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Cosmic Birefringence (CB) is a phenomenon in which the polarization of the Cosmic Microwave
Background (CMB) radiation is rotated as it travels through space due to the coupling between
photons and an axion-like field. We look for a solution able to explain the result obtained from
the Planck Public Release 4 (PR4), which has provided a hint of detection of the CB angle, α =
(0.30 ± 0.11)◦. In addition to the solutions, already present in the literature, which need a non-
negligible evolution in time of the axion-like field during recombination, we find a new region of
the parameter space that allows for a nearly constant time evolution of such a field in the same
epoch. The latter reinforces the possibility to employ the commonly used relations connecting the
observed CMB spectra with the unrotated ones, through trigonometric functions of the CB angle.
However, if the homogeneous axion field sourcing isotropic birefringence is almost constant in time
during the matter-dominated era, this does not automatically imply that the same holds also for the
associated inhomogeneous perturbations. For this reason, in this paper we present a fully generalized
Boltzmann treatment of this phenomenon, that is able, for the first time to our knowledge to deal
with the time evolution of anisotropic cosmic birefringence (ACB). We employ this approach to
provide predictions of ACB, in particular for the set of best-fit parameters found in the new solution
of the isotropic case. If the latter is the correct model, we expect an ACB spectrum of the order of
(10−15 ÷ 10−32) deg2 for the auto-correlation, and (10−7 ÷ 10−17) µK· deg for the cross-correlations
with the CMB T and E fields, depending on the angular scale.

I. INTRODUCTION

In the last decades, the investigation of parity-violating
signatures in cosmology has become one of the most am-
bitious goals (see e.g. [1, 2]). Many efforts have been
made to constrain parity-breaking effects coming, e.g.,
from non-standard inflationary models, not only at the
level of the CMB angular power spectra [3–12], but also
by looking at higher-order correlation functions, such
as bispectra and trispectra [13–30]. Furthermore, be-
sides CMB observables, recently the research on parity-
breaking signals in large-scale structures [31–40] and from
astrophysical and cosmological gravitational waves at in-
terferometers [41–53] has known an increasing interest.

However, one of the most intriguing sources of cosmo-
logical parity violation seems to come from cosmic bire-
fringence, which is nothing but the rotation of the linear
polarization plane of CMB photons when free-streaming
as a consequence of an electromagnetic Chern-Simons
coupling with a pseudo-scalar field χ [54],

L = −1

4
FµνF

µν − λ

4f
χFµν F̃

µν , (1)

where λ/f is a parameter with the dimensions of the in-

verse of an energy, F̃µν ≡ εµνρσFρσ/(2
√
−g) is the Hodge

dual of the Maxwell tensor Fµν , and εµνρσ is the Levi-

Civita antisymmetric symbol. Indeed, this extension of
the Maxwell theory induces a rotation of the observed
Stokes parameters describing the linear CMB polariza-
tion (see e.g. [55–57]),

(Q± iU) = (Q± iU)wcbe
2iα, (2)

where the label “wcb” denotes a quantity that one could
obtain without cosmic birefringence, and the birefrin-
gence angle α is strictly related to the time evolution
of the field χ,

α ≡ λ

2f
(χobs − χemi) , (3)

with χemi and χobs labeling the field’s values at the mo-
ment of photons’ emission and observation, respectively.
An observational consequence of the rotation described
in Eq. (2) is, e.g., the switching-on of a parity-breaking
angular cross-correlation between the E and B modes of
CMB polarization,

CEB
ℓ =

1

2
sin(4α)

[
CEE

ℓ,wcb − CBB
ℓ,wcb

]
. (4)

Cosmic birefringence can be seen as a probe for the
existence of such a field χ, which could be a candidate
for early and late dark energy [58–65] or dark matter
[66–72], in the form of an axion-like field [73–85]. Other

ar
X

iv
:2

40
1.

07
07

9v
3 

 [
as

tr
o-

ph
.C

O
] 

 2
0 

A
pr

 2
02

4



2

possible physical explanations for the birefringence are
investigated e.g. in [86–88] and in the Refs. therein.
The tantalizing idea of succeeding in unveiling the na-
ture of the dark sector of the Universe by looking for
cosmological parity-violating signatures has also brought
with it the necessity to look for signatures that are able
to discriminate among the different models able to in-
duce the birefringence effect, and according to this pur-
pose, a tomographic approach has been recently proposed
[89–93]. A complete treatment of cosmic birefringence
should consider the possibility that the field χ, in gen-
eral, may not be homogeneous, implying the presence of a
non-zero anisotropic component in the birefringence an-
gle [94–103]: such anisotropies in the birefringence angle
can provide by themselves a further and complementary
observational test of models for birefringence.

An increasing number of observational constraints on
both isotropic and anisotropic cosmological birefringence
are present in the literature, as results of several CMB ex-
periments: WMAP [104–107], POLARBEAR [108, 109],
ACTPol [110], SPTpol [111], BICEP/Keck [112, 113],
and the Planck satellite [114–121]. In particular, the au-
thors of [122], exploiting the latest Planck data release,
have found a hint of detection of the isotropic birefrin-
gence angle α = (0.30 ± 0.11)◦ [122]. However, a more
detailed analysis is required to be sure that such a ro-
tation has effectively a cosmological origin, and it is not
instead caused by, e.g., galactic dust or miscalibration an-
gles [123–134]. Nevertheless, let us just mention that if
the new physics hypothesis for the existence of a non-zero
EB cross-correlation would be confirmed, most proba-
bly this could only be explained by cosmic birefringence
as shown by Eq. (4) since any observed EB correlation
sourced by primordial chiral gravitational waves does not
work due to the overproduction of the B modes concern-
ing the current constraints on the tensor-to-scalar ratio
[9, 135].

In this paper, we consider the field theory defined by
the following action for the axion-like field1 together with
the axion-photon coupling shown in Eq. (1),

Sχ = −
∫

d4x
√
−g

[
1

2
gµν∂µχ∂νχ+

1

2
m2

χχ
2

]
. (5)

We perform a chi-squared analysis to find the values for
the axion mass mχ and the Chern-Simons coupling λ/f
that best fit the previously mentioned Planck result [122],
which nevertheless just refers to the regime of isotropic
birefringence. For this reason, to consistently compare
theory with observations, we initially restrict our analysis
to the case of a homogeneous field, χ = χ0(η), where η
denotes the conformal time.

