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A NOTE ON RATIONAL FUNCTIONS WITH THREE BRANCHED POINTS ON THE

RIEMANN SPHERE

ZHIQIANG WEI, YINGYI WU, BIN XU

Abstract. Studying the existence of rational functions with given branched data is a classical problem in the field
of complex analysis and algebraic geometry. This problem dates back to Hurwitz and remains open to this day. In
this paper, we utilize complex analysis to establish a property of rational functions with three branched points on
the Riemann sphere. As applications, we present some new types of exceptional branched data. These results cover
some previous results mentioned in [5, 18, 24]. We also establish the existence of a certain type of rational functions
on the Riemann sphere.

Key words Branched cover, Hurwitz problem, Rational Function.

2020 MR Subject Classification: 57M12, 37F20

1. Background and main results

Studying the existence of branched covers between two compact Riemann surfaces with given branched data is

an important problem in the field of complex analysis and algebraic geometry. This problem is commonly referred

to as the Hurwitz existence problem. In other words, given two compact Riemann surfaces M and N , along with

a collection D of partitions of a positive integer d, the question is whether there exists a degree d branched cover

f :M → N with D as the branched data.

Let M and N be a pair of compact Riemann surfaces. A smooth map f :M → N is a degree d branched cover if

for each x ∈ N there is a partition µ(x) = [α1, . . . , αn] of d such that, over a neighborhood of x in N , f is equivalent

to the map f̃ : {1, . . . , n} × C → C where f̃(i, z) = zαi and x corresponds to 0 in C (here the square brackets are

used to denote an unordered set with repetitions). The points x ∈ N for which µ(x) is not the trivial partition

[1, 1, . . . , 1] of d constitute the branch set Bf of f . The collection D = {µ(x)|x ∈ Bf} (with repetitions allowed)

is called the branched data of f . As is well known, the degree d and the branched data D of f should satisfy the

Riemann-Hurwitz formula:

(1.1) ν(D) = d · χ(N)− χ(M),

where ν(D) denotes the total branching of f .

Explicitly, let Bf = {x1, . . . , xn} ⊆ N and D = {[α1
1, . . . , α

r1
1 ], . . . , [α1

n, . . . , α
rn
n ]} represent the branch set and

the branched data of f , respectively. For each xi, its pre-image under f consists of a finite number of points

y1i , . . . , y
ri
i ∈ M , and near each y

j
i the map f equivalent to f̃(z) = zα

j
i . The integer αj

i is usually referred to as

the local degree or multiplicity at the point yji . Since xi is a branching point, at least one of the αj
i ’s should be

greater than 1. It is evident that the set {yji : i = 1, . . . , n, j = 1, . . . , ri} ⊆ M precisely corresponds to the set of

ramification points. Thus, the total branching of f is ν(D) =
∑n

i=1

∑ri
j=1(α

j
i − 1). Since

(1.2)

ri∑

j=1

α
j
i = d, ∀i = 1, . . . , n,

1
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the Riemann-Hurwitz formula (1.1) can be expressed as

(1.3)

n∑

i=1

ri∑

j=1

(αj
i − 1) =

n∑

i=1

(d− ri) = d · χ(N)− χ(M).

In his classical work [7], Hurwitz reduced the problem of existence of a branched cover to a problem involving

partitions realized by suitable permutations in symmetric groups. In [5], Edmonds, Kulkarni, and Stong proved

that all data is realizable when χ(N) < 0. However, when N = S2 the problem becomes much more complex. It is

well known that there exist exceptional data (d,D) satisfying (1.2) and (1.3) that cannot be realized by a branched

cover. For example, d = 4,D = {[3, 1], [2, 2], [2, 2]}. Characterizing all of such exceptional data remains an open

problem to this day. In [23], Zheng determined all exceptional candidate branched covers with n = 3 and d ≤ 10

by computer for the cases where M = N = S2 and M = T 2, N = S2.

Finding new types of exceptional data are of interest as it may provide insights towards establishing a universal

criterion. However, the general pattern of realizable data remains unclear. Various approaches such as dessins

d’enfant, Speiser graph and monodromy approach have been explored for studying branched cover. We refer the

reader to [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23] and the references cited in for more

results. Particularly, we refer the reader to [4, 15, 20] for a review of available results and techniques. In [5], a

conjecture proposing connections with number-theoretic facts has been put forward, which is supported by strong

evidence in [14, 16].

