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ICE-closed subcategories and epibricks over one-point
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Abstract Let B be the one-point extension algebra of A by an A-module M. We proved that
every ICE-closed subcategory in mod A can be extended to be some ICE-closed subcategories in
mod B. In the same way, every epibrick in mod A can be extended to be some epibricks in mod B.
The number of ICE-closed subcategories in mod B and the number of ICE-closed subcategories
in mod A are denoted respectively as m, n. We can conclude the following inequality:

m > 2n
This is the analogical in epibricks. As an application, we can get some wide 7-tilting modules of

B by wide 7-tilting modules of A.
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1. Introduction

Several kinds of subcategories have been researched in the representation theory of algebras.
For example, torsion class and torsion-free class are the key points of these subcategories. Torsion
class is closed under quotients and extensions and can be classified by support 7-tilting modules
in [7], which is an important breakthrough in classification of these subcategories. Similarly,
Haruhisa Enomoto’s paper given us a uniform way to classify torsion-free class by considering
the information on monobricks.

Bricks and semibricks are considered in [6], [2]. Moreover, the semibrick has been studied
from the point of view of 7-tilting theory in [1]. In 2021, Haruhisa Enomoto given the definition
of monobrick in [4]: a set of bricks where every non-zero map between elements of bricks’
isomorphism classes is an injection. The set of simple objects provides an effective approach
to investigate torsion-free class and wide subcategories. Because monobricks are in bijiection
with left Schur subcategories, which are same as subcategories closed under kernels, images and
extensions. Without using 7-tilting theory, it infers several noted consequence on torsion class
and wide subcategories via monobricks.

In 2022, the concept of ICE-closed subcategories of module categories have been introduced
by Haruhisa Enomoto in [3]. The ICE-closed subcategory closed under images,cokernels and
extensions correlates closely with torsion class and wide subcategory. It is worthy mentioning

that representative instances of ICE-closed subcategory are torsion class and wide subcategory .
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Therefore, the ICE-closed subcategory can be seen as generation of these two classes. She proved
that the number of ICE-closed subcategories does not dictated by the orientation of the quiver
and given a clear formula for each Dynkin type.

In this paper, we construct ICE-closed subcategories and epibricks over the one-point exten-

sion B of an algebra A by an A-module M 4. The following is our main results of this article.

Theorem 1.1. Let B be the one-point extension algebra of A by an A-module M4 and T4 be
an ICE-closed subcategory in mod A.

(1) Tg := {(N4,0,0)|Na € Ta}, Tg is an ICE-closed subcategory in mod B.

(2) T == {(Na, k", f),(0,k™,0)[Ng € Ta,n € N, f : k" @, Mg — Na}, Tp is an ICE-closed

subcategory in mod B.

Theorem 1.2. Let B be the one-point extension algebra of A by an A-module M4 and Sz be

an epibrick in mod A.
(1) Sg :={(s,0,0)|s € Sa}, Sp is an epibrick in mod B.
(2) 8'p :={(s,0,0),(0,k,0)|s € Sa}, Sp is an epibrick in mod B.

Throughout this paper, all algebras will be basic, connected, finite dimensional K-algebras
over an algebraically closed field K. Let A be an algebra, mod A will be the category of finitely
generated right A-modules and 7 the Auslander-Reiten translation of A. We also denote by |M|
the number of pairwise nonisomorphic indecomposable summands of M, add M the subcategory
consisting of direct summands of finite direct sums of M for M € mod A. Given an algebra
A = KQ/I, let P; be the indecomposable projective module, S; the simple module, e; the

primitive idempotent element of an algebra corresponding to the point .

2. Preliminaries

2.1 Basic definitions

In this section, we recall some basic definitions about ICE-closed subcategory in mod A
and introduce the concept of epibrick in mod A. First of all, We give several conditions for a

subcategory of mod A, including closed under images, cokernels, extension, quotients and so on.
Definition 2.1. ([3]) Let A be an artin algebra and T a subcategory in mod A.