One of the main findings of the present paper is the
existence of a set of best-fit parameters for which the ax-
ion field is almost constant in time during the epoch of

1 However, our results are not strongly dependent on the chosen
potential for χ (see also App. A).

recombination, which has not been obtained in previous
analyses. It is well known in the literature that the for-
mula in Eq. (2) holds only in the sudden recombination
approximation or when the axion time evolution is suf-
ficiently slow during recombination. Otherwise, Eq. (2)
could not be directly used for deriving an expression for
the CMB spectra modified by cosmic birefringence. In-
deed, it becomes necessary to solve the polarized Boltz-
mann equation for photons by taking into account the
birefringence effect from the beginning, and Eq. (2) still
holds, but photon-by-photon emission time [136–140], so
that Eq. (4) is recovered only in the regimes mentioned
before. According to our results, the kind of evolution
experienced by the axion seems to be compatible with
the use of such an approximation, consistently with what
recent data analysis seem to suggest, see e.g. in [120].
Moreover, our idea is to use the results of the fit to

find the anisotropic birefringence signal associated with
the set of best-fit parameters for the isotropic case. This
approach has a twofold purpose: first of all, if the amount
of anisotropic birefringence predicted by a theoretical
model, whose parameters best fit the amount of isotropic
birefringence, is found to be excluded by the constraints
on anisotropic birefringence itself, this would mean that
such a model is not a good theory for the axion field,
making our approach a promising way for breaking de-
generacies between different models. Second, as we are
going to show in the next sections, the associated per-
turbations δχ(η,x) do not behave in the same way as
the homogeneous part, giving us the motivation for gen-
eralizing the state-of-the-art of anisotropic cosmic bire-
fringence and verify when it is possible to recover the
treatment mainly used in the literature. Indeed, up to
now, the anisotropic birefringence angle has been related
to the value of the field at the epoch of recombination
[94],

δα(n̂) ≡ − λ

2f
δχ[ηrec, (η0 − ηrec)n̂], (6)

where δχ ≡ χ−χ0(η) is the inhomogeneous perturbation
of the axion field, −n̂ is the photons’ coming direction,
and η0 (ηrec) is the conformal time today (at recombina-
tion). However, Eq. (6) holds only in the sudden recombi-
nation approximation or when δχ does not evolve signif-
icantly in time during the recombination epoch. To take
into account that photons have been emitted according
to a visibility function, partial generalizations of Eq. (6)
have been adopted, either by convolving δχ[η, (η0 − η)n̂]
with the visibility function itself [98], or by adopting a to-
mographic approach to separate the recombination con-
tribution from the reionization one [92]. Nevertheless,
for the first time, in this paper, we propose the most
general treatment for anisotropic cosmic birefringence,
which directly solves the modified Boltzmann equation,
in analogy with what has been done in the literature for
the isotropic counterpart. Our approach can completely
characterize anisotropic birefringence as a second-order
effect in perturbation theory, whose redshift evolution is
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now taken into account.
The structure of the paper is organized as follows. In

Sec. II, we present a chi-squared analysis for isotropic cos-
mic birefringence, and we show that an almost constant-
in-time homogeneous field χ0 does not automatically im-
ply that the same behavior is also shared with its inho-
mogeneous perturbations δχ. In Sec. III, we describe our
generalized Boltzmann treatment of anisotropic cosmic
birefringence and we derive the analytical expression for
the modified CMB angular power spectra. We conclude
in Sec. IV with a summary of our main findings and sug-
gestions for future work. In App A we have also extended
our discussion to a different axion potential with respect
to that considered in the main body of the paper.

II. CONSTRAINING THE AXION
PARAMETERS

As described by Eq. (3), the value of the birefringence
angle is related to the difference in the value of the field
χ between the moment of the photon’s observation and
emission. We now focus on the case of isotropic birefrin-
gence, for which a homogeneous field χ = χ0(η) can in-
duce a birefringence effect parameterized by an isotropic
angle α = α0. In particular, we want to find the set of
parameters for the model defined in Eq. (5) that can ex-
plain α0 = (0.30±0.11)◦ [122]. Since we are focusing now
on the purely isotropic case, it is easy to derive the equa-
tion of motion for the axion χ0 by taking the functional
derivative of Eq. (5) with respect to the scalar field2,
and by working in the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric:

χ′′
0 + 2Hχ′

0 + a2m2
χχ0 = 0, (7)

where a is the scale factor of the Universe and H ≡ a′/a
is the conformal Hubble parameter, and ′ denotes the
differentiation with respect to conformal time. The solu-
tion of Eq. (7) can be found once the initial conditions
for the field are set. As already remarked e.g. in [90],
we can divide both sides of Eq. (7) by the initial value
of the field χini

0 , so that we can trade our mathemati-
cal problem with solving the same differential equation
but for the field ξ ≡ χ0(η)/χ

ini
0 . In this way, one of the

initial conditions in such a differential equation is auto-
matically fixed as ξini = 1. Moreover, as already done
in [92], here we choose the axion initial velocity to be

(dχ0/dη)
ini

= (dξ/dη)
ini

= 0, which is equivalent to im-
pose the axion behaving as pure dark energy in its early
evolution. Let us mention that, similarly to what has
been done in [90–92], to solve Eq. (7) we have assumed

2 As shown in [92], although the Chern-Simons term in Eq. (1) is
responsible for the birefringence mechanism, it gives no contri-
bution to the equation of motion for χ at zero- and first-order in
cosmological perturbation theory.

that the energy density of the axion is small so that we
can take the field to be decoupled from the rest of the
components in H.
Now, we perform a chi-squared analysis to compare

our theoretical prediction in the sudden recombination
approximation,

α0(λχ
ini
0 /f,mχ) =

λχini
0

2f
[ξ(η0)− ξ(ηrec)]

∣∣
mχ

, (8)

with the Planck result. The subscript mχ on the right-
hand side of Eq. (8) labels the fact that the dependence
of α0 on the axion mass is “hidden” in the field varia-
tion, since different masses imply a different time evo-
lution (see e.g. [90–92]). We have adopted a Bayesian
approach and computed the posterior probability, iden-
tifying the best-fit parameters with those that maximize
the posterior itself, by assuming a Gaussian likelihood
and a uniform prior,

P
(
αbest, σ|λχini

0 /f,mχ,
)
∝

∝
exp

{
− 1

2σ2

[
αbest − α0

(
λχini

0 /f,mχ

)]2}
√
2πσ2

,
(9)

where αbest = 0.30◦ and σ = 0.11◦.
To evaluate α0 and the posterior probability P we have

used a modified version of the Boltzmann code CLASS
[141], in which the dynamics of the axion field is imple-
mented. Since, as mentioned before, the dependence of
α0 on mχ is not analytical, we have performed a large
number of simulations running our version of CLASS, and
then we have numerically interpolated the predicted the-
oretical birefringence angle over a grid of values for the
axion mass and the product between the coupling pa-
rameter and the field’s initial value. We have then ob-
tained contour plots in the parameter space, by evaluat-
ing Eq. (9) on such a grid, as shown in Figs. 1a-1b, where
we have found two different regions, according to the sign
of the dimensionless quantity λχini

0 /f .
As a result, the best-fit parameter λχini

0 /f and the
best-fit masses are estimated to be:

• λχini
0 /f ≃ −0.02 and mχ ≃ 3.00× 10−33 eV;

• λχini
0 /f ≃ 0.12 and mχ ≃ 5.28× 10−27 eV,

according to the two different regions of the param-
eter space that we have found to be most consistent
with the Planck result. Different values for mχ imply
different evolution of χ, as shown in Fig. 2. Indeed,
for mχ ≃ 3.00 × 10−33 eV (which is associated with a
λχini

0 /f ≤ 0), the field seems to be constant during the
epoch of recombination, whereas the opposite occurs for
mχ ≃ 5.28 × 10−27 eV (which is instead associated with
λχini

0 /f ≥ 0).
The existence of two very different regions in the pa-

rameter space yielding a value of α0 consistent with
Planck can be explained as follows: by looking at Eq. (8)
it is clear that to get a small positive value close to
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(a) Contour plot of α0 for λχini
0 /f ≤ 0. (b) Contour plot of α0 for λχini

0 /f ≥ 0.