Conjecture 1.1 (Prime degree conjecture). If (d,D) is a set of branched data for S2 → S2 that satisfies (1.2) and

(1.3) and the degree d is a prime, then the set of data is realizable.

In [5], Edmonds, Kulkarni, and Stong reduced the Prime degree conjecture to the collections with exactly three

partitions. Thus a collection with three partitions is important to study the existence of a branched cover. In this

paper, we investigate exceptional data for the cases where M = N = S2 ∼= C in order to characterize all data that

cannot be realized by a branched cover. We employ complex analysis techniques to derive the following property

that provides insights into the structure of the exceptional data. Our main result is as follows and can be viewed

as a generalization of the result in [18].

Theorem 1.1. Suppose f : C → C is a rational function with three branched points and degree d = rk, where

r ≥ 2, k ≥ 2. If the branched data of f is

{[α1, . . . , αA], [rx1, . . . , rxB ], [ry1, . . . , ryC ]},

where 1 ≤ x1 ≤ . . . ≤ xB , 1 ≤ y1 ≤ . . . ≤ yC ,
∑B

i=1 xi =
∑C

j=1 yj = k and A = d − B − C + 2. If

GCD(x1, . . . , xB, y1, . . . , yC) = 1, then, up to two Möbius transformations on C, there exists a rational function

F : C → C with degree k such that f(z) = [F (z)]r, ∀z ∈ C and the branched data of F is one of the following:

(1) if xB = 1, yC = 1, {[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ]},

(2) if xS+1 ≥ 2, xS = 1, yC = 1, {[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ], [1, . . . , 1︸ ︷︷ ︸

S

, xS+1, . . . , xB]},

(3) if xB = 1, yT+1 ≥ 2, yT = 1, {[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ], [1, . . . , 1︸ ︷︷ ︸

T

, yT+1, . . . , yC ]},
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(4) if xS+1 ≥ 2, xS = 1, yT+1 ≥ 2, yT = 1,

{[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ], [1, . . . , 1︸ ︷︷ ︸

S

, xS+1, . . . , xB ], [1, . . . , 1︸ ︷︷ ︸
T

, yT+1, . . . , yC ]},

for some 1 ≤ s ≤ r. Moreover, α1
1, . . . , α

l1
1 , . . . , α

1
s, . . . , α

ls
s belong to α1, . . . , αA which means that up to a permuta-

tion [α1
1, . . . , α

l1
1 , . . . , α

1
s, . . . , α

ls
s , 1, . . . , 1] = [α1, . . . , αA]. Especially, we obtain αi ≤ k, ∀i.

Remark 1.1. In Theorem 1.1, the sentence “ up to two Möbius transformations” means that for two branched

covers f1, f2 : C → C if there exist two Möbius transformations ϕ, ψ : C → C such that

ϕ ◦ f1 = f2 ◦ ψ,

then we call f1, f2 equivalence. Obviously, if f1, f2 are equivalence, then they have same branched data.

As an application of Theorem 1.1, we present a type of exceptional data that can be viewed as a generalization

of some results mentioned in [5, 18, 24]. This provides new insights into the nature of exceptional data and expands

the range of possible configurations. Additionally, we offer new proof of some of the results presented in [18, 24],

which provides further evidence and support for the validity of our findings. We also give some new exceptional

data.

Corollary 1.1. Suppose d = rk is an integer where r ≥ 2, k ≥ 2 are two integers. Suppose

[α1, . . . , αA], [rx1, . . . , rxB ], [ry1, . . . , ryC ]

are partitions of d with α1 ≥ α2 ≥ . . . ≥ αA, α1 ≥ 2,
∑B

i=1 xi =
∑C

j=1 yj = k, A = d − B − C + 2 and

GCD(x1, . . . , xB, y1, . . . , yC) = 1. If α1 > k, then (d,D) is exceptional, where

D = {[α1, . . . , αA], [rx1, . . . , rxB ], [ry1, . . . , ryC ]}.

Proof. By Theorem 1.1, if there exists a rational function that satisfied the condition, then α1 ≤ k which is in

contradiction with α1 > k. �

Proposition 1.1 ([24]). If d = 2k for k ≥ 2, then the following set (d,D) is exceptional:

• D = {[k1, k2], [2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
k

]}, where k1 + k2 = 2k and k1 6= k2.

If in addition k ≥ 3, then we also have the following exceptional (d,D):

• D = {[2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
j1

, 2k − 2j1], [2, . . . , 2︸ ︷︷ ︸
j2

, 2k − 2j2]}, where j1 + j2 = k, j1 6= j2 and j1, j2 ≥ 1.

