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An emergent and promising tensor-network-based impurity solver is to represent the Feynman-Vernon in-
fluence functional as a matrix product state, where the bath is integrated out analytically. Here we present an
approach to calculate the equilibrium impurity spectral function based on the recently proposed Grassmann
time-evolving matrix product operators method. The central idea is to perform a quench from a separable
impurity-bath initial state as in the non-equilibrium scenario. The retarded Green’s function G(t+ t0, t

′ + t0)
is then calculated after an equilibration time t0 such that the impurity and bath are approximately in thermal
equilibrium. There are two major advantages of this method. First, since we focus on real-time dynamics, we
do not need to perform the numerically ill-posed analytic continuation as in the imaginary time evolution based
methods. Second, the required bond dimension of the matrix product state in real-time calculations is observed
to be much smaller than that in imaginary-time calculations, leading to a significant improvement in numerical
efficiency. The accuracy of this method is demonstrated in the single-orbital Anderson impurity model and
benchmarked against the continuous-time quantum Monte Carlo method.

I. INTRODUCTION

The dynamical mean-field theory (DMFT) is one of the
most successful numerical methods for strongly correlated
electron systems beyond one dimension [1–4]. The essen-
tial idea of DMFT is a mapping of lattice models into self-
consistent quantum impurity models. The crucial step dur-
ing the self-consistency DMFT loop is to solve the quan-
tum impurity problem (QIP) and obtain the impurity spec-
tral function. Various approaches have been developed to
solve QIPs, including the continuous-time quantum Monte
Carlo (CTQMC) [5–11], the numeric renormalization group
(NRG) [12–19], exact diagonalization [20–24], and matrix
product state (MPS) based methods [25–35]. Among these
approaches, the CTQMC methods have been extremely pow-
erful in calculating the Green’s function in the imaginary-
time axis (the Matsubara Green’s function) [8, 36–39], where
the spectral function can be obtained via analytic continua-
tion. However, these methods could suffer from the sign prob-
lem [40] and the analytic continuation is also numerically ill-
posed for Monte Carlo results [28, 41]. Besides the CTQMC
methods, the remaining methods directly store the impurity-
bath wave function by explicitly discretizing the bath into a
finite number of fermionic modes. Although they can work in
both real-time and imaginary-time axes, their numerical effi-
ciency is significantly hampered by the explicit treatment of
the bath. The NRG methods, in particular, have been used for
real-time calculations of QIPs with up to three orbitals [42–
45]. However, in general, these methods may either lack scal-
ability to higher-orbital QIPs or lack control over the errors
induced by bath discretization.

A promising tensor-network-based impurity solver emerg-
ing in recent years is to make use of the Feynman-Vernon
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influence functional (IF) to analytically integrate out the
bath and represent the multi-time impurity dynamics as an
MPS in the temporal domain [46–52]. Such approaches
are thus free of bath discretization errors and potentially
more efficient than the conventional MPS-based methods.
They have been applied to study bosonic impurity prob-
lems [53–58] and fermionic impurity problems in both the
non-equilibrium [47–49, 51] and imaginary-time equilibrium
scenarios [50, 52]. The Grassmann time-evolving matrix
product operator (GTEMPO) method proposed in Ref. [51]
presents an efficient construction of the fermionic path in-
tegral (PI) as Grassmann MPSs (GMPSs) which respect the
anti-commutation relation. Since GTEMPO only relies on the
PI, it can be straightforwardly used for real-time, imaginary-
time or even mixed-time calculations. Therefore, in principle,
it can be used to directly calculate the equilibrium retarded
Green’s function with a mixed-time PI expression. However,
for GTEMPO it has been observed that larger bond dimen-
sions are required in imaginary-time calculations than in real-
time calculations [52] (the situation seems to be similar for
the tensor network IF method in Ref. [50]), which is in sharp
comparison with observations in the conventional MPS-based
approaches [28].

In this work, we propose the use of GTEMPO method to
calculate the spectral function, which is purely based on the
non-equilibrium real-time dynamics of the impurity model
from a separable impurity-bath initial state. The central idea
is to wait for a fixed time t0 such that the impurity and bath
equilibrate, and then calculate the retarded Green’s function
G(t+t0, t

′+t0). In this way, we can reuse all the algorithms in
the non-equilibrium GTEMPO method and avoid imaginary-
time calculations with GTEMPO completely. The only three
hyperparameters in this approach, are the time discretization
δt, the MPS bond dimension χ and the equilibration time t0.
Compared to imaginary-time calculations [50, 52], the advan-
tage of this method is mainly two-fold: 1) it does not require
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analytic continuation, and 2) it exhibits a much slower growth
of the bond dimension of MPS for real-time calculations as
compared to that in imaginary-time calculations. The accu-
racy of this approach is benchmarked against CTQMC calcu-
lations for the single-orbital Anderson impurity model (AIM)
for a wide range of interaction strengths. Our work thus opens
the door to practical applications of the GTEMPO method as
a real-time quantum impurity solver.

