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A B S T R A C T

We performed molecular dynamics simulations of Zr50Cu50 metallic glass samples submitted to
mechanical deformation at different strain rates. The simultaneous measurements of the stress-
strain curve, and of the temperature evolution during the cyclic mechanical load, are used to
determine the thermo-mechanical constitutive laws at the continuum scale. It is shown that plastic
deformation acts as a heat source, but strong finite size effects affect the unfolding of shear
bands and its related dissipation rate. Finally, a thermo-mechanical constitutive law is proposed
to reproduce quantitatively self-heating processes at different scales.

1. Introduction
Metallic glasses (MGs) are metallic alloys that lack of intrinsic internal length scale. Their amorphous structure

is obtained from a rapidly quenched melt, that is, they undergo a glass transition leading to structural properties
of a liquid, with dynamical properties of a solid. This disordered nature makes them exhibit excellent mechanical
properties, such as high yield strength, large elastic strain limits, good wear resistance, among other [1]. Research
in practical applications includes nanotechnology, micro electromechanical systems and bio-medical devices [2, 3]
for which thermal management is of strong interest. The mechanical properties of MGs, including an atomic level
explanation of the mechanism of elasto-plastic regime, and the mechanism for temperature dependence of the plasticity
of MGs remains however a subject of intense research [4, 5], since it differs greatly from that involved in crystals. It has
been shown that, in the low strain rate low temperature limit for example, plastic deformation results from a succession
of local Eshelby-like plastic rearrangements [6], while the elastic response shows nanometer-scale disorder-induced
correlations, appearing as heterogeneous mechanical assemblies, responsible for the peculiar vibrational response
of these amorphous materials [7, 8]. It is shown that mechanical wave-packets can induce local heating and heat
transfer in amorphous solids, due to scattering processes on structural disorder [9]. This means that thermal and
mechanical response are intimately intertwined, and so may depend on the strain rate as well as on the surrounding
temperature [10, 11, 12].

Understanding the thermomechanical properties is essential in materials science, engineering, and physics, since
the temperature changes inside a material could have a significant impact on their strength, ductility, and other
mechanical properties [13, 14]. Thermal measurement can also be used as damage warning devices, or to confirm the
integrity of a system [15]. The fraction of plastic work converted to heat during large strain mechanical deformation
(Taylor–Quinney coefficient) has been studied in some crystalline materials, either experimentally [16] or with
the help of Molecular Dynamics Simulations [17, 18, 19]. The result is very sensitive to the materials structure
and composition. The complete study of thermomechanical properties involves analysing the response of materials
to different temperatures and stress loadings, determining self-heating properties, and predicting the behaviour of
materials using constitutive models. In this aspect, within the framework of the generalized standard materials theory
(GSM), Chrysochoos and Belmahjoub [20, 21] used the information obtained from the global mechanical laws and
the thermal changes during cycles of shear, to identify thermo-mechanical constitutive laws and explain the energy
balance evolution during deformation for duraluminium samples. They observed that the model based on the classical
theory of the time-independent elastoplasticity gives correct mechanical predictions [20].

Closer to our study, Zhao and Li studied the evolution of temperature in the shear banding process for bulk metallic
glasses using the finite-element method with an empirical constitutive law [22]. They show results on tension and
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Thermomechanical Dissipative behaviour of Metallic Glasses

compression of Vitreloy 1, where the work accumulated during plastic deformation is used as a heat source, to solve
the heat conduction equation, yielding to an increase in temperature of a few degrees inside the shear band. This
phenomenon of temperature increase within the shear band has also been studied at the atomistic scale by Lagogianni
and Varnik [5]. The authors use non-equilibrium molecular dynamics to simulate a Lennard-Jones type binary mixture.
As in the article of Zhao and Li [22], Lagogianni and Varnik show that the zones supporting the largest strains contribute
the most to the local temperature rise, thus yielding to a strong increase in temperature within the shear band compared
to the matrix outside it.

Here we present a molecular dynamics study on Zr50Cu50 metallic glass subjected to cycles of shear. The global
constitutive laws and the analysis of the thermal behaviour at the micro-scale are both considered with a special focus
on finite size effects and strain rate sensitivity. The paper is organized as follow: in section 2 we show the details of
the molecular dynamic simulation. In section 3 we present the measurements of the global thermal and mechanical
response as a function of the temperature and of the strain rate. In section 4, we analyse the thermo-mechanical
behaviour at the atomic scale. Finally, we identify in section 5 an effective thermo-mechanical constitutive law at a
continuum level, able to reproduce the temperature changes when it is combined to well defined local heating sources.
We finally draw conclusions in section 7.

2. Simulation details
We perform molecular dynamics simulations of Zr50Cu50 metallic glass samples submitted to successive cycles of

volume–preserving shear deformation. The model consists of two samples, one with 4 800 atoms with dimensions
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 82 × 41 × 24 Å3 (small sample, S) and the second with 145 200 atoms with dimensions of
𝐿𝑥 ×𝐿𝑦 ×𝐿𝑧 = 427×226×24 Å3 (large sample, XL), as shown in Fig. 1. The dimensions are chosen to prevent finite
size effects in the elastic regime [7]. The samples are obtained from an initial FCC copper structure in which half of the
atoms were replaced by zirconium. The resulting configuration is heated to 2200 K ensuring a constant 0 GPa external
pressure during all the simulation. The integration timestep is set at Δ𝑡 = 1 fs. Then, the molten metal is cooled down
to 10 K following the protocol described by Wang et al. [23]. Finally, to obtain a well-equilibrated glass sample, the
system evolves in NVE ensemble during 100 ps with a final minimization to ensure that all atomic forces were under
10−4 eV⋅Å−1. The resulting cooling rate is 1012 K⋅s−1. The particles interact via the modified embedded-atom method
(MEAM) potential [24], which consists of an extension of the original embedded-atom method with the addition of
the angular forces. This procedure has already been used to explore different properties of Zr50Cu50 metallic glass
samples, like the onset of plasticity [11] or plastic failure [25]. All simulations were carried out using LAMMPS [26]
and the visualization using the OVITO software [27].