Proof. Since k1 + k2 = 2k and k1 6= k2, so k1 > k or k2 > k. By Corollary 1.1, (d,D) is exceptional, where

• D = {[k1, k2], [2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
k

]}, where k1 + k2 = 2k and k1 6= k2.

The proof of the second part is similar. �

Proposition 1.2 ([24]). When d = 3k for k is odd and k ≥ 3, the following set (d,D) is exceptional:

• D = {[k − 2, 2, . . . , 2︸ ︷︷ ︸
k+1

], [3, . . . , 3︸ ︷︷ ︸
k

], [3, . . . , 3︸ ︷︷ ︸
k

]}.
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Proof. Since k is odd and 2 is even, by Theorem 1.1, (d,D) is exceptional. �

Proposition 1.3 ([24]). When d = rk where r ≥ 2, k ≥ 2, the following set (d,D) is exceptional:

• D = {[2k − 1, 1, . . . , 1︸ ︷︷ ︸
(r−2)k+1

], [r, . . . , r︸ ︷︷ ︸
k

], [r, . . . , r︸ ︷︷ ︸
k

]}.

• D = {[j1, j2, 1, . . . , 1︸ ︷︷ ︸
(r−2)k

], [r, . . . , r︸ ︷︷ ︸
k

], [r, . . . , r︸ ︷︷ ︸
k

]}, where j1 6= j2 and j1 + j2 = 2k.

Proof. Since 2k − 1 > k and j1 > k or j2 > k, so by Corollary 1.1, (d,D) is exceptional. �

Proposition 1.4. When d = 3k for k is odd and k ≥ 3, the following set (d,D) is exceptional:

• D = {[j1, j2, 2, . . . , 2︸ ︷︷ ︸
k

], [3, . . . , 3︸ ︷︷ ︸
k

], [3, . . . , 3︸ ︷︷ ︸
k

]}, where j1 + j2 = k.

Proof. Since k is odd and j1 + j2 = k, j1, j2 have different parity. Since 2 is even, (d,D) is exceptional. �

Proposition 1.5. The following set (d = 3k,D) (k = 2 + 3l, l ≥ 1) is exceptional:

• D = {[3, . . . , 3︸ ︷︷ ︸
k−1

, 1, 1, 1︸ ︷︷ ︸
3

], [3, . . . , 3︸ ︷︷ ︸
k

], [3, . . . , 3︸ ︷︷ ︸
k

]}.

Proof. Since k = 2+ 3l ≥ 5 and the number of 1s in [3, . . . , 3︸ ︷︷ ︸
k−1

, 1, 1, 1︸ ︷︷ ︸
3

] equals 3, which is 2 + 1, (d,D) is exceptional.

�

From the constructed exceptional data mentioned above, we obtain an additional result regarding non-prime

degrees, which has been proven in [5, 24] using a different methodology.

Corollary 1.2 ([5],[24]). For every d that is not a prime, there exists at least one set of data (d,D) that is

exceptional.

2. Proof of Theorem 1.1

Firstly, we prove the following lemma.

Lemma 2.1. Consider a holomorphic function f : ∆ → C defined on the disk ∆ = {z ∈ C : |z| < 1}, where

f(0) 6= 0. Suppose the local degree of f at z = 0 is n ≥ 1. If f(z) = [F (z)]r, where r ≥ 1 is an integer and

F : ∆ → C is a holomorphic function, then the local degree of F at z = 0 is also n.

Proof. Suppose the Taylor expansion of f near z = 0 is

f(z) = a0 + anz
n + an+1z

n+1 + . . . ,

and the Taylor expansion of F near z = 0 is

F (z) = b0 + bn1
zn1 + bn1+1z

n1+1 + . . . ,

where a0anb0bn1
6= 0, then using f(z) = [F (z)]r, we obtain

n1 = n.

�
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Now the proof of Theorem 1.1 is as follows.

Up to two Möbius transformations on C, we can suppose the expression of f : C → C is

f(z) =
(z − z1)

rx1(z − z2)
rx2 · · · (z − zB)

rxB

(z − w1)ry1(z − w2)ry2 · · · (z − wC)ryC
,

where z1, . . . , zB, w1, . . . , wC ∈ C are distinct complex numbers.