II. THE NON-EQUILIBRIUM GTEMPO METHOD

In this section, we present the formulation of the non-
equilibrium GTEMPO method [51]. We first give a basic re-
cap on the quantum impurity model and several useful nota-
tions. Then we introduce the real-time path integral formalism
in terms of Grassmann variables (GVs), as well as the defini-
tions of the non-equilibrium Green’s functions based on the
Grassmann path integral.

A. Quantum impurity Hamiltonians

The Hamiltonian for a general QIP can be written as

Ĥ = Ĥimp + Ĥbath + Ĥhyb, (1)

where Ĥimp is the impurity Hamiltonian usually given by

Ĥimp =
∑
p,q

tp,qâ
†
pâq +

∑
p,q,r,s

vp,q,r,sâ
†
pâ

†
qârâs. (2)

Here â†, â are the fermionic creation and annihilation opera-
tors. The subscripts p, q, r, s represent the fermion flavors that
contain both the spin and orbital indices. Ĥbath is the bath
Hamiltonian which can be written as

Ĥbath =
∑
p,k

εp,k ĉ
†
p,k ĉp,k, (3)

where k denotes the momentum label, and εp,k denotes corre-
sponding energy. Ĥhyb is the hybridization Hamiltonian be-
tween the impurity and bath. We will focus on linear coupling
such that the bath can be integrated out using the Feynman-
Vernon IF [59–61], which takes the following form:

Ĥhyb =
∑
p,k

Vp,k

(
â†pĉp,k + ĉ†p,kâp

)
, (4)

with Vp,k indicating the hybridization strength. For nota-
tional simplicity and as the general practice, we focus on
flavor-independent Ĥbath and Ĥhyb, such that we can write
εp,k = εk and Vp,k = Vk for brevity.

B. Notations and definitions

Now we introduce several notations that will be used
throughout this work. The separable impurity-bath initial state

is denoted as

ρ̂neqtot = ρ̂imp ⊗ ρ̂eqbath, (5)

where ρ̂imp is some arbitrary impurity state and ρ̂eqbath ∝
e−βĤbath is the thermal equilibrium state of the bath at inverse
temperature β. The thermal equilibrium state of the impurity
plus bath at inverse temperature β will be denoted as

ρ̂eqtot ∝ e−βĤ . (6)

The non-equilibrium retarded Green’s function will be de-
noted as (here Θ(t) is the Heaviside step function)

Gneq
p,q (t, t

′) = Θ(t− t′)[Gneq,>
p,q (t, t′)−Gneq,<

p,q (t, t′)]. (7)

Here Gneq,>
p,q (t, t′) and Gneq,<

p,q (t, t′) denote the greater and
lesser Green’s functions, respectively. They are defined as

iGneq,>
p,q (t, t′) = ⟨âp(t)â†q(t′)⟩neq ; (8)

iGneq,<
p,q (t, t′) = −⟨â†q(t′)âp(t)⟩neq , (9)

where ⟨· · ·⟩neq = Tr[ρ̂neqtot · · ·]/Tr[ρ̂neqtot ], â(t) = eiĤtâe−iĤt

and â†(t) = eiĤtâ†e−iĤt. The subscript neq in ⟨· · ·⟩neq
stresses that these Green’s functions are calculated with re-
spect to the separable initial state ρ̂neqtot . Similarly, the equilib-
rium retarded Green’s function will be denoted as

Gp,q(t, t
′) = Θ(t− t′)[G>

p,q(t, t
′)−G<

p,q(t, t
′)], (10)

with

iG>
p,q(t, t

′) = ⟨âp(t)â†q(t′)⟩eq ; (11)

iG<
p,q(t, t

′) = −⟨â†q(t′)âp(t)⟩eq , (12)

where ⟨· · ·⟩eq = Tr[ρ̂eqtot · · ·]/Tr[ρ̂eqtot]. Gp,q(t, t
′) is time-

translationally invariant, i.e., Gp,q(t, t
′) = Gp,q(t − t′).

