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We develop a new methodology to contract tensor networks within the corner transfer matrix
renormalization group approach for a wide range of two-dimensional lattice geometries. We discuss
contraction algorithms on the example of triangular, kagome, honeycomb, square-octagon, star,
ruby, square-hexagon-dodecahedron, and dice lattices. As benchmark tests, we apply the developed
method to the classical Ising model on different lattices and observe a remarkable agreement of the
results with the available from the literature. The approach also shows the necessary potential to
be applied to various quantum lattice models in a combination with the wave-function variational

optimization schemes.

I. INTRODUCTION

Tensor-network (TN) methods are powerful nonpertur-
bative approaches to describe both classical and quantum
systems on the lattice. For the up-to-date reviews on this
topic, we direct the reader to Refs. [TH3]. The general
idea of the TN approach is to reformulate the problem of
interest (e.g., computation of the partition function or a
search for the ground state of the quantum many-body
Hamiltonian) in terms of a contraction of a large number
of tensors connected with each other through a certain
lattice-network structure. The problem is now reformu-
lated as a contraction of these networks of tensors. While
one can perform contraction of the one-dimensional net-
work exactly, for the two-dimensional (2d) and higher-
dimensional tensor networks it is imperative to employ
approximate approaches.

The contraction of the 2d tensor networks can be re-
alized by means of the transfer matrix approaches [4 [5]
(see also Refs. [6HIO] for the three-dimensional analysis)
or with various tensor renormalization groups [I1, [12].
Another approach is the corner transfer matrix renor-
malization group (CTMRG).

Corner transfer matrices (CTM) originally appeared
as a set of equations in Refs. [I3 [I4] and also in the inte-
grable model context [I5HI7]. They were later adapted to
the efficient numerical renormalization group method—
CTMRG [I8]. The applications of CTM and CTMRG
approaches include the computation of properties of
infinite projected entangled pair state (IPEPS) wave
functions [I9H2I], variational optimization of iPEPS
wave functions and gradient summations [22], excited
states on the top of the iPEPS wave function [23], hy-
brid approaches of CTMRG and tensor renormalization
group [24], and series expansions [25]. The original ap-
proach was developed for the square-lattice tensor net-
work and was later generalized to the hyperbolic lat-
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tices [26H32]. Recently, CTMRG was generalized and ap-
plied to the honeycomb-lattice quantum and frustrated
classical systems [33] [34].

In this study, we introduce a further generalization
of the CTMRG approach to other relevant lattice ge-
ometries. We discuss details and perform the neces-
sary benchmark tests of the methodology for triangular,
kagome, honeycomb (two-site unit cell), square-octagon,
star, ruby, square-hexagon-dodecahedron, and dice lat-
tices. The conceptual framework employed to derive
these CTMRG approaches is potentially generalizable to
many other lattice geometries, which are not covered in
this work, e.g., the Shastry-Sutherland, maple-leaf, or
square-kagome lattice.

In principle, one can deal with all the mentioned lat-
tices in the framework of CTMRG by using the coarse-
graining mapping to the square lattice with subsequent
application of the most general CTMRG scheme to the
latter. This strategy was followed previously in the stud-
ies of the iPEPS wave functions on various lattices [35-
[37] and it is implemented in the recent libraries for vari-
ational iPEPS optimization [38, B9]. We believe that
the majority of our results can be obtained with this
square-lattice-mapping methodology as well. However,
the recent study [34] shows that the CTMRG approach
tailor-made for the lattice and its respective symme-
tries becomes more efficient in terms of the computa-
tional cost and necessary CTM bond dimensions. Also,
within our approach, one can directly access relevant
physical quantities, such as the corner (entanglement)
spectra, which are not easily obtained in the mapping-
based schemes. Finally, the variational iPEPS optimiza-
tion usually requires allocation of rather large memory
resources to track full CTMRG convergence. The ap-
plication of the minimal CTMRG algorithm can largely
reduce these memory requirements.

The paper is organized as follows. In Sec. [ we discuss
essential details of CTMRG algorithms for each lattice
geometry. The most essential parts here are the trian-
gular and kagome lattices. Other lattice geometries can
be skipped during the first reading.  Section [T is de-
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voted to benchmark tests of the developed approach on
the classical Ising model on different lattices. In Sec. [[V]
we summarize our results and discuss outlook.

II. ALGORITHMS

Before diving into specific details of each lattice geom-
etry, let us point out the general strategy to construct the
CTMRG environments and corresponding update rules.
Briefly, the method can be expressed as follows:

(i) define all unique boundary matrix-product states
(bMPS) on the lattice and find how the individ-
ual tensors of the bMPS are updated during the
absorption of the bulk tensors into the bMPS;

(ii) define the corner matrices as intersections of differ-
ent bMPS;

(iii) find the updates of corners from the updates of
bMPS local tensors;

(iv) employ the corner tensors to define environments,
which enable finding optimal truncations for the
local bMPS tensors.

In the following subsections, we illustrate and explain
how this scheme can be applied to different lattice geome-
tries. In particular, we develop and apply the CTMRG
approach on triangular, kagome, honeycomb, square-
octagon, star, square-hexagon-dodecahedron, ruby, and
dice lattices, which are shown in Fig.

All the proposed CTMRG methods have the x? scaling
of the computational cost, where y is the bond dimension
of the CTM environments. The precise dependence of the
cost on the bulk tensor network bond dimension D varies
from lattice to lattice (and also depends on the details of
a particular realization, e.g., the application of iterative
schemes as the randomized singular value decomposition
or Lanczos method).

A. Triangular lattice

In this subsection, we study the vertex model on the
triangular lattice. The rank-6 tensor A, which is symmet-
ric under rotations and arbitrary reflections, is placed on
every lattice site, as in Fig. (a). Our aim is to contract
a tensor network consisting of these tensors. We begin
our discussion with the boundary matrix product state
and then arrive at the CTMRG construction.

First, we assume that the leading eigenvector of the
transfer matrix can be approximated by a translationally
invariant matrix product state (MPS), which is shown in
Fig.[2(b). The boundary MPS (bMPS) consists of rank-
3 tensors O;j,, which are not symmetric with respect
to any of the three indices. This form of the MPS can
be deduced both from the translational symmetry of the
transfer matrix and from its reflection invariance under
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FIG. 1. Overview of different lattices for which we construct
(generalize), discuss, and apply the CTMRG algorithms: (a)
triangular, (b) kagome, (c¢) honeycomb, (d) square-octagon,
(e) star, (f) square-hexagon-dodecahedron, (g) ruby, and (h)
dice.
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FIG. 2. Triangular lattice: (a) Construction of the transfer-
matrix network and notation of the bulk rank-6 tensor A (we
omit its indices for simplicity); (b) definition of the boundary
MPS (bMPS); (c) iterative update of the individual tensors
holding within bMPS.

mirror transformations. For the bMPS to be the eigen-
vector of the transfer matrix we can assume that the local
condition shown in Fig. c) must hold. Here, we intro-
duce the isometric projector P, which can be naturally
obtained from the corner matrices, as we discuss below.

Next, we determine the corner tensors. To this end, we
take two bMPS, which intersect as shown in Fig. [3|(a). It
is natural to assume that on the intersection point of
two bMPS, there must be a corner matrix C3. From the
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FIG. 3. Triangular lattice: (a) Definition of the corner matrix
Cs on the intersection of two boundary MPS and its update;
(b) update procedure of the corner matrix Cs, which results
in the new corner matrix C3; (c) the second update step,
which transforms C's back into C~'3; (d) the projectors P can be
chosen from the truncated eigendecomposition of the matrix
Cs. The matrix C3 can be assumed to be always diagonal.

symmetry of the problem, it follows that the matrix Cs is
symmetric in its indices. Let us now absorb one layer of
bulk tensors A into the bMPS. Such absorption leads to
the update rule for the corner matrix C3, which is shown
in Figs. [3] I(b and [3|(c). Note that the update consists of
two steps [Figs. [3| I(b and |3 I(c and leads to the definition
of the second corner matrix 03. The reason for the ap-
pearance of the two different matrices lies in the presence
of two different triangles (pointing up and down), while
the bMPSs may intersect on both types of triangles. We
see that the projectors P naturally appear in the update
rule for the matrix C. Besides that, the density matrix
around the triangle is proportional to the third power of
Cs: p oc C3. This leads us to the suggestion to choose
the projectors P in the way to diagonalize the matrix Cj
(note that this matrix is also symmetric). This step of
determining the projector from the eigendecomposition
of the matrix Cj is shown in Fig. d). The eigendecom-
position must be truncated according to the spectrum of
the corner matrix back to the original bond dimension of
the bMPS, which we denote as x.

The analysis of the corner matrices leads us to the
natural definition of the projectors P. Still, this is not
sufficient to complete the update of the bMPS tensor O,
since the update step of the tensor O shown in Fig. C)
contains not only a projection step but also a factor-
ization step. In principle, this factorization can be per-
formed by the eigendecomposition or singular-value de-
composition, but this procedure will be not unique, and
it is not guaranteed that the truncation with this factor-
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FIG. 4. Triangular lattice: (a) Definition of the tensor R,
which is factorized into two tensors O, and the possible ambi-
guity (gauge choice) in the factorization due to the arbitrary
orthogonal matrix W, which can be inserted in the factor-
ized index. (b) Ambiguity in the factorization leads to the
transformation of the corner matrix Cs. We can fix the gauge
by the condition, that the corner matrix C3 is also diagonal.
(c) The definition of the new tensor U, which can be shown
(from the point (b)) to be isometric. (d) We can define the
new tensor N as the tensor R weighted by the corner matri-
ces. The eigendecomposition of IV results in both isometry U
and the diagonal corner matrix C3. (e) The original bMPS
tensor O can be found from the isometry U by the inverse
transformation. This ends the update step for the tensor O
and simultaneously finds the updated corner matrix Cs.

ization remains optimal. The possible ambiguity in the
factorization step of the tensor R is shown in Fig. [f[a):
We can insert a pair of orthogonal matrices W in the
factorized index and reabsorb these orthogonal matrices
back into the definition of the bMPS tensor O. Note
also that the exact factorization leads to an increase of
the factorized index bond dimension. We should now
fix the gauge freedom in the factorization algorithm and
also define the optimal truncation of the factorized index.
The gauge transformation of the tensor O results in the
change of the corner matrix Cs, as shown in Fig. 4 b
Besides, the density matrix for the factorized index can
be naturally cast in the form py o< C5. This leads us to
the natural fix of the gauge freedom and simultaneously
to the truncation choice: we should choose the matrix
W to diagonalize the corner matrix C3 and truncate the
factorized index according to the spectrum of the corner
matrix.



Let us discuss how this factorization can be performed
in practice. We assume now that the matrices C3 and Cjs
are both diagonal. Then, the connection between these
matrices, which is shown in Fig. b), can be used to
define the new tensor U [shown in Fig. [dc)], which is
isometric. We can also define the tensor NV, as a tensor
R (to be factorized), weighted by the square roots of
the corner matrices C5. Using the connection between
the bMPS tensor O and the isometry U we arrive at
the decomposition of the tensor N, which is shown in
Fig. d). Due to the isometricity of the tensor U and the
diagonal C3, we can conclude that the decomposition of
the tensor N coincides with its eigendecomposition. The
order of this derivation may now be reversed: first, we
calculate IV from R; then we make an eigendecomposition
of N to find both U and new corner matrix Cs; finally,
we can use the connection between O and U, C3, C5 to
define the new bMPS tensor O.

