H
∑
i

Sz
i . (4)

This model is obtained by extracting the specific
momentum-resolved interaction that gives the domi-
nant contribution to the ground-state energy in Eq. (2).
The first term represents the momentum-resolve in-
teraction at wave vectors Qη, where η is the in-
dex for the symmetry-related wave vectors. For the
specific wave vectors, we choose ±Q1 = ±(Qa, Qb),
±Q2 = ±(−Qb, Qa), ±Q3 = ±(Qa,−Qb), and ±Q4 =
±(Qb, Qa) with Qa = 13π/25 and Qb = 3π/25 so that
the ordering vectors are not on the high-symmetric ⟨100⟩
and ⟨110⟩ lines. It is noted that Q1–Q4 are connected
by the fourfold rotational and mirror symmetries of the
square lattice under the C4v point group.
At Q1–Q4, we consider the isotropic exchange inter-

action in the form of JSQη
· S−Qη

, the DM interac-
tion in the form of iDQη

· (SQη
× S−Qη

) with DQν
=

−D−Qν
, and the symmetric anisotropic exchange in-

teraction in the form of Γx
Qη

Sx
Qη

Sx
−Qη

+ Γy
Qη

Sy
Qη

Sy
−Qη

.

The direction of the DM vector is Qη-dependent; we set
DQ1

= D(− cos θ, sin θ) and other DQη
in order to sat-

isfy the polar symmetry [65]. The symmetric anisotropic
exchange interaction also has Qη dependence; we set
(Γx

Q1
,Γy

Q1
) = (Γ, 0) and other (Γx

Qη
,Γy

Qη
) to satisfy the

polar symmetry, which also affects the stability of the
SkX [68–77]. Although the magnitudes of the param-
eters (J,D,Γ) in the model in Eq. (4) are determined
by the magnetic susceptibility in Eq. (2), we deal with
them phenomenologically; we take J = 1 as the en-
ergy unit of the model, and set D = 0.2 and Γ = 0
in Sec. IV or Γ = 0.1 in Sec. V. We ignore the effect of
other symmetric anisotropic exchange interactions such
as Sx

Qη
Sy
−Qη

+ Sy
Qη

Sx
−Qη

that arises from Re[χxy(q)] in

Eq. (3) for simplicity. In addition, we introduce the sec-
ond term in Eq. (4), which represents the Zeeman term
under an external magnetic field along the z direction.

The magnetic phase diagram at low temperatures is
constructed by performing the simulated annealing from
high temperatures T0 =1–5 for the spin model with the
system size N = 502 under the periodic boundary con-
ditions, where N represents the total number of sites.
Starting from a random spin configuration, we gradually
reduce the temperature as Tn+1 = 0.999999Tn to the final
temperature T = 0.01, where Tn is the nth temperature.
In each temperature, the spin is locally updated one by
one following the standard Metropolis algorithm. When
the temperature reaches the final temperature T , further
Monte Carlo sweeps around 105–106 are performed for
measurements. The simulations independently run for
different model parameters. In order to avoid the meta-
stable solutions in the vicinity of the phase boundaries,
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FIG. 2. H dependence of the z component of the magnetiza-
tion Mz and the squared scalar chirality (χsc)2 for θ = 0.4π.
The vertical dashed lines represent the phase boundaries be-
tween different magnetic phases.

the simulations from the spin configurations obtained at
low temperatures are also performed.

The spin and scalar spin chirality quantities are calcu-
lated to identify magnetic phases. The uniform magne-
tization along the field direction is given by

Mz =
1

N

∑
i

Sz
i . (5)

The spin structure factor is given by

Ss(q) =
∑
ν

Sνν
s (q) (6)

Sνν
s (q) =

1

N

∑
ij

Sν
i S

ν
j e

iq·(ri−rj), (7)

for ν = x, y, z. ri represents the position vector at site
i and q represents the wave vector in the first Brillouin
zone. The scalar spin chirality is given by

χsc =
1

2N

∑
i

∑
δ,δ′=±1

δδ′Si · (Si+δx̂ × Si+δ′ŷ), (8)

where x̂ (ŷ) represents a shift by lattice constant in the
x (y) direction. The scalar spin chirality is one of the
signals to identify the SkX, i.e., χsc ̸= 0 for the SkX.

