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We have studied the Kondo effect of a spin-1/2 impurity coupled to a two-dimensional alter-
magnet host material. To attain the low-temperature many-body Kondo physics of the system, we
have performed a numerical renormalization group calculations that allows us to access the spec-
tral properties of the system at zero temperature. The impurity spectral function and the Kondo
temperature were calculated for different set of parameters, including Rashba spin-orbit coupling
(RSOC) and an external magnetic field. Interestingly, in the RSOC and altermagnetic fields, the
hybridization function is spin independent, despite the characteristic broken time-reversal symmetry
of the altermagnet. This is because the alternating sign of the spin splitting of the bands in the
momentum space renders equal contributions for both spin components of the hybridization func-
tion. Our results demonstrate that, although the hybridization function is time-reversal symmetric,
the Kondo temperature is substantially suppressed by the altermagnet coupling. Moreover, we have
investigated the effect of an external magnetic field applied in the altermagnet along different direc-
tions. Interestingly, we observe an important restraining of the Kondo peak which depends strongly
on the direction of the field. This anisotropic effect is, however, masked if strong Zeeman splitting
takes place at the impurity, as it shatters the Kondo-singlet state.

I. INTRODUCTION

Screening of localized magnetic moments by itinerant
electrons in metallic systems is paradigmatic in many-
body physics in condensed matter. This phenomenon,
known as the Kondo effect [1], is crucial for understand-
ing both electronic transport and magnetic properties of
metallic systems doped with magnetic atoms. The physi-
cal mechanism underlying this phenomenon was first pro-
posed by Kondo in 1963 [2], as spin-flip scatterings of
conduction electrons by magnetic impurities diluted in
metallic systems, resulting in a minimal resistivity ob-
served at low temperatures [3]. After more than fifty
years of its discovery, Kondo effect has been studied in a
variety of systems resulting in an abundance of scientific
studies [4–7].

Since the Kondo effect results from an effective ex-
change interaction between the localized moments and
itinerant electrons, individual characteristics of both may
be equally important. Therefore, the conditions to which
the conduction electrons are subject to may modify the
screening of localized magnetic moments. For exam-
ple, spin-polarized (ferromagnetic) bands are detrimen-
tal to Kondo screening because time reversal symmetry
(TRS) — which is of key importance to spin-flip scat-
tering process involved in the Kondo mechanism — is
broken [8–10]. Another example is the electron-phonon
interaction in the conduction band that results in a van-
ishing density of states of the conduction band at the
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Fermi level and leading to rich Kondo screening phases.
More recently, Kondo screening of magnetic impurities
by spin-orbit coupled conduction electrons has been in-
vestigated [11, 12]. The fundamental question in this
context is how spin-orbit coupling (SOC) modifies the
Kondo temperature of the system [13].
Quite interestingly, although SOC produces an impor-

tant modification in the energy bands of the host mate-
rials, numerical renormalization analysis has shown that,
at least in the high density regime, the effect is straight-
forward. The increase of SOC produces a small widen-
ing of the conduction band accompanied by a decrease
of the density of states at the Fermi level. Nonetheless,
the effective hybridization between the impurity and the
conduction electrons around the Fermi level decreases re-
sulting in a decreasing of TK [14]. It seems, therefore,
that despite the fact that SOC produces spin-splitting in
the energy bands, because TRS is preserved, it has a mi-
nor effect in the Kondo screening [15]. A natural follow
up question one may ask is whether this is the case for
any system with spin-splitting energy bands, for exam-
ple, the recently discovered altermagnets [16–19], with
peculiar TRS broken energy bands.
Altermagnets are a class of collinear two- and three-

dimensional antiferromagnets [20] that display a large
broken spin degeneracy, even in the absence of SOC [19,
21, 22], and they have gained considerable attention re-
cently. Most of these studies have focused on the pecu-
liar properties featured by this emergent class of magnets
materials, such as large anisotropic (non-relativistic) and
spin-splitting in momentum space with protected symme-
try points, accompanied by a zero (net) magnetization.
This anisotropic spin-splitting leads to the prediction of
remarkable physical properties such as gapless supercon-
ducting states with mirage gaps [23], “multi-piezo” ef-
fect in V2Se2O monolayer [24], spin-polarized Andreev
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levels [25], Majorana zero modes with zero net magneti-
zation [26], magnon bands with an alternating chirality
splitting [27], pronounced thermal transport [28], among
many others exotic properties.