FIG. 1: Dependence of the isotropic birefringence angle on the axion mass mχ and the coupling parameter λ/f . The
numerical computation has been performed by running several simulations of the axion field dynamics, by setting the
initial velocity of the axion field equal to zero, and by taking the fiducial values of the ΛCDM parameters provided in
[23]. Figs. 1a-1b show the likelihood as a colormap in the parameter space, for positive and negative values of λχini

0 /f ,
respectively. The darkest red region between the innermost black curves explains the CMB birefringence angle at 1σ
C.L. reported by Planck PR4 [122].

FIG. 2: Redshift evolution of the ratio between the homogeneous scalar field χ0 and its initial value χini
0 for the

two best-fit masses resulting from our chi-squared analysis. The colored region is the range of redshifts corresponding
to recombination evaluated using the HyRec algorithm [142–144]. As in Fig. 1, the numerical computation has been
performed by setting the initial velocity of the axion field equal to zero, and for the fiducial values of the ΛCDM
parameters provided in [23].

αbest = 0.30◦ the product between λχini
0 /f and the time

variation of ξ(η) must be positive as well, and this can
happen when both these two quantities are positive or
negative. By direct inspection of Fig. 2, we can easily
see that in the mχ ∼ 10−33 eV, the evolution of the ax-
ion field is really slow and ξ(η0) < ξ(ηrec), so that a
negative sign of λχini

0 /f is needed to provide a positive

angle. Instead, for mχ ∼ 10−27 eV, the field evolution
is faster than in the previous case, so that, because of
the strong oscillatory behavior, it is possible to achieve
ξ(η0) > ξ(ηrec) in specific moments leaving the possibility
to have a positive λχini

0 /f . However, let us note that in
the latter situation, as can be seen by looking at Fig. 1b,
the region of the parameter space consistent with αbest
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is smaller with respect to that of the former case, pre-
sented instead in Fig. 1a. The reason is that to get αbest

starting from Eq. (8) exploiting a positive λχini
0 /f and

an oscillatory behavior, one needs to fine-tune the value
of the axion mass, to reach exactly the desired amount
of isotropic cosmic birefringence. On the contrary, in
the case of a negative λχini

0 /f , it is possible to find a
more stable solution with an almost constant field dur-
ing the matter-dominated epoch. Now, if the axion field
is not constant in time during recombination, an impor-
tant consequence is that one should account for the bire-
fringence effect for each photon emitted in that range of
redshifts, i.e. the one associated with its own emission’s
redshift. This is something that has been already pointed
out in the literature, and such an issue has been solved
by including the birefringence effect directly in the polar-
ized Boltzmann equation for CMB photons [62, 136–140].
Before proceeding, let us just remember that our analysis
has been adopted for the V (χ) ≡ m2

χχ
2/2 potential, and

so with a different potential, the situation could in prin-
ciple change. However, we have found a similar result
for an Early Dark Energy (EDE) potential (see App. A).
Let us highlight that in our analysis we have neglected
the astrophysical constraints, but we are authorized to
do that because the orders of magnitude at which they
become relevant are well outside of the regions explored
in our contour plots, as shown in [60].

As mentioned in Sec. I, one of our aims is to find
the predicted amount of anisotropic cosmic birefringence
for that set of parameters that predicts the level of the
isotropic one found from Planck data. First of all, we
now expand the anisotropic angle defined in Eq. (6) over
the celestial sphere as

αℓm =

∫
d2n̂ Y ∗

ℓm(n̂) δα(n̂), (10)

so that by performing a treatment similar to that adopted
e.g. in [92, 95, 97, 98], we can compute the angular auto-
and cross-correlations of anisotropic cosmic birefringence
as

CαM
ℓ =

1

2ℓ+ 1

∑
mm′

⟨α∗
ℓmMℓm′⟩ , (11)

where M can be α, the CMB temperature T or E po-
larization modes. The results are shown in Fig. 3: by
looking at them we can notice that for such a set of pa-
rameters, the predicted amount of anisotropic birefrin-
gence is expected to be well below the current observa-
tional constraints reported e.g. from Planck data [118].
This implies that (in this model) the anisotropic con-
tribution to cosmic birefringence is predicted to be ex-
tremely subdominant with respect to the isotropic one.

Moreover, it is then clear that if a future observation
detects an anisotropic signal larger than that predicted
by our model, this will be evident proof that the model
under consideration has to be ruled out. In this sense,
we can regard anisotropic birefringence as a potentially
further observable useful for consistency checks and sen-
sitive to scientific falsifiability.
However, although we have discovered a region in the

parameter space that seems to indicate that the approx-
imation involving a constant isotropic birefringence an-
gle is justified, this cannot be automatically extended to
its anisotropic counterpart. The reason is simply that,
according to Eq. (6) and Eq. (8), the isotropic birefrin-
gence angle α0 and the anisotropic one δα are related to
the dynamics of the homogeneous field χ0 and its asso-
ciated perturbation δχ, respectively, but these two fields
obey different equations of motions. In the following, we
are going to show that δχ can present a non-trivial time
evolution even if χ0 is almost constant in time. As we
know, the equation of motion for χ0 is Eq. (7), whereas
that for δχ can be obtained by simply varying the ac-
tion in Eq. (5) with respect to δχ by working at linear
order in perturbation theory. For instance, in the New-
tonian conformal gauge, it can be easily evaluated to be
[92, 95, 98],

δχ′′ + 2Hδχ′ +
(
k2 + a2m2

χ

)
δχ =

= χ′
0(3Φ

′ +Ψ′)− 2a2m2
χχ0Ψ,

(12)

where we also moved to the Fourier space. Now, let us try
to understand how δχ evolves in time during the matter-
dominated epoch, i.e. when almost all the CMB photons
have been emitted. Since the two Newtonian potentials
are constant in time and a ≃ Ωm0H

2
0η

2/2 during that
epoch, the equation above reduces to

δχ′′ +
4

η
δχ′ +

(
k2 +A2η4

)
δχ = −2A2χ0Ψ(k)η4, (13)

where we have defined A ≡ mχΩm0H
2
0/2. Hence, we

have found a second-order linear ordinary differential
equation that does not admit a solution that can be ex-
pressed in terms of elementary functions. However, our
purpose here is not to find an analytical solution, but
just to show that a constant χ0 does not imply a con-
stant in time δχ. For this reason, let us make a further
reasonable simplification: according to our parameter es-
timation, the background field χ0 is almost constant in
time during matter-domination when its mass is about
mχ ≃ 3× 10−33 eV, as can be seen by looking at Fig. 2,
so that we can safely disregard the A2η4δχ ≪ (4/η)δχ′

contribution3 on the left-hand side of Eq. (13). After do-
ing that, the solution of the differential equation can be
easily found to be