To summarize, the full CTMRG loop runs as follows:

1. Start from some initial tensor O and the diagonal
matrix Cj.

2. Determine the projector P and the corner ma-
trix C3 from the tensors O, A, and C3, as shown in

Fig. [3(d).

3. Employ the projector P to obtain the tensor R,
which is defined in Fig. [{a). Transform the ten-
sor R into the tensor N, as defined in Fig. d),
and compute its truncated eigendecomposition to
find the isometry U and the new corner matrix Cj.

4. Obtain the new bMPS tensor O from the tensors U,
Cs, and Cj.

5. Return to the point 2 and repeat until convergence.
Convergence can be measured in terms of diagonal
elements of the corner matrices or in terms of some
observables.

Note that these steps have some residual sign ambigu-
ity in the eigendecompositions, which we fix by additional
sign rule on the isometry elements. The eigendecomposi-
tions can also be performed with iterative methods, e.g.,
the Lanczos algorithm to reduce the computational cost.
Finally, according to our observations, the matrices C3
and C5 converge in practice to almost identical values.

The CTMRG construction on the triangular lattice can
be augmented by the additional structure, in particular,
by the tensor T, which is shown in Fig. [5fa). This new
tensor naturally appears at the intersection of two bMPS
at the angle 27/3 and it is symmetric in its two bMPS
indices. In Fig. [f[b) we show the update rule for this
tensor. This update rule can be run in parallel to the
CTMRG loop, since the tensor T does not appear in the
main CTMRG procedure. In Fig. [5c) it is shown how
the corner tensor 7' can be used to define explicitly the
Cg-symmetric environment for the bulk tensor A, which
can be used for the calculation of observables, such as
the magnetization.
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FIG. 5. Triangular lattice: (a) Definition of the corner tensor
T, as the intersection of two bMPS with 27/3 angle; (b) up-

date rule for the tensor T’; (¢) environment of the bulk tensor
A in terms of the corner tensor 7.

B. Kagome lattice

After the triangular lattice, it is natural to construct
the CTMRG on other lattices by applying the analo-
gous procedure. Here, we extend the construction to the
kagome lattice, which consists of triangles and hexagons.
Hence, we need two types of corners, which correspond
to the corners of hexagons and triangles. We assume the
kagome lattice to be filled with bulk tensors A placed in
all its nodes. Since we study here the isotropic CTMRG
(and not its directional generalization), we should choose
the tensor A in the way that the tensor network is rota-
tionally invariant under the rotations of the hexagons
(which makes all hexagonal corners identical) and ro-
tations of triangles (which leads to identical triangular
corners). To ensure that these corner matrices are also
symmetric, we also assume the reflection invariance of
tensors both upon reflections in the hexagons and trian-
gles. This leads to the following conditions on the tensor
A = A} = AY = A% These symmetries are illus-
trated in Fig. @(c), where the reflection symmetry axes
are shown by the dashed lines.

Let us now describe the CTMRG algorithm on this
lattice. First, we introduce the boundary MPS as the
leading eigenvector of the transfer matrix on the kagome
lattice. This bMPS is shown in Fig. @(a) together with
the transfer matrix structure. The bMPS has the same
form as in the case of the triangular lattice, but the trans-
formation procedure is different. This is evident from
the update rules of the local bMPS tensors O, which are
shown in Fig. [6[b). This update procedure consists of
two steps: the first one involves factorization of the rank-
4 tensor, while the second one uses two projectors P and
Ps. The first factorization step is performed analogously
to the factorization in the triangular lattice case, while
the projectors are determined according to the update
rules of the hexagonal and triangular corner matrices.

Next, we define the corner matrices. The first corner
matrix Cg is shown in Fig. [7(a) as an intersection of two
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FIG. 6. Kagome lattice: (a) Definition of the boundary MPS
on the kagome lattice and the structure of the transfer matrix.
(b) Local conditions on the tensors of the bMPS, which guar-
antee approximate holding of the above eigenvector condition.
To fulfill this, we introduce the (isometrical) projectors Ps and
Ps and determine them later from the corner matrices update
rules. (c) The bulk tensor A}} with the dashed lines indicat-
ing to the reflection symmetry axes.

boundary bMPS. From the update rules of the bMPS
tensors it can be found that the Cg matrix transforms
according to the update rule in Fig. [7{b). We can now
choose the isometry Ps to diagonalize the new Cg ma-
trix and truncate it back to its original bond dimension.
One can perform truncation according to the spectrum
magnitude. The definition of the second corner matrix
Cs is shown in Fig. c). This matrix is obtained as an
intersection of the two bMPS with the angle 7/3 between
them. But such an intersection may be obtained in two
different ways: We can either intersect two bMPS di-
rectly or we can intersect both bMPS with a third one
(with angle 27/3), which results in the product of two Cg
matrices, as is shown in Fig. m(h) For the consistency
between these two definitions of the intersection, we must
conclude that C5 = CZ (at least at the converged state
of the CTMRG).

In spite of the given connection between the two ma-
trices, they have rather different update rules. The up-
date rules for the C5 matrix are shown in Figs. [7[e)-{7](g).
Here, we additionally introduce the matrices C3 and C¥.
The reason for three different corners lies in the fact that
the bMPS can intersect with the angle 7/3 in hexagons
and in both types of triangles (pointing up and down).
We can obtain the isometrical projector Ps from the di-
agonalization of the matrix C%, while C% can be used for
the proper factorization, as shown in Fig. [6(b). The de-
tails of this factorization are the same as in the case of
triangular lattice and shown in Fig.

We can now discuss the full CTMRG iteration loop.
There is a certain ambiguity in the updates of the tensors.
In particular, should the condition C5 = CZ be enforced
in every iteration, or should it only hold in the converged
state? Below, we describe one of options to update the

FIG. 7. Kagome lattice: (a) Definition of the corner matrix Ce
as an intersection of two bMPS with the angle 27/3 between
them. (b) The update rule for the matrix Cs; the isometrical
projector Ps can be chosen in the way that the updated matrix
Cs will be diagonal. (c) The definition of the corner matrix
Cs as an intersection point between two bMPS with the angle
m/3; (d) The matrix C5 can be expressed as the square of the
matrix Cs; (e) still, the matrix Cs has a different update rule:
here, we define the new corner matrix C3 (in green) from the
matrix C3; (f) yet another corner matrix C5 (gray) can be
obtained from C35. The diagonalization of this matrix leads
to the projector Ps. (g) One can arrive back to the C3 matrix
from C4. (h) The illustration of the equality in the point
(d) between the matrices C'3 and C2. Tt is always possible to
change the crossing of two bMPS with the angle 7/3 into two
crossings with an additional bMPS, where the new crossings
are at the angle 27 /3.

tensors, which we find rather fast and stable. The scheme
is as follows:

1. Initialize the bMPS tensor O and matrix Cg. De-
termine the matrix C3 = CZ.

2. Find the rank-4 tensor R, as shown in Fig. (a).
Factorize it according to Figs. [§(b) and [§fc) and
obtain the matrix C% and the updated bMPS ten-
sor.

3. Determine P; from the eigendecomposition of C%.
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FIG. 8. Kagome lattice: (a) Definition of the new rank-4 ten-
sor R to be factorized and the update rule of the matrix C5.
(b) The tensor N as a weighted tensor R and its eigendecom-
position (eig.) from which we define the new matrix C3 and
the isometry U. (c) The reverse transformation between the
bMPS local tensor and the isometry U.

4. Update Cg and find the new projector Pyg.

5. Use the projectors P3 and Py to update the bMPS
tensor according to Fig. @(b)

6. Determine the new matrix C3 = C2.
7. Return to the point 2 and repeat until convergence.

Point 6 is the most controversial, since the matrix Cs
can also be obtained from C¥ [see Fig. [(g)]. But the
update rule in Fig. [7[g) does not necessarily lead to the
diagonal matrix C3 and does not enforce the connection
between the matrices Cs and Cs. We choose to employ
the update rule in Fig. (g) as a convergence check in-
stead. For the converged CTMs, we observe that the
two different ways to obtain C5 agree. Note also that
operating with Cy leads to a higher precision.

C. Remarks on the honeycomb lattice

In the previous work, we studied the variational iPEPS
optimization on the honeycomb lattice [33]. In Ref. [34],
an alternative formulation of the honeycomb lattice
CTMRG was proposed. In this subsection, we discuss
the derivation of both approaches and the consistency
between them. We also show how the method can be
naturally generalized to the two-site unit cells.

First, we assume that the tensor network consists of
identical rank-3 tensors A with rotational and reflection
invariance. In Fig. @(a) we show the transfer matrix and
boundary MPS for this tensor network. The update for
the local bMPS tensors is shown in Fig. [0[b). Here, we
introduce the isometrical projectors P, which we define
from the updates of the corner matrices.

Next, let us study the intersection of two bMPS at
the angle /3. As in the case of the kagome lattice, we
can define the corner matrix Cg on the intersection point
of two bMPS [see Fig. [9[c)]. The update for the cor-
ner matrix Cg is shown in Fig. [0fd). As in the case of

FIG. 9. Honeycomb lattice: (a) Definition of the transverse
matrix and boundary MPS. (b) The update procedure for the
bMPS tensors. (c) The definition of the tensor Cs. (d) The
update procedure for the tensor Cs. (e) Definition and update
for the corner matrix C3. (g) Consistency condition for the
corner matrices C3 and Cs.

kagome lattice, it is also possible to define the corner ma-
trices C3 (on the intersection point of two bMPS with the
angle 27 /3) with the update rule shown in Fig. [9{(e). For
consistency of the observables calculation, the condition
Cs = CZ [shown in Fig. @(g)] must hold.

There are now two different ways to define the pro-
jectors P: we can choose them to either diagonalize the
corner matrices Cg or C3. The iterations from the two
methods can be different, but the final result should be
independent of the scheme due to the consistency condi-
tion C5 = CZ. According to our observations, if we define
the matrix Cs from the condition C3 = C? for the con-
verged Cg tensor, then the C'5 matrix is the fixed point
of the update in Fig. |§|(e), and the updates for different
corner matrices are consistent.

Next, let us generalize this construction to the larger
unit cell. We assume that the tensor network on the bi-
partite honeycomb lattice consists of two different tensors
A and B, which are placed on two different sublattices.
We additionally set that these tensors are invariant under
rotations and reflections. Then, the boundary MPS con-
sists of two types of tensors, as shown in Fig. (a). The
update rules for the boundary MPS tensors are shown
in Fig. b). The key difference from the case with a
one-site unit cell is that there are two different projec-
tion tensors P and Pg, which are no longer isometric,
but just biorthogonal, P, Pr = 1. There are also two
different corner matrices Cg, which are updated accord-
ing to Fig. c¢) (projectors are not shown here, since



FIG. 10. Honeycomb lattice: (a) Definition of the two-site
bMPS and transfer matrix for the case of two-site unit cell.
(b) The update procedure for the bMPS tensors, where we in-
sert the projectors P, and Pr (PLPr = 1). (c) The updates
of the corner matrices Cs,4 and Cs 5. (d) Biorthogonaliza-
tion procedure (involving QR decomposition and SVD), which
allows to define the projectors Pr, and Pr from the corner ma-
trices.

the enlarged corner matrices will be used to construct
projectors).