In this paper, we study the Kondo screening of mag-
netic impurities in altermagnets. More specifically, we
aim at investigating how the unusual magnetic properties
of these materials modify the Kondo temperature of the
system. To this end, we propose a spin-1/2 magnetic im-
purity coupled to an altermagnet host material described
formally by a traditional single-impurity Anderson model
(SIAM). To accomplish this, we employ the well-known
numerical renormalization group (NRG) [29] that allows
us to obtain the relevant low-temperature physical quan-
tities. For instance, within NRG calculations we can ob-
tain the local density of states LDOS at the impurity site,
from which we estimate the Kondo temperature of the
system. Our results shows that the intriguing band struc-
ture of the altermagnets has interesting consequences on
the Kondo physics: (i) despite the spin-splitted band due
to broken TRS, there is no spin splitting in the impurity
spectral function. This is because the integration of the
self-energy over the entire Brillouin zone renders a spin-
independent hybridization function. (ii) By comparing
the effects of AM and RSOC to the Kondo temperature,
we find that TK is up to two order of magnitude smaller
for AM coupling as compared to RSOC, for the same
strength. (iii) In the presence of external magnetic field,
B, on the altermagnetic-magnetic impurity system, the
suppression on the Kondo peak depends strongly on the
direction of the applied field. This anisotropy is akin to
what was obtained by one of us in quantum impurity
coupled to SOC quantum wires [14].

The rest of this paper is structured as follows. In Sec. II
we present the model Hamiltonian and the procedure to
calculate the hybridization function. Sec. III the NRG
results are presented. We summarize and conclude in
Sec. IV.

II. MODEL AND METHODS

A. Hamiltonian model

We consider a hybrid system composed by a spin-1/2
impurity coupled to a d-wave AM with RSOC [30], as
illustrated in Fig. 1 (a). The total Hamiltonian of the
system can be written in the form of a SIAM as,

H = H0 +Himp +Hhyb, (1)

where H0, Himp and Hhyb represent the host altermag-
net material, the magnetic impurity and the coupling
between electrons of the altermagnet and the magnetic
impurity, respectively. More precisely, H0 = HAM +
HRSOC + HZ, where HAM describes, for instance, a d-
wave altermagnet on a substrate [19, 22, 30]. HRSOC ac-
counts for the contribution of the Rashba SOC (RSOC)
induced by an inversion asymmetry, which can naturally
arise due to the substrate on which the AM is deposited.
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(d) (e)

“pristine” B=0; λ ≠ 0

Only Bx; λ = 0 Only Bz; λ = 0

S-1/2
Impurity

Vkσ=V
S

e-

FIG. 1. (a) Schematic picture showing a spin-1/2 impurity
coupled to an altermagnet material, which is deposited on a
substrate and under an external magnetic field represented by
the red arrow. (b) The E±(kx, ky) for pristine altermagnet
(λ and B are both zero) the zone boundary −π/a ≤ kx(y) ≤
π/a. (c) E±(kx, ky) for the case when λ ̸=0 and B = 0. (d)

E±(kx, ky) for the case when λ=0 and B⃗ = Bx̂ (or B = Bŷ
by symmetry). (e) Same as in (d), but for a magnetic field
along the B = Bẑ.