Set F (z) = (z−z1)
x1(z−z2)

x2 ···(z−zB)xB

(z−w1)y1 (z−w2)y2 ···(z−wC)yC , then F is a rational function with degree k on C. It is obvious that

f(z) = [F (z)]r, ∀z ∈ C, and f ′(z) = r[F (z)]r−1F ′(z), ∀z ∈ C.

Since the branched data of f is

{[α1, . . . , αA], [rx1, . . . , rxB ], [ry1, . . . , ryC ]},

where 1 ≤ x1 ≤ . . . ≤ xB, 1 ≤ y1 ≤ . . . ≤ yC , then by Lemma 2.1 the branched data of F is

{[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ]}, if xB = 1, yC = 1

or

{[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ], [1, . . . , 1︸ ︷︷ ︸

S

, xS+1, . . . , xB]}, if xS+1 ≥ 2, xS = 1, yC = 1

or

{[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ], [1, . . . , 1︸ ︷︷ ︸

T

, yT+1, . . . , yC ]}, if xB = 1, yT+1 ≥ 2, yT = 1

or

{[α1
1, . . . , α

l1
1 ], . . . , [α

1
s, . . . , α

ls
s ], [1, . . . , 1︸ ︷︷ ︸

S

, xS+1, . . . , xB ], [1, . . . , 1︸ ︷︷ ︸
T

, yT+1, . . . , yC ]},

if xS+1 ≥ 2, xS = 1, yT+1 ≥ 2, yT = 1,

where 1 ≤ s ≤ r. Obviously, α1
1, . . . , α

l1
1 , . . . , α

1
s, . . . , α

ls
s belong to α1, . . . , αA which means that, up to a permutation,

[α1
1, . . . , α

l1
1 , . . . , α

1
s, . . . , α

ls
s , 1 . . . , 1] = [α1, . . . , αA]. In particular, we obtain αi ≤ k, ∀i.

We note that by Lemma 2.1, the proof of the following theorem is easy.

Theorem 2.1. Suppose F : C → C is a rational function with degree d ≥ 3 and three branched points such that its

branded data is

{[α1, . . . , αA], [β1, . . . , βB], [γ1, . . . , γC ]},

then for any integer k ≥ 2, up to two Möbius transformations f = F k is a rational function with degree kd and

three branched points such that its branched data is

{[α1, . . . , αA, 1, . . . , 1︸ ︷︷ ︸
(k−1)d

], [kβ1, . . . , kβB], [kγ1, . . . , kγC ]}.

3. Some existence results

We conclude the paper by presenting some existence results for a certain type of rational functions on C with

three branched points. First, we give a new proof of the following theorem which was proved in [5] and which is a

special case in [4](Theorem 3.5).
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Theorem 3.1 ([5]). There exists a rational function f : C → C with branched data

{[α1, α2], [2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
k

]},

where k ≥ 2, α1 + α2 = 2k, if and only if α1 = α2 = k.

Proof. If r = 2, α1 = α2 = k, set F (z) = zk
−1

zk+1
, then by direct calculation the branched data of f(z) = [F (z)]2 is

{[k, k], [2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
k

]}.

Suppose there exists a rational function f : C → C with branched data

{[α1, α2], [2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
k

]},

where k ≥ 2, α1 + α2 = 2k. By Theorem 1.1, we obtain α1 ≤ k, α2 ≤ k. Thus α1 + α2 ≤ 2k. Since α1 + α2 = 2k,

we obtain α1 = α2 = k. �

Secondly, we can derive the following theorem.

Theorem 3.2. There exists a rational function f : C → C with branched data

{[α1, α2, α3], [2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
k−2

, 4]},

where k ≥ 3, α1 + α2 + α3 = 2k, α1 ≥ α2 ≥ α3, if and only if α1 = k.

Proof. The necessary is from Theorem 1.1. Now we give the proof of the sufficiency.

By a result of Boccara [3] or Thom [22], there exists a rational function F : C → C with branched data

{[k], [α2, α3], [1, . . . , 1︸ ︷︷ ︸
k−2

, 2]}.

Up to a Möbius transformation, we may suppose the branched points of F are −1, 1, 0. Then f(z) = [F (z)]2 satisfies

the condition of Theorem 3.2. �

Similarly, one can prove the following theorem.

Theorem 3.3. There exists a rational function f : C → C with branched data

{[α1, α2, . . . , αx+1], [2, . . . , 2︸ ︷︷ ︸
k

], [2, . . . , 2︸ ︷︷ ︸
k−x

, 2x]},

where x ≥ 1, k ≥ 3, α1 + . . .+ αx+1 = 2k, if and only if α1, α2, . . . , αx+1 can be divided into two partitions of k.