Now, we discuss the procedure to find biorthogonal
projectors P, and Pr from the enlarged corner matri-
ces. In case one tries to use the density matrix, then
it becomes clear that the latter is no longer symmetric.
In principle, one can use the singular-value decomposi-
tion (SVD) of the density matrix to define a projector
in the isometrical form (according to the directional up-
date), but, in practice, we observe that such a definition
of projectors leads to the breaking of some consistency
relations between the converged tensors. We choose in-
stead to employ the biorthogonalization procedure, which
was proposed in the context of CTMRG in Ref. [20]. The
biorthogonalization procedure is shown in Fig. d), and
defines two biorthogonal projectors P; and Pr. Note
that the authors of Ref. [20] applied biorthogonalization
to larger environments, but noted that the corners them-
selves can be used as a reduced form of the environment.
The enlarged corner matrices Cs 4 — PrCs aPL and
Ce.5 — PrCs g P} are then projected back to the origi-
nal bond dimension with the obtained projectors. We ob-
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FIG. 11. Square-octagon lattice: (a) Definition of the first
transfer matrix and the respective bMPS. (b) The local up-
dates of bMPS tensors for the first type of transfer matrix.
(c) The second type of transfer matrix on the square-octagon
lattice and the corresponding bMPS. (d) The local update
rules for the bMPS local tensors of the second type.

serve that these reduced corner environments work well
far from criticality, but at the vicinity of the phase transi-
tion, it may be necessary to use larger environments (with
two or even three corner matrices) to find the proper pro-
jectors.

D. Square-octagon lattice

Square-octagon and star lattices can be reduced to
square and honeycomb lattices. Still, it is interesting
if the structure of these lattices allows for a more nat-
ural formulation of CTMRG. In this and the following
subsections we show that this is indeed the case.

First, we assume that the tensor network consists of
identical rank-3 tensors A;;; placed in the rotationally
invariant manner on the nodes of the square-octagon lat-
tice. We also set the tensors A to be symmetric under
the reflection of two last indices A;;r = Ajx;, which cor-
respond to the indices connecting tensors inside squares
on the square-octagon lattice. We can now define the
boundary MPS for this tensor network. In contrast to
the previously discussed lattice geometries, the square-
octagon lattice possesses two different kinds of bMPS,
which are shown in Figs. a) and c), respectively.
These bMPS can intersect at the angle w/4. The local



updates for the corresponding local bMPS tensors are
shown in Figs. [1T|(b) and[I1}d). Here, we introduce three
different isometrical projectors U, W, and V', and also a
factorization step in Fig. d).

Similarly to other lattice geometries, we now introduce
the corner matrices, which allow us to find the projectors
V, U, and W. Let us take the intersection of the two
bMPS of the first kind, which is shown in Fig. [12{(a) and
results in the reflection-symmetric corner tensor 7. In
Fig. b) we show the update steps for this tensor T,
which is transformed into the corner matrix C4. The lat-
ter matrix is internal to the squares of the square-octagon
lattice and the density matrix for the square link can be
defined as ps; = C§. Hence, we choose the isometry W
to diagonalize the matrix Cy and truncate the index ac-
cording to the magnitude of its eigenvalue spectrum. In
Fig. b) we also show how the corner tensor 7' can be
obtained back from the corner matrix Cy.

Next, let us discuss the intersection point of two bMPS
of different types. This type of intersection is shown in
Fig. [12(c) and corresponds to the Cs corner matrix (this
is the corner matrix of the octagon angles). The update
step of this matrix is shown in Fig.[I2|(d). Note that after
the update step, the corner matrix Cg is not necessarily
symmetric, hence, the simple eigendecomposition does
not work. This is rather natural, since the corners of
octagons in the square-octagon lattice are not symmetric
under reflections.

Let us specify how the density matrices connected by
the internal links of octagons can be defined in terms
of the matrices Cg. We have two types of links: those,
which are shared between two octagons, and the links
between an octagon and a neighbor square. These links
correspond to two types of the density matrix. For
the octagon-octagon link, the density matrix has a form
Po—o = (CsCT)*, while for the octagon-square links it
is po_s = (CECg)*. Both these matrices are symmetric
and can be simultaneously diagonalized by the SVD of
Cs, which is shown in Fig. [[2(d). This SVD naturally
defines the isometric projectors U and V', which are used
in the bMPS tensor updates.

Finally, we discuss the factorization step. It can be
performed in nearly the same way, as in the case of the
kagome lattice. The details of the factorization are shown
in Fig. [12(e). The matrix R to be factorized is trans-
formed into the matrix N with two corner matrices Cs.
The new matrix N then naturally corresponds to the
density matrix internal to the square p oc N4, and can
be diagonalized and truncated according to its spectrum
magnitude. In the final step, we apply the inverse of the
diagonal matrix Cg.

As a final remark, let us note the following. First, in
principle, we can perform only the iteration steps, which
correspond to the bMPS of the first kind, since all the
necessary projectors can be obtained from the tensors of
the first bMPS. The second bMPS is auxiliary, but it
can be used to compute certain observables more nat-
urally. A situation with the auxiliary bMPS, which is

(a) (b)
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FIG. 12. Square-octagon lattice: (a) Intersection point of two
bMPS of the first kind defines the corner tensor 7' (symmetric
upon reflections). (b) The update rule for the corner tensor
T and the corner matrix Cy. The isometry W can be chosen
to diagonalize the corner matrix Cy4. (c) The corner matrix
Cs must be inserted at the intersection point of two different
types of bMPS. (d) The update step of the corner matrix Cy
enlarges its dimensions, which can be then truncated back
with the SVD decomposition, which also defines the projec-
tors U and V. (e) The factorization step of the update for
the second bMPS. The factorization is performed in the same
way as for the kagome lattice.

not necessary for the performance of the algorithm, is
a common trait of several lattices studied below. Note
that the auxiliary bMPS may be not necessary for the
simplest case of completely symmetric minimal unit cell
discussed in this study; the larger unit cells will make
it completely necessary to use both bMPS. Second, the
factorization step here does not necessarily need the ab-
sorption of the eigenvalue spectrum S into the bMPS
tensors. This allows the method to work even when the
matrix S is not positive definite. Hence, the CTMRG on
the square-octagon lattice is not plagued by the problems
connected with positivity and can be applied to arbitrary
bulk tensors A, which respect the symmetry conditions.

E. Star lattice

The star lattice also has two different bMPS, as is
the case for the square-octagon lattice. It is interesting
that both bMPS can be converged independently from
each other, but the simplest algorithm still couples them.
First, we describe the main bMPS update, which is orig-
inal for the star lattice, and then add the second bMPS



FIG. 13. Star lattice: (a) Definition of the first transfer ma-
trix on the star lattice and the respective bMPS. (b) The local
updates of bMPS tensors of the first type of the transfer ma-
trix.

(analogously to the honeycomb lattice) at the end of the
subsection.

The structure of the transfer matrix and the corre-
sponding bMPS are shown in Fig. [I3(a). The transfer
matrix is considerably larger than the previously dis-
cussed cases. Hence, the local bMPS tensors have a
larger number of update steps, which are illustrated in
Fig. b). Here, we have a factorization step and two
different isometric projectors U and V. As in the pre-
vious cases, these projectors can be obtained from the
corner matrices.

In principle, we can already introduce the corner ma-
trix C12, which appears at the intersection of two differ-
ent types of bMPS. Still, if we restrict ourselves to the
update of only one type of bMPS, then it is more nat-
ural to introduce only Cg and various corner matrices
C3. The corner matrix Cy appears at the intersection
point of two bMPS with the angle 7/3, as in Fig. (a).
The update rule for the corner matrix Cg is shown in
Fig. b). This step defines the isometrical projectors
U, which can be chosen to diagonalize and truncate the
new corner matrix Cg.

Next, we introduce the corner matrix C3, which is
shown in Fig. c¢). Its update rules are very similar
to the kagome lattice. First, as in the case of the kagome
lattice, the consistency condition between the matrices
Cs and Cj inside the dodecahedrons must hold. This
consistency condition is illustrated in Fig. d). This
natural decomposition of the corner matrix C3 allows us
to perform the factorization step in the same way, as for
the kagome lattice: we show this in Fig. [14(e). The fac-
torization also results in the new corner matrix C%, which
corresponds to the down-directed triangles.

The following update steps are shown in Figs. f)
and [14)g) and result in the additional corner matrix C%,

FIG. 14. Star lattice: (a) Definition of the corner matrix Cs
as an intersection point between two bMPS with the angle
/3. The density matrix on the dodecahedrons can be cast
in the form p; = C§. (b) The update step of the corner
matrix Cs. (c) The definition of the corner matrix Cs as an
intersection point between two bMPS with the angle 27/3.
(d) The consistency condition between the corner matrices Cs
and (s, similar to the kagome lattice. (e) The factorization
step in the bMPS tensors update determining the matrix C%,
which describes the internal correlations inside the triangles.
(f) The update step for the matrix C5. (g) The final step
of the update of C%, which results in the corner matrix C% .
The isometrical projector W is chosen to diagonalize the new
corner matrix.

which corresponds to the up-directed triangles. The di-
agonalization and truncation according to the eigenvalue
spectrum magnitude of this matrix give us the last iso-
metric projector W. One can also note an additional
update step, which maps the matrix C% back into the
matrix C'5. However, we do not perform this step in the
algorithm, since it can break the consistency condition
in Fig. d) during the algorithm convergence. Instead,
we use this mapping as a consistency check between the
converged values of the tensors.

Let us now discuss the second bMPS. Its boundary
MPS is shown in Fig. [L5(a). Note that these transfer
matrices and bMPS largely mimic the analogous quanti-
ties on the honeycomb lattice. We show the update rule



(@) (b)
% ﬁl J
N

FIG. 15. Star lattice: (a) Definition of the second bMPS. (b)
Update rule for the boundary tensor, which requires the new
isometric projector K. (c) The projector can be determined
from the new corner matrix Ch2, which is a square root of
the previously introduced corner matrix Cs. Its update rule
can be viewed as a modification of the rule in Fig. b) , but
results here in two different isometries by using SVD of the
enlarged matrix Cis.

for bMPS in Fig. b) and note that it is the same as the
one for the honeycomb lattice. It should be mentioned
that we absorb here all three tensors A within a single op-
eration, since it is more computationally efficient to first
contract these three tensors together and then apply the
resulting contraction to the boundary tensor.

Here, we also introduce the isometric projector K. To
find this projector, we can introduce the corner matrix
C12, which must be placed on the intersections of the
two different kinds of bMPS. The previously defined Cg
corner matrix was its square. To find the update rule
for the new corner matrix Ci2, we modify the rule in
Fig. b) and replace the eigenvalue decomposition with
SVD, which now results in the two isometric projectors
U and K simultaneously.

We should also mention the following. One can just use
the second bMPS, while the projector can be equivalently
determined from the update rule on the honeycomb lat-
tice. This can be beneficial in some situations, since the
second bMPS does not contain factorization steps, thus
it can be employed without any positivity restrictions.

F. 4-6-12 lattice

The square-hexagon-dodecahedron (SHD) or 4-6-12
lattice is more complex than the previously studied lat-
tices. It consists of three different polygons, which, in
principle, require their own corner matrices. It also
has two different types of bMPS. Additionally, the main
branch of the bMPS update requires a nonsymmetric fac-
torization step, which we discuss below in detail. How-

10

FIG. 16. SHD lattice: (a) Definition of the first transfer ma-
trix on the 4-6-12 lattice and the respective bMPS. (b) The
local updates of bMPS tensors for the first type of the transfer
matrix.

ever, many other lattices can be viewed as the limiting
cases of the 4-6-12 lattice. For example, the CTMRG al-
gorithm on the ruby lattice, to be described in the next
subsection, is naturally obtained from the CTMRG on
the 4-6-12 lattice with a few modifications.