(1) T is closed under images (resp. kernels, cokernels) if for every map f : M — N with
M,N €T, we have Im f € T (resp. Ker f € T, Coker f € T).

(2) T is closed under extensions if for every short exact sequence in mod A
0— Ny — Ny — N3 —0

with N1, N3 € T, we have Ny € T .
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(3) T is closed under quotients if for every exact sequence in mod A
N1 — Ny — 0

with N1 € T, we have Ny € T .
Then we can get the definitions of these subcategories.
Definition 2.2. ([3]) Let A be an artin algebra and T a subcategory in mod A.
(1) T is a torsion class if T is closed under quotients and extensions.
(2) T is a wide subcategory if T is closed under kernels, cokernels, extensions.
(3) T is an ICE-closed subcategory if T is closed under images, cokernels, extensions.
Corollary 2.3. ([3]) All torsion classes and wide subcategories are ICE-closed subcategories.

Proof If T is a torsion class in mod A, then 7 is closed under quotients and extensions. For
every map f: M — N with M, N € T, We have

M — Imf —0,N — Cokerf — 0

Imf e T,Cokerf e T. Since M, N € T and T is closed under extensions. 7 is an ICE-closed
subcategory.

In the same way, if T is a wide subcategory, then 7 is closed under kernels, cokernels and
extensions. For every map f: M — N with M, N € T, We can get Kerf € T, Cokerf € T.
Then for map g : N — Cokerf with N, Cokerf € T, we have Kerg € T and kerg = Imf. That
is Imf € T. T is an ICE-closed subcategory.

Next we give the definition of epibrick.
Definition 2.4. ([4]) Let S € mod A.

(1) S is a brick if End 4 (S) is a division ring. The set of isoclasses of bricks in mod A is denoted
by brick A.

(2) A subset & C brickA is called a semibrick if every morphism between elements of S is

either zero or an isomorphism in A. The set of semibricks in mod A is denoted by sbrick

A.

(3) A subset S C brickA is called a monobrick if every morphism between elements of S is

either zero or an injection in A. The set of monobricks in mod A is denoted by mbrick A.

(4) A subset S C brickA is called an epibrick if every morphism between elements of S is either

zero or a surjection in A. The set of epibricks in mod A is denoted by ebrick A.
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It is easy to know that every semibrick is a monobrick or epibrick. By Schur’s Lemma,every
simple module is brick, and a set of isoclasses of simple modules is a semibrick.

Let M € mod A. The one-point extension of A by M, is given by the following matrix

B A 0
My k

with the ordinary matrix and the multiplication induced by the module structure of M 4. All
B-modules can be seen as (Na, k™, f), where No € mod A, n € Nand f: k" ®, Ma — Ny. The
morphisms from (N4, k™, f1) to (N, k™2, f2) are pairs of (f, g),where f € Homu(Na, N);) and
g € Hom(k™, k™), such that the following diagram commutes,

algebra

kK™ @ My i Ny
9®MA\L lf
f2 ,

A sequence
0= (Na, k™, 1) "8 (W k2, fo) 87 (V4 ) = 0
in mod B is exact if and only if
0— Ny 25 N, 22 N =0

is exact in mod A and
0 — kmt 2y gne 22, gns )

is exact in mod k.

3. Main Result

In this section, we will give ICE-closed subcategories (resp. epibricks) of mod B via an
ICE-closed subcategory (resp. epibrick) of mod A in two different ways, where B is one-point

extension algebra of A by an A-module M 4.

Theorem 3.1. Let B be the one-point extension algebra of A by an A-module M4 and T4 be
an ICE-closed subcategory in mod A.

(1) Tg :={(N4,0,0)|Na € Ta}, Tg is an ICE-closed subcategory in mod B.

(2) Tg == {(Na, k", f),(0,k™,0)[Ng € Ta,n € N, f : k" @, Mg — Na}, Tp is an ICE-closed

subcategory in mod B.