In order to follow the temperature evolution on the sample during the cycles of shear, we mimic the experimental
conditions, where external boundaries are at constant temperature by fixing two layers of atoms with a thickness of
4 Å, one on the top of the 𝑥𝑧–plane and one on the bottom of the 𝑥𝑧–plane, as can be seen in Fig.1(c), where the shear
deformation direction is also shown. The temperature is imposed through a Nosé-Hoover thermostat with damping
parameter 𝜏𝑇 = 2𝑓𝑠. Three temperatures were considered for the fixed layers, 𝑇0 ∈ {10 K, 100 K, 300 K}, and for
each temperature 10 statistically independent samples were generated. These samples have been obtained from the
following procedure: First, we created 10 velocity profiles using a gaussian distribution with a random seed to desired
temperature 𝑇0. Then the samples were heated to 800 K with constant 0 GPa external pressure during 300 ps in the
NPT ensemble. A NVE equilibration during 100 ps has been run at 800 K, followed by a cooling to final desired
temperature (10 K, 100 K, 300 K) during 300 ps in the NPT ensemble. A final NVE equilibration for 50 ps give us
the final configuration samples considered for this study, ensuring a thermodynamical equilibrium in the initial state.
All those samples were then subjected to three cycles of volume–preserving shear deformation at three imposed shear
rates �̇� ∈ {108, 109, 1010} s−1. For this, the simulation cell is deformed using a constant engineering shear strain rate,
where the tilt factor changes linearly with time from its initial to final value. Volume preserving, periodic boundary
conditions are applied in all three directions. The simulation cell is deformed every 1000 Δ𝑡 for S and every 5000 Δ𝑡
for XL samples. This protocol makes it possible to ensure that mechanical waves reach the other end of the system
before propagating a next wave, thus avoiding an accumulation of mechanical energy that would make our system less
realistic. Finally, the fixed layers kept the constant temperature 𝑇0 during all the simulation in the NVT ensemble while
atoms outside the layers are controlled by NVE during all the deformation process.
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c) Shear deformation 
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Figure 1: Zr50Cu50 metallic glass samples considered in this work. a) Consisting of 4 800 particles, labelled as S, and b)
for 145 200 atoms, labelled as XL. c) Two layers of 4 Å at the top and the bottom of the sample, on the 𝑥𝑧 plane, are
kept at constant temperature.

3. Measurement of the thermal and mechanical response at the global scale
In the following we show evidence, from the macroscopic stress–strain curves, of the role of the external

temperature, the strain rate and of finite size effects on MG samples subjected to cycles of shear. For each temperature
and each shear rate, we calculated the average stress–strain curve and the average temperature, for the atoms outside
the fixed layers, over ten configurations. The global average temperature is given by the average of the kinetic energy
fluctuations on all atoms, after the streaming velocity of the atoms caused by the change in shape of the simulation
box has been removed, as well as the rigid body motion of the mobile atoms. These results are summarized in Fig. 2.
The stress-strain behaviour is presented on top of each plot and on bottom we presented the temperature evolution as
a function of the strain. Red solid lines of each plot represent the loading regime and green solid curves the unloading
regime. The three strain rates and temperatures 𝑇0 are summarized in Fig. 2. The shear modulus 𝜇 is then measured
on each case using a linear fit of the shear stress-shear strain curve over the initial 0.05 strain window. The values are
summarized in Table 1.

3.1. Small Size Samples
At lowest strain rate, �̇� = 108 s−1 (first column on Fig. 2) the mechanical behaviour of the S samples follows a

quasistatic-like deformation regime. This very high value for the smallest strain rate may be surprising (apart from high
power laser-induced shocks, for which it can reach 106 s−1 [28], in up-to-date mechanical experiments, it varies more
generally from 10−2 s−1 to 103 s−1 [29]), but such an apparently high strain rate value has already been considered
representative of quasistatic deformation [30]. This may be due to the use of empirical potentials in the simulations,
probably underestimating the amplitude of energy barriers, such that the low numerical time scale corresponds to larger
experimental effective time scales. In this low strain rate case, the plastic collective rearrangements of atoms are more
pronounced, as visible in the large stress drops making the stress-strain curve noisier as already shown and related to
the local nature of irreversible rearrangements [31, 32, 10]. It is possible to identify two cases, the first, at a very low
temperature (𝑇0 = 10 K, top panel of the first column on Fig. 2) the system exhibits a clear increase in the temperature
rises when the plastic events develop, concentrated in the region of 𝛾 ∈ [0.20, 0.30]. The second case is related to the
samples at 100 K and 300 K, here, the fluctuations in temperature do not allow finding a pattern like the previous one.
The increases in temperature as a function of 𝛾 are very noisy whatever the 𝛾 values and not greater than 2 K for the
100 K case, while at room temperature the variations are irregular and not greater than 10 K during the three cycles of
shear.

As we increase the strain rate to �̇� = 109 s−1 (second column on Fig. 2) the mechanical behaviour becomes less
noisy than in the previous case. The coherent stress drops shown in the coldest case at 10 K (see, for instance, 𝛾 ≈ 0.22)
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Figure 2: The averaged stress-strain curves and temperature evolution of Zr50Cu50 metallic glass sample S with 4 800
atoms are presented. The stress and temperature results for each 𝑇0 value are presented as a function of strain for the
three strain rates �̇� ∈ {108, 109, 1010} s−1. The stress evolution is shown on top, while the temperature is shown on the
bottom. The red lines indicate the loading regime, and the green lines indicate the unloading regime.

becomes less clear for 100 K and 300 K. The shear cycles are however related in all cases to a thermal hysteresis, with
significant increases as plastic events develop throughout the sample. It shows changes in temperature ranging from
30 K (upper figure) to 10 K for the lower figure (highest 𝑇0), becoming less evident for the latter.

Finally, at fastest strain rate, �̇� = 1010 s−1 (third column on Fig. 2) the global thermo–mechanical behaviour
is similar for the three temperatures under study. In this case, the mechanical behaviour is similar, while less noisy
and related to higher stress values, as in the previous cases, but the global averaged thermal behaviour exhibits
very well defined loops during each loading-unloading cycle (also sketched in �̇� = 109 s−1). This phenomenon has
been previously studied by [20] on duraluminium samples during a series of loading-unloading excitations at room
temperature, both, from experimental and theoretical point of view. The temperature raise is however far larger in the
current amorphous samples (reaching few tens of Kelvins in each computed case) than for smaller strain rates.
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Table 1
Shear modulus 𝜇, in GPa, for each temperature and shear rate under study, averaged over 10 configurations for both
sample sizes under study, and comparison (last column) with the experimental result given in [33].