Therefore we can obtain the retarded Green’s function in the
real-frequency domain as

Gp,q(ω) =

∫ ∞

0

ei(ω+i0)tGp,q(t) dt , (13)

where i0 is an infinitesimal imaginary number. The real-
frequency Green’s function with same flavor, Gp(ω) =
Gp,p(ω), is of particular interest, with which the spectral func-
tion Ap(ω) can be calculated as

Ap(ω) = − 1

π
Im [Gp(ω)] . (14)

This spectral function establishes a connection between
the equilibrium retarded Green’s function and the Matsubara
Green’s function. The Matsubara Green’s function is defined
in the imaginary-time axis as

Gpq(τ, τ
′) =

{
−⟨âp(τ)â†q(τ ′)⟩eq , τ ≥ τ ′;

⟨â†q(τ ′)âp(τ)⟩eq , τ < τ ′,
(15)
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where âp(τ) = eτĤ âpe
−τĤ and â†p(τ) = eτĤ â†pe

−τĤ . The
Matsubara Green’s function is time-translationally invariant
for −β ≤ τ − τ ′ ≤ β, and is anti-periodic that Gpq(τ) =
−Gpq(τ + β) for τ < 0. Thus it can be expanded as a Fourier
series over range 0 ≤ τ ≤ β that

Gpq(τ) =
1

β

∞∑
m=−∞

Gpq(iωm)e−iωmτ , (16)

where ωm = (2m + 1)π/β and Gpq(iωm) is the imaginary-
frequency Green’s function

Gpq(iωm) =

∫ β

0

eiωmτGpq(τ) dτ . (17)

The real- and imaginary-frequency Green’s functions with
the same flavor can be expressed by spectral functions as [62,
63]

Gp(ω) =

∫
Ap(ε)

ω + i0− ε
dε , (18)

Gp(iωm) =

∫
Ap(ε)

iωm − ε
dε , (19)

which means that they are the same function in the complex
plane:

Gp(z) =

∫
Ap(ε)

z − ε
dε , (20)

but along the real and imaginary axis respectively.
The Green’s functions Gp(t), Gp(ω),Gp(τ),Gp(iωm) can

be obtained once the spectral function Ap(ω) is known. Thus
determining the spectral function is crucial as it conveys the
essential information of these Green’s functions. The spec-
tral function Ap(ω) can be easily extracted from the real-
frequency Green’s function via Eq.(14). However, to obtain
it from imaginary-time or frequency Green’s function via in-
verting Eq.(19) is numerically ill-posed: small fluctuations in
the Gp(iωm) could cause large changes in the spectral func-
tion.

C. Real-time Grassmann path integral

The impurity partition function given by Zimp(tf ) =
Tr[ρ̂tot(tf )]/Tr[ρ̂bath], can be expressed as a real-time PI
given by

Zimp(tf ) =

∫
D[ā,a]K [ā,a]

∏
p

Ip [āp,ap] , (21)

where tf denotes the total evolution time, āp = {āp(t′)}
and ap = {ap(t′)} are Grassmann trajectories for flavor p
over the real-time interval [0, tf ], ā = {āp, āq, · · · } and
a = {ap,aq, · · · } are Grassmann trajectories for all flavors.
The measure D[ā,a] is given by

D[ā,a] =
∏
p,t′

dāp(t
′)dap(t

′)e−āp(t
′)ap(t

′). (22)

The IF for flavor p, denoted by Ip[āp,ap], can be written as

Ip[āp,ap] = e−
∫
C dt′

∫
C dt′′āp(t

′)∆(t′,t′′)ap(t
′′), (23)

where C denotes the Keldysh contour. The hybridization func-
tion ∆(t′, t′′) fully characterizes the effect of the bath and can
be computed by

∆(t′, t′′) = iPt′,t′′

∫
dωJ(ω)Dω(t

′, t′′). (24)

Here Pt′,t′′ = 1 if t′ and t′′ are on the same Keldysh
branch and −1 otherwise, Dω(t

′, t′′) is the free contour-
ordered Green’s function of the bath defined as iDω(t

′, t′′) =
⟨TC ĉω(t′)ĉ†ω(t

′′)⟩0, and J(ω) =
∑

k V
2
k δ(ω − εk) is the bath

spectrum density which ultimately determines the bath ef-
fects. Throughout this work, we consider the following bath
spectrum density

J(ω) =
ΓD

2π

√
1−

( ω

D

)2

, (25)

and set Γ = 0.1, D = 2 (these settings were also used in
Refs. [48, 51, 64] for studying non-equilibrium QIPs). Γ will
be used as the unit for the rest parameters.