Proof (1) Firstly, we check Tp is closed under extensions. Given an arbitrary short exact
sequence in mod B: 0 — (Ny,0,0) — (N, k™, f) — (N2,0,0) — 0, (N1,0,0), (N2,0,0) € Tg,
we have 0 - Ny — N — Ny — 0 is exact in mod A and 0 - 0 — k™ — 0 — 0 is exact
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in modk. Then N € T4 and n = 0. Since N1, No € T4 and T4 is closed under extension .
Therefore, (N, k™, f) = (N,0,0) € Tg.

Secondly, we check 7g is closed under images. Given a map F' : (N1,0,0) — (N3,0,0),
(N1,0,0), (N2,0,0) € Tg. F = (f,g), where f : Ny — Na, ¢ = 0. Obviously, Img = 0.
Imf € Ty. Because N1, No € Ta and T4 is closed under images. ImF = (Imf,Img,h) =
(Imf,0,0) € Tp.

Finally, we check 7p is closed under cokernels. Given a map F : (N1,0,0) — (Na,0,0),
(N1,0,0), (N2,0,0) € Tg. F = (f,g), where f : Ny — Ny, g = 0. It is easy to know that Cokerg
= 0 and Cokerf € Ty. Because N1, Ny € T4 and T4 is closed under cokernels. CokerF =
(Cokerf,Cokerg,h) = (Cokerf,0,0) € Tp.

(2) Firstly, we check Tp is closed under extensions. Given an arbitrary short exact sequence
in mod B: 0 — (N1, k™, f1) — (Na, k™2, fo) — (N3, k™, f3) — 0, (N1, k™, f1), (N3, k"2, f3)
€ T, we have 0 - Ny — Ny — N3 — 0 is exact in mod A and 0 — k™ — k™ — k™ — 0
is exact in mod k. Then Ny € T4 since N1, N3 € T4 and T4 is closed under extension. And no
= n1 + ng € N. Therefore, (N2, k", f2) € Ta. In the same way, we can proof that {(0,%™,0)}
is closed under extensions.

Secondly, we check Tp is closed under images. Given a map F : (N1, k™, f1) — (No, k™2, f2),
(N1, k™, f1), (No, k™, f5) € Tg. F = (f,g), where f: Ny = Ny, g = k™ — k™. Ny, Ny € Ty
and T4 is closed under images. So Imf € Ta. I'mg is subspace of k™2. Then I'mg is n dimensional
vector space, n € N. ImF = (Imf,Img,h) € Tg, h : Img @, Ma — Imf. Similarly, we can
proof that {(0,%™,0)} is closed under images(f = 0).

Finally, we check Tp is closed under cokernels. Given a map F': (N1, k™, f1) — (Na, k"2, fo),
(N1, k™, f1), (No, k™2, f3) € Tg. F = (f,g), where f : Ny = Ny, g = k™ — k™. N1, No € Ty
and T4 is closed under cokernels. So Cokerf € Ta. Obviously Cokerg is n dimensional vector
space, n € N. CokerF = (Cokerf,Cokerg,h) € Tg, h : Cokerg ®; Ma — Cokerf. Similarly,
we can proof that {(0,%",0)} is closed under cokernels(f = 0).

Example 3.2. (1) B:=KQp, Qp: 1325 3Let A:= KQa, Qa: 253, My = () = P,.
A0

Then B := ( L The irreducible representations of A are Py : k — k, So : k — 0,
A

2 2
S3: 0 = k. The ICE-closed subcategories in mod A are add{3, 2, 3}, add{3, 2}, add{2},

2
add{3}, add{0}. Then we can get ICE-closed subcategories in mod B : add 3,2,3},

1 1
2 21 21 1
add{ ,2},add{2},add{3},add{0},add 2,1, , ,2,35,add< 2,1, , ,2 ,add{ ,1,2}7
3 32 32 2
3 3
add{1, 3}, add{1} by Theorem 3.1.
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2) B:= KQp, Qp : 1522 3 with relation af = 0. Let A := KQu, Qa: 253, My
A 0
My k
as (1). The ICE-closed subcategories in mod A are also identical to (1). However, the