IV. SKYRMION CRYSTAL PHASES

We discuss the effect of the DM interaction at low-
symmetric wave vectors on the stabilization of the SkX;
we set Γ = 0 and discuss its effect in Sec. V. Figure IV
shows the H dependence of the z component of the mag-
netizationMz and the squared scalar spin chirality (χsc)2

at θ = 0.4π. For H = 0, the ground-state spin con-
figuration corresponds to the single-Q spiral (1Q) state,
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1
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0

1

-1
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0

1
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(d)

0
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-1

(f)

0

1

-1

FIG. 3. Real-space spin configurations in the 1Q state for
H = 0 at (a) θ = 0, (b) θ = 0.16π, (c) θ = 0.36π, (d)
θ = 0.44π, (e) θ = 0.56π, and (f) θ = 0.8π. The arrows
represent the direction of the in-plane spin moments and the
color shows its z component.

whose ordering wave vector is characterized by any of
Q1–Q4. The spiral plane is determined so as to align
perpendicular to DQη

, which results in the energy gain
by the DM interaction. In the case of the Q1 order-
ing wave vector, the DM interaction with θ = 0.4π is
given by DQ1

≃ D(−0.309, 0.951), which results in the
spiral plane on (0.951,0.309). When the magnetic field
is turned on, the spiral plane is gradually tilted to the
plane perpendicular to the magnetic field to gain the en-
ergy by the Zeeman coupling. When H reaches 1.05, the
1Q state is replaced by the SkX, which is characterized
by the double-Q spiral waves as detailed below; the scalar
chirality becomes nonzero, as shown in Fig. 2. Then, the
SkX turns into the 1Q state again by further increas-
ing H, where the spiral plane is almost perpendicular to
the field direction. Finally, the 1Q state continuously
changes into the fully polarized state.

The above phase sequence against H is independent
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FIG. 4. θ dependence of Mz and (χsc)2 at H = 1.1. The
vertical dashed lines represent the phase boundaries between
different magnetic phases. The regions in blue (pink) repre-
sent the R-SkX (anti-SkX) phase, while those in white repre-
sent the S-SkX.

of θ within the discretized data in Fig. 2. Meanwhile,
we find two characteristic features in terms of the θ de-
pendence. One is the θ-dependent spiral plane in the
1Q state. We show the real-space spin configurations at
H = 0 for different θ in Figs. 3(a)–3(f), where the or-
dering wave vector is chosen as Q1. One finds that the
spiral plane of the 1Q state changes according to θ, which
is understood from the fact that the spiral plane is de-
termined by the direction of the DM vector, as discussed
above. Thus, the cycloidal spiral state with the spiral
plane parallel to the wave vector, which usually appears
under the polar symmetry, is not necessarily realized once
the ordering wave vectors lie at the low-symmetric ones.
In other words, the proper-screw spiral state with the
spiral plane perpendicular to the wave vector can be also
induced at the low-symmetric wave vectors. Indeed, such
a tendency has been found in the tetragonal polar mag-
net EuNiGe3, where the ordering wave vector lies at the
low-symmetric position [58, 59]. For almost all of θ, the
spiral plane is neither parallel nor perpendicular to the
ordering wave vector.

The other characteristic feature of the θ dependence
appears in nonzero H. We show the θ dependence of
Mz and (χsc)2 at H = 1.1 in Fig. 4, where the SkX with
nonzero (χsc)2 appears irrespective of θ. Intriguingly, dif-
ferent three types of SkXs are realized depending on θ:
the anti-SkX for θ ≃ 0 and π, R-SkX for θ ≃ π/2, 3π/2,
and S-SkX for other θ. We show the real-space spin con-
figurations for several different θ in Fig. 5; the spin con-
figurations in Figs. 5(a) and 5(e) correspond to that in
the anti-SkX, the spin configurations in Figs. 5(c) and
5(g) correspond to that in the R-SkX, and the spin con-
figurations in Figs. 5(b), 5(d), 5(f), and 5(h) correspond
to the S-SkX. The anti-SkX and the R-SkX are charac-
terized by a superposition of double-Q spiral waves at Q2

and Q3 [Fig. 6(a)], while the S-SkX is characterized by
that at Q1 and Q2 [Fig. 6(b)]. Reflecting the direction of
the DM vector, the SkXs with various values of helicity,
i.e., the hybrid SkXs, are realized for almost all of θ.

(a)

0

1

-1

(c)

0

1

-1

(e)

0

1

-1

(b)

0

1
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0

1

-1

(f)

0

1

-1

(g)

0

1

-1

(h)

0

1

-1

FIG. 5. Real-space spin configurations in the SkX for H =
1.1 at (a) θ = 0, (b) θ = 0.25π, (c) θ = 0.5π, (d) θ = 0.75π,
(e) θ = π, (f) θ = 1.25π, (g) θ = 1.5π, and (h) θ = 1.75π.
The spin configurations in (a) and (e) correspond to the anti-
SkX, those in (b), (d), (f), and (h) correspond to the S-SkX
and those in (c) and (g) correspond to the R-SkX, The arrows
represent the direction of the in-plane spin moments and the
color shows its z component.