3 Indeed, by recalling our definitions, we can roughly estimate the
ratio between A2η4δχ and (4/η)δχ′ to be ∼ (mχ/H)2, and we
checked that in the ΛCDM model the Hubble parameter is such

that mχ ≪ H for almost the entire duration of the matter-
dominated epoch, if mχ ≃ 3× 10−33 eV.
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FIG. 3: Angular power spectra involving anisotropic cosmic birefringence for the first one of the two sets of best-
fit parameters resulting from the chi-squared analysis we performed for α0. The numerical computation has been
performed by setting the axion mass equal to 3.0 × 10−33 eV, the parameter λ/f equal to 1.6 × 10−20 GeV−1, the

initial value of the axion field χini
0 equal to −mPl/2 (with mPl = MPl/

√
8π being the reduced Planck mass), so that,

according to our parameter estimation, λ/fχini
0 ≃ −0.02. Moreover, the initial velocity of the axion field has been set

equal to zero, and we have used the fiducial values of the ΛCDM parameters provided in [23].

δχ(η, k) =
2A2χ0Ψ(k)

k6
(
28k2η2 − k4η4 − 280

)
+

√
2

πkη4

[(
C1
kη

− C2
)
sin(kη)−

(
C1 +

C2
kη

)
cos(kη)

]
, (14)

where C1 and C2 are integration constants. The approxi-
mation we made is valid as long as the axion mass mχ is
small, and in the limit mχ → 0, the homogeneous axion
χ field becomes completely constant (see e.g. [92]). On
the contrary, we can see that, even in such a regime, δχ
still encodes a non-trivial time dependence.

This proves our statement about the fact that, al-
though our parameter estimation for isotropic birefrin-
gence has selected a region of the parameter space for
which χ0 does not evolve significantly during matter-
domination, we cannot simply extend this result also to
δχ. Therefore, our goal is now to propose a new treat-
ment that can be seen as the most complete generaliza-
tion of the current state of the art concerning cosmic
birefringence, in which the redshift evolution of both the

pseudoscalar field inducing the rotation and its inhomo-
geneous perturbations are taken into account.

III. GENERALIZED BOLTZMANN EQUATION
FOR COSMIC BIREFRINGENCE

Let us start with the standard polarized Boltzmann
equation for CMB photons [145–147],[

∂

∂η
− ik · n̂− dτ

dη

]
±∆P (η,k, n̂) = ±SP (η,k, n̂), (15)

where the optical depth is defined as

τ(η) ≡ σT

∫ η0

η

dη̃ ne(η̃)a(η̃), (16)
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ne being the free electrons’ number density and σT being
the Thomson cross-section, respectively. ±SP instead is
the polarization’s source function, encoding the contri-
butions due to Thomson scattering [148],

±SP = −dτ

dη

2∑
λ=−2

√
6π

5
±2Y2,λ(n̂)Πλ(η,k), (17)

where Πλ is the polarization source. The quantity ±∆P is
the Fourier transform of the linear combination of Stokes
parameters Q and U ,

[Q± iU ] (η,x, n̂) =

∫
d3k

(2π)3
±∆P (η,k, n̂) e

ik·x. (18)

To include cosmic birefringence in Eq. (15), we consider
Eq. (2) as valid at each redshift. By differentiating it
with respect to conformal time we get

d

dη
[Q± iU ](η,x, n̂) =

=

[
dx

dη
·∇+

∂

∂η

]
[Q± iU ] (η,x, n̂), (19)

which can be rewritten as

d

dη
[Q± iU ] (η,x, n̂) =

=

∫
d3k

(2π)3

[
∂

∂η
− ik · n̂

]
±∆P (η,k, n̂) e

ik·x.
(20)

We can define now a birefringence angle for any photon
emitted, and Eq. (3) generalizes to

α(η,x) ≡ α0(η) + δα(η,x), (21)

where α0 and δα are the isotropic and anisotropic angles:

α0(η) ≡
λ

2f
[χ0(η0)− χ0(η)] , (22)

δα(η,x) ≡ λ

2f
[δχ(η0,x0)− δχ(η,x)] . (23)

Since our goal here is to find how cosmic birefringence
impacts the Boltzmann equation, let us assume just for
now that CMB polarization is only affected by the pres-
ence of the axion, so that we will include the contribu-
tion from the source function ±SP only later. By starting
from Eq. (2), we can easily compute the total conformal
time derivative of the Stokes parameters as

d

dη
[Q± iU ] (η,x, n̂) =

= ∓2i [Q± iU ] (η,x, n̂)
d

dη
[α0(η) + δα(η,x)] .

(24)

We have already Fourier-transformed the left-hand side
of the equation above in Eq. (20), so by doing the same
for the right-hand side we obtain

∫
d3k

(2π)3

[
∂

∂η
− ik · n̂

]
±∆P (η,k, n̂)e

ik·x = ∓2i

{
dα0

dη

∫
d3k

(2π)3
±∆P (η,k, n̂)e

ik·x

+

∫
d3k1 d

3k2
(2π)6

±∆P (η,k1, n̂)

[
∂

∂η
− ik2 · n̂

]
δα(η,k2) e

i(k1+k2)·x

}
.
(25)

It is now the moment in which we add the contribu-
tion from the Thomson scattering. However, before do-
ing that, let us expand the transfer function for CMB
polarization and its source function at second-order in
perturbation theory [149–155], for a reason which will be

clarified very soon:

±∆P (η,k, n̂) = ±∆
(1)
P (η,k, n̂) + ±∆

(2)
P (η,k, n̂), (26)

±SP (η,k, n̂) = ±S(1)
P (η,k, n̂) + ±S(2)

P (η,k, n̂), (27)

Πm(η,k) = Π(1)
m (η,k) + Π(2)

m (η,k). (28)

Indeed, if we take the inverse Fourier transform of
Eq. (25) and we plug this result in Eq. (15), we find two
generalized Boltzmann equations: the former is valid at
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first-order in perturbation theory,[
∂

∂η
− ik · n̂− dτ

dη
± 2i

dα0

dη

]
±∆

(1)
P (η,k, n̂) =

= ±S(1)
P (η,k, n̂),

(29)

whereas the latter at second-order, encoding an extra-
term due to anisotropic cosmic birefringence,

[
∂

∂η
− ik · n̂− dτ

dη
± 2i

dα0

dη

]
±∆

(2)
P (η,k, n̂) = ±S(2)

P (η,k, n̂)

∓ 2i

∫
d3k1 d

3k2
(2π)3

δ(3)(k− k1 − k2)±∆
(1)
P (η,k1, n̂)

[
∂

∂η
− ik2 · n̂

]
δα(η,k2).