= (@) = S5. Then B := < ) The irreducible representations of A are the same

2 2
ICE-closed subcategories in mod B are add 3 2,35, add{3, 2}, add{2}, add{3}, add{0},

2 1 2 1 1
add< ,1, ,2,35,addS ,1, ,25 add¢ ,1,2;, add{1,3}, add{1} by Theorem 3.1.
3 2 3 2 2
Remark 3.3. Applying Theorem 3.1, we can give a part of ICE-closed subcategories in mod B.

But more computation is required to give all the ICE-closed subcategories in mod B.

Corollary 3.4. The number of ICE-closed subcategories in mod B and the number of ICE-closed

subcategories in mod A are denoted respectively as m, n. Then we have :
m > 2n.

Theorem 3.5. Let B be the one-point extension algebra of A by an A-module M, and S5 be
an epibrick in mod A.

(1) Sg :={(s,0,0)|s € Sa}, Sp is an epibrick in mod B.
(2) 8'p :={(s,0,0),(0,k,0)|s € Sa}, S’ is an epibrick in mod B.

Proof (1)For an arbitrary morphism F' : w3 — wa, where w1 = (s1,0,0), we = (s2,0,0) €
Sp, it is easy to know F = (f,0) with f : s1 — s2. So FF = f. f is either zero or a surjection.
Since s1, s2 € Sy and S4 is an epibrick in mod A. Therefore F' is either zero or a surjection. Sp
is an epibrick in mod B.

(2)For an arbitrary morphism F : w; — ws, where w; = (s,0,0), we = (0,k,0) € Sg,
F=(fg) with f:s—=0,g:0— k. SoF =0. According to (1), Sg is an epibrick in mod B
and (0, k,0) is also an epibrick in mod B. Therefore, &’ 5 is an epibrick in mod B.

Remark 3.6. Let B be the one-point extension algebra of A by an A-module M4 and S4 be a

monobrick in mod A.
(1) Sg:={(s,0,0)|s € Sa}, Sp is an monobrick in mod B
(2) 8’ :={(s,0,0),(0,k,0)|s € Sa}, S'p is an monobrick in mod B

Example 3.7. B := K@p, Qp :

v

8 3
e,
\4
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Let A := KQa, Qa: 45223 My =(a) = k{ayaB} 2 P, : 0 — k — k.Then B :=

A 0 4 2
. The irreducible representations of A : 4,2, 3, , , 2. The epibricks in mod A are:
My k 2°3 5

4 4 4
4 2 2 4 4

4 ) 472 3 473 3 47 3 47 3 472 ) 47 273 ) 4727 ) 47272 3 4737 ) 47 72 )
i a2, o, fa g} {2 20 ) {a22) 3{ . )2

2 N 44 4 44 2 N
27 2737 2’ ) 272 ) 2727 Y 3’ 3’ ) 72 ) ) 2 ) 0'
{}{}{3} 2{}{2}2 {3} {0}
3 3 3 3

Then we can get some epibricks in modB by Theorem 3.5:

4 4 4

4 2 2 4 4
4 ) 4’2 ) 473 ) 4’ ) 47 ) 472 ) 4’273 ) 4’27 ) 4’272 ) 47 3’ ) 47 72 )
.2 g {a ] {22} 20 ) fa?] 3{ y .2

4 4 4 4
2 4 4] )4 2
{2}7 {27 3}7 {273}7 27 2 Y 27 27 2 ? {3}’ {3’ 2}7 72 ) { }7 2 Y {0}7 {4’ 1}7 {47 27 1}7
3 3

4 4 4
4 2 2 4 4
{4737 1}7 47 71 ) 47 71 3 47 271 Y {4727 371}7 47 27 71 Y 4727 271 Y 4737 71 3 47 7271 3
2 3 3 3 3 2 2 3

2 N 44 4 44 2 4
2’17 2’3717 2’ 71 ) 2’2’1 ) 2727 71 ) 371’ 3’ 71 ) 72’1 ) 71 ) 271 )
@ 2o {22 yrp e fagd et f2]
3 3 3 3

{1}.
Remark 3.8. Applying Theorem 3.5, we can give a part of epibricks in mod B. But more

computation is required to give all the epibricks in mod B.