We show the transfer matrix for the 4-6-12 lattice and
the corresponding bMPS in Fig. [L6(a). The transfer ma-
trix is much more complex than the previously studied
cases. The local update rules are shown in Fig. b).
These updated rules require four different isometric pro-
jectors and a nonsymmetric factorization step. The 'non-
symmetric’ means that the rank-4 tensor is factorized
into the product of two different rank-3 tensors. This
factorization can be performed exactly at the cost of the
enlargement of the factorized index dimension. Another
option is to truncate this factorized index by means of a
certain projector. We discuss the truncation procedure
below.

In Fig. [17|(a) we determine the first necessary element
of CTMRG: the corner matrices Cg, which are internal
to dodecahedrons. Below, we also obtain the matrices
Cg, which are internal to two types of hexagons and to
squares. We can define the second type of bMPS for the
4-6-12 lattice. This second bMPS will have the angle
/6 with the first type of bMPS. On their intersection,
it is possible to define the corner matrices C15. We do
not describe the update iterations for the second type
of bMPS in this subsection, but we introduce the corner
matrix C19 as a convenient tool. Its connection to the
matrix Cg is shown in Fig. [I7(b).



In Fig. b) we also introduce the corner matrix Cs =
CZ2. Tts geometrical meaning is explained in Fig. (c)
Next, we derive the projectors. The first step is to up-
date the matrix Cg, as shown in Fig. d). After the
dimension increase of the matrix C, we perform SVD to
truncate it and obtain the matrix C§ and also the first
isometric projector U. To understand why SVD is the
appropriate procedure for the truncation, we note that
the enlarged matrix C§ corresponds to the nonsymmet-
ric angles of the first kind of hexagons. Its truncation
must be performed along the same lines, as we described
for the square-octagon lattice.

Next, let us perform the nonsymmetric factorization.
First, we can employ the arbitrary factorization method
to factorize the rank-4 tensor into the product of two
rank-3 tensors. In this exact factorization, a new factor-
ized index emerges, which has, in general, rather large
bond dimension. We can deal with this large dimension
in two different ways. If the tensor network to be con-
tracted has a small internal index dimension (e.g., for
the Ising models D = 2), then we can use arbitrary exact
factorization and proceed without a truncation, since the
factorized index dimension does not grow too much (and
it is truncated back later using the projectors). The ar-
bitrariness of the decomposition is only a gauge freedom
in this factorized index, which does not influence the suc-
ceeding calculations. In this case, we can just proceed to
the final update steps for the corner matrices at the end
of Fig. [L7(e).

We can now describe how to perform the truncation of
the factorized index. To this end, we write the full lattice
contraction in terms of the corner matrices and factorized
rank-3 tensors, as shown in Fig.|[17|e). This construction
can be cast in the form of multiplication of two matrices
C1CR, which together can be viewed as a density matrix.
Unfortunately, this matrix is not symmetric, hence, we
cannot truncate it using simple eigenvalues. We choose
instead to use the biorthogonalization procedure from
Ref. [20]. Biorthogonalization steps applied to Cy, and
Cr are also illustrated in Fig. e). Biorthogonaliza-
tion results in projectors P;, and Pg, which can be used
to truncate the factorized index. After the truncation,
we can use the truncated rank-3 tensors to update the
matrices Cyo and C§. Note that the update uses QR de-
composition and results in nonsymmetric new matrices
(1, and Cf. These matrices represent the correlations
inside the squares of the 4-6-12 lattice. By updating the
matrices Cf, and Cf, as shown in Fig. [17(f) and [L7{g),
we obtain another two isometric projectors V and M
and also arrive back at the dodecahedron corner matrix
C15. In this process, we also obtain the corner matrix
C{’, which represents correlations in the second type of
hexagons.

Finally, we determine the last isometrical projector W.
This projector corresponds to the squares of the 4-6-12
lattice. In this sense, one naturally obtains it from the
update rule of the corner matrix Cy, which appears at
the intersection of two types of bMPS. Since we describe
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here the algorithm with only one type of bMPS, the ma-
trix Cy does not naturally appear in our calculations.
To obtain the projector, we use a trick and represent Cy
inside the dodecahedron as its self-consistency condition
C, = C3}, (note that all corner matrices inside the do-
decahedron can be self-consistently constructed from the
matrix C12). As we show in Fig. [I7(h), one can write an
update step for the matrix Cy and truncate it using SVD
(SVD must be applied, since the angles of the squares in
the 4-6-12 lattice are not symmetric under reflections).
SVD results in the new diagonal matrix Cy4 (internal to
the squares, but not to the dodecahedrons) and also in
two isometries. The first isometry is precisely the projec-
tor W. The second one is not employed in our version of
the algorithm, but it is necessary for the update of the
second type bMPS, if included in the iteration.

G. Ruby lattice

In this subsection, we discuss the tensor network con-
traction on the ruby (also, bounce or 3-4-6) lattice with
rank-4 tensor A placed on all the nodes of the lattice. We
require from the tensor A only one reflection symmetry.
As we show below, the tensor A also needs to be positive
with respect to factorization across the reflection axis.

The ruby lattice can be obtained from the 4-6-12 lattice
by contracting certain edges of hexagons. As a result,
the CTMRG on the ruby lattice is similar to the 4-6-12
lattice. To highlight the similarity of the two algorithms,
we use the same conventions on the figures of analogous
tensors or update steps. Note that we can explicitly map
the algorithm on the ruby lattice to the 4-6-12 lattice
CTMRG by employing the symmetric factorization of the
rank-4 tensor A on the ruby lattice.

The ruby-lattice transfer matrix is shown in Fig.[I§|a).
The corresponding local update steps are shown in
Fig. (b) Compared to the 4-6-12 lattice, we find that
a pair of projecting steps turn into factorization steps,
and now one needs only two different isometric projec-
tors U and W. We also observe that the nonsymmetric
factorization step remains a part of the calculation.

Let us now discuss the calculation of projectors and
factorizations. To this end, we introduce the corner ma-
trices. The corner matrices for the different intersec-
tions of the bMPS are shown in Figs. [[9(a) and [19(b),
and the consistency condition between them is shown in
Fig. [19(c). Figure [L9(d) illustrates the update step for
the C'5 corner matrix, which results in the corner ma-
trix C%, representing the correlations inside the triangles.
The isometry U is chosen to diagonalize and truncate the
corner matrix C%. Note that the positivity of C} depends
on the positivity of the tensor A across the reflection line.

Next, we perform the nonsymmetric factorization step,
as in Fig. d). The procedure is the same as for the 4-
6-12 lattice, thus we do not discuss it here in detail. The
main difference is only the update of the corner matrices,
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FIG. 17. SHD lattice: (a) Definition of the corner matrix Cs as an intersection point between two bMPS with the angle
m/3. (b) We use a representation of the corner matrix Cgs as a square of the corner matrix C12, which can be defined as an
intersection of two different types of bMPS. Here, we use C12 as a conventional tool in the calculations. We also define the
corner matrix Cs as a square of the corner matrix Cs. (c) The illustration of the role of the corner matrix Cs as an intersection
of two bMPS. (d) We do not work with the matrix C5 explicitly, but use its implicit representation in terms of the matrices
Cs. This allows us to find the first isometric projector U and the updated corner matrix C§ through SVD of the enlarged
matrix Cs. Note that the isometry K in SVD is auxiliary in this version of the algorithm; we do not employ it hereafter, as
all other isometries K. (e) The illustration of the nonsymmetric factorization step. First, we can express full lattice in terms
of corner matrices and bMPS tensors. Then, we can use exact factorization of the rank-4 tensor, where we do not perform any
truncation. The enlarged index is shown with two lines. We express this density matrix, which represents the full lattice as a
product of two matrices Cr, and Cr. To obtain the projectors, we apply the biorthogonalization procedure to the tensors Cp,
and Cr. The obtained projectors are then applied to truncate the enlarged factorized indices. We can also update the matrices
C12 and C§. The update is carried out with QR decompositions. Note that the new matrices C§ and C7, are not symmetric
or diagonal. (f) Another step of the matrix C¢ update, which results in the second isometry V and another corner matrix C35".
(g) Analogous update step for the matrix C}, gives back the matrix Ci2 and also the isometrical projector M. (h) To obtain
the final projector W, we construct the corner matrix Cy of the squares in the 4-6-12 lattice from the bMPS tensors and the
third power of the matrix Ci2. The SVD of this enlarged corner allows us to obtain the last projector W and also the matrix
C4, which corresponds to correlations internal to the squares.

which results in the new matrices C§ and C¥, which are to use blocks from the Cholesky decomposition in the
symmetric, but generally not diagonal, and possibly not factorization steps. The factorization steps also result in
positive. For the positive matrices we can perform their the new corner matrix Cj.

Cholesky decomposition, as in Figs. [I9(f) and[19g), and The final step is to determine the second isometric



FIG. 18. Ruby lattice: (a) Definition of the first transfer
matrix and the respective bMPS. (b) The local updates of
bMPS tensors for the first type of transfer matrix. Note the
similarity of the updates and conventions with Fig.

projector W from the update of the effective matrix Cjy,
which is partially mimicked by the power 3/2 of the ma-
trix Cg. This power can be computed only for the posi-
tive matrix Cg, hence, its positivity becomes a necessary
condition. The process of the update for the matrix Cjy
is shown in Fig. [T9[h).

The algorithm described above depends substantially
on the positivity of the matrices Cg, C§, and C§. The
positivity is preserved by the majority of the update
steps. The only exceptions are the update in Fig. (d)
and the factorization in Fig. [19{(g). If the tensor A is pos-
itive with respect to symmetric factorization, then these
two steps are also guaranteed to preserve positivity, and
the method works. We also discuss the positivity issues
in more detail in Sec. [[TT and in Appendix [A]

H. Dice lattice

The dice lattice is an example of a non-Archimedean
lattice, which has two different types of vertices. We con-
struct a tensor network consisting of rank-6 rotationally
symmetric tensors A and rank-3 rotationally symmet-
ric tensors B placed on the respective nodes of the dice
lattice. The algorithm requires changes with respect to
previously discussed lattices, but the main idea remains
the same.

First, in Fig. [20{a) we show the transfer matrix and
the respective bMPS on the dice lattice. Note that the
bMPS consists of two different types of tensors. This
is necessary due to two different types of bulk tensors
A and B. The updates of the local tensors are shown
in Fig. b). For the update, we need biorthogonal (not
isometric) projectors Pr, and Pg with Pr, Pr = 1, and also
to perform one symmetric factorization step. To define
the projectors we introduce the corner matrices and the
respective updates.
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The corner matrices Cs and C'5 are shown in Figs. a)
and 21](b). We do not have consistency relations between
these matrices, sine the dice lattice does not consist of
symmetric polygons. We introduce two separate updates
for these matrices, which are shown in Figs. c) and
d). As a result of these updates, we obtain the en-
larged corner matrices, which we truncate by means of
biorthogonal projectors. To determine these projectors,
we express the contracted tensor network in terms of
these corner matrices C5 and Cg, as shown in Fig. [21)(e).
Equivalently, this contraction can be written as a prod-
uct of two matrices Cp and Cg. To find the projectors,
we biorthogonalize the matrices Cy, and Cg. Finally, we
perform the symmetric factorization. In Fig. RI[f) we
first perform an exact factorization without the trunca-
tion. The enlarged factorized index is depicted with two
lines. We can now rewrite the whole tensor network in
terms of these factorized tensors, corner matrices, and
bulk tensors B. Using this representation, we take the
density matrix for the enlarged factorized index and trun-
cate the index according to its spectrum. Equivalently,
one can diagonalize half of the density matrix, as is shown
in Fig. f). This diagonalization results in the isometry
W, which can be used to truncate the factorized index.