(30)

Now it is clear why we have adopted a perturbative ex-
pansion of the relevant quantities. As can be seen by
looking at Eqs. (29)-(30), isotropic cosmic birefringence
affects CMB polarization at any order in perturbation
theory, whereas anisotropic cosmic birefringence does it
starting from the second-order. This is obvious, since the
inhomogeneous fluctuation of the axion field is, in fact,
an extra cosmological perturbation. To solve the two
differential equations, we firstly integrate along the line-
of-sight for a generic final time η both sides of Eq. (29),

±∆
(1)
P (η,k, n̂) =

∫ η

0

dη̃ ±S(1)
P (η̃,k, n̂)eik·n̂(η−η̃)

e−[τ(η̃)−τ(η)]e±2i[α0(η̃)−α0(η)].

(31)

This procedure is standard in cosmological perturbation

theory, and it is performed because we need such a quan-

tity not only to find ±∆
(1)
P (η0,k, n̂) (by simply replacing

η with η0), but also ±∆
(2)
P (η0,k, n̂), since, as can been

seen by looking at Eq. (30), it depends on the first-order
transfer function. Therefore, we find

±∆
(1)
P (η0,k, n̂) =

∫ η0

0

dη ±S(1)
P (η,k, n̂)eik·n̂(η0−η)

e−τ(η)e±2iα0(η),

(32)

where we have neglected the value of the optical depth
today, and we have used that the isotropic birefringence
angle for a photon emitted today is identically zero, ac-
cording to the definition given in Eq. (3). Let us notice
that Eq. (32) is exactly the same formula used in [62, 136–
140]. Similarly, the second-order transfer function, after
integrating by parts, reads

±∆
(2)
P (η0,k, n̂) =

∫ η0

0

dη eik·n̂(η0−η)e−τ(η)e±2iα0(η)

[
±S(2)

P (η,k, n̂)± 2i

∫
d3q

(2π)3
δα(η,k− q)±S(1)

P (η,q, n̂)

]
. (33)

Eq. (32) and Eq. (33) are the core of our generalized
treatment of CMB polarization. Armed with these ex-
pressions, we can investigate how they are related to
the more common approaches used in the literature, and
what is the impact on the CMB power spectra.

A. Recovering the Sudden Recombination
Approximation

Let us now show how it is possible to recover the for-
mulas used up to now in the literature for cosmic bire-

fringence in specific regimes. Indeed, as we are going to
prove, our treatment is completely general and reduces
to the standard one in the sudden recombination approx-
imation, i.e. by assuming that all the CMB photons have
been emitted at the same time during the recombination
epoch.
In order to see this, let us firstly substitute Eq. (17)

in Eq. (33), so that, according to Eq. (18), we can easily

relate ±∆
(2)
P to the second-order linear combination of

Stokes parameters Q and U observed today (η = η0) on
Earth (x = x0 = 0) as

[
Q(2) ± iU (2)

]
(η0,x0, n̂) =

√
6π

5

2∑
λ=−2

±2Y2,λ(n̂)

∫ η0

0

dη g(η)e±2iα0(η)

{∫
d3k

(2π)3
eik·n̂(η0−η)Π

(2)
λ (η,k)

± 2i

∫
d3k

(2π)3
eik·n̂(η0−η)

[
δα(η) ∗Π(1)

λ (η)
]
(k)

}
,

(34)
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where we defined the definitions of the convolution prod-
uct,[

δα(η) ∗Π(2)
λ (η)

]
(k) ≡

≡
∫

d3q

(2π)3
δα(η,k− q)Π

(2)
λ (η,q),

(35)

and the photons’ visibility function,

g(η) ≡ −
(
dτ

dη

)
e−τ(η). (36)

Let us stress that the term on the right-hand side of

Eq. (34) proportional to Π
(2)
λ (η,k) has never been con-

sidered in the literature as far as the birefringence effect
is concerned.

We can now simplify Eq. (34), by exploiting the convo-
lution theorem, which allows us to deal with the Fourier
transform of the convolution in the last line so that we
can write

[
Q(2) ± iU (2)

]
(η0,x0, n̂) =

√
6π

5

2∑
λ=−2

±2Y2,λ(n̂)

∫ η0

0

dη g(η)e±2iα0(η)

{
Π

(2)
λ [η, (η0 − η)n̂]

± 2iδα[η, (η0 − η)n̂]Π
(1)
λ [η, (η0 − η)n̂]

}
,

(37)

Notice that up to now we have made no approxima-
tions, but if we assume the sudden recombination regime,
i.e. we trade the photons’ visibility function for a Dirac

delta peaked at the recombination, then the time inte-
gral would be trivially computed leading to the following
results:

[
Q(1) ± iU (1)

]
(n̂) = e±2iα0

[
Q(1) ± iU (1)

]
wcb

(n̂), (38)[
Q(2) ± iU (2)

]
(n̂) = e±2iα0

{[
Q(2) ± iU (2)

]
wcb

(n̂)± 2iδα(n̂)
[
Q(1) ± iU (1)

]
wcb

(n̂)

}
, (39)

where the Stokes parameters on the right-hand side are
those that one could obtain without any birefringence
effects, whereas the first-order expression for (Q ± iU)
has been obtained by simply mimicking the procedure
we adopted for the second-order one. As a consequence

of the sudden recombination approximation, here α0 and
δα(n̂) are the same defined in Eq. (8) and Eq. (6), respec-
tively, because δχ for η = η0 gives rise to an unobservable
monopole contribution. If we sum together Eqs. (38)-(39)
we get

[Q± iU ] (n̂) = e±2iα0

{
2∑

x=1

[
Q(x) ± iU (x)

]
wcb

(n̂)± 2iδα(n̂)
[
Q(1) ± iU (1)

]
wcb

(n̂) +O(δ3)

}
, (40)

where O(δ3) denotes terms at third-order in perturbation
theory. Indeed, we notice that Eq. (40) matches exactly
Eq. (2) expanded at second-order in perturbation theory
once the full birefringence angle is decomposed into its
isotropic and anisotropic parts.

Therefore, this proves that our generalized expression
reduces to the standard ones [92, 94–101] in the sudden
recombination approximation. Similarly, if in Eq. (37)

we substitute the photon visibility function with a series
of Dirac deltas associated with the peaks of the original
g(η), we could take into account also the contribution
from the reionization epoch:

g(η) ≃ grecδ(η − ηrec) + greiδ(η − ηrei), (41)

with grec ≫ grei. In such a case we would recover exactly
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the results of a tomographic approach [89–92], i.e.