Size Temperature 108 s−1 109 s−1 1010 s−1 Exp. [33]

10 K 39.705 38.407 41.025
S 100 K 34.644 33.412 40.639

300 K 23.554 30.100 33.339 31.3

10 K 40.005 41.869 43.771
XL 100 K 36.883 39.319 33.118

3.2. Larger Samples and Finite Size effects
The same procedure is applied for the big sample of 145 200 particles. The stress–strain curve and the temperature

evolution for the particles outside the fixed layers have been computed. The results are presented in Fig. 3, from left
to right for �̇� = 108 s−1, �̇� = 109 s−1 and �̇� = 1010 s−1 respectively. Fig. 3 shows a clear difference with respect

Figure 3: The averaged stress-strain curves and temperature evolution of Zr50Cu50 metallic glass sample XL with 145 200
atoms are presented. The stress and temperature results for each 𝑇0 value are presented as a function of strain for the
three strain rates �̇� ∈ {108, 109, 1010} s−1. The stress evolution is shown on top, while the temperature is shown on the
bottom. The red lines indicate the loading regime, and the green lines indicate the unloading regime.

to the small system. First, a clear stress overshoot is seen when we apply a slow strain rate, like �̇� = 108 s−1. The
same phenomenon, but with less intensity, is shown for �̇� = 109 s−1, while for the fastest deformation rate the stress
softening is progressive as for the smaller system, related as will be shown later to an accumulation of plastic events
that do not manage to form a mature shear band. More importantly, a critical point in this case is the absence of the
temperature hysteresis that was shown for the small system in Fig. 2. This is related to a difficulty to evacuate heat in
the large systems, as will be discussed and solved later. For the smaller strain rates in the large system, there is a drastic
change in temperature correlated with the large stress drops, as clearly seen in the lowest strain rate case. In this case,
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Figure 4: Thermo-mechanical evolution for the big XL sample with additional uniform damping vs. small sample without
damping, at 𝑇0 = 100 K. From left to right �̇� ∈ {108, 109, 1010} s−1. From left to right the values of the damping coefficient
are: 𝜂 = 0.000001 eV ⋅ ps∕Å2, 𝜂 = 0.00001 eV ⋅ ps∕Å2 and 𝜂 = 0.0001 eV ⋅ ps∕Å2.

after the temperature increase, during the unloading process, the system can return to the initial system temperature,
despite an increase in temperature of more than 100 K . For �̇� = 109 s−1 case, although there is a significant increase
in temperature, beyond 200 K, the system fails to release the temperature throughout the sample. At the highest strain
rate, this effect is even more pronounced: in this latter case, while the decrease in the stress as a function of strain
is softer than the case �̇� = 108 s−1, the temperature increases monotonously with the deformation as a function of
time, even reaching up to 400 K at 30% strain. This situation represents a substantive difference with respect to small
samples and looks clearly unphysical.

To solve this problem, it is needed to allow the system to release the energy across its size, as we apply the shear
strain for the fastest strain rate case. In plus of giving sufficient time between successive strain steps to let the boundaries
evacuate energy, additional quantum dissipation sources are considered. For that, we applied a global damping force
𝐹𝑖 = −𝜂 ⋅ 𝑣𝑖 on each 𝑖-atom, where 𝜂 is the damping coefficient and 𝑣𝑖 the velocity of each particle. This additional
damping force has a physical meaning: it corresponds to the physical damping induced for example by the Fermi rule
when electronic excitations/deexcitations, resulting from bond breaking, are considered [34]. As shown in Fig. 4, it is
possible this way for the largest strain rate, to get results very similar to those obtained with the small system. This
procedure is applied to the three strain rates and two temperatures presented in Fig. 3, where, for each case, the value
of the damping coefficient that best fits the results of the small system shown in Fig. 2 is chosen independently. The
results obtained with this additional damping are displayed in figure 4. Here, solid lines, both red and blue, represent the
loading regimes, while the dashed lines show the unloading regime. An important difference is visible in the thermal
and mechanical behaviour of the S versus XL samples when they are subjected to the lower shear rates of �̇� = 108 s−1
and �̇� = 109 s−1. In this last case for example, the small system shows a plastic regime dominated by successive stress
drops, while the large system shows a drastic single but large stress drop, usually related to the formation of a shear
band. The increase in the temperature is different as well in both cases: the big sample exhibits a huge increase in
the temperature correlated with the stress drops, while the small samples show small increases in temperature that are
rapidly damped. Finally, for �̇� = 1010 s−1 there is good accordance between the self-heating in the small samples, and
the self-heating in the large sample. This means that, for a reason that we will try to explain later, there are strong finite
size effects in the plastic response of metallic glasses, especially for low strain rates. Moreover, it is important to have a
good knowledge of the dissipation sources, including quantum contributions that could be taken into account through
effective parameters, before performing classical simulations. The whole set of curves obtained for the large sample,
at two different temperatures, with additional homogeneous damping is shown in Fig. 5. This set of data will be used
for the thermo-mechanical analysis performed in the next part.

In order to look for a macroscopic behaviour and finite size effects, we have increased progressively the size of
the system and looked at the thermo-mechanical response for the different sizes. They are superposed for six different
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Figure 5: Thermo-mechanical evolution for the big XL sample with the introduction of a volumic viscous damping. Results
for 𝑇0 = 10 K on the top panel, and for 𝑇0 = 100 K on the bottom, for the three strain rates under study. From left to right
�̇� ∈ {108, 109, 1010} s−1. From left to right the values of the damping coefficient are, for top layer: 𝜂 = 0.00001 eV ⋅ ps∕Å2,
𝜂 = 0.0001 eV ⋅ ps∕Å2 and 𝜂 = 0.001 eV ⋅ ps∕Å2. For bottom layer: 𝜂 = 0.000001 eV ⋅ ps∕Å2, 𝜂 = 0.00001 eV ⋅ ps∕Å2 and
𝜂 = 0.0001 eV ⋅ ps∕Å2.