Corollary 3.9. The number of epibricks in mod B and the number of epibricks in mod A are

denoted respectively as m, n. Then we have :

m > 2n.

Applications. Let A be an algebra and M € mod A. M is 7-tilting if Homp (M,7M) =0
and |M| = |A|. M is support 7-tilting if it is a 7-tilting A/AeA-module for some idempotent e
of A. Enomoto shown that every every functorially finite wide subcategory W is equivalent to
a module category (i.e, there is an algebra I' such that W is equivalent to modT'), and then he

introduced the definition of wide 7-tilting modules as follows.
Definition 3.10. ( [3])

(1) Given a functorially finite wide subcategory W of mod A and M € W, fix a equivalent
F W ~modI'. We say M is ny-tilting if F(M) is a 7-tilting I"-module.
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(2) A A-module M is called wide T-tilting if there is a functorially finite wide subcategory W
of mod A such that M is myy-tilting. The set of all wide T-tilting A-modules will be denoted
by wr-tilt A.

Suppose that A, B are Nakayama algebras and B is the one-point extension of A by an
A-module M4. In [5], the authors get the following bijections:

cok(—) Sim(—)
wr—tilt A =—————=ice A m———— ebrick A
P(-) Filt(—)

where A is either A or B, cok(M) denote the subcategory of mod A consisting of cokernels of
morphisms in add M, Filt(S) denote the minimal Extension-closed subcategory which contains
S for § € ebrick A, Sim(B) denote the set of all simple object of ice B, P(C) denote the
maximal Ext-projective object of C. Then we have two different ways to construct wide 7-tilting

B-modules from wide 7-tilting A-modules as follows:

wr-tilt A wr-tilt B
cok(—) P(-)
Theorem 3.1
ice A ice B
and
wr-tilt A wr-tilt B
Sim(cok(—)) P(Filt(-))

Theorem 3.5

ebrick A ebrick B

Example 3.11. B := KQp, Qp : 1 525 3. Let A:= KQu, Q4 : 253, M4 = (a) = P,.

A 0
Then B := .
My k

1. (1) wr-tilt A C wr-tilt B by Theorem 3.1(1).
(2) We list wr-tilt A, ice A, ice B and wr-tilt B in table 1 by Theorem 3.1(2).
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wr-tilt A ice A ice B wr-tilt B
0 add{0} add{1} 1
1 1
2 add{2} add< ;1,2 2@
2 2
3 add{3} add{1, 3} 1®3
1 1
2 2 2
add{ } add< 2,1, ® 2
3 3 3
3 3
1 1
2 2 21 2
® 2 add¢ ,2 addq 2,1, , ,2 20 @2
3 3 32 3
3 3
2 2 ! 2
® 3 addq ,3,2 mod B 2 @3
3 3 5 3

Table 1 wr-tilt A ice A ice B wr-tilt B

2. (1) wr-tilt A C wr-tilt B by Theorem 3.5(1).

(2) We list wr-tilt A, ebrick A, ebrick B and wr-tilt B in table 2 by Theorem 3.5(2).

wr-tilt A | ebrick A | ebrick B | wr-tilt B

0 {0} (1} 1
2 {2} (1,2} 2 & ;
3 {3} {1, 3} 1¢3

1
2 2
1, @2
3 3
3
1
2 2 2 2
® 2 ,2 1, ,2 2® @2
3 3 3 3 3

2 2
;@3 23} | (123} |20 @3

Table 2 wr-tilt A ebrick A ebrick B wr-tilt B
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