Finally, HZ represents an external magnetic field. More
explicitly, each of these terms are given by

HAM = 2t(cos kx+cos ky)σ0+2tAM(cos kx−cos ky)σz,

HRSOC = 2λ(sin kyσx − sin kxσy) = BSOC(k) · σ, (2)

HZ = gB · S.
Here, t is the hopping amplitude parameter and tAM

stands for the AM exchange interaction. We have writ-
ten HRSOC as an effective k-dependent magnetic field
BSOC(k) = 2λ(sin ky,− sin kx) induced by the Rashba
field, with λ standing for the strength of the interaction.
The last term of Eq. (2), HZ , describes the Zeeman ef-
fect in the AM material due to an external magnetic field
B, in which g is the effective g-factor of the AM. In all
these terms, σi represents the Pauli matrices, including
the identity σ0 and S = ℏσ/2.
The second term of Eq. (1) is given by

Himp =
∑
σ

εdnσ + Un↑n↓ + gimpB · S, (3)

where, εd is the impurity on-site energy for spin σ (↑ or
↓), gimp is the impurity g factor, U represents the e-e
interaction at the impurity site, and nσ = d†σdσ is the
electron number operator with spin σ.
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Finally, the third term of Eq. (1) has the form

Hhyb=V
∑
kσ

(d†σckσ +H.c.), (4)

where we have assumed for simplicity, that the coupling
strength between the impurity and the altermagnet is
independent of momentum and spin component [31].

B. Energy band properties

The main features of the electronic bands given by
Eq. 2 are shown in Figs. 1(b)-1(e), for different sets of pa-
rameter configurations. Fig. 1(b) shows the pristine case,
which shows the alternating spin-splitting along the mo-
mentum and with degenerate points at Γ and also at the
four corners of the Brillouin zone. In Fig. 1 (c), we show
the case where λ ̸= 0 (while B=0), which fully breaks
the spin degeneracy of the bands, except at Γ points and
at the four corners. In Figs. 1(d)-1(e), a B is considered
along different directions (with λ=0), where now there is
no degeneracy at Γ and at the boundaries of the Brillouin
zone. Below, we will return to the host band structure
with a deeper analysis under different interactions.

−2

0

2

E
ne

rg
y

−0.5 0.5

〈Sz〉
−0.5 0.5

〈Sx〉

M Γ M ′
−2

0

2

E
ne

rg
y

−0.5 0.5

〈Sy〉

M Γ M ′

−0.5 0.5

〈Sz〉

(a) (b)

(c) (d)

~B = 0 ~B ‖ x̂

~B ‖ ŷ ~B ‖ ẑ

FIG. 2. Energy bands along the M -Γ-M ′ path for differ-
ent parameters configurations: (a) B = 0, (b) B = 0.05x̂,
(c) B = 0.05ŷ, and (d) B = 0.05ẑ. For all panels, t=0.5,
tAM=0.1, λ=0.2, a Néel vector along the z-direction and the
color map is associated to the spin-projection, ⟨Si⟩, for each
band. The insets correspond to each respective cases with
λ=0.0.

Let us further analyze the host band structure in the
presence of the external magnetic field. For the sake of
numerical convenience, throughout the paper we will set,
g = kB = 1.0 = µB = ℏ = 1.0. Fig. 2(a)-2(d) show the
electronic band structure along the path M -Γ-M ′, which
is a good representative of the symmetries of the bands.
In the absence of magnetic field and RSOC, the system
shows an intriguing broken TRS with a momentum de-
pendent alternating spin-splitting, as shown in Fig. 1(b).
The band degeneracy along the path M -Γ-M ′ is broken