For numerical evaluation of the PI in Eq.(21), we discretize
the time interval [0, tf ] into M discrete points with equal time
step δt = tf/(M − 1). Discretizing the Keldysh contour
results in two branches: the forward branch (+) with Grass-
mann variables denoted as a+p,j and ā+p,j , and the backward
branch (−) with GVs denoted as a−p,j and ā−p,j (j labels the dis-
crete time step). We further denote a±

p = {a±p,M , · · · , a±p,1}
and ā±

p = {ā±p,M , · · · , ā±p,1} as the discrete Grassmann tra-
jectories, and denote ā±

,j = {ā±
p,j , ā

±
q,j , . . . } and a±

,j =

{a±
p,j ,a

±
q,j , . . . } as the set of GVs for all the flavors at discrete

time step j. With these notations, the exponent in Eq.(23) can
be discretized via the QuaPI method [65, 66] as∫

C
dt′

∫
C
dt′′āp(t

′)∆(t′, t′′)ap(t
′′) ≈

∑
ν,ν′

∑
j,k

āνp,j∆
ν,ν′

j,k aν
′

p,k,

(26)

where ν, ν′ = ± and

∆ν,ν′

j,k =

∫ (j+1)δt

jδt

dt′
∫ (k+1)δt

kδt

dt′′∆ν,ν′
(t′, t′′). (27)

K [ā,a] encodes the bare impurity dynamics which only de-
pends on Ĥimp and ρ̂imp. In the discrete setting, it can be
evaluated as

K[ā,a] =
〈
−a,M

∣∣∣Ûimp

∣∣∣a+
,M−1

〉
· · ·

〈
a+
,2

∣∣Ûimp

∣∣a+
,1

〉
×

〈
a+
,1

∣∣ρ̂imp

∣∣a−
,1

〉 〈
a−
,1

∣∣Û†
imp

∣∣a−
,2

〉
× · · ·

×
〈
a−
,M−1

∣∣∣Û†
imp

∣∣∣a,M

〉
, (28)

where we have used Ûimp = e−iδtĤimp . The term〈
a+
,1

∣∣ρ̂imp

∣∣a−
,1

〉
in Eq.(28) only depends on ρ̂imp. The rest
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terms are propagators that are only determined by Ĥimp. For
the non-interacting case or the single-orbital Anderson impu-
rity model, these propagators can be calculated analytically.
For more complicated impurity models, they can be calculated
in a numerically exact way using the algorithm introduced in
Ref. [52].

D. Calculating non-equilibrium Green’s functions

Based on the discretized Ip and K, one can compute the
augmented density tensor (ADT) A as (in practice A is not
built directly but only computed on the fly using a zipup algo-
rithm [51, 52])

A[ā,a] = K[ā,a]
∏
p

Ip[āp,ap]. (29)

Based on the ADT, one can straightforwardly calculate any
Green’s functions. For example, the discretized greater and
lesser Green’s functions in Eqs.(8,9) are found to be (assum-
ing that t = jδt and t′ = kδt):

iGneq,>
p,q (j, k) = Z−1

imp(tf )

∫
D[ā,a]ap,j āq,kA[ā,a]; (30)

iGneq,<
p,q (j, k) = −Z−1

imp(tf )

∫
D[ā,a]āq,kap,jA[ā,a].

(31)

This means that the Green’s functions are calculated by ap-
plying a product operator on the ADT and then integrating the
resulting Grassmann MPS.

III. IMPURITY EQUILIBRATION PROTOCOLS

In this section, we introduce the major techniques to cal-
culate the equilibrium Green’s functions from the real-time
equilibration dynamics of the quantum impurity with a sepa-
rable impurity-bath initial state. We also discuss the choices
of impurity initial states.

A. Calculating the equilibrium retarded Green’s function

Our target is to calculate the equilibrium retarded Green’s
function Gp,q(t, t

′), however only Gneq
p,q (j, k) can be directly

calculated using the non-equilibrium GTEMPO method as in
Eqs.(30, 31). Nevertheless, instead of obtaining the impurity-
bath thermal state ρ̂eqtot using imaginary-time evolution as in
Eq.(6), one can also obtain it by evolving from the separable
initial state ρ̂neqtot for a long enough time, since the bath is in-
finite and the impurity will reach equilibrium with the bath
eventually, independent of its initial state. In fact, this is a
common practice in wave-function-based approaches [34, 35,
67].