[Q± iU ] (n̂) =

=
∑

c=rec, rei

e±2i[α0(ηc)+δα(ηc,n̂)] [Qc ± iUc]wcb (n̂).
(42)

B. Harmonic Expansion of CMB Polarization

Once we have proved that our treatment is mathemat-
ically consistent with the current state-of-the-art about
cosmic birefringence, it is time to find the expression of
the CMB angular power spectra. To do that, it is con-
venient to come back to ±∆P and adopt a more efficient
notation so that we have to do the same procedure for all
the perturbation orders just once. Therefore, let us now

define the two following quantities:

±T (1)
λ (η,k) ≡ e±2iα0(η)Π

(1)
λ (η,k), (43)

and similarly

±T (2)
λ (η,k) ≡ e±2iα0(η)

{
Π

(2)
λ (η,k)

± 2i
[
δα(η) ∗Π(1)

λ (η)
]
(k)

}
. (44)

Indeed, if we replace Eq. (17) in Eqs. (32)-(33), we can
then write a compact expression valid for any perturba-
tive order x = 1, 2:

±∆
(x)
P (η0,k, n̂) =

√
6π

5

∫ η0

0

dη eik·n̂(η0−η)g(η)

2∑
λ=−2

±2Y2,λ(n̂)±T (x)
λ (η,k). (45)

Eq. (45) is the main result of this section, and we have
put it in such a specific form because now the mathemati-
cal computation becomes less challenging since it has the
same form of the standard transfer function of CMB po-
larization: for instance, it looks like exactly Eq. (14) of
[148]. Indeed, we can appreciate that cosmic birefrin-
gence affects CMB polarization as a modification of the

transfer function ±T (x)
λ (η,k), and this occurs because

cosmic birefringence is a propagation effect. As previ-
ously shown, Eq. (45) yields the standard formalism of
cosmic birefringence when assuming the sudden recombi-
nation approximation. However, it is easy to show that
the same happens also when the birefringence angle is
independent of the photons’ emission time, which is the
case occurring when the axion field is constant in time
during the matter-dominated epoch.

To test our generalized treatment of cosmic birefrin-
gence, let us compute the CMB angular power spectra.

First of all, let us notice that the dependence of ±∆
(x)
P

on n̂ is encoded in ±2Y2,λ(n̂) but also in the complex

exponential. Then, for our purposes it is convenient to
move to the multipole space, by evaluating the following
harmonic transform:

P
(x)
±2,ℓm(η0,x0) ≡

≡
∫

d2n̂

4π
±2Y

∗
ℓm(n̂)

∫
d3k

(2π)3
±∆

(x)
P (η0,k, n̂).

(46)

We now adopt the plane wave-expansion [156] for the
complex exponential involving k,

eik·n̂(η0−η)

4π
=

∑
LM

iLjL[k(η0 − η)]Y ∗
LM (k̂)YLM (n̂), (47)

where jL is the L-th spherical Bessel function. By sub-
stituting Eq. (47) in Eq. (45), we can easily see that now
the dependence on n̂ is encoded in the product of two
spin-weighted spherical harmonics, which can be rewrit-
ten as a single one using the composition of angular mo-
menta [157],

s1Yℓ1,m1(n̂) s2Yℓ2,m2(n̂) =
∑

ℓ3m3s3

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3
−s1 −s2 −s3

)(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
s3Y

∗
ℓ3m3

(n̂), (48)

where the “matrix” is a Wigner 3-j symbol, which satis- fies the following selection rules:

|ℓ1 − ℓ2| ≤ ℓ3 ≤ |ℓ1 + ℓ2|, (49)

m1 +m2 +m3 = 0 = s1 + s2 + s3. (50)
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However, to better digest such a long computation, it is
better to adopt a standard trick in CMB calculations:
indeed, instead of directly evaluating Eq. (46). we apply

a sort of “fake” rotation of the k̂ unit vector, that is we
firstly compute

±∆
(x)
P (η0,k, n̂) = Rkẑ 7→k

[
±∆

(x)
P (η0, kẑ, n̂)

]
. (51)

In other words, we choose to work in the coordinate sys-
tem where k ∥ ẑ, and then, before performing the angular
integration, we apply a rotation Rkẑ 7→k which brings k in
a generic direction. Nevertheless, rotating the reference
system implies that also n̂ rotates and we have to take
this into account.

We substitute Eq. (47) and Eq. (48) within Eq. (45)
and we plug all together in Eq. (51) , so that we obtain

±∆
(x)
P (η0,k, n̂) =

√
3

2

∫ η0

0

dη g(η)
∑
LM

iLjL[k(η0 − η)]
∑
L′M ′

√
(2L+ 1)(2L′ + 1)

(
L 2 L′

0 ∓2 ±2

)
2∑

λ=−2

(
L 2 L′

M λ M ′

)
Rkẑ 7→k

[
Y ∗
LM (ẑ)±T (x)

λ (η, kẑ)∓2Y
∗
L′M ′(n̂)

]
.

(52)

Thanks to our choice of k̂ = ẑ, the associated spherical
harmonics is simply given as [158]

Y ∗
LM (ẑ) = δM,0

√
2L+ 1

4π
, (53)

so that in the last line of Eq. (52) we have

Rkẑ 7→k

[
Y ∗
LM (ẑ)±T (x)

λ (η, kẑ)∓2Y
∗
L′M ′(n̂)

]
=

= δM,0

√
2L+ 1

4π
±T (x)

λ (η,k)Rkẑ 7→k [∓2Y
∗
L′M ′(n̂)]

(54)

where we have exploited that the rotation operator is
unitary, and so applying it to a product of quantities is
equivalent to multiplying the rotated quantities them-
selves. The action of the rotation operator on the spin-

weighted spherical harmonics is given as [158]

Rkẑ 7→k [∓2Y
∗
L′M ′(n̂)] =

=

L′∑
m′=−L′

D
(L′)
m′M ′

[
R−1
kẑ 7→k

]
∓2Y

∗
L′m′(n̂)

=

L′∑
m′=−L′

√
4π

2L′ + 1
M ′Y ∗

L′,m′(k̂)±2YL′,m′(n̂),

(55)

where the D
(L)
m′M ′ ’s are elements of the Wigner D-

matrix. We now substitute the results of Eqs. (54)-(55)
in Eq. (52). By exploiting the orthonormality of spin-
weighted spherical harmonics [159],∫

d2n̂ sY
∗
ℓ1m1

(n̂) sYℓ2m2
(n̂) = δℓ1ℓ2δm1m2

, (56)

we can finally evaluate the right-hand side of Eq. (46),

P
(x)
±2,ℓm(η0,x0) =

√
3

2

ℓ+2∑
L=|ℓ−2|

iL(2L+ 1)

(
L 2 ℓ
0 ∓2 ±2

) 2∑
λ=−2

(
L 2 ℓ
0 λ −λ

)
∫

d3k

(2π)3
−λY

∗
ℓm(k̂)

∫ η0

0

dη g(η)±T (x)
λ (η,k)jL[k(η0 − η)].