when RSOC is considered. However, they are still de-
generated at the Γ and M (M ′) points, which is a conse-
quence of the C4zT symmetry that still holds [30]. This
feature can be clearly seen in Fig. 2 (a), where we show
the band structure for B=0 and λ = 0.2 (λ = 0.0 for the
inset). Moreover, the spin projection ⟨Sz⟩ is zero except
at the spin-degenerate points, where the value is exactly
⟨Sz⟩=0.5 (and -0.5). Indeed, the spin projection would
be non-zero (and equal, ⟨Sx⟩=⟨Sy⟩) only along the plane
(x − y) (not shown in the panel). For an applied mag-
netic field in the plane x-y, say, at the x-(or y-direction),
C4zT -symmetry is broken as shown in Fig. 2(b) and 2(c).
We observe clear spin splittings of the bands at all points
including Γ and M (M ′), which acquires a finite gap of
2g|B|, even for the λ=0 case (shown in the insets). How-
ever, differently from the λ=0, the presence of RSOC in-
duces a spin mixing of the bands with a broken inversion
symmetry along the M -Γ and Γ-M ′ path. Moreover, by
alternating the direction of the in-plane B field, the band
structure around the Γ point is reversed, with significant
changes in the spin projection along the direction of the
applied B for λ ̸= 0, with spin projections inverted at the
Γ anM (M ′) points. Lastly, in Fig. 2(d) we show the case
when B is applied along the z-direction. As previously
observed, the system is TRS-broken with a clear spin
splitting. However, differently from the in-plane case,
the system still has a symmetry along the cut line M -Γ-
M . From these results, we can confirm that the interplay
between RSOC and magnetic field introduces important
modifications to the altermagnet electronic bands, with
a relevant anisotropy that can be crucial for the Kondo
physics, as will be further explored in the following sec-
tions.

C. Hybridization function

The hybridization function of the impurity is of key
importance in the NRG approach to the Kondo impurity
problem. To obtain it, we first calculate the local impu-
rity Green’s function Gimp(ω), which is a 2 × 2 matrix
and can be written as [14, 32],

Gimp(ω)=
[
(εd − ω)σ0 −Σ(0)(ω)−Σ(int)(ω)

]−1

. (5)

Here, Σ(0)(ω) =
∑

k V Ghost(k, ω)V
† represents the

non-interacting self-energy [32], with V̂ = V σ0 and

Ghost(k, ω) = [ωσ0 −H0]
−1

, while Σ(int)(ω) is the in-
teracting part (or proper) self-energy, which is obtained
within the NRG calculation. With the non-interacting
self-energy, the hybridization function can be written as,

Γ(ω)=
1

2i

∫∫ [
Σ(0)(k, ω − iη)−Σ(0)(k, ω + iη)

]
d2k,(6)

where η → 0. The integration defined in Eq. (6) is
highly peaked for small values of ω, therefore a high pre-
cision numerical integration is desirable to avoid numer-
ical flaws. To achieve this purpose, we have used cu-
bature rules as implemented in the Cuba package [33].



4

Note that Γ(ω) is also a 2 × 2 matrix and, in the pres-
ence of an external in-plane magnetic field, there is a
spin-mixing rendering non-diagonal elements. To deal
with the spin-mixing channels, a non-trivial Wilsonian
RG chain is required [14]. As the hybridization ma-
trix has, in general, non-zero off-diagonal complex el-
ements, it is useful to decompose it in terms of Pauli
matrices as, Γ(ω) =

∑
i di(ω)σi (i=0, x, y, z). For con-

venience, we hereafter will rescale the bandwidth to unity
(D=1), such that the relevant energy range is defined as
−1 < ω < 1, a standard procedure in quantum impu-
rity solvers. We also assume the impurity-altermagnet
coupling to be V =0.1.

−1 0 1

ω

0.00

0.06

0.12

Γ
(ω

)

tAM=0.0
tAM=0.10
tAM=0.20
tAM=0.30

−1 0 1

ω

λ=0.0
λ=0.10
λ=0.20
λ=0.30

(a) (b)

λ=0 tAM=02d0 2d0

FIG. 3. Hybridization function Γ̂(ω): (a) for λ=0.0 and
tAM ̸= 0; (b) tAM=0.0 and λ ̸=0. For both panels B=0,
and notice that we are showing the trace of d0σ0, as the di-
agonal terms are equal and there are no off-diagonal terms.