We assume that after time t0, the impurity equilibrates with
the bath (t0 will thus be referred to as the equilibration time),

ADT: · · · · · ·
a±
↑↓,j ā±

↑↓,j a±
↑↓,j0 ā±

↑↓,j0 a±
↑↓,1 ā±

↑↓,1

Calculate G(j − j0)

t0 = j0δt t

FIG. 1. Approximating the real-time equilibrium retarded Green’s
function G(j−j0) by the non-equilibrium retarded Green’s function
Gneq(j, j0), where t0 is the time taken for the impurity and bath
to reach thermal equilibrium as a whole. The flavor indices are not
shown.

that is,

ρ̂eqtot ≈ e−iĤt0 ρ̂neqtot e
iĤt0 . (32)

Substituting Eq.(32) into Eq.(11), we get

iG>
p,q(t, t

′) ≈ Tr
[
âp(t)â

†
q(t

′)e−iĤt0 ρ̂neqtot e
iĤt0

]
/Tr[ρ̂neqtot (t0)]

= Tr
[
âp(t+ t0)â

†
q(t

′ + t0)ρ̂
neq
tot

]
/Tr[ρ̂neqtot ]

= Gneq,>
p,q (t+ t0, t

′ + t0), (33)

where we have used the cyclic property of the trace. Similarly,
we have for the lesser Green’s function

G<
p,q(t, t

′) ≈ Gneq,<
p,q (t+ t0, t

′ + t0). (34)

From Eqs. (33,34), we can simply use Eqs. (30, 31) to cal-
culate the equilibrium retarded Green’s functions. The only
change is to compute those greater and lesser Green’s func-
tions between discrete times j + j0 and k + j0 instead. This
approach is illustrated in Fig. 1. In practice, we find that a rel-
atively small t0 is sufficient for the impurity to reach equilib-
rium (See Sec. IV B). In addition, to obtain Gp,q(ω) through
the Fourier transform of Gp,q(t − t′), one needs to obtain
Gp,q(t, t

′) for infinitely large t − t′ in principle. A standard
practice is to calculate Gp,q(t, t

′) till a finite t − t′ and then
extrapolate the results to infinity, for which we use the well-
established linear prediction technique [68, 69]. In this work,
we use the same hyperparameter settings for the linear predic-
tion as in Ref. [25].

B. The impurity initial state

Our real-time dynamics starts from a separable initial state
of the impurity and bath. In principle, for large enough t0, the
choice of the impurity initial state ρ̂imp does not matter. How-
ever, for numerical calculations, different choices of ρ̂imp may
affect the quality of results due to finite equilibration time t0.
The effect of ρ̂imp is fully encoded in the term

〈
a+
,1

∣∣ρ̂imp

∣∣a−
,1

〉
in the expression of K. For simple states, this term can be cal-
culated analytically. For example, for the vacuum state of a
spinless fermion with ρ̂imp = |0⟩⟨0|, we have〈

a+1
∣∣ρ̂imp

∣∣a−1 〉 = ⟨0|e−âā+
1 |0⟩ ⟨0|e−a−

1 â† |0⟩ = 1. (35)
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⟨a+
1 | e−βĤimp |a−

1 ⟩

⟨a(β)| e−δτĤimp · · · e−δτĤimp |a(0)⟩

⟨aM | e−δτĤimp |aM−1⟩ · · · ⟨a2| e−δτĤimp |a1⟩

FIG. 2. Calculating the term
〈
a+
,1

∣∣ρ̂imp

∣∣a−
,1

〉
in the expression

of K [ā,a], with ρ̂imp the impurity thermal state as in Eq.(36).
δτ is a small imaginary-time step size such that each propagator
⟨aj+1|e−δτĤimp |aj⟩ can be approximated by its first-order expres-
sion.

Other than the vacuum state, another natural choice of ρ̂imp

is the impurity thermal state, that is,

ρ̂eqimp ∝ e−βĤimp . (36)

For general Ĥimp,
〈
a+
,1

∣∣ρ̂eqimp

∣∣a−
,1

〉
can be calculated using the

numerical algorithm shown in Fig. 2. The main idea is to
split ρ̂eqimp as e−βĤimp ≈ e−δτĤimp · · · e−δτĤimp with a small
δτ , which results in a GMPS after inserting GVs between
the imaginary-time propagators (the same as the procedure
used to build K as a GMPS in the imaginary-time GTEMPO
method [52]). Then one can easily integrate out all the inter-
mediate GVs to obtain the final expression. This algorithm
is very efficient since only the bare impurity dynamics is in-
volved. Therefore one could set δτ to be arbitrarily small to
obtain

〈
a+
,1

∣∣ρ̂eqimp

∣∣a−
,1

〉
with high precision. For simple impu-

rities such as a single electron,
〈
a+
,1

∣∣ρ̂eqimp

∣∣a−
,1

〉
may also be

obtained analytically. Nevertheless, the above numeric algo-
rithm is very convenient since it applies for general impurity
problems and we found in practice that it is very numerically
stable (Analytical expressions can easily run into numerical
issues at low temperature if not taken with special care, since
a very large β appears in the matrix exponential).