I. Remarks on the positivity and other lattices

In the introduced CTMRG approaches, many times
we faced the necessity for the symmetric factorization
step. Unfortunately, not every symmetric tensor can be
decomposed symmetrically. The necessary condition for
this decomposition relies on the positivity of the tensors.
In particular, its eigenvalues around the symmetric bi-
partition must be all positive. For positive bulk tensors,
which usually appear in classical statistical mechanics ap-
plications, these conditions hold automatically. For more
general tensors, which appear, e.g., in the iPEPS calcu-
lations, the bulk tensors can be both positive and nega-
tive, thus the simple versions of the described algorithms
can face convergence issues. Note that the CTMRG
algorithms on honeycomb, square-octagon, 4-6-12, and
square lattices do not contain symmetric factorizations,
hence, these can be straightforwardly applied to arbitrary
bulk tensors without any positivity restrictions.

For nonpositive bulk tensors and lattices with sym-
metric factorizations, one can introduce certain algorith-
mic modifications. First, we should not assume that the
bMPS consists of one type of symmetric tensor. Instead,
we can assume now that the bMPS contains several dif-
ferent types of tensors. In this case, the symmetric fac-
torizations turn into nonsymmetric factorizations, which
can be performed in the same way, as we described for
the 4-6-12 lattice. We discuss these generalizations to
nonpositive bulk tensors by taking example of triangular
lattice in Appendix [A]

In this section, we studied the dice lattice and various
Archimedean lattices. Still, there are three Archimedean
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FIG. 19. Ruby lattice: (a) Definition of the corner matrix Cs inside the hexagon as an intersection point between two bMPS
with the angle 7/3. (b) The definition of the corner matrix C inside the hexagon as an intersection point between two bMPS
with the angle 27 /3. (c) The consistency condition between the corner matrices C3 and Cs. (d) The first update step of the
corner matrix C3 allows us to find the first isometric projector U and the updated corner matrix C3. (e) The illustration
of the nonsymmetric factorization step. First, we can express the lattice in terms of the corner matrices and bMPS tensors.
Then, we employ the exact factorization of the rank-4 tensor, where we do not perform any truncation. The enlarged index is
shown with two lines. Next, we write this density matrix, which represents the lattice as a product of two matrices Cr, and
Cr. To obtain the projectors we apply the biorthogonalization procedure to the tensors Cr, and Cr. The obtained projectors
are then applied to truncate the enlarged factorized indices. We can also update the matrices Cs and C%. Note that the new
matrices C% and Cg are not diagonal. (f) The first factorization step is performed in a similar way to factorizations on different
lattices. The main difference is that the matrix C% is no longer diagonal. To proceed further, we factorize this matrix with the
Cholesky decomposition. This decomposition works only for the positive matrices, which is a major limitation for this type of
algorithm. After the decomposition, we can perform a factorization step. (g) Another factorization step, which is performed
analogously to the previous point. The only difference is that we obtain a new Cs matrix as a byproduct of factorization. (h)
The final projector can be found from the SVD of the effective corner matrix Cy. This decomposition requires Cg / 2 thus sets
an additional positivity condition.

lattices with the coordination number z = 5, which we procedure. In fact, the density matrices on these lattices
have not covered: maple-leaf, Shastry-Sutherland, and are generally not symmetric, thus one needs to apply
trellis lattices. We believe that the CTMRG approach biorthogonalizations and nonsymmetric factorizations all
can be extended to these lattices as well, but their natural the time.

anisotropy makes it difficult to devise a simple truncation



FIG. 20. Dice lattice: (a) Definition of the transfer matrix
on the dice lattice and the respective bMPS. (b) The local
updates of bMPS tensors.

III. BENCHMARKS AND RESULTS
A. Classical lattice models and tensor networks

Infinite tensor networks on various lattices can appear
in different problems, e.g., in calculations with the wave-
function variational ansatzes as iPEPS, calculations of
contractions of infinite circuits, or in certain models of
classical statistical mechanics on the lattice. In this sec-
tion, we focus on the latter and study certain well-known
statistical mechanics models on different lattices. First,
we describe these models, their physics and observables,
and their mappings into the tensor network problems.
This mapping is not unique, since one can map the sta-
tistical mechanics model into the tensor networks on dif-
ferent lattices. It is useful to briefly discuss the pos-
sible transformations between certain lattices, because
this allows us to study the same problem with different
CTMRG algorithms and cross-check the results.

Our main focus of interest is the classical Ising
model [40H43]. This model is formulated on the general
lattice as follows: we place a “spin” variable o; on every
site ¢ of the lattice. This variable is classical and can take
only two values: o; = +1 or o; = —1. We can now define
the energy of the system as follows:

E:—JZO'iO'j—BZO'Z', (1)

(i5)

where (ij) denotes all the nearest-neighbor pairs of sites
on the lattice and the second sum is taken over all lat-
tice sites. We set the coupling J to +1 or to —1 for the
ferromagnetic or antiferromagnetic Ising model, respec-
tively. The quantity B corresponds to the amplitude of
the external (magnetic) field, which is generally set to
zero, but for certain lattices we also study characteristics
in the nonzero field.

Now, we can express the partition function Z(f8) =
> o, exp[—BE(0)], where 3 = 1/T is the inverse tem-
perature in units of kg = 1, as well as the magnetiza-
tion (0;) = Y o;exp[—LE(0)]/Z(5). At low temper-
ature, the system described by the ferromagnetic Ising
model undergoes phase transition to the state with a
nonzero spontaneous magnetization, which corresponds
to the nonzero value of (o;), while at higher tempera-
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ture the system is in the disordered phase with (o;) = 0.
In the antiferromagnetic models, one can also observe a
phase transition between the antiferromagnetic and para-
magnetic phases driven by thermal fluctuations and the
external field.

The partition function can be written as follows:

Z(B) =Y _ [[exp(8Boi) [[ Woro,» (2)
oi i (i5)

where Wo,o, = exp(B8Jo;o;) = Wi; is the bond ma-
trix. We can now introduce the tensor =z ., =
exp(BBo;)0ij..n, where the rank of the tensor is equal
to the connectivity z of the lattice (if the lattice contains
sites with different connectivities, then one must intro-
duce several different tensors z for each type of sites),
each individual index 1, J,...,n takes two magnetization
values 1, and §;;...,, is a type of the Kronecker § tensor,
with the component equal to one, if all indices have the
same value (o; = 0; = ... = 0y,), and zero otherwise.

Let us add more comments on the tensor x. First, in
the absence of the external magnetic field B, it reduces
to the d-tensor. Second, this tensor depends on the single
value exp(—208B). Below, we denote these values some-
what loosely as = exp(—28B), which can be restricted
to the interval 0 < z < 1. We assume that it is usually
clear from the context, if we mean the tensor or the cor-
responding constant. Besides that, we also introduce the
constant a = exp(—20).

With the introduced tensors, we can define the tensor
network for the partition function Z(8) by placing the
tensors x on all lattice sites and the matrices W;; on
the corresponding links. This network is illustrated in
Fig. a) for the triangular lattice in the absence of the
external field (i.e., we can use J-tensors instead of -
tensors) and in Fig. 22|c) for the honeycomb-lattice Ising
model in the external field.

The introduced form of tensor network does not match
exactly the ones discussed in the previous section, since
it contains additional matrices W;; on the links of the
lattice. It looks possible to generalize the CTMRG ap-
proach directly to these models, similar to the bond-type
statistical mechanics models on the square lattice. How-
ever, we are interested in mapping the tensor network
directly into one the forms from the previous section.

Let us first discuss the ferromagnetic case. For the
ferromagnetic model, the matrix W is positive and sym-
metric, thus one can define the positive symmetric square
root ¢ = v/W. This allows for the decomposition, which
is shown in Fig. b)7 and the square roots can be ab-
sorbed into the tensors x (or § without external field),
transforming to the new tensor A. This construction is
also related to the Fisher superexchange Ising model [44]
with additional spins on the bonds of the original lat-
tice. In this representation, the indices of the tensor A
take values in these bond spins, while v/ is a new bond
matrix with the redefined 5. The new tensor network
consists of identical tensors A on all lattice sites, where
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FIG. 21. Dice lattice: (a) Definition of the corner matrix C3. (b) Definition of the corner matrix Cs. (c) The growth step
for the corner matrix Cs. (d) The update steps for the corner matrix Cs, which result in the new matrix Cs with a larger
dimension. (e) The contracted tensor network in terms of the larger matrices C3 and Cg, which can be written as a product
of the matrices Cr, and Cr. We apply the biorthogonalization to Cr, and Cr to obtain the projectors Pr and Pg. (f) The
symmetric factorization step. Initially, we perform a factorization without truncating the factorized index (indicated with two
lines). We can write a contracted tensor network in terms of factorized tensors and corner matrices. The index can be truncated
using the isometry obtained from the eigendecomposition of the density matrix (or its half denoted as K).

we can directly apply the algorithms from the previous
section.

For the antiferromagnetic model, we cannot define the
positive square root ¢, thus we introduce an arbitrary
nonsymmetric decomposition W = L x R, which is shown
in Fig. (d) This decomposition can be obtained, e.g.,
from SVD. Then, we absorb the matrices L and R into
different tensors z, as in Fig. d). Note that this con-
struction works only on the bipartite lattices, as the hon-
eycomb one, where we obtain the two-site unit cell tensor
network with two different tensors on different sublattices
of the original lattice. For other not bipartite frustrated
lattices (e.g., triangular or kagome), the more complex
tensor network encoding is required, as is discussed in
Refs. [45H49).

Finally, let us briefly discuss different mappings of the
models into the tensor networks. It is possible to map
tensor networks on different lattices into each other, as
we show in Figs. 22)(e) and 22|f) for the cases of ruby,
SHD and kagome lattices. These mappings allow cross-
checking different CTMRG algorithms, since they can be

applied to the same lattice model.

B. Triangular lattice

We begin the benchmark analysis from the ferromag-
netic Ising model on the triangular lattice. This model
is integrable and its transition temperature is exactly
known. The model can be represented as a tensor net-
work contraction on the triangular lattice, with the ten-
sors being both completely symmetric and positive. In
this subsection, we analyze several observables to deter-
mine the transition temperature and compare it with
the exact values. We consider the following observ-
ables: the onsite magnetization (o), which appears in the
low-temperature ferromagnetic phase, and various corner
Hamiltonian characteristics. Up to multiplicative nor-
malization, the corner (or entanglement) Hamiltonian is
defined as follows:

H, = —log(C3). (3)



FIG. 22. (a) The general construction of the tensor network
on the lattice (here, triangular) by placing tensors § on the
sites and matrices W on the bonds. (b) For the ferromagnetic
models we can find the unique positive symmetric square root
of the bond matrix W. These square roots can be absorbed
into the tensors §, forming the tensor network of identical
rotationally and reflection-symmetric tensors A. (c) For the
bipartite antiferromagnetic model in the external field, the
partition function can be determined by placing identical ten-
sors z on the lattice sites and bond matrices W on the links.
(d) For the antiferromagnetic model we do not have a unique
symmetric decomposition of the matrix W, but we can choose
an arbitrary one (e.g., based on SVD) and then absorb the
resulting matrices L and R into different site tensors, form-
ing the tensor network with two-site unit cell. (e) Example
of the transformation mapping the ruby lattice into the SHD
one. Note that here we assume the symmetric factorization
of the tensor A on the ruby lattice. If this factorization is not
available, then one can employ a nonsymmetric factorization,
but the mapping results in the two-site unit cell on the SHD
lattice. (g) The mapping from the SHD to kagome lattice.