In Figs. 3 (a) and 3(b), we show Γ(ω) for different
values of tAM and λ, respectively, in the absence of B.
Notice that regardless of the value of λ or tAM, the di-
agonal terms for both panels are equal, as there is no
spin-mixing terms in the hybridization matrix. There-
fore, we only showed the trace of d0(ω)σ0 ∝ 2d0, which
is proportional to the total density of states. When tAM

is considered (with λ=0), one can observe a strong sup-
pression of the peak around ω = 0, with the development
of a splitting. This suppression will be responsible to sig-
natures in the Kondo temperature, as it will be discussed
in the following section. For the case when RSOC is non-
zero (with tAM=0), shown in Fig. 3 (b), we can also notice
a peak suppression similar to the Fig. 3 (a), however, the
suppression is less pronounced, and there are peaks at
the edge associated to the van Hove singularities. Since
they are far away from the Fermi level, these van Hove
singularities at the edges near the edge of the conduc-
tion band are unimportant for the Kondo screening. The
more pronounced suppression of the hybridization func-
tion near the Fermi level produced by tAM anticipates
the stronger suppression of Kondo screening caused by
the altermagnet as compared to RSOC.

Now we set the value of tAM=0.1 and investigate how
the presence of B affects the hybridization matrix. In
Fig. 4, we show Γ(ω) decomposed for different parameter
configurations of B and λ. In the absence of a magnetic
field and RSOC (λ=0), d0 is the only nonzero value, as
shown by the black solid line in Fig. 4 (a). However,
notice that this result holds even for the case of λ=0.2
(dashed line). This behavior is because (i) the impurity is

0.00

0.02

0.04

Γ
(ω

)

d0

dx

dy

dz

−1.0 −0.5 0.0 0.5 1.0

ω

0.00

0.02

0.04

Γ
(ω

)

−1.0 −0.5 0.0 0.5 1.0

ω

(a) (b)

(c) (d)

~B = 0 ~B ‖ x̂

~B ‖ ŷ ~B ‖ ẑ

FIG. 4. Decomposition of the matrix hybridization function
Γ̂(ω) along different Pauli matrices σi with corresponding
weights di. (a) For B=0, (b) for a magnetic field along x̂,
(c) for a magnetic field along ŷ and (d) for a magnetic field
along ẑ. The solid line is for λ=0, while the dashed line
stands for λ=0.2. For (b)-(d), we have assumed tAM = 0.1
and B = 0.02.

spin-independently coupled to the host and (ii) the AM
Hamiltonian [H0 in Eq. (1)] preserves C4zT symmetry
and SOC is time-reversal invariant, thus rendering a di-
agonal and spin-independent Γ(ω). Nonetheless, notice
that because λ ̸=0, we can still see the emergent peaks
close to the edges of the conduction band associated to
the appearance of van Hove singularities in the conduc-
tion band around the M -point. For an in-plane magnetic
field Fig. 4 (b) and 4(c), the off-diagonal elements of Γ̂(ω)
will contribute to non-zero values for the coefficients dy
(dx) for a magnetic field applied along x (y) conversely,
while there is also a finite value for dz that changes signs,
i.e., dz → −dz. Interestingly, for B ∥ ẑ shown in Fig. 4
(d), the only nonzero components are along d0 and dz,
even when λ ̸=0 (which intertwine the spin channels but
does not break TRS). Furthermore, notice that because
of the interplay between the AM exchange interaction
and the Zeeman field, there is an enhancement of the
dz component, and also a marked double splitting in the
peaks of d0, which will strongly reflect in the impurity
spectral function.

III. INTERACTING REGIME AND KONDO
SCREENING

Having obtained the hybridization function Γ(ω), we
are ready to use the NRG method to address the Kondo
effect in the system. This numerical technique is a power-
ful and standard impurity solver, which consists of a loga-
rithmic discretization of the continuum conduction band
in energy scales that decreases a Λ−N/2, where Λ is a dis-
cretization parameter and N is the number of iterations
in the NRG procedure. The discretized model is then
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mapped into a one-dimensional tight-binding-like Hamil-
tonian (aka Wilson chain Hamiltonian) whose length in-
crease iteratively with N . The iterative diagonalization
of a large-N Wilson chain is possible by proper trun-
cation of Hilbert space at certain maximum dimension,
allowing us to access the energy around the Fermi level in
a controllable manner [34]. Here, for practical purposes,
we employ the NRG method to calculate the impurity re-
tarded Green’s function, from which we calculate the im-
purity density of states in the interacting regime. Within
the Zubarev’s notation [35], our Green’s function can be
written as

Gσσ′

imp(ω) = ⟨⟨dσ; d†σ′⟩⟩ω, (7)

where ⟨⟨dσ; d†σ′⟩⟩ω = −i
∫
Θ(t)⟨

[
dσ(t), d

†
σ′(0)

]
+
⟩eiωtdt.