IV. RESULTS

In this section, we demonstrate the accuracy and efficiency
of our method with numerical examples. In our numerical
calculations, we focus on the Green’s function Gp,q with p =
q and thus omit the flavor indices. We will use a maximum
bond dimension χ for MPS bond truncation when building
the MPS representation of the IF for each spin species, by
keeping at most χ largest singular values at each bond (the
same strategy as used in Ref. [48]).

A. The non-interacting case

Generally, the dominant calculation in the GTEMPO
method is the computation of Green’s functions using the
zipup algorithm (one can refer to Refs. [51, 52] for details
of this algorithm). Concretely, if one represents the IF per

0.0
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0.4

0.6

0.8

1.0

0 1 2 3 4

(a) (b)

(c) (d)
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-0.4

-0.3

-0.2

0 1 2 3 4

−3

−2

−1

20 40 60 80

−3

−2

−1

40 80 120 160

−
Im

G
(t
)

Γt

Analytic
χ = 10
χ = 20
χ = 40

G(
τ
)

Γτ

Analytic
χ = 40
χ = 60
χ = 100

lo
g
1
0
E

χ

lo
g
1
0
E

χ

FIG. 3. (a) Imaginary part of the retarded Green’s function for the
Toulouse model as a function of time t and (c) the Matsubara Green’s
function for the Toulouse model as a function of the imaginary time
τ , calculated at different values of χs. The gray solid lines in (a,
c) are the analytical solutions. (b, d) The average error E between
the GTEMPO results and the analytical solutions as a function of χ
calculated in (b) the real-time axis and (d) the imaginary-time axis.
For this simulation we have used εd = 0. For all the numerical
simulations in this work, we have used δt = 0.05 for the real-time
GTEMPO method and δτ = 0.1 for the imaginary-time GTEMPO
method.

flavor as a GMPS (referred to as the MPS-IF) with bond di-
mension χ, then the computational cost for calculating one
Green’s function scales as O(MχKχn+1) for n flavors [52]
(χK is the bond dimension of the GMPS for K which is usu-
ally a small constant). As a result, χ essentially determines
the computational cost of the GTEMPO method.

One major motivation for this work is that the bond di-
mension χ involved in the non-equilibrium GTEMPO method
is usually much smaller than that in the imaginary-time
GTEMPO method. We demonstrate such a difference in bond
dimension growth in the non-interacting case with a single fla-
vor. The corresponding non-interacting model is analytically
solvable and referred to as the Toulouse model [70] or the
Fano-Anderson model [63], with

Ĥimp = εdâ
†â. (37)

We will use the square root of the mean square error to quan-
tify the distance between two vectors x⃗ and y⃗, denoted as

E(x⃗, y⃗) =
√

||x⃗− y⃗||2/L, (38)

where L means the length of x⃗ and || · || means the Euclidean
norm. We will refer to E(x⃗, y⃗) as the average error afterwards
and neglect the operands of E when they are clear from the
context. In Fig. 3(a,c), we show the imaginary part of the re-
tarded Green’s function calculated by the real-time GTEMPO
method, and the Matsubara Green’s function calculated by the
imaginary-time GTEMPO method. The corresponding ana-
lytical solutions are shown in gray solid lines as comparisons.
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FIG. 4. The Matsubara Green’s function of the Toulouse model for
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GTEMPO results calculated with χ = 120, the blue dashed lines
are converted from the real-time GTEMPO results calculated with
χ = 40. The insets in both panels show the difference between the
GTEMPO results and the analytical solutions.