In integrable models, these corner Hamiltonians have
remarkable properties: they can be connected to the
boost operators of the integrable spin chains, which are
obtained in the extreme anisotropic limit of the integrable
model [50H54]. These boost operators, in turn, generate
integrals of motion of the integrable chain and they are
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the basis of the recent approaches to finding the new in-
tegrable models [55]. The boost operator in integrable
models also has integer eigenvalues. It means that the
spectrum of H. has a form: F = Eg + An, where Ej is
a normalization-dependent factor, n is integer, and A is
an entanglement gap (or a Schmidt gap).

Note that the Hamiltonian spectrum is degenerate, and
generally there are many eigenstates that correspond to
the same n. We can characterize the Hamiltonian with
its gap A and its degeneracies d(n). Since d(n) are in-
teger numbers, they cannot change without phase tran-
sition, where the gap A vanishes. As a result, we can
study the phase transitions in integrable models by ana-
lyzing the gap A [56], and characterize the phases with
their respective degeneracies d(n). For certain models, it
was found that the degeneracies are related to the rep-
resentation theory of the quantum deformed Kac-Moody
algebras [57H59], but we do not pursue this characteriza-
tion here. For the Ising model on the square or triangular
lattices, the spectra are known exactly. These have free
fermionic form: E =", ¢n;, where n; = 0,1, and ¢ can
be obtained according to the following rule [51]:

e =20+ 1A, (4)

for the disordered phase, where [ = 0,1,2,3,..., and for
the ordered phase

€] = ZA, (5)

where [ = 1,2, 3,.... From these spectra, we can find the
degeneracies by computing the partition function of the
entanglement spectrum in terms of ¢ = exp(—A), which
in the disordered phase has a form:

2

Il
=)

+2¢% +2¢° +2¢"° + 2¢" + 3¢ +.... (6)
This formula defines the degeneracies in the disordered

phase d = {1,1,0,1,1,1,1,1,2,2,2,2,3,...}.
In turn, in the ordered phase

(1+¢") = 1+¢+¢*+2¢° +2¢* +3¢°+4¢°4+5¢ +. . ..

3

7 =
l

1

(7
This corresponds to the degeneracy pattern d =
{1,1,1,2,2,3,4,5,...}. Below, we observe that exactly
this spectrum appears in the Ising models on triangular,
kagome, square-octagon, star, and dice lattices, while for
other lattices they appear in the vicinity of the phase
transition, which is always governed by the Ising confor-
mal field theory (see Ref. [60] for the spectra universality
near the phase transition). We also observe that on ruby
and SHD lattices, where we do not observe the exact de-
generacies, the spectra are still free fermionic, which still
leads to a large number of nontrivial relations between
different entanglement eigenvalues.

~—
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FIG. 23. Triangular lattice: The corner matrix spectrum in
the ordered phase of the Ising model, normalized by the gap A
between the first and second eigenvalues. The bond dimension
of the corner matrix xy = 120 and the inverse temperature
B =0.28.

In general, we analyze the following observables as a
check of our CTMRG scheme: we measure the magneti-
zation and entanglement gap to determine the transition
temperature, and we explore the closeness of the entan-
glement spectrum to the degenerate integer values as an
additional check. It should be mentioned that for inte-
grable models it is possible to develop a “logarithmic”
CTMRG, which works directly with the corner Hamilto-
nian [61].

We show the corner spectrum in the ordered phase
(8 = 0.28) in Fig. where we normalize the eigen-
values by the gap A. It is clear that with this normal-
ization the eigenvalues form degenerate multiplets with
integer eigenvalues. The degeneracies form a sequence
d=1{1,1,1,2,2,3,4,...}. This sequence is independent of
the precise value of [ inside the ordered phase. For the
first eigenvalues, the closeness to the integer holds within
a precision 10~ ''. For the higher eigenvalues, we notice
distortions of the spectrum from the integer values and
from the exact degeneracy. These deviations originate
from the finite values of the bond dimension x and one
can systematically improve the accuracy by the increase
of x. Note that the corner eigenvalues F are logarithmic
quantities, thus their closeness to integers is still very im-
pressive. The figure proves that our CTMRG algorithm
captures the main properties of the corner spectra in in-
tegrable models.

In Fig. we show the dependence of the magneti-
zation and entanglement gap A on the inverse temper-
ature . The behavior of the magnetization indicates
the second-order phase transition with the estimated
Be =~ 0.2746. This agrees well with the exact critical
value B = In(3)/4 ~ 0.274653. The behavior of the
gap A agrees with the magnetization, indicating a clear
minimum in the vicinity of the phase transition. In prin-
ciple, the gap must vanish at the transition point. How-

0.2 |

0.0 .
0.265 0.270 0.275 0.280

FIG. 24. Triangular lattice: Dependence of the magnetiza-
tion o and entanglement gap A on the inverse temperature 3
at x = 200.

ever, the convergence in the critical region is slow and to
show this explicitly, one needs to further increase x, since
the corner spectrum becomes continuous at the transition
point.

C. Kagome lattice

Next, we study the same ferromagnetic Ising model on
the kagome lattice. Analogously to the triangular lattice,
we analyze the on-site magnetization and entanglement
(corner) spectrum, which we now define as the eigenval-
ues of the logarithm of corner matrix Cg (this is just a
normalization convention). We also define the entangle-
ment gap A as a difference between the first and second
multiplets of the entanglement spectrum. The model is
integrable, and we obtain the same integer-level spacings
with the nearly exact degeneracies. In Fig. 25 we show
the spectrum in the disordered phase on the kagome lat-
tice. It is clear that the levels are integer-valued and form
a degeneracy pattern in the disordered phase of the form
d=1{1,1,0,1,1,1,1,1,2,2,2,2,3,...}.

It is also interesting to analyze the corner matrix C%,
which is defined inside the triangles (see also Fig.[7) and
its entanglement spectrum. We note that generally this
spectrum is not integer-valued and is not exactly degener-
ate, but the spectra follow the free fermionic pattern and
become integers only in the vicinity of the phase transi-
tion. This is a common trait for many corner matrices
of different Ising models. For a majority of models, we
observe that only one of the corner matrices exhibits the
integer spectrum, while other corner matrices are only
free fermionic. For certain lattices, e.g., the ruby or SHD,
we find that all corner matrices are only free fermionic.

In Fig. we show the dependence of the magnetiza-
tion and entanglement gap on the inverse temperature

B. The exact critical value 8™ = In(3 + 2v/3)/4 ~
0.466566, which agrees with our result 8. = 0.4666(1).
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FIG. 25. Kagome lattice: The corner matrix spectrum in the
disordered phase of the Ising model, normalized by the gap A
between the first and second eigenvalues. The bond dimension
x = 90 and the inverse temperature 8 = 0.45, which is close
to the transition point.
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FIG. 26. Kagome lattice: Dependence of the magnetization

o and entanglement gap A on the inverse temperature § at

x = 200. The exact critical value S. = 0.46657, while our
estimate is . = 0.4666(1).

Note that this result is obtained purely from the compu-
tation of CTMRG on a mesh with spacing A = 0.0001,
which defines the accuracy of the estimates. In principle,
one can improve accuracy by additional fitting and finer
mesh in the vicinity of the phase transition.

Finally, as we specified in Sec. [[IB] the corner ma-
trix C'5 inside the hexagons can be obtained in two dif-
ferent ways. In the converged state, these two definitions
must be identical. Hence, the agreement must indicate
the convergence and self-consistency of the approach. In
Fig. 27| we show the logarithm of the norm of the differ-
ence between two definitions of the matrix Cs. It is clear
that the difference vanishes (up to machine precision er-
rors) after a sufficient number of iteration steps. This
confirms the consistency of the proposed scheme and also
proves that various procedures to converge the CTMRG
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FIG. 27. Kagome lattice: The logarithm of the Frobenious
norm of the difference between two matrices Cs and C2

(preliminary normalized). The parameters are x = 90 and
B = 0.45.

environments ultimately lead to the same results.

D. Square-octagon lattice

The square-octagon lattice does not introduce any ad-
ditional difficulties compared to the previous lattices. We
observe the same integer entanglement spectrum and the
dependence of the magnetization and entanglement gap
is also analogous to the previous results.

The possible difference from the previously discussed
cases is the presence of two different bMPS, which are
rotated by the angle 7/4. Note that the quantities as
the magnetization can be computed with both types
of bMPS. We computed the magnetizations with both
types of bMPS and observed that the results agree up to
machine-level precision (of the order of 10713).

Another possible check of consistency does not employ
two different bMPS, but operates in the same bMPS al-
gorithmic loop (see Fig. , where we also introduce the
symmetric tensor T'. At the same time, we can always re-
place the tensor T' with the first boundary MPS tensor O
[shown in yellow in Fig. [I1fa)] and two corner matrices
Cs, which account for the remaining angle 7/2 in the
tensor T'. For the consistency of all calculations, these
two ways to represent the corner in any computation of
observables must agree. Hence, the consistency condition
can be written as Tj;i = ng,iOijk- ‘We show the conver-
gence of the Frobenious norm of the tensor difference in
Fig. 28]

We show the entanglement spectrum in the disor-
dered phase in Fig. 29 This spectrum is obtained from
the logarithm of the corner matrix Cs. Note that the
spectral degeneracies are identical to the ones of the
kagome lattice with the corresponding degeneracy pat-
terns. In turn, the results for the magnetization and
for the entanglement gap are shown in Fig. The
critical inverse temperature estimated in our analysis
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FIG. 28. Square-octagon lattice: Convergence of the norm
of the difference between the tensors T' and 082,1'01']'1@ (pre-
liminarily normalized). The parameters are y = 100 and
B = 0.69. The norm of the difference converges to the value
around 1078,
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FIG. 29. Square-octagon lattice: The corner matrix spectrum
in the disordered phase of the Ising model, normalized by
the gap A between the first and second eigenvalues. The
parameters are xy = 100 and 8 = 0.69.

B = 0.6950(1) agrees well with the exact result, (o) —

In(1++v2/2+ 10+ 8v2/2)/2 ~ 0.6950741. The en-

tanglement gap is calculated from the matrix log Cs.

E. Star lattice

The star lattice has a lot in common with the kagome
lattice. In fact, the kagome lattice can be obtained from
the star lattice with a contraction of one of the indices,
hence, the CTMRG algorithms on both lattices are very
similar. Here, we analyze the same quantities as for the
kagome lattice. In particular, we compute the same con-
sistency condition, which corresponds to the difference
between two different ways how the matrix C'5 inside the
dodecahedrons can be defined. We show the convergence
of the difference between two matrices in Fig. The
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FIG. 30. Square-octagon lattice: Dependence of the magneti-

zation o and entanglement gap A on the inverse temperature
B at x = 200. The estimated critical value . = 0.6950(1).
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FIG. 31. Star lattice: Convergence of the norm of the differ-
ence between two definitions of the matrix C3 (preliminarily
normalized). The parameters are x = 120 and 8 = 0.78.

difference converges almost to the machine precision.