The above results indicate that there are two possibil-
ities for constructing the double-Q SkX in the tetragonal
system. One is the case where the constituent double-Q
ordering wave vectors are connected by the mirror sym-
metry and the other is the case where the constituent
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FIG. 6. The square root of the spin structure factor in the
anti-SkX at (a) θ = 0 and (b) S-SkX at θ = 0.25π. The spin
structure factor of the R-SkX is the same as that in the anti-
SkX.

double-Q ordering wave vectors are connected by the
fourfold rotational symmetry; the former leads to the
R-SkX (or anti-SkX) and the latter leads to the S-SkX,
where the alignment of the skyrmion core is different from
each other, as shown by the real-space spin configurations
in Fig. 5. The choice of two alignments is determined
by the direction of the DM vector; from the simulation
results, the R-SkX (or anti-SkX) tends to be stabilized
when DQη

is almost characterized by only one compo-
nent, such as DQη

≃ (D, 0, 0) and DQη
≃ (0, D, 0).

From an energetic viewpoint, the R-SkX (or anti-SkX)
is almost degenerate to the S-SkX, which implies that
the lower-energy state might be accidentally determined.
Thus, the contribution from high-harmonic wave vectors
that are not taken into account in the present model plays
an important role in enhancing either of the SkXs [78–
80]. For example, the contributions from the wave vec-
tors Q2 + Q3 = (Qa − Qb, Qa − Qb) and Q2 − Q3 =
(−Qa−Qb, Qa+Qb) tend to stabilize the R-SkX (or anti-
SkX), while those from Q1 +Q2 = (Qa − Qb, Qa + Qb)
and Q1 − Q2 = (Qa + Qb,−Qa + Qb) tend to stabilize
the S-SkX.

The different choices of the constituent ordering wave
vectors in the SkXs result in the sign change of the scalar
spin chirality. In the S-SkX, the scalar spin chirality al-
ways takes negative values, since the constituent spiral
waves at Q1 and Q2 are related by the fourfold rota-
tional symmetry; the spin texture around each skyrmion
has the skyrmion number of −1. Meanwhile, the situa-
tion changes in the R-SkX and anti-SkX, whose ordering
wave vectors are related by the vertical mirror symme-
try. For θ = 0 (θ = π), DQ2

are related to DQ3
by the

rotation π/2 (−π/2), which indicates that the superpo-
sition of the spiral waves at Q2 and Q3 leads to the SkX
with the skyrmion number of −1 (+1). Indeed, the in-
plane component of the spins surrounding the skyrmion
core form the vortex (antivortex) winding for the R-SkX
(anti-SkX), as shown by the real-space spin configura-
tion in Figs. 5(c) and 5(g) [Figs. 5(a) and 5(e)]. Thus,
the anti-SkX with the positive skyrmion number is possi-
ble even in polar magnets when the low-symmetric wave

S-SkX

1Q

2Q

fully polarized state

S-SkX

R-SkX

FIG. 7. Magnetic phase diagram of the model in Eq. (4)
with changing θ and H at Γ = 0.1.

vectors become the ordering wave vectors.

V. EFFECT OF SYMMETRIC ANISOTROPIC
EXCHANGE INTERACTION

In this section, we consider the effect of the symmet-
ric anisotropic exchange interaction Γ, which can be the
origin of the hybrid SkX and anti-SkX even without the
DM interaction [78, 81–83], on the stability of the SkX
in Sec. IV. We set Γ = 0.1.
Figure 7 shows the magnetic phase diagram in the

plane of θ and H. Compared to the result in Fig. 2,
where the SkX is stabilized for 1.03 ≲ H ≲ 1.23, the re-
gion of the SkX becomes large for 0.2π ≲ θ ≲ 0.8π, while
that vanishes for 0 ≲ θ ≲ 0.2π and 0.8π ≲ θ ≲ π. Thus,
the anti-SkX no longer appears in the phase diagram for
Γ = 0.1. We show the H dependence of Mz and (χsc)2

for θ = 0 in Fig. 8(a), θ = 0.4π in Fig. 8(b), and θ = 0.5π
in Fig. 8(c).
In the low-field region, the 1Q state is stabilized irre-

spective of θ, although its direction of the spiral plane
depends on θ. The real-space spin configuration and the
spin structure factor of the 1Q state are shown in the left
and right panels of Fig. 9(a), respectively. Since Γ = 0.1
tends to favor the oscillation in terms of the x (y) spin
component for Q1 and Q3 (Q2 and Q4), the spiral plane
is tilted from the plane perpendicular to DQη

to gain the
energy by Γ.
In the intermediate-field region, the stability region of

the SkX is enhanced for 0.2π ≲ θ ≲ 0.8π, while it is
suppressed for 0 ≲ θ ≲ 0.2π and 0.8π ≲ θ ≲ π; the real-
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1Q 2Q