To clearly show the minimal bond dimensions required in
these calculations, we plot the average errors of the real-time
and imaginary-time GTEMPO results against the analytical
solutions as functions of χ in Fig. 3(b,d). We can see that the
average error saturates around χ = 40 in the real-time calcu-
lations, but only saturates around χ = 100 in the imaginary-
time calculations, where the latter is 2.5 times larger than
the former. As a result, for one-orbital impurity models the
computational cost of the latter would be 2.53/4 ≈ 4 times
higher and for two-orbital impurity models 2.55/4 ≈ 25 times
higher, where we have assumed that we evolve till t = β in the
real-time dynamics and we have already taken into account
the fact that the number of GVs in the real-time GTEMPO
method is two times larger than the imaginary-time GTEMPO
method (generally speaking, the speedup is because that MPS
-based algorithms are very sensitive to the bond dimension but
only mildly depends on the system size [71]).

For the Toulouse model, it is easy to verify the GTEMPO
results against the analytical solutions of the equilibrium
Green’s functions. For the single-orbital Anderson impurity
model, the analytical solutions do not exist, therefore we ver-
ify the GTEMPO results against the state-of-the-art CTQMC
results. Since the CTQMC impurity solver is only exact in the
imaginary-time axis, we introduce an approach to benchmark
the accuracy of our real-time calculations against imaginary-
time calculations, that is, we use the spectral function obtained
from G(ω) to calculate G(τ), and then compare the obtained
G(τ) against those calculated using imaginary-time GTEMPO
and CTQMC methods.

We present a proof of principle demonstration of the ef-
fectiveness of this comparison for the Toulouse model with
εd = 0 in Fig. 4(a) and εd = 1 in Fig. 4(b). For the Toulouse
model, the retarded Green’s function is independent of the ini-
tial state [63], namely G(t, t′) = Gneq(t, t′). Therefore we
simply choose t0 = 0 in this case when calculating the equi-
librium retarded Green’s function. In both cases, we can see
that the G(τ) obtained by conversion from G(t) matches very
well with the analytical solution.
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FIG. 5. Time evolution of the populations of the impurity for the
single-orbital Anderson impurity model, where the impurity starts
from the vacuum state for results in (a,c,e) and from the thermal state
for results in (b,d,f). The three rows from top down are results for
U/Γ = 1, 5, 10 respectively. We have used χ = 60 for the MPS-
IF per spin species in all the real-time GTEMPO calculations of the
single-orbital AIM in this work.

B. The single-orbital Anderson impurity model

Now we proceed to consider the single-orbital AIM with

Ĥimp = εd
∑

σ∈{↑,↓}
â†σâσ + Uâ†↑â

†
↓â↓â↑, (39)

where εd is the on-site energy and U is the interaction
strength. We will focus on the half-filling case with εd =
−U/2 which gives us an easy first verification of the results,
we also set β = 40 (Γβ = 4) in all the following calculations.

We first access the quality of the approximate equilibrium
state by studying the equilibration dynamics in Fig. 5, where
we plot the populations of the impurity in the four states: |0⟩
(no electron), | ↑⟩ (spin up), | ↓⟩ (spin down) and | ↑↓⟩ (dou-
ble occupancy) as functions of time t. We show the results for
impurity vacuum state in Fig. 5(a,c,e) and results for impurity
thermal state in Fig. 5(b,d,f) respectively, for three different
values of U (U/Γ = 1, 5, 10). We can see that the populations
in all these simulations have converged fairly well at Γt ≈ 2,
and that the results for impurity thermal state (which approxi-
mately converge around Γt ≈ 1) clearly converge much faster
than those for impurity vacuum state, which indicate that one
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FIG. 6. (a,c,e) Imaginary part of the retarded Green’s function as a
function of t − t0 with Γt0 = 8 for (a) U/Γ = 1, (c) U/Γ = 5 and
(e) U/Γ = 10 respectively, where the blue and red dashed lines are
results for impurity vacuum and thermal states. (b, d, f) The average
error between the retarded Green’s function Gneq(t, t0) calculated
with Γt0 = 8 and the Gneq(t, t0) calculated with smaller t0 for (b)
U/Γ = 1, (d) U/Γ = 5 and (f) U/Γ = 10 respectively.

could use a smaller equilibration time t0 if starting from the
impurity thermal state (which will significantly reduce the
computational cost).