samples sizes in the Fig. 6. For each case we replicated the initial S sample with the aim of getting samples with
increasing sizes, and we created a new Gaussian velocity distribution at 10 K. Then the system is heated up to 800 K
at constant 0 GPa pressure during 300 ps, followed by an NVE equilibration during 100 ps and finally it is cooled
down during 300 ps to reach the target temperature of 10 K. A final equilibration in NVE for 50 ps is done to ensure a
well-equilibrated homogeneous sample. This very low temperature is chosen here as a preliminary test, in order to avoid
unphysical uncontrolled self-heating as discussed in the previous part for large samples. Each of these configurations
is then subjected to a shear deformation at a strain rate of �̇� = 1010 s−1 under the same conditions as for the S sample
described in section 2, except that a single run is performed without loading-unloading cycles. Fig. 6(a) shows the
mechanical behaviour while Fig. 6(b) shows the evolution of the temperature during the deformation process, for each
sample size. The related number of atoms in the sample is visible in the legend of each plot. The Fig. 6(a) shows
clearly a transition from a noisy behaviour for sample S (red curve), with multiple small stress drops after 𝛾 = 0.15,
to a continuous stress softening with a large stress drop, as shown for the XL sample (blue curve). This transition
is accompanied by a progressive increase in the amplitude of the stress drops starting from the plastic flow regime.
A larger size seems necessary to allow the setting up of the complete stress relaxation, that occurs finally at slightly
smaller global strain when the system size increases. This means that our smallest sample S is not an elementary
representative volume for the plastic deformation. In terms of temperature, Fig. 6(b) shows a difference Δ𝑇 ≈ 50 K in
temperature change between samples S and XL. While sample S exhibits a succession of small, irregular temperature
increases, related to the occurrence of small plastic events throughout the simulation, XL sample shows a significant
smooth temperature increase, marked by large amplitude stress softening, and guided by self-heating. The thermal
behaviour becomes smoother with the system size, as in self-averaged processes, but it does not clearly converge to a
limit behaviour, even for the largest sample, suggesting strong finite size effects that are difficult to catch with Molecular
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a) b)

Figure 6: Study of the size effect on the global thermo-mechanical behaviour of Zr50Cu50 metallic glass at initial 10 K
and �̇� = 1010 s−1. a) Shows the stress-strain curve for different sizes samples (number of atoms in the legend) and b) the
temperature evolutions for the atoms outside the fixed layers.

Dynamics simulations. In the following, we will thus keep the two sizes related to the S and XL samples, in all our
analysis, for comparison.

4. Analysis of thermal behaviour at the micro-scale
Once the global thermo-mechanical behaviour has been measured, we now focus on the visualization at the atomic

scale of the thermal response and the strain localization on both, S and XL, samples. For this, we calculate the local
infinitesimal small shear strain using the per-particle coarse graining (CG) strain tensor [35, 36, 37, 38], with a coarse
graining width of 𝜔cg = 6 Å. This value is chosen with the need to avoid displacement and strain singularities in the
coarse-grained quantities. As shown in Ref.[38, 39], it corresponds to at least two times the first neighbours distance,
close to the size of the core of the elementary plastic events in these systems [6]. The CG strain tensor is obtained as

𝜀𝛼𝛽(𝐫, 𝑡) =
1
2

(

𝜕𝑢𝛼(𝐫, 𝑡)
𝜕𝑟𝛽

+
𝜕𝑢𝛽(𝐫, 𝑡)
𝜕𝑟𝛼

)

(1)

where the coarse-grained continuous displacement field is obtained from

𝐮(𝐫, 𝑡) =
∑

𝑖 𝑚𝑖𝐮𝑖(𝑡)𝜙[𝐫 − 𝐫𝑖(𝑡)]
∑

𝑗 𝑚𝑗𝜙[𝐫 − 𝐫𝑗(𝑡)]
(2)

Here,𝜙[𝐫] is the coarse-grained function which corresponds to a normalized Gaussian function of width𝜔cg, 𝑢𝑖(𝑡) is the
displacement of atom 𝑖 at time 𝑡, and 𝑚𝑖 is its mass. The time interval used to compute the strain from the displacement
is 1 ps, this corresponds to a strain interval between initial and final configuration of Δ𝛾 = 0.01 for �̇� = 1010 s−1,
and more generally Δ𝛾 = 10−12�̇� when the unit used for �̇� is s−1. For the sake of simplicity and because it is the main
signature of plasticity in metallic glasses [40], we visualize here only the deviatoric part of the strain tensor located
on each atom (𝐫 = 𝐫𝑖). For this we diagonalize the CG strain matrix and consider the maximum absolute value of the
difference between the three eigenvalues of 𝜀 tensor. Also, the local temperature is computed, on each atom 𝑖, from its
kinetic energy 𝐾𝐸(𝑖) = 1∕2𝑚𝑖𝑣(𝑖)2 = 3∕2𝑘𝐵𝑇 (𝑖) computed after having subtracted the global shear flow, 𝑚𝑖 being the
mass of the atom, 𝑣(𝑖) its velocity, 𝑘𝐵 the Boltzmann constant, and 𝑇 (𝑖) the resulting temperature on atom 𝑖.

We show in Fig. 7, the local instantaneous deviatoric strain computed from the CG strain tensor at a global strain
of 𝛾 = 0.28 in the S sample, considering as the reference configuration the one that precedes the current frame in the
simulation sequence. The plastic behaviour is dominated by the appearance and growth of shear transformation zones
(STZs), which appear as highly strained sub-nanometric spots throughout the sample, without forming a shear band.
From Fig. 7 only two of the nine samples (�̇� = 109 s−1 at 10 K and �̇� = 1010 s−1 at 100 K ) exhibit clearly a shear
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S sample

Figure 7: Instantaneous shear strain localization for S sample at 𝛾 = 0.28. From left to right �̇� = 108 s−1, �̇� = 109 s−1 and
�̇� = 1010 s−1. From top to bottom for different temperatures 10 K, 100 K and 300 K.

band at this stage of deformation, a third one (�̇� = 1010 s−1 at 10 K ) exhibits a slightly incomplete shear band. Fig. 8
shows the local temperature of the samples shown in Fig. 7, at the same instant of deformation. The temperature is
distributed inside the sample. The three previous cases are of interest here: at 10 K, both �̇� = 109 s−1 and 1010 s−1 have
a higher temperature concentration in the same spots where the STZs are evolving (shear bands). This phenomenon is
repeated also for the 100 K case with the fastest strain rate. This correspondence between local strain and temperature
holds very well when the strain is localized along shear bands. For the smaller strain rates at these two temperatures,
and for all the strain rates at the highest studied temperature 𝑇 = 300 K, the deformation is noisy, the STZs do not
look spatially correlated in the S sample.