Next, we discuss the entanglement spectrum and ob-
servables on the star lattice. These are shown in Figs.
and [33] respectively. The entanglement spectrum is the
same as for the square-octagon and kagome lattices, while
the critical temperature also agrees well with the ex-
act result, B = 1n (3/2 + v/3/2 + V12 + 10v/3/2) /2 ~
0.8120101. Note that here we obtain the entanglement
spectrum and the entanglement gap from the corner ma-
trix 012.

F. Ruby lattice

On the ruby lattice, it is necessary to apply nonsym-
metric factorizations. These require a long procedure
of finding projectors P;, and Pg, which is illustrated in
Fig. This procedure employs the inversion of the
square root of the matrix S, with S requiring the con-
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FIG. 32. Star lattice: The corner matrix spectrum in the
disordered phase of the Ising model, normalized by the gap
A between the first and second eigenvalues. The parameters
are y = 120 and 8 = 0.78.
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FIG. 33. Star lattice: Dependence of the magnetization o and
entanglement gap A on the inverse temperature S at xy = 200.
The estimated critical value 8. = 0.8120(1).

traction of all corner matrices. It means that S o C§,
where the proportionality means the order of magnitude
estimate. Now, imagine the system is far from criticality,
where the eigenvalues of the matrix Cg quickly decrease
to zero. For these corner matrices, the eigenvalues of S
decrease much faster. This can lead to machine-precision
errors since the eigenvalues of S can become smaller than
10716, In this case, the intermediate steps in the calcu-
lation of S seem inaccurate, and the resulting projectors
Pr, and Pgr can be wrong. This leads to a possible al-
gorithm instability, which appears only at high values of
X-

In this study, we choose the following scheme to mit-
igate the potential numerical instability: We start the
CTMRG scheme with a small y and then gradually in-
crease it step by step, with convergence ensured at each
step. We stop increasing Y, if it has reached the maxi-
mal value or if the eigenvalues of S become lower than the
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FIG. 34. Ruby lattice: Convergence of the maximal difference
between the ten largest eigenvalues of the corner matrices
Ct and Cf’ (preliminary normalized). The parameters are
x = 40 and 8 = 0.46. The fluctuations on the plot correspond
to the consecutive increases of .

predefined threshold, e.g., 1074, It is possible that this
problem can be solved with the introduction of more pre-
cise schemes for finding projectors, which were proposed
on the square lattice in Ref. [62]. Note that in the vicin-
ity of the critical point, the instability appears at much
higher values of x than our typical maximal values.

We can now describe certain consistency checks on the
ruby lattice. Note that the ruby lattice contains two
types of hexagons with the corresponding corner matrices
C§ and Cf’. These two matrices appear on the different
stages of the algorithmic loop, hence, in principle, they
are not connected. But from the geometrical arguments,
we can make a statement that these matrices must be
the same. Indeed, this also corresponds to our numerical
observations. The first three eigenvalues converge to the
precision of about 1071°, while the smallest eigenvalues
can have larger differences up to 10~7. In Fig. we
show the convergence of the maximal difference between
the ten largest eigenvalues of the respective matrices.

Next, we describe the entanglement spectrum on the
ruby lattice. Unfortunately, the spectra (for all types of
corner matrices) do not exhibit a clear integer degeneracy
pattern. Still, these spectra remain free fermionic. In
particular, we are able to reorganize the first two dozen
eigenvalues in the form of the free fermionic Hamiltonian.
Another clear sign of the free fermionic nature of the
spectra is that all eigenvalues can be grouped in pairs of
the form {E, E + A}, which we also observe in all cases.
We believe that the free fermionic nature of the spectra
is due to the possibility of the exact fermionization of the
Ising models on the planar lattices, which is a basis of the
Pfaffian method of the Ising model solution [43] 63, [64]
(see also Ref. [65] for a tensor network introduction to
the duality).

The exact integer degeneracy appears only in the vicin-
ity of the phase transition due to universality [60]. For all
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FIG. 35. Ruby lattice: The corner matrix spectrum in the
disordered phase of the Ising model, normalized by the gap
A between the first and second eigenvalues. The parameters
are x = 90 and 8 = 0.466, which is close to the critical point.
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FIG. 36. Ruby lattice: Dependence of the magnetization o
and entanglement gap A on the inverse temperature (8 at
Xmax = 90. The estimated critical value is 8. = 0.4666(1).

other values of the inverse temperature 3, the spectra de-
viate from the exactly degenerate integer form. To check
this property, we mapped the tensor network on the ruby
lattice to another tensor network on the kagome lattice,
where we applied the kagome-lattice CTMRG and ob-
tained identical not-exactly integer spectra. We show the
spectrum in the vicinity of the critical point in Fig. [B5
The first eigenvalues are nearly integer (with a differ-
ence of the order of 1073) and nearly degenerate, but the
higher eigenvalues show disordered behavior.

Finally, we analyze the magnetization and entangle-
ment gap on the ruby lattice. The exact result for the
critical temperature is given by ﬂgex) =In(3+2V3)/4~
0.466566. This agrees well with our estimates in Fig. [36]
where we show the dependence of the magnetization and
entanglement gap on the inverse temperature .
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FIG. 37. SHD lattice: Convergence of the maximal difference
between the ten largest eigenvalues of the corner matrices
C§ and C§’ (preliminary normalized). The parameters are
x = 40 and 8 = 0.71. The fluctuations on the plot correspond
to the consecutive increases of .

G. SHD lattice

The case of SHD lattice is completely analogous to
the ruby lattice in its algorithmic realization with all the
corresponding discussions. In particular, there exists the
potential numerical instability at high y. As a check of
convergence of the CTMRG scheme on the SHD lattice,
we analyze the difference between the spectra of two dif-
ferent hexagon corner matrices shown in Fig. [37] The re-
sults are somewhat worse than for the ruby lattice, which
is a general observation for the SHD lattice.

The entanglement spectra on the SHD lattice are also
not exactly integer, though they converge to the integer
values near the phase transition. To confirm this result,
we also mapped the tensor network to the kagome lat-
tice, where we applied the kagome-lattice CTMRG. The
results of the kagome-lattice CTMRG are in agreement
with the SHD-lattice calculations. The behavior of the
spectrum near the critical point (in the disordered phase)
is shown in Fig. The eigenvalues are close to the ones
obtained for the square-octagon or star lattices, but this
holds only in the vicinity of the phase transition.

Finally, we analyze the magnetization and the entan-
glement gap defined from log (Cs), where Cg is the corner
matrix inside the dodecahedrons. The corresponding ob-
servables and the estimate of the critical temperature are
shown in Fig.

H. Dice lattice

The dice-lattice CTMRG has similar peculiarities as
the ruby and SHD lattices, since the corresponding algo-
rithm includes the nonsymmetric factorization. Due to
this, all comments regarding possible numerical instabil-
ities at large x hold here as well. To proceed, we also
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FIG. 38. SHD lattice: The corner matrix spectrum in the
disordered phase of the Ising model, normalized by the gap
A between the first and second eigenvalues. The parameters
are xy = 105 and 8 = 0.719.
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FIG. 39. SHD lattice: Dependence of the magnetization o
and entanglement gap A on the inverse temperature S at
xmax = 90. The exact value of the inverse critical temperature
B~ 0.71951019, while according to our estimates . =
0.7195(1).

introduce the maximal value of x for this lattice, which
depends on the spectrum of S in the nonsymmetric fac-
torization.

Note that we also have additional differences in the
case of dice lattice. First, it does not contain a single type
of diagonal corner matrix with the eigenvalues related to
the entanglement spectrum. In contrast, we have two dif-
ferent corner matrices Cs and C5, which are symmetric.
In general, these two matrices cannot be simultaneously
diagonalized. Still, the behavior of their eigenvalues con-
tains information on the criticality of the system. In
particular, we define the entanglement gap A as the dif-
ference of logarithms of the second and first eigenvalues
of the matrix C5. We employ this as a definition of the
entanglement gap for the dice-lattice Ising model. Sec-
ond, the dice lattice has two types of sites: trivalent (type
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FIG. 40. Dice lattice: Dependence of the local magnetizations
oa,B on two types of lattice sites A, B and entanglement gap
A on the inverse temperature 8 at Xmax = 200. The estimated
critical value of the inverse temperature is 8. = 0.4157(1).

B) and six-valent ones (type A), which can have differ-
ent on-site magnetizations. The entanglement gap and
the magnetizations on two types of sites are shown in
Fig. [0l The critical temperature for the dice lattice can
be obtained from its duality to the kagome lattice, thus

B~ 0.415721472. Our result for the critical temper-
ature is close to the specified exact value, in particular,
B. = 0.4157(1).

As we stated, the spectra of the corner matrices C3 and
Cg cannot be defined simultaneously and do not give us
useful information, in particular, the integer spectrum
with exact degeneracies. To obtain these, we employ the
duality with the kagome lattice as a guiding principle.
According to the calculations on the kagome lattice, we
know that the kagome-lattice Ising model exhibits integer
and exactly degenerate corner spectra on the hexagons.
Surely, the CTMRG approach to the dual-lattice Ising
model (which is exactly equivalent to the original one up
to some redefinitions of the inverse temperature) must
also contain these integer degenerate levels but in a more
complex way.

The original kagome-lattice corner matrices correspond
to the corners of the hexagons, which are dual to the six-
valent vertices of the dice lattice. The six-valent tensors
are now surrounded by six tensors T’ (see also Fig. .
We also take the matrices ¢ (defined as square roots of the
bond matrices of the Ising model, ¢ = v/W) and reabsorb
them into the tensors T as follows: T} = Tujkq?, where
o = {+1,—1}. With these new tensors, the partition
function is proportional to Y- Tr[(7"7)%;], where we take
17 as matrices (rank-2 tensors) in indices i and j for the
fixed o, perform exponentiation of these matrices to the
sixth power for each o, and then take a trace with respect
to the indices 7, j and sum over o.

We define the entanglement spectrum as logarithms
of the eigenvalues of T}¢ for both 0. We find that this
spectrum is integer-valued and contains the same degen-
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FIG. 41. Dice lattice: The T’-tensor spectrum in the ordered
phase of the Ising model, normalized by the gap A between

the first and second eigenvalues. The parameters are x = 45
and 8 = 0.417.

eracies as the kagome-lattice corner spectrum. The dif-
ferences are in the reverse role of the phases: the disor-
dered phase on dice lattice corresponds to the ordered
phase on kagome lattice and vice versa. We also have
additional degeneracy in the disordered phase of the dice
lattice, since the spectra for 0 = 41 are the same in this
phase. We show the eigenvalue pattern of the tensor T’
in the ordered phase in Fig. The degeneracy pattern
isd = {1,1,0,1,1,1,1,1,2,2,2,2,3,3,3,4,5,...}, which
is identical to the spectral degeneracies of kagome, trian-
gular, square-octagon, and star lattices in the disordered
phase. Note that here we combine the spectra of both o.
This is the reason for the number of depicted eigenvalues
exceeding the chosen maximal x.