In Fig. 6, we further quantify the error occurred in the re-
tarded Green’s function by using different values of t0. Con-
cretely, in Fig. 6(a,c,e), we show Gneq(t, t0) calculated with
Γt0 = 8 for U/Γ = 1, 5, 10 respectively, for both the impu-
rity vacuum state (blue dashed lines) and the impurity ther-
mal state (red dashed lines). We can see that these two lines
are completely on top of each other (the average errors are
less than 10−5 for all Us). Then in Fig. 6(b,d,f), we take
Gneq(t, t0) calculated with Γt0 = 8 as the baseline (which has
well reached equilibrium for all the cases we have considered
from Fig. 5), and then compute the average error between it
and the Gneq(t, t0) calculated with smaller t0. We can see that
the average errors quickly decrease to less than 10−2 when t0
reaches Γt0 = 2 and saturates at around Γt0 = 6 for both
initial states (which is likely due to the first-order time dis-
cretization error in Eq.(26)). We can also clearly see that the
results for impurity thermal state converge much faster than
those for impurity vacuum state.

As application, we plot the spectral function A(ω) as
a function of ω, obtained using different values of t0, in
Fig. 7(a,c,e) for U/Γ = 1, 5, 10 respectively, where the red
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FIG. 7. (a,c,e) The spectral function A(ω) as a function of ω for
(a) U/Γ = 1, (c) U/Γ = 5 and (e) U/Γ = 10 respectively, where
the red solid lines are results calculated with Γt0 = 8 for the im-
purity thermal state, the blue and green dashed lines are results cal-
culated with Γt0 = 0.5 for the impurity vacuum and thermal states
respectively. (b,d,f) The Matsubara Green’s function G(τ) converted
from the A(ω) calculated in (a,c,e) respectively. The black and gray
solid lines in (b,d,f) are the imaginary-time GTEMPO results and
CTQMC results. The insets in (b,d,f) show the average errors be-
tween G(τ) converted from the A(ω) calculated with different t0
and the imaginary-time GTEMPO results, where the blue dashed line
with square and green dashed line with triangle are for the impurity
vacuum and thermal states respectively.

solid lines are results calculated with Γt0 = 8 for impurity
thermal state, while the blue and green dashed lines are results
calculated with Γt0 = 0.5 for impurity vacuum and thermal
states respectively. In Fig. 7(b,d,f), we plot G(τ) converted
from the A(ω) calculated in Fig. 7(a,c,e) respectively, where
we have also shown the CTQMC results and the imaginary-
time GTEMPO results calculated with χ = 500 as compar-
isons. To reduce the finite-time discretization error in this con-
version (since we need to perform the Fourier transformation
of G(t) in Eq.(13)) we have used a simple linear interpolation
scheme to obtain refined real-time data with a smaller time
step size 10−4/Γ. We can see that the G(τ) converted from
A(ω) calculated with Γt0 = 8 well agrees with the CTQMC
and imaginary-time GTEMPO results. Interestingly, the A(ω)
calculated with Γt0 = 0.5 for impurity thermal state agrees
fairly well with the A(ω) calculated with Γt0 = 8 (similar
for the corresponding G(τ)), while in comparison the A(ω)
calculated with Γt0 = 0.5 for impurity vacuum state is very
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different from that calculated with Γt0 = 8. The insets in
Fig. 7(b,d,f) show the average errors between G(τ) converted
from the A(ω) calculated with different t0 and the imaginary-
time GTEMPO results, which decrease at the beginning and
saturates at Γt0 ≥ 4 (there is a slight increase of average error
for U/Γ = 5, 10 when Γt0 increases from 1.5 to 4, which may
be a coincidence due to the errors occurred during the conver-
sion from A(ω) to G(τ)). With these results, we can see that
the equilibrium retarded Green’s function can indeed be accu-
rately calculated using our method. Moreover, by preparing
the initial state of the impurity in a local thermal state, the
equilibration time t0 can be significantly shortened.

V. CONCLUSION

In summary, we have proposed a real-time impurity solver
based on the non-equilibrium Grassmann time-evolving ma-
trix product operators method. We evolve the impurity model
in real time from a separable initial state, and after a long
enough equilibration time the impurity model would reach
the equilibrium. Then the equilibrium retarded Green’s func-
tion together with the spectral function can be calculated. Our

approach only contains three hyperparameters: the time dis-
cretization, the maximum MPS bond dimension and the equi-
libration time. We demonstrate the performance advantage
of this method against the imaginary-time GTEMPO method
by showing that the Grassmann MPS generated for the in-
fluence functional in the real-time calculations has a much
smaller bond dimension compared to that in imaginary-time
calculations. We also demonstrate the effectiveness of this
method for the single-orbital Anderson impurity model for a
wide range of interacting strengths and show that by starting
from a thermal initial state of the impurity, one can obtain an
accurate spectral function even with a relatively small equi-
librium time. Our method thus opens the door to using the
GTEMPO method as a real-time impurity solver for DMFT.
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