(57)

We now move to the standard decomposition in E and
B modes, that is

P
(x)
±2,ℓm(η0,x0) ≡ −

[
E

(x)
ℓm ± iB

(x)
ℓm

]
(η0,x0). (58)

Therefore, we are now in the position to give the most

general expression for the harmonic coefficients of the
CMB polarization. By recalling all the procedure that
we have made, it can be easily understood that the re-
sults of Eq. (59) and Eq. (60) are valid for any kind of
cosmological perturbations (scalar, vector or tensor) up
to the second-order in perturbation theory (x = 1, 2),
and for any kind of initial conditions:
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E
(x)
ℓm (η0,x0) =

√
3

8

ℓ+2∑
L=|ℓ−2|

iL+2(2L+ 1)

(
L 2 ℓ
0 −2 2

) 2∑
λ=−2

(
L 2 ℓ
0 λ −λ

)∫
d3k

(2π)3
−λY

∗
ℓm(k̂)

∫ η0

0

dη g(η)
[
+T (x)

λ (η,k) + (−1)ℓ+L
−T (x)

λ (η,k)
]
jL[k(η0 − η)],

(59)

B
(x)
ℓm (η0,x0) =

√
3

8

ℓ+2∑
L=|ℓ−2|

iL+1(2L+ 1)

(
L 2 ℓ
0 −2 2

) 2∑
λ=−2

(
L 2 ℓ
0 λ −λ

)∫
d3k

(2π)3
−λY

∗
ℓm(k̂)

∫ η0

0

dη g(η)
[
+T (x)

λ (η,k)− (−1)ℓ+L
−T (x)

λ (η,k)
]
jL[k(η0 − η)].

(60)

The inflationary information is encoded in the k depen-

dence of ±T (x)
λ , which is left general so that we have

not assumed primordial Gaussianity, statistical isotropy
or adiabaticity of the initial conditions a priori. Here we
have not considered the contributions from weak lensing
and spectral distortions, that could be relevant in gen-
eral, but this is beyond the purpose of our paper.

C. CMB Power Spectra

To better appreciate the power of the formulas for the
E and B modes of CMB polarization given by Eqs. (59)-
(60), we can now compute the CMB power spectra, that
are defined as

CMN
ℓ ≡ 1

2ℓ+ 1

∑
mm′

[ 〈
M

(1)∗
ℓm N

(1)
ℓm

〉
+
〈
M

(2)∗
ℓm N

(2)
ℓm

〉
+ . . .

]
,
(61)

where M,N = T,E,B. The dots in Eq. (61) denote
terms that we are not taking into account, such as corre-

lations involving higher-order terms, e.g.
〈
M

(3)∗
ℓm N

(1)
ℓm

〉
,

and eventual non-Gaussian contributions.
Now, to evaluate the Cℓ’s we can use Eqs. (59) and

Eq. (60), which are completely general, but for the sake
of simplicity, we are now going to give a simplified estima-
tion of the power spectra. First of all, let us consider just
the contributions coming from the λ = 0 case. Indeed,
if we recall the definition of Eq. (17) and Eqs. (43)-(44),
setting λ = 0 means selecting just scalar perturbations
(see e.g. [147]). By the way, let us notice that when
going at second order in perturbation theory, the axis-
symmetry of the radiation field around the mode axis is
broken by coupling to other modes [148, 149].
However, as said, here we want just to provide an esti-

mation, and this is why we are now going to provide the
harmonic coefficients of CMB polarization with λ = 0.
At first order we get

E
(1)
ℓm(η0,x0)

∣∣
λ=0

=

√
3

2

ℓ+2∑
L=|ℓ−2|

iL+2(2L+ 1)

(
L 2 ℓ
0 −2 2

)(
L 2 ℓ
0 0 0

)∫
d3k

(2π)3
Y ∗
ℓm(k̂)

∫ η0

0

dη g(η) cos[2α0(η)]Π
(1)
0 (η,k)jL[k(η0 − η)],

(62)

B
(1)
ℓm(η0,x0)

∣∣
λ=0

=

√
3

2

ℓ+2∑
L=|ℓ−2|

iL+2(2L+ 1)

(
L 2 ℓ
0 −2 2

)(
L 2 ℓ
0 0 0

)∫
d3k

(2π)3
Y ∗
ℓm(k̂)

∫ η0

0

dη g(η) sin[2α0(η)]Π
(1)
0 (η,k)jL[k(η0 − η)].

(63)

whereas at second-order in perturbations we have

E
(2)
ℓm(η0,x0)

∣∣
λ=0

=

√
3

2

ℓ+2∑
L=|ℓ−2|

iL+2(2L+ 1)

(
L 2 ℓ
0 −2 2

)(
L 2 ℓ
0 0 0

)∫
d3k

(2π)3
Y ∗
ℓm(k̂)

∫ η0

0

dη g(η)

{
cos[2α0(η)]Π

(2)
0 (η,k)− 2 sin[2α0(η)]

[
δα(η) ∗Π(1)

0 (η)
]
(k)

}
jL[k(η0 − η)],

(64)
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B
(2)
ℓm(η0,x0)

∣∣
λ=0

=

√
3

2

ℓ+2∑
L=|ℓ−2|

iL+2(2L+ 1)

(
L 2 ℓ
0 −2 2

)(
L 2 ℓ
0 0 0

)∫
d3k

(2π)3
Y ∗
ℓm(k̂)

∫ η0

0

dη g(η)

{
sin[2α0(η)]Π

(2)
0 (η,k) + 2 cos[2α0(η)]

[
δα(η) ∗Π(1)

0 (η)
]
(k)

}
jL[k(η0 − η)].

(65)

By inspecting the first-order expressions, we can see that,
if the isotropic birefringence angle equals zero, we have
no B-modes, and this is something completely expected
since B modes are primordially sourced just by tensor
perturbations. This is fully consistent with what is al-
ready present in the literature [62, 137–140], that our
treatment has been able to generalize.

As previously said, one of the main goals of our pa-
per is to estimate the impact on CMB observables of
the predicted anisotropic birefringence associated with
the set of best-fit parameters most consistent with the
isotropic birefringence angle measured from Planck data.
To do that, we can numerically evaluate the CMB power
spectra using Eqs. (62)-(65), and this is precisely what
we have done in Fig. 4. However, dealing with second-
order terms in perturbation theory could be extremely
challenging and time-consuming: this is why to obtain
the plot shown in Fig. 4 we have applied the tomo-
graphic approximation of Eq. (41) to a modified version
of Boltzmann code SONG [153] so that we have partially
bypassed the integration over the conformal time. In-
deed, we have used a modified version of SONG for com-
puting the first term in the time-integrals at the right-
hand side of Eqs. (64)-(65), which represent the second-
order polarization term just affected by isotropic birefrin-
gence, whereas we have exploited our modified version of
CLASS to evaluate the remaining first- and second-order
terms. In particular, we have taken advantage of the to-
mographic approximation to deal with the convolution

product δα ∗ Π
(1)
0 . Of course, a more rigorous treat-

ment should involve a full integration like that present in
our general theoretical formulas, which requires a much
higher computational cost, but this is something beyond
the purpose of our paper.

By direct inspection of Fig. 4, we can recover a com-
pletely expected behavior of the birefringent CMB cor-
relation functions. Indeed, it seems that the spectra in-
volving the B-modes can be obtained using the standard
rescaling of those involving the E ones, i.e.