Here,
[
dσ(t), d

†
σ′(0)

]
+

is the anti-commutator between

the annihilation operator at time t with the creator op-
erator at t = 0 at the impurity. The expectation value
⟨·⟩ is taken in the ground state for zero temperature cal-
culations.

The nontrivial energy dependence of the hybridization
function requires an improved discretization scheme to
reproduce with high resolution the initial function, thus
reducing the numeric artifacts that can be present in
the NRG calculations. To this end, we have used the
adaptive z-averaging scheme [36] (with Nz=5), as im-
plemented in the NRG Ljubljana open source code [37].
Furthermore, for the spectral functions calculations we
have also checked with the self-energy trick, as described
in Ref. [38] to analyze and remove nonphysical oscilla-
tions at the vicinity ω = 0. For all the NRG calculations,
we have assumed (unless stated otherwise) εd = −U/2
(particle-hole symmetry), U=0.25, Λ=2, and number of
kept states = 2000.

A. Kondo temperature

We start by investigating the effect of the AM exchange
field in the Kondo temperature of the system. The main
quantity calculated here is the impurity density of states
[39]:

Aσ(ω) = − 1

π
Im[Gσσ

imp(ω)]. (8)

It is known that A(ω) =
∑

σ Aσ(ω) exhibits a many-
body resonance at the Fermi level, known as Abrikosov-
Shul resonance [40, 41] (or simply Kondo peak), as a
signature of the Kondo screening [1]. This resonance not
only signals the presence of Kondo screening in the sys-
tem, but also provides a useful way to estimate TK . In-
deed, the width of the Kondo resonance can be directly
associated to TK [42–44]. In Fig. 5(a)-5(d), we make
an insightful analysis on the behavior of TK , extracted
from the half-width at half-peak of the impurity spec-
tral function, for different configurations of tAM and λ,

setting B = 0. Fig. 5(a) shows A(ω) for different val-
ues of tAM. For tAM = 0 (black line), we see that A(ω)
exhibits a split peak around ω = 0. This splitting is in-
duced by the sharp peak in the hybridization function
Γ(ω) shown in Fig. 3(a) for tAM = 0 (black curve). This
splitting is analogous to the one observed in Ref. [45],
resulting from an Anderson impurity coupled to a struc-
tured host density of states provided by a non-interacting
energy level. Here, on the other hand, the sharp struc-
ture the conduction band is naturally provided by the van
Hove singularity of the two-dimensional material. Now,
as tAM increases, we observe that the Kondo peak evolves
rapidly to a single and sharper peak, as already observed
for tAM = 0.05. This is because the sharp van Hove
singularity is split for finite TAM, leaving Γ(ω) relatively
smooth near the Fermi level, as seen in Fig. 3(a) for finite
tAM. This prompt sharpening of the Kondo resonance,
as tAM increases reveals a strong dependence of TK with
tAM. Fig. 5(c) shows how TK decreases as tAM increases
as anticipated earlier in this paper.
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−0.01 0.00 0.01
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ω
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λ=0.25
λ=0.30
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0.0 0.1 0.2 0.3
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(a) (b)λ=0 tAM=0

(c) (d)

λ=0 tAM=0

FIG. 5. (a) Impurity spectral function A(ω) for different val-
ues of tAM with λ=0. (b) Impurity spectral function A(ω)
for different values of λ with tAM=0. (c) TK as function of
tAM. (d) TK as function of λ. For all panels, B is set to zero.
The insets in Fig. 5 (a)-(b) are zooms for the range of ω in
[-0.01,0.01] for better visualization.