Using the result of Song-Xu in [21], one can prove the following theorem.

Theorem 3.4. There exists a rational function f : C → C with branched data

{[α1, α2, . . . , αx+y], [2, . . . , 2︸ ︷︷ ︸
k−y

, 2y], [2, . . . , 2︸ ︷︷ ︸
k−x

, 2x]},

where x ≥ 1, y ≥ 1, k ≥ 3, α1 + . . .+αx+y = 2k, if and only if α1, α2, . . . , αx+y can be divided into two partitions of

k.
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Finally, we provide two examples to explain our results.

Example 3.1. There exists a rational function f : C → C with branched data

{[α1, α2, α3, 2, 2], [3, 3, 3], [3, 3, 3]},

where α1 + α2 + α3 = 5, α1 ≥ α2 ≥ α3, if and only if α1 = 3.

Proof. “Only if” . Obviously α1 ≤ 3. If α1 = 2, then α2 = 2, α3 = 1. It is a contradiction. So α1 = 3.

“If”. If α1 = 3, then α2 = α3 = 1. Since there exists a rational function F with branched data

{[3], [2, 1], [2, 1]}.

Without loss of generality, suppose the branched points of F are 1, e
2π
3
i, e

4π
3
i, then f(z) = F 3(z), ∀z ∈ C is a

rational function with branched data

{[3, 2, 2, 1, 1], [3, 3, 3], [3, 3, 3]}.

�

Similar as the example above, one can prove the following example.

Example 3.2. There exists a rational function f : C → C with branched data

{[α1, α2, α3, 2, 2, 2, 2], [3, 3, 3, 3, 3], [3, 3, 3, 3, 3]},

where α1 + α2 + α3 = 7, α1 ≥ α2 ≥ α3, if and only if α1 = 5 or α1 = α2 = 3.
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[7] A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten (german), Math. Ann. 39 (1891), no. 1, 1-60
[8] D. H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962), 167-174

http://arxiv.org/abs/2305.06634


8 ZHIQIANG WEI, YINGYI WU, BIN XU

[9] A. G. Khovanskii and S. Zdravkovska, Branched covers of S2 and braid groups, J. Knot Theory Ramifications 5 (1996), no. 1,
55-75

[10] A. D. Mednykh, Nonequivalent coverings of Riemann surfaces with a prescribed ramification type(Russian), Sibirsk. Mat. Zh. 25
(1984), no. 4, 120-142

[11] A. D. Mednykh, Branched coverings of Riemann surfaces whose branch orders coincide with the multiplicity, Comm. Algebra 18
(1990), no. 5, 1517-1533

[12] S. Monni, J. S. Song, and Y. S. Song, The Hurwitz enumeration problem of banched covers and Hodge integrals, J. Geom. Phys.
50 (2004), no. 1-4, 223-256

[13] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), no.
2, 517-560

[14] F. Pakovich, Solution of the Hurwitz problem for Laurent polynomials, J. Knot Theory Ramifications 18 (2009), no. 2, 271-302
[15] C. Petronio, The Hurwitz existence problem for surface branched covers, Winter Braids Lect. Notes 7 (2020), Winter Braids X

(Pisa, 2020), Exp. No. 2, 43 pp
[16] M. A. Pascali and C. Petronio, Surface branched covers and geometric 2-orbifolds, Trans. Amer. Math. Soc. 361 (2009), no. 11,

5885-5920
[17] M. A. Pascali and C. Petronio, Branched covers of the sphere and the prime-degree conjecture, Ann. Mat. Pura Appl. 191 (2012),

no. 3, 563-594
[18] E. Pervova and C. Petronio, On the existence of branched coverings between surfaces with prescribed branched data, I, Algebr.

Geom. Topol. 6 (2006), 1957-1985
[19] E. Pervova and C. Petronio, Realizability and exceptionality of candidate surface branched covers: methods and results, Geometry

Seminars. 2005-2009(Italian), Univ. Stud. Bologna, Bologna, 2010, pp. 105-120
[20] E. Pervova and C. Petronio, On the existence of branched coverings between surfaces with prescribed branch data, II, J. Knot

Theory Ramifications 17 (2008), no. 7, 787-816
[21] J. J. Song and B. Xu, On rational functions with more than three branch points, Algebra Colloquium 27:2 (2020), 231-246
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