The results for the XL sample, with the uniform damping force, for the three different strain rates already applied
on the S sample, are presented in Fig. 9 for 𝑇0 = 10 K and in Fig. 10 for 𝑇0 = 100 K. As before, for each shear rate and
external temperature, we computed the instantaneous deviatoric strain. As can be seen from Fig. 9(a) at 𝑇0 = 10 K,
there is a strong shear band formation for both, �̇� = 108 s−1 and �̇� = 109 s−1 shear rates, while the highest strain rate
does not present a well-defined shear band, but rather an accumulation of plastic activity distributed throughout the
sample and displaying various alignments with a thinner width, as previously described in [7, 12]. The same situation
holds for 𝑇0 = 100 K (Fig. 10(a)), but the transition to shear banding occurs at a smaller strain rate, since the shear
band is already not very well defined at �̇� = 109 s−1. This means that the mechanical behaviour of the S sample is far
from having converged to the macroscopic behaviour, and that increasing the strain rate, or the temperature appears
unfavourable to the formation of a global shear band, as already mentioned in the review article [4]. As for the S sample
before, the local temperature is directly correlated to the local strain, displayed in figures 9(b) and 10(b), suggesting that
the inhomogeneous deformation is induced by an instability giving rise to local accelerations. In the XL sample, unlike
in S sample, the correspondence between local deformation and temperature is valid for all the strain rates, down to the
slowest strain rate studied here. At this slow strain rate, a large but well-defined shear band is already visible, unlike
in S samples. The latter are clearly too small to reproduce this occurrence of these large shear bands at slow strain
rates, since the width of the related shear band reaches 50 Å, larger than the width of the S samples. This underlines
the role of the finite size in the difficulty of reproducing and identifying large scale strain localization in the low strain
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S sample

111

100 100

Figure 8: Local temperature for S sample at 𝛾 = 0.28. From left to right �̇� = 108 s−1, �̇� = 109 s−1 and �̇� = 1010 s−1. For the
first row (𝑇0 = 10 K) only atoms with a temperature greater than 𝑇 ≥ 60 K are displayed. For the second row (𝑇0 = 100 K)
atoms greater than 𝑇 ≥ 200 K are displayed and finally for the last row (𝑇0 = 300 K) atoms greater than 𝑇 ≥ 500 K are
shown.

rate regime. In the large samples, the local temperature increase can reach few tens of degrees on nanometer length
scales, and it is amplified with the global strain rate. In the absence of a well defined shear band, that is for the largest
strain rates only, it is seen that the temperature increase is distributed over the whole sample, yielding a higher global
self-heating. In addition, figures 9(c) and 10(c) show the behaviour of the instantaneous non-affine displacement [7]
at the instant of formation of the shear band. It displays shear glidings along shear bands, surrounded by mesoscale
rotational displacements, as previously shown in the literature [7, 41, 25]. Finally figures 9(d) and 10(d) show the
temperature profile as a function of the orthogonal direction compared to that of the SB. The absolute maximum
value for temperature is displayed in the figure. From here it is possible to extract that there is a high concentration of
temperature increase within the shear band, even evident during its formation process. There is a self-heating process
of the sample as the shear band is formed, with a significant increase compared to the rest of the sample, as can be
seen for example in the case of Fig. 9(d) for a shear rate of �̇� = 109 s−1. This phenomenon is in good agreement with
respect to recent results presented by Lagogianni et al. [5] for the case of binary Lennard-Jones mixture. The spatial
resolution of the temperature increase allows clearly identifying the width of the shear band, which is of the order of
100 Å, significantly larger than the size of the S sample. This confirms again the fact, that the S sample is too small to
properly account for plastic deformation in the metallic glass samples. This could also be the case for the XL sample
at large strain rates (larger shear bands are suggested for the highest strain rates in figures 9 and 10(d)).

We will now relate the global self-heating of the samples to heat sources related either to the energy dissipated in the
local plastic deformations, either to the internal thermo-mechanical couplings as described in a continuous parametric
description of the free energy, that will be discussed in the next part. The relative weight of each contribution depends
on the thermal and mechanical excitations, that is on the thermo-mechanical load imposed at the boundaries, especially
the external temperature and the imposed strain rate.
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Figure 9: a) Shear bands for XL sample at 𝑇0 = 10 K. From left to right �̇� = 108 s−1, �̇� = 109 s−1 and �̇� = 1010 s−1.
Shear strain is computed from the CG deviatoric part of the strain tensor, computed from Eq. 1. b) Snapshot of the local
temperature for XL sample at the stage of formation of the shear band (SB), here atoms with a temperature greater than
𝑇 ≥ 15 K are displayed. c) Non–affine displacement (NAD) field, on a slab of 4 Å of thickness, on the center of the XL
samples in the 𝑧-plane. The NAD showed corresponds to the instantaneous value computed from two successive steps
(Δ𝑡 = 1𝑝𝑠) at 𝑇0 = 10 K. d) Temperature profile as a function of the orthogonal direction of formation of the SB. The
absolute maximum value for temperature is displayed

5. Fitting constitutive laws and thermo-mechanical couplings
In the following, we will propose a continuous model inspired from [20] to describe the self-heating phenomenon

in connection to the energy dissipated by means of plastic deformation. At the continuum scale, we will consider here
the glass as an homogeneous, isotropic, linear-thermoelastic solid. At finite temperature, the simplest expression for
the strain–energy density is [42]

𝜓 = 1
2
𝜎𝑖𝑗𝜖

𝜎
𝑖𝑗 (3)

with 𝜎𝑖𝑗 the stress tensor components and 𝜖 𝜎𝑖𝑗 the temperature independent – or elastic – contribution to the strain.
Using 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖 𝜎𝑘𝑙 and 𝜖 = 𝜖𝜎 + 𝜖𝑇 , where 𝐶𝑖𝑗𝑘𝑙 are the elastic moduli, 𝜖𝑇 = 𝛼𝑖𝑗(𝑇 − 𝑇0) and 𝛼𝑖𝑗 are the coefficients
of linear thermal expansion, the strain–energy density gives