To compare the effects of tAM to λ on TK, in Fig. 5(b)
shows how A(ω) is affected by the SOC λ. We now set
tAM = 0. We note that λ produces, qualitatively, a very
similar effect of tAM, although much less pronounced, as λ
produces a very modest splitting of the ∆(ω). Indeed, the
effect of tAM on TK is much more important as compared
to the effect of λ. By comparing Figs. 5(c) and 5(d),
we observe that tAM = 0.3 produces a suppression of
TK by almost three orders of magnitude, while for the
same value of λ the suppression is about one order of
magnitude.

Here, we should mention that the dependence of TK

with λ has been a subject of interest over the past
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FIG. 6. Impurity spin-resolved local density of states Aσ(ω) projected along the direction of applied magnetic field B. (a)-(d)
for λ = 0 and B = 0, 0.002x̂, 0.002ŷ, 0.002ẑ, respectively. (e)-(h) are the same results, but for λ = 0.2. Solid lines (dashed)
are for gimp=0.0 (g/gimp=2.5) and tAM=0.1 for all panels. The insets are zooms for the respective panel in the ω range [-0.005,
0.005].

decades, and it is still source of debate in the literature
[15]. For instance, Zarea et al. [13] reported that away
from the particle-hole symmetry in a two-dimensional
electron gas (2DEG), the parity breaking Dzyaloshinsky-
Moriya term is able to renormalize the antiferromagnetic
Kondo coupling with an exponential enhancement of TK

[13]. A similar result has also been found by one of us
for a quantum wire, even at the particle-hole symmetric
point [46]. Interestingly, depending on how drastic the
modification of conduction band is, we can also observe a
suppression of TK , as the RSOC is increased, as reported
for a quantum wire in the absence of B [14].
Within the NRG approach, its is quite clear that the

change in the Kondo temperature is directly associated
to the modification around the Fermi level in the density
of states of the host material induced by properties of
the band structure. Therefore, for a given fixed coupling
V as in Eq. (4), enhanced density of the host material
produces an enhancement of the TK. A splitting of the
Kondo peak is produced if the host density of state, ρ(ω)
exhibit a peak at ω = 0 whose width is similar or smaller
than TK . See, for instance, the discussion in Ref. [45].

B. Effect of magnetic field

In Sec. II, we have seen that the effect of magnetic
field applied in the altermagnet is anisotropic. There-
fore, anisotropic suppression of the Kondo should be ob-
served. To see this, in Fig. 6 we show the spin-resolved
local density of states (LDOS) at the impurity, Aσ(ω),
for the magnetic field applied (B = 0.02) along differ-
ent directions. We have set the g-factor (g = 1) for the
host material (the altermagnet). The first and second
rows show, respectively, results for λ = 0.0 and λ = 0.2
while solid and dashed lines corresponds to gimp = 0 and

gimp = 0.4g, respectively.

Let us start looking at Fig. 6 (a) where there is no
magnetic field applied, therefore all the projected com-
ponents of Aσ are equal to each other. Interestingly,
even though TRS is broken by AM exchange, because
of the unusual spin splitting in momentum space, both
spin-components of the Ghost contributes equally to the
integral of Eq. (6). As expected, an inversion symme-
try breaking induced by RSOC does not split Aσ(ω), as
shown in Fig. 6 (e). Moreover, the results are almost un-
affected when RSOC is included. Indeed, as observed in
the insets of Figs. 6(a) and 6(b), the major splitting in
the hybridization function is produced by tAM.