S-SkX

1Q 2Q
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FIG. 8. H dependence of Mz and (χsc)2 for (a) θ = 0,
(b) θ = 0.4π, and (c) θ = 0.5π. The vertical dashed lines
represent the phase boundaries between different magnetic
phases.

space spin configurations and the spin structure factors
of the S-SkX and R-SkX are shown in the left and right
panels of Figs. 9(b) and 9(c), respectively. This stability
tendency is understood from the effect of Γ. For exam-
ple, for θ = 0.5π, the DM interaction at Q1 tends to
favor the spiral wave in the xz plane, while the symmet-

(d) 2Q
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-1

(e) 2Q
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-1

(c) R-SkX
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(a) 1Q
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(b) S-SkX
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00
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-1

FIG. 9. (Left panel) Real-space spin configurations in (a) the
1Q state at θ = 0.4π and H = 0, (b) the S-SkX at θ = 0.4π
and H = 1, (c) the R-SkX at θ = 0.5π and H = 1.1, (d)
the 2Q state at θ = 0.4π and H = 1.8, and (e) another 2Q
state at θ = 0.4π and H = 2. The arrows represent the
direction of the in-plane spin moments and the color shows
its z component. (Right panel) The square root of the spin
structure factor corresponding to the left panel.
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ric anisotropic exchange interaction at Q1 tends to favor
the x spin oscillation. Thus, the effects of D and Γ are
cooperative in enhancing the stability of the spiral wave
in the xz plane. A similar tendency also holds for other
Qη; for example in the case of Q4, both D and Γ tend to
favor the spiral wave in the yz plane. On the other hand,
for θ = 0, D and Γ lead to different spiral states; D at
Q1 tends to favor the spiral state in the yz plane and
Γ at Q1 tends to favor the spiral state in the xz plane.
This indicates frustration between D and Γ, which avoids
the stabilization of the SkX in the region near θ = 0 and
θ = π. It is noted that the opposite tendency can hap-
pen when we consider Γ = −0.1 so that the spiral state
in the yz (xz) plane is favored at Q1 (Q4); the anti-SkX
remains stable, whereas the R-SkX vanishes. In the end,
the relative relationship between D and Γ is important
whether the SkX appears or not.

In the high-field region, the double-Q (2Q) state ap-
pears instead of the 1Q state irrespective of θ. The spin
configuration of the 2Q state is almost characterized by
the in-plane spin modulations at Q3 and Q4 or Q2 and
Q3, as shown by the real-space spin configurations and
spin structure factors in Figs. 9(d) and 9(e). Since the
energy in the 2Q state withQ3 andQ4 is almost the same
as that in the 2Q state with Q2 and Q3, it is difficult to
distinguish them in the present phase diagram; the addi-
tional effect such as Sx

Qη
Sy
−Qη

+ Sy
Qη

Sx
−Qη

will lift such

a degeneracy. The 2Q state continuously turns into the
fully polarized state when the magnetic field increases,
as shown in Figs. 8(a)–8(c).

VI. SUMMARY

To summarize, we have investigated the role of the DM
interaction at low-symmetric wave vectors. We have an-
alyzed the effective spin model on the polar square lat-

tice, which is derived from the Kondo lattice model in
the weak-coupling regime, by performing the simulated
annealing. We have found that the direction of the DM
vector affects the formation of the SkXs as well as the he-
licity of the spiral wave. We have shown that the R-SkX
is realized when the DM vector lies in the ⟨100⟩ direc-
tion, while the S-SkX is realized for other cases. Fur-
thermore, we have shown that the anti-SkX is also real-
ized depending on the direction of the DM vector, which
provides another root to realize the anti-SkX even under
polar symmetry. The present results indicate that the
low-symmetric ordering wave vectors become a source of
inducing further intriguing SkXs.
The present situation also holds for other noncen-

trosymmetric systems. For example, the system with
the chiral-type DM interaction under the D4 (422) point
group, which usually favors the Bloch SkX, can also lead
to the hybrid SkX and anti-SkX once the ordering wave
vectors lie at the low-symmetric ones. In addition, one
can expect such generations of the hybrid SkX and anti-
SkX induced by the DM interaction at low-symmetric
wave vectors in centrosymmetric systems with the lack
of local inversion symmetry [84–87]. In this case, the
sublattice-dependent DM interaction becomes the origin
of the above unconventional SkXs.
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