𝜓 = 1
2
𝐶𝑖𝑗𝑘𝑙

[(

𝜖𝑘𝑙 − 𝛼𝑘𝑙(𝑇 − 𝑇0)
)

⋅
(

𝜖𝑖𝑗 − 𝛼𝑖𝑗(𝑇 − 𝑇0)
)]

(4)
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a)

b)

c)

d)

XL sample

Figure 10: a) Shear bands for XL sample at 𝑇0 = 100 K. From left to right �̇� = 108 s−1, �̇� = 109 s−1 and �̇� = 1010 s−1.
Shear strain is computed from the CG deviatoric part of the strain tensor, computed from Eq. 1. b) Snapshot of the local
temperature for XL sample at the stage of formation of the shear band (SB), here atoms with a temperature greater than
𝑇 ≥ 120 K are displayed. c) Non–affine displacement (NAD) field, on a slab of 4 Å of thickness, on the center of the
XL samples in the 𝑧-plane. The NAD showed corresponds to the instantaneous value computed from two successive steps
(Δ𝑡 = 1𝑝𝑠) at 𝑇0 = 100 K. d) Temperature profile as a function of the orthogonal direction of formation of the SB. The
absolute maximum value for temperature is displayed.

That is 𝜓 is a second order polynomial in (𝑇 − 𝑇0)

𝜓 = 1
2
𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙𝜖𝑖𝑗 −

(

𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙𝜖𝑖𝑗
)

⋅ (𝑇 − 𝑇0) +
(1
2
𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙𝛼𝑖𝑗

)

⋅ (𝑇 − 𝑇0)2

When only 𝜖12 ≠ 0 with 𝛾 = 2𝜖12, assuming small strains and taking into account the isotropic case, we obtain

𝜓(𝛾, 𝑇 ) = 1
2
𝜇𝛾2 − 2𝛾𝜇𝛼12(𝑇 − 𝑇0) + 𝛼2(𝑇 − 𝑇0)2 (5)

with 𝜇 the shear modulus (computed and summarized in table 1), and 𝛼 a parameter depending on the elastic moduli
and expansion coefficients. Let us now consider thermodynamic variables with 𝑒 the internal energy and 𝑠 the entropy
per unit volume

𝜓 = 𝑒 − 𝑇 𝑠 (6)

with

𝑑𝜓 = 𝑑𝑒 − 𝑇𝑑𝑠 − 𝑠𝑑𝑇 =
𝜕𝜓
𝜕𝛾

|

|𝑇 𝑑𝛾 − 𝑠𝑑𝑇 .
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Figure 11: a) Comparison between the elastic strain energy and the dissipated energy per unit volume. The shear modulus
values are given by the initial slope in the stress-strain curve and summarized in Tab. 1. The three different kinds of energy
densities: elastic, plastically dissipated, and total energy per unit volume are computed here for 𝑇0 = 100 K and for a strain
rate of �̇� = 1010 s−1. In b) result obtained for the small S sample, and in c) for the big XL sample.

Since

𝑠 = −
𝜕𝜓
𝜕𝑇

|𝛾 , (7)

yielding to

𝜌�̇� = 𝜌𝑇 �̇� + 𝜌
𝜕𝜓
𝜕𝛾
�̇� (8)

and also

𝜌𝑇 �̇� = −𝜌𝑇
𝜕2𝜓
𝜕𝑡𝜕𝑇

= −𝜌𝑇
𝜕2𝜓
𝜕𝑇 2

�̇� − 𝜌𝑇
𝜕2𝜓
𝜕𝑇 𝜕𝛾

�̇�

= 𝜌𝐶𝛾 �̇� − 𝜌𝑇
𝜕2𝜓
𝜕𝑇 𝜕𝛾

�̇� (9)

with 𝐶𝛾 the heat capacity. Considering an elementary volume inside the sample, the heat equation per unit volume,
that results from the first principle, is written [43]

𝜌�̇� = 𝜎 ∶ 𝐷 + 𝑟𝑒𝑥𝑡 − div 𝑞 (10)

with 𝐷 the strain rates tensor including plasticity, 𝑟𝑒𝑥𝑡 additional heat sources if any, and div 𝑞 standing for heat
exchanges at the surfaces. Combined with Eq. 8 and Eq. 9, the heat equation is rewritten:

𝜌𝐶𝛾 �̇� + div 𝑞 = 𝜎 ∶ 𝐷 − 𝜌
𝜕𝜓
𝜕𝛾
�̇� + 𝜌𝑇

𝜕2𝜓
𝜕𝑇 𝜕𝛾

�̇� + 𝑟𝑒𝑥𝑡 (11)
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S

XL

Figure 12: Analysis at 𝑇0 = 100 K for S (top) and XL (bottom) samples with additional damping. From left to right
�̇� = 108 s−1, �̇� = 109 s−1 and �̇� = 1010 s−1 respectively. The blue curve is the global temperature measured as a function of
time, and the red curve is the temperature computed from the intrinsic and isentropic contributions (with local plasticity
acting as a heat source and thermo-mechanical couplings helping storing heat) - as discussed in the text. The parameters
used in the model are summarized in table 2.

The two first terms on the right side account for the intrinsic dissipation rate �̇�𝑑 due to mechanical dissipation (plastic
deformation). We will consider, in the following, that only a part 𝐵 of the intrinsic dissipation �̇�𝑑 is converted into
heat, the rest contributing for example to excite coherent waves (emitted noise). The third term in Eq. 11 results from
the thermo-mechanical couplings. It is called isentropic heat rate �̇�𝑖𝑠 in Ref. [43, 20]. The last term takes account of
eventual external heat sources. At the global scale, a usual approximation proposed by Chrysochoos et al in Ref. [20],
considers that the heat exchanges at interface (heat losses) can be modelled by thermal attenuation with a relaxation
time 𝜏 such as

𝜏 ∝
𝜌𝐶𝛾𝐿2

𝑦

𝜅
(12)

with 𝜅 the global thermal conductivity. The heat equation is then rewritten in the absence of external heat sources