Now, intriguing behavior occur when the magnetic
field is considered. Figures 6(b)-6(d) and 6(f)-6(h) show
LDOS projected along the different directions of applied
B. As such, for instance, if the magnetic field is ap-
plied along the x-direction, ↑ and ↓ refer to spin pointing
towards positive and negative x-direction [47]. Keeping
this in mind, we observe, that regardless of the direction
of the applied B, a suppression of the Kondo peak is
accompanied by splitting of the Kondo peak. However,
for an in-plane magnetic field, its interplay with the AM
term and with BSOC brings a remarkable anisotropic ef-
fect in the LDOS as shown in Fig. 6(b) and 6(c). In-
deed, we see a stronger suppression of Aσ(ω) as com-
pared to B along the z-direction in Fig. 6(d) and 6(h).
This anisotropic effect is observed only if the direct Zee-
man effect is negligible in the impurity (gimp ≈ 0). If
we consider gimp = 0.4 as shown in dashed lines, the
Kondo resonance peak is almost fully suppressed, as at
this magnetic field strength both spins (band and impu-
rity) are fully polarized, thus completely destroying the
Kondo singlet state.

Before concluding, in Fig. 7 we show how the
anisotropic magnetic response manifests in the total den-
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FIG. 7. Impurity local density of states A(ω) =
∑

σ Aσ(ω)
projected along the direction of applied magnetic field B.
(a) A(ω) along x̂ (or ŷ, by symmetry) for gimp = 0 and
B = 0, 0.004, 0.008, 0.012, 0.016, and 0.020, respectively.
(b) Same as in (a), but for A(ω) along ẑ. (c), (d) are for
g/gimp = 2.5. Solid lines (dashed) are for λ=0.0 (λ = 0.2)
and tAM=0.1 for all panels.

sity of states, A(ω). To this end, we show A(ω) for dif-
ferent strengths and direction of the applied magnetic
field. Upper and lower panels correspond to gimp = 0 and
gimp = 0.4g. For B = 0, the Kondo peak can be clearly
seen as shown by the black line in Fig 7(a). Now, as
B increases the Kondo peak is progressively suppressed
for magnetic field along either the x̂, ŷ or ẑ direction, as
shown in Fig. 7(a) and 7(b) for gimp=0. However, for the
field along z-direction the peak is less affected, as com-
pared to the other directions. Again, this is a signature of
the anisotropic magnetic response of the system induced
by the interplay between B, AM, and RSOC. Finally, for
gimp = 0.4g, the Kondo peak is strongly suppressed with
an enhanced splitting, as shown in Fig. 7 (c) and 7(d),
providing support that the system no longer sustains the
Kondo single state.

IV. CONCLUSIONS

In summary, we have studied the Kondo screening ef-
fect in a spin-1/2 impurity coupled to a two-dimensional

altermagnet in the presence of external magnetic field.
By describing the system within a single-impurity Ander-
son Hamiltonian, we determined the hybridization func-
tion by exact calculation of the local Green’s function,
which allows us to garner the complete influence of the
host material onto the impurity. We employ a NRG
approach to calculate the spin-resolved local density of
states in the interacting regime, which allowed us to at-
tain the low-temperature Kondo physics in the system.
Our results shows a drastic decrease of the Kondo tem-
perature TK as the altermagnet coupling tAM increases.
By comparing this suppression with the one produced by
the RSOC λ, we showed that tAM has a dominant ef-
fect in the suppression of TK. Furthermore, despite the
TRS broken by tAM, it does not produce spin-splitting
in the hybridization function. This is a direct conse-
quence of the alternating momentum-dependent band
spin-splitting that renders zero net magnetization to the
impurity upon integration of the self-energy over the en-
tire Brillouin zone. Moreover, we have investigated the
effect of an applied magnetic field along different direc-
tions. The results showed an important anisotropic re-
sponse of the system to the applied field. Indeed, a in-
plane field has a strong effect on Kondo screening marked
by a sizable suppression of the Kondo peak. In contrast,
this suppression is less pronounced for a magnetic field
along the z-direction. When the Zeeman coupling takes
place directly in the impurity, the Kondo peak is over-
whelmingly suppressed by the field and the anisotropic
effect blurred. Our paper shed light on the Kondo cor-
relation in altermagnets and paves the way for future
theoretical as well as experimental investigations of cor-
related phenomena in these materials.
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