CBB
ℓ ∼ CEE

ℓ tan2(2× 0.30◦), (66)

CEB
ℓ ∼ CEE

ℓ tan(2× 0.30◦), (67)

CTB
ℓ ∼ CTE

ℓ tan(2× 0.30◦). (68)

Such a behavior is in complete agreement with our pre-
vious results: first of all, since we have set the tensor-to-
scalar ratio equal to zero, it is clear that the only source
of unlensed B modes is cosmic birefringence. Secondly,
we have evaluated the CMB spectra for the first set of

best-fit axion parameters we found in Sec. II, which pre-
dicts the contribution coming from anisotropic birefrin-
gence to be subdominant with respect to the isotropic
one. Thirdly, the physical source of isotropic cosmic bire-
fringence, i.e. the homogeneous axion-like field χ0, expe-
riences a phase in which it is almost constant in time
during matter-domination for such a set of parameters.
This translates into an isotropic angle which is indepen-
dent of the photons’ emission time, and this is why the
birefringence effect manifests itself as just a multiplica-
tive factor in Fig. 4. Let us notice that such features are
not only theoretical predictions but seem to be perfectly
consistent with the data analysis of both the isotropic
and anisotropic angle, done e.g. in [118, 120], respec-
tively, which suggest a negligible redshift evolution of
the birefringence angle and an anisotropic contribution
compatible with the null hypothesis.

IV. CONCLUSIONS

In this paper, we have tested the possibility of explain-
ing the Planck ’s hint of detection for isotropic cosmic
birefringence with the physics of an axion-like field χ in-
teracting with the electromagnetic one through a Chern-
Simons coupling. In particular, we have considered a
pseudoscalar field described by a standard quadratic po-
tential, and we have found that there exist two different
regions of the parameter space that are consistent with
α0 = (0.30±0.11)◦: one characterized by a negative prod-
uct between the initial value of the field and the coupling
parameter (λχini

0 /f ≃ −0.02, mχ ≃ 3.00 × 10−33 eV),
the other by a positive one (λχini

0 /f ≃ 0.12, mχ ≃
5.28× 10−27 eV). Interestingly enough, the first of these
two solutions can explain an isotropic birefringence an-
gle ∼ 0.30◦ for a very light mass of the axion-like field
(of the order 3 × 10−33 eV), whose time evolution is al-
most constant during the matter-dominated epoch of the
Universe. This behavior is perfectly consistent with the
results of [120]. which seem to prefer a CMB EB spec-
trum, coming from such dynamics with respect to the
case in which the homogeneous field evolves in time dur-
ing the recombination epoch.
In the second part of the paper we then moved to

investigating the implications of such results for the
anisotropic component of cosmic birefringence. For this
reason, we also provided the angular power spectrum
of δα(n̂) and its cross-correlation with CMB tempera-
ture and the E polarization mode. We found that the
amount of anisotropic birefringence sourced by the per-
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FIG. 4: Absolute value of the unlensed angular power spectra of CMB, ℓ(ℓ + 1)|Cℓ|/(2π), in units of µK2 affected
by isotropic and anisotropic cosmic birefringence compared with the ΛCDM predictions without any birefringence
effects (black dashed lines). The numerical computation has been performed by setting the axion mass equal to
3.0 × 10−33 eV, the parameter λ/f equal to 1.6 × 10−20 GeV−1, the initial value of the axion field χini

0 equal to
−mPl/2 (so that, according to our parameter estimation, λ/fχini

0 ≃ −0.02), and its initial velocity equal to zero, and
for the fiducial values of the ΛCDM parameters provided in [23]. The tensor-to-scalar ratio has been set equal to zero.

turbations of the axion-like field δχ for the previously
(first) mentioned set of best-fit parameters is predicted
to be well below the latest observational constraints, see
also Fig. 3. Indeed, for the model defined in Eq. 5 we
predict that the amount of anisotropic birefringence is of

the order of (10−15÷10−32) deg2 for the auto-correlation,
and (10−7÷10−17) µK·deg for the cross-correlations with
the CMB T and E fields, according to the angular scale.
This is compatible with what has been found e.g. in [118],
i.e. a signal consistent with the null hypothesis. Similar
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results are found for a different potential, see App. A.
However, as shown at the end of Sec. II, a set of pa-

rameters predicting an almost constant-in-time χ0(η),
does not automatically imply that the same behavior
is also followed by the inhomogeneous perturbations of
the axion-like field δχ(η,x). Hence, in Sec. III we have
presented a generalized Boltzmann approach, which can
completely take into account the dependence of isotropic
and anisotropic birefringence on the photons’ emission
time. To our knowledge, this is the first time in the lit-
erature in which anisotropic cosmic birefringence is for-
mally characterized, i.e. as a second-order effect arising
because of the convolution between the first-order axion
perturbations and the standard first-order CMB polar-
ization. As proof of the validity of our treatment, we
have checked that such formalism recovers the frequently
used equations when assuming sudden recombination or
when considering the axion-like field as almost constant
during the matter-dominated epoch.

Since dealing with second-order quantities is numeri-
cally challenging, we have evaluated our generalized ex-
pressions for Eℓm and Bℓm by invoking the “tomographic
approximation”, already exploited for similar purposes
also in [92], so that we have been able to compute the
angular power spectra of CMB polarization and its cross-
correlation with temperature anisotropies, by using the
fiducial values of the ΛCDM model together with the
(first) set of best-fit parameters found in Sec. II. As
shown in Fig. 4, such spectra are consistent with a purely
redshift-independent isotropic birefringence effect, and,
according to our previous discussions, this is not surpris-
ing. Indeed, as just mentioned, for such a set of parame-
ters the homogeneous axion-like field is predicted to be al-
most constant in time, and the anisotropic component of
cosmic birefringence to be extremely subdominant. De-
spite the smallness of such anisotropic signal, this result
is nevertheless really important, since it shows how the
models investigated can provide promising falsifiability
checks for future observations.
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Appendix A: The EDE Potential

In this appendix we are going to show the results of a
chi-squared analysis, very similar to what we performed
in Sec. II, but with a different theory for the pseudoscalar
often used to characterize the axion as early dark energy
(see e.g. [98, 120])

Sχ = −
∫

d4x
√
−g

{
1

2
gµν∂µχ∂νχ

+m2
χM

2
Pl

[
1− cos

(
χ

MPl

)]3 }
.

(A1)

The equation of motion for the homogeneous axion-like
field χ = χ0(η) following by Eq. (A1) reads

χ′′
0 + 2Hχ′

0 =

= −3a2m2
χMPl sin

(
χ0

MPl

)[
1− cos

(
χ

MPl

)]2
, (A2)

which, contrary to Eq. (7), is not linear in χ0 and
so it cannot be rescaled by a factor χini

0 as we did in
Sec. II. Therefore, in this case the parameter space for
the isotropic birefringence angle is represented as a grid
of values for mχ and λ/f , whereas we have fixed the ini-
tial value of χini

0 = −mPl/2: the results are shown in
Fig. 5.
As in the case of a quadratic potential, we have found

that there is a region of the parameter space consistent
with an almost constant in time, homogeneous field χ0

during recombination. Moreover, this can be achieved by
setting the initial value of the field equal to a negative
amount, which was indeed one of the possibilities already
examined in Sec. II. Hence, also with an EDE potential,
it is possible to find a set of parameters in agreement
with the Planck result, which yields an almost constant
in-time evolution of the axion field at recombination.
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