𝜌𝐶𝛾 �̇� −
𝜌𝐶𝛾
𝜏
𝑇 = 𝐵�̇�𝑑 + �̇�𝑖𝑠 (13)

with

�̇�𝑖𝑠 = −2𝜇𝑇𝛼12�̇� (14)

resulting from Eq.5 and with �̇�𝑑 , the volumic amount of heat given by the conversion of the dissipated mechanical
energy (plastic work) into heat

�̇�𝑑 = 𝑑
𝑑𝑡

{

∫ 𝜎 ∶ 𝑑𝛾 − 1
2
𝜎 ∶

(

𝛾 − 𝛾𝑝(𝜎)
)

}

(15)

Fig. 11 (a) illustrates the process of obtaining the plastically dissipated energy, 𝜔𝑑 , from the total mechanical energy
stored per unit volume. Assuming a linear elastic material, we compute the plastically dissipated energy by subtracting
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Table 2
Thermo-mechanical parameters used is Eq. (16) and giving the red fits shown in Fig. 12

Size Temperature Strain rate [s−1] 𝜅 (W.K−1.m−1) 𝐶𝛾 (J.K−1.kg−1) 𝜏 (s) 𝛼12 (K−1) 𝐵 𝐶 (K) 𝐸

S 100 K 108 1 327.6 4.07 × 10−7 1 × 10−5 0 4 10000
109 1 327.6 2.04 × 10−7 3 × 10−7 0.02 4 5000
1010 1 327.6 4.07 × 10−9 5 × 10−6 0.3 4 100

XL 100 K 108 7 327.6 1.76 × 10−7 1 × 10−5 1 0.5 1000
109 7 327.6 1.76 × 10−8 4 × 10−5 1 0.5 100
1010 7 327.6 1.76 × 10−8 1 × 10−5 0.43 0.5 100

the reversible elastic contribution. This elastic contribution per unit volume is obtained from the reverse linear curve
at each step 𝛾 (red area in Fig. 11 (a)). Then, the dissipated energy (green area) is calculated per unit volume, as
the difference between the energy introduced into the system and the elastically stored energy. Finally, the derivative
with respect to time is taken to obtain �̇�𝑑 . To better understand the contribution of the elastic vs. plastic energy in
the total mechanical energy stored in the system as a function of time, the figures 11 (b) and (c) display the different
contributions obtained from the data corresponding to for the oscillatory shears already discussed and shown in Fig.4–
right (𝑇0 = 100 K and �̇� = 1010 s−1) for the S and XL samples. As attempted, the elastic energy per unit volume is
restored at the end of each cycle, while the plastically dissipated energy mainly increases. Interestingly, the different
energy densities stored into the system are not strongly sensitive to the size of the system.

The heat equation (13) is then solved easily with these well identified contributions. It gives

𝑇𝑠𝑜𝑙(𝑡) = 𝑇0𝑒
𝑡∕𝜏 + 𝑒𝑡∕𝜏 ∫

𝑡

0

1
𝜌𝐶𝑝

𝑒−𝑢∕𝜏
(

𝐵�̇�𝑑 + �̇�𝑖𝑠
)

𝑑𝑢 (16)

The comparison between the numerical solution of the heat equation (16) and the numerical measurement of
the temperature 𝑇 (𝑡) allows determining the parameters 𝛼12 and 𝐵. For a better comparison with the numerical
measurement, a random white noise is also added to the solution 𝑇 (𝑡) = 𝑇𝑠𝑜𝑙(𝑡) + 𝐶.𝑁(𝑡) with 𝑁(𝑡) ∈ [−0.5, 0.5]
The best fits obtained are shown in Fig. 12. 𝐵 is chosen smaller than 1 because only part of the plastically dissipated
energy may be converted to heat. The best parameters used are summarized in the Table 2. It appears clearly from
Fig. 12, that the model is good enough for the highest strain rate. In general, plasticity contributes to increase the global
temperature – sometimes for tens of degrees, while the thermo-mechanical couplings help storing heat into mechanical
deformations contributing to global temperature decay. The effective relaxation time 𝜏 appears to depend also on the
strain rate, with a marked decay at high strain rates that could eventually result from the smaller size of atomic clusters
involved in the plastic instabilities, and in agreement with the increase of the viscosity with the strain rate [30]. The
model appears however clearly better for the large samples than for the smaller ones. This is not surprising. The small
systems are indeed very noisy, certainly due to finite size effects in the flowing regime as discussed before. Moreover,
the size dependence observed in the measured thermal fluctuations visible in the lowest strain rates cases, could be
related to the noise observed in these regimes (jerky behaviour of the stress-strain curves).

6. Discussion
In this article, we have used classical Molecular Dynamics simulations to get insights into the thermo-mechanical

behaviour of Cu50Zr50 metallic glasses. We have shown that plastic deformation induces strong self-heating, possibly
reaching few tens of degrees in the samples studied, that is far more than what has been observed in polycrystals [20].
This self-heating is generated inside local plastic events at the atomic scale, and it is then transported across the sample.
This phenomenon is especially visible in mature (permanent) shear bands - when they exist - that concentrate the plastic
activity. As already observed by Lagogianni et al. [5], the related temperature rise can reach few percent of the glass
transition temperature, with possibly even higher temperatures at the atomic scale. This strong thermal increase is linked
to the classical kinetic energy acquired during the mechanical instability that occurred at the plastic threshold [40].
Such numerical evidence of the strong self-heating in metallic glasses is also supported by the experimental observation
of structural changes inside shear bands [44, 45], that suggests the possibility to overcome locally on a short time the
glass transition temperature.
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However, the use of classical simulations does not allow taking into account all phenomena representative of
small-scale dissipation in real MG. Especially, the simulations show difficulties in reproducing the heat evacuation
mechanisms in a realistic manner in large samples. To overcome this last problem, we have added a uniform damping
parameter inside the system, that represents the general dissipation due to quantum excitations in broken bonds [34]
not considered in the classical description of the interactions. A more precise approach to thermal dissipation should
involve electronic excitations as discussed before, and also electronic temperature and relaxations at short time scales.
For that, double-temperature models have been developed [46, 47, 48], allowing to consider electron-phonon couplings.
We consider here, that electronic relaxation is sufficiently fast (< 10−13𝑠) to be negligible in the process dynamics, but
may act indeed as contributing to the global dissipation.

We have shown also that the smallest systems are not representative of the macroscopic samples in the plastic
regime, because they are unable to support properly large shear band formation, especially in the small strain rate
regimes. The shear band width appeared to be at least comprised between 50 Å (for strain localization) and 100 Å (for
temperature rises). It is thus important to perform simulations on sufficiently large systems to capture these collective
effects. However, unlike for elastic properties [38], it is still an open question to identify the elementary representative
volume for shear banding in glasses [40].

Some characteristic features of the thermo-mechanical behaviour of Metallic Glasses are nonetheless highlighted.
We show that the temporality of the self-heating is strain rate dependent. While we observe an excitation followed by a
sudden attenuation of the temperature in the form of bursts at a low strain rate (108 s−1), it appears in the case of a high
strain rate (1010 s−1), that the self-heating under oscillatory stress manifests itself in the form of loops having a certain
temporal persistence. This suggests a reinforced collective thermal behaviour in the high strain-rate case, maybe due
to the permanent and somehow more homogeneously spread excitation of the plastic activity in this case [30]. Such a
phenomenon is visible only at sufficiently high strain rates, and in large systems.

The model we have proposed is inspired from classical approaches to thermo-mechanical constitutive laws in solid
materials [43]. Three ingredients are taken into account. First, the energy dissipated during plastic deformation acts
as a heat source, it means that it is either totally, either partially converted into heat or yields to temperature increase.
Second, considering the linear effect of temperature on the linear strain (this effect is equivalent to first order thermal
dilatation for volume change but here acting on the shear strain) yields to deformation-driven heat storage, and thus
to temperature decrease. Finally, thermal fluctuations, that dominate the thermal response in small systems and in the
slow strain rate case, are recovered thanks to the addition of thermal noise. Table 2 regroups all the parameters of
the model obtained at T = 100 K. It is seen that the part of energy dissipated into plastic deformation and converted
into heat source decreases from 100% to 43% for the largest strain rate and is negligeable in the (too) small systems.
The measurements in the small systems are not significant, since this size of the system is smaller than the width
of the shear band appearing in the large systems. More impressive, within the limitations of our fitting procedure,
the relaxation time needed to evacuate heat decreases for orders of magnitude with the strain rate, suggesting that
collective effects take place in the high strain rate regime, that increase the efficiency of heat transportation (that is
the effective heat conductivity). Moreover, the linear thermo-mechanical coupling model appears to be quite good at
the largest strain rate but differs from the numerical data for smaller strain rates. Especially, the intrinsic dissipation is
too small at low strain rates. This term should be increased, may be with higher order sensitivity to the temperature to
improve the temperature decay after each peak. It would be interesting now to compare the different parameters of the
thermo-mechanical model to experimental observations. To our knowledge, there are unfortunately no experimental
data available at the moment for the effective thermal conductivity, as well as for the thermo-mechanical couplings at
different strain rates in these systems. But independently measured parameters like the thermal expansion [49] are of
the same order of magnitude as those obtained here as a fitting parameter in our model.

Note that temperature and strain rate play definitely different roles in this behaviour. For example, the thermal
strain, that is proportional to the temperature, is not very sensitive to the strain rate, while the strain rate decreases the
conversion of mechanically dissipated energy into heat but increases the efficiency of heat transportation (parameter
𝐸). The figures 9 and 10 show that temperature increases the strain fluctuations at the frontier of the shear bands,
while the effect of the shear rate is to split the shear bands into filaments. Finally, the design of the resulting shear
band networks appears to depend on the strain rate as well as on the temperature. The effect of temperature and strain
rate on the thermal conductivity has now to be deepened. Our preliminary measurements of the thermal conductivity
inside and outside shear bands has shown an increase inside the shear bands. In the analysis provided here, we do
not include the possibility for a progressive change of the parameters as a function of the residual strain. This one is
increased during the deformation and certainly depends on the temperature. It may also affect the amount of plastic
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work converted into heat [16]. Moreover, using large strain constitutive laws (involving for example second gradients)
is also a way of improving our model.

7. Conclusions
Using classical molecular dynamics simulations with an effective description of quantum dissipation, we have

studied self-heating in a model metallic glass submitted to cyclic loads. The effect of system size, strain rates and
external temperatures has been studied in detail. The thermo-mechanical behaviour is compared to a continuum
modelization, with linear thermo-mechanical couplings allowing temperature decays. The heating of the glass is due
to the conversion of a fraction of plastic work (between 43% and 100% in the largest most representative system) into
heat. The temperature increase is mainly located inside the shear bands.

The thermo-mechanical behaviour is shown to display strong finite-size effects, still not converging in the largest
sample studied, whose length is already 0.2𝜇m. This shows that finite size effects are far more important for shear
banding than for the collective elastic behaviour already extensively studied [7] in amorphous materials. The shear
band width, measured from the temperature variation, reaches 100 Å in our sample, in the low strain rate regime. It
results from large collective behaviour.

This behaviour is also very sensitive to the strain rate, since cooperative effects at a collective scale, associating
regular temperature increase, and progressive decay during unloading, appear only at sufficiently large strain rate. For
large system sizes however, an additional global effective viscous damping related to quantum sources of relaxation
(bonds breaking, or electronic excitations for example) has to be added to the classical description of the forces in order
to recover the usual succession of temperature increases and decreases, and embed unphysical uncontrolled heating of
the sample. It is thus very important to have a faithful description of the dissipative processes at a microscopic level,
to provide realistic simulations.

The resulting temperature variations are not very large compared to experimental results for bulk metallic glasses.
For ZrCuAgAl and TiZrNiBeCu, for instance, it has been shown recently that the temperature variations around the
shear band reach Δ𝑇 ≈ 1200 K [50]. At ambient temperature, it even becomes possible to exceed the glass transition
temperature of Cu50Zr50, corresponding to 𝑇𝑔 = 670 K [51]. At the microscopic scale, we have shown that thermal
increase is located mainly inside the shear bands. The shear bands at low strain rate are large and stable, while the
alignment of plastic events at large strain rate gives rise to a complex structure for plastic flow, thinner that for smaller
strain rates, and with transverse branches. Considering that one promising way of nanostructuration of glasses involves
nanocrystalline inclusions [52, 53, 54], it would be interesting to now monitor the shape of the shear band network,
to generate, without the need of nanocrystals, new materials with well controlled thermo-mechanical properties, and
thermal conductivity.
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