The spectrum of the matrix 7" in the disordered
phase of the dice-lattice Ising model is shown in Fig.
(with ¢ = 41, since 0 = —1 results in the identi-
cal spectrum). The degeneracy pattern is now d =
{1,1,1,2,2,3,4,5,6, ...}, which coincides with the degen-
eracy pattern of the triangular- and kagome-lattice Ising
models in the ordered phase.

I. Honeycomb lattice

Finally, let us discuss certain aspects of the
honeycomb-lattice CTMRG. The CTMRG approach on
the honeycomb lattice was introduced and successfully
applied in two separate studies [33, 34]. In this sub-
section, we aim to show that our extension of the
honeycomb-lattice CTMRG to the two-site unit cell in-
deed converges, obeys certain consistency checks, and
agrees with the scheme proposed in Ref. [34].

To check the two-site algorithm convergence on the
honeycomb lattice, we need a simple model with a two-
site unit cell. A natural suggestion is the honeycomb-
lattice antiferromagnetic Ising model in the external field.
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FIG. 42. Dice lattice: The T'-tensor spectrum in the dis-
ordered phase of the Ising model, normalized by the gap A

between the first and second eigenvalues. The parameters are
X = 75 and 8 = 0.415.
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FIG. 43. Honeycomb lattice: Dependence of the local magne-
tizations o4 and op on the inverse temperature 8 at x = 0.5
and Xmax = 120.

This model is not exactly solvable, but there are numer-
ical results for the critical point [66] [67]. As suggested
above, we use the parameter = exp(—25B) to charac-
terize the strength of the external field and the parameter
a = exp(—20) to characterize the temperature. For the
comparison, we choose x = 0.5, where the published nu-
merical results suggest a critical point a. = 0.260013 [66].
Our results in Fig. 43| are in good agreement and suggest
the critical point a. = 0.26005(5).

Let us comment on the convergence of the algorithm.
In Sec. [[TC] we suggested that it is sufficient to employ
only one corner matrix Cg to obtain the projectors. In
our numerical analysis, we confirm this suggestion, if the
system is far from criticality. In the vicinity of the phase
transition, it is sometimes necessary to employ two or
all three corner matrices to obtain the environments )7,
and Qg for the corresponding projectors (these are de-
fined analogously to the dice-lattice algorithm shown in
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FIG. 44. Honeycomb lattice: Convergence of the maximal
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Both products are preliminary normalized by their respective
maximal elements. The parameters are y = 56 and a = 0.255.

Fig. .

Next, we turn to the consistency checks. The first
check concerns the matrix Cs, which was used in Ref. [34].
As we suggested in Sec. [[LC]| [see Figs. [0fe) and [J[g)], the
matrix C3 must be identical to CZ or, in the case of the
two-site unit cell, it must be equal to the corresponding
matrix product Cs 4Cs . For the latter, the equation in
Fig. [0fe) must be viewed as a consistency condition on
the tensors Cg 4, Cg,5, Ra, and Rp [note that in Fig. @(e)
additional projectors and bulk tensors A appear, but they
can be grouped into just two tensors Ry and Rp]. We
show the convergence of this equation in Fig. 4] It is
important to note that the converged values of the order
of 1077 is the maximal difference, which usually occurs
for the last eigenvalues, while the differences in the first
matrix elements are identical to the machine precision.
We conclude that the equation in Fig. @(e) holds for our
converged environments. Hence, the corner environments
of Ref. [34] can be obtained from ours, and the algorithms
are equivalent up to the choice of projectors.

We can now discuss the second consistency check. The
rank-3 tensor RpCps g must be symmetric in its first and
last auxiliary indices. We show the evolution of the max-
imal absolute value of the antisymmetrization of RpCs B
in Fig. As in the previous consistency check, the max-
imal difference corresponds to the smallest eigenvalues of
the corner matrices, while the first tensor elements af-
ter antisymmetrization vanish up to machine precision.
We also probed the same consistency test with several
types of directional update method to obtain the pro-
jectors and usually observed much poorer convergence of
the consistency checks.

It should be mentioned that we also briefly studied
the ferromagnetic Ising model on the honeycomb lattice
without an external field. In this case, we used the sim-
plest isotropic and homogeneous CTMRG ansatz, with
projectors determined either from the corner matrices Cg
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FIG. 45. Honeycomb lattice: Convergence of the maximal ab-
solute value of the antisymmetrization of the tensor RgCs, g
(both Rp and Cg, g are normalized by their respective norms).
The parameters are Yy = 56 and a = 0.255.

or C3. We observed that the converged results are gen-
erally independent of the scheme and that Cs5 computed
from the converged corner matrix Cg is the same as the
converged matrix C3 from the Cs-based CTMRG up to
machine precision.

IV. CONCLUSIONS AND OUTLOOK

In this study, we developed the CTMRG algorithms on
triangular, kagome, square-octagon, ruby, SHD, star, and
dice lattices. The procedure to construct the CTMRG
loop is rather general and can be summarized as follows:
(1) define all unique bMPS on the lattice and find how the
individual tensors of the bMPS are updated during the
absorption of the bulk tensors into the bMPS:; (ii) define
the corner matrices as intersections of different bMPS;
(iii) find the updates of corners from the updates of bMPS
local tensors; (iv) employ the corner tensors to define
environments, which allow finding optimal truncations
for the local bMPS tensors. All together, this forms the
self-consistent scheme, which allows us to find the CTM
environments on many different lattices.

We conclude that the procedure is general and can be
extended to the lattices not covered in this study, includ-
ing the Shastry-Sutherland, maple-leaf, trellis, square-
kagome lattice, etc. It can also be extended to anisotropic
tensor networks or the ones with the enlarged unit cells.
Another potential direction is to dualize these algorithms
to define CTMRG for the interaction-round-a-face mod-
els on the dual lattice. The interaction-round-a-face
models can also be studied with the CTMRG methods
[14] (see, e.g., Refs. [27H32] for the corresponding discus-
sion on triangular and hyperbolic lattices).

Other relevant research directions include the com-
pletely variational formulation of the proposed algo-
rithms [68], its comparison with VUMPS [69], and the
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FIG. 46. Triangular lattice: (a) Transfer matrix for the nonpositive bulk tensor and the corresponding bMPS, which consists
of two different boundary tensors. (b) The update rule for the boundary tensors, which mimics the steps shown in Fig. [2| The
difference is that the factorization is nonsymmetric and projectors are not isometric. (c) The modified update step for the corner
matrix C3 (which is also no longer symmetric). The projectors Pr, and Pr can be obtained, e.g., from the biorthogonalization
of the environments with enlarged C3. (d) The nonsymmetric factorization step. First, as in the positive case, we define the
tensor R. Then, we perform an arbitrary factorization of this tensor into two rank-3 tensors L and R. We do not perform
truncation in this step, which is illustrated with the double-line links for the enlarged not-truncated factorization index. The
tensors L and R are then absorbed into the corner matrix. The new corner matrix has an enlarged bond dimension, which is
truncated back with the projectors P; and Pg, which we also obtain from biorthogonalization. The same projectors can be

also used to truncate the factorization index in L and R back to the bMPS bond dimension.

development of the modified convergence schemes in line
with Ref. [62]. Potential practical applications encom-
pass the variational optimization of the iPEPS wave func-
tion with the proposed CTMRG approaches as a method
to compute correlation functions [33] [70], studies of the
frustrated lattice models [34] 49], as well as quantum
thermal systems [71]. Currently, we are also investigating
possible consistency conditions between the CTM envi-
ronment tensors and projectors (to some extent, in line
with Ref. [62]) with the aim of employment of additional
structure appearing in projectors for the computation
of arbitrary two- and three-point long-range correlation
functions.

ACKNOWLEDGMENTS

The authors thank Mari Carmen Banuls and Natalia
Chepiga for helpful comments during the manuscript
preparation. The authors acknowledge support by the
National Research Foundation of Ukraine under the call
“Excellent science in Ukraine” (2024-2026) and sup-
port by the Office of Naval Research Global (ONRG),
Grant # N62909-23-1-2088 (program manager Dr. Mar-
tina Barnas).

Appendix A: The CTMRG on the triangular lattice
with nonpositive bulk tensors

By taking an example of triangular lattice, let us dis-
cuss how to generalize the algorithms to the nonposi-
tive bulk tensors, which inevitably appear, e.g., in the
iPEPS calculations. First, according to Fig. c), we see
that the positivity of the bulk tensor guarantees the exis-
tence of symmetric factorization of the tensor in the left
part of the equation in Fig. c). If the bulk tensor is
not positive, then we conclude that the factorization can
be nonsymmetric. This leads us to introduce the more
general nonsymmetric bMPS ansatz, which is shown in
Fig. |46(a).

This new ansatz consists of two different boundary ten-
sors. The update rule for these tensors is illustrated in
Fig. b). This is a trivial generalization of the update
rule from Fig. c)7 though we employ the nonsymmet-
ric factorization instead of symmetric one, and we also
replace the isometric projector P with a more general
biorthogonal projectors Pr, and Pr. The corner matrix
Cj is defined in the same way as in Fig. (a), but the up-
date also includes biorthogonal projectors, as we show in
Fig. [i6]c). Note that the new corner matrix is no longer
symmetric or diagonal. Still, we can find the projectors
from it by applying biorthogonalization of the environ-
ments built from this enlarged matrix C5 (or, alterna-
tively, with some form of the directional update).

Next, let us discuss the factorization step. We de-



fine the rank-4 tensor R to be factorized, as shown in
Fig. [f6]d). We factorize it into two rank-3 tensors L and
R, where the factorization is performed without trunca-
tion. We employ SVD for this factorization and absorb
the tensors L and R into C5 to obtain the matrix Cj,
but with the enlarged bond dimensions. To truncate it
back to the original bond dimension, we find the new
biorthogonal projectors P; and Pj. These projectors
can be obtained again from the biorthogonalization, but
this time of the environments built from the matrix Cs.
The projectors are applied to truncate the matrix Cs and
also to obtain the new bMPS tensors from L and R.

We tested the method on random symmetric (but non-
positive) bulk tensors, finding the quickly convergent
CTMRG environments, which also obey the simplest
consistency checks on various tensors of CTM. To de-
fine these consistency checks, we used combinations of
the matrices Cj3, on-site tensors O, and corner tensor T,
which can also be general to the nonpositive case.

Note that the method can be extended to triangular
lattices with partly or fully broken rotational or reflection
symmetries. It is also interesting that all the steps in this
nonpositive algorithm have already appeared in various
CTMRG algorithms in the main text.

Appendix B: Additional tests on the ¢-Potts model

To confirm a high potential and universality of the de-
veloped approach, we also performed a few additional
tests of the method on the models with the larger bond
dimension D of the tensor network. For this purpose, we
take the ¢-Potts model [72] [73], which has the following
Hamiltonian:

H==> Jbss,, (B1)
(id)

where the sum is taken over nearest neighbours (ij), with
the direction r and s; takes values in a set of g-roots of
the identity exp [i27k/q]. J, are coefficients for different
directions of bonds r = {1,2,3}. Hence, the model can
be anisotropic.

The tensor network for this model is constructed in a
complete analogy with the simplest Ising model (which
corresponds to ¢ = 2) and has the bond dimension D = q.
On the triangular lattice, the transition point is exactly
known for ¢ > 3 and is defined as a root of the equa-
tion 73] [74]

27

We perform calculations with ¢ = 4 and ¢ = 6 in the
vicinity of the phase transition and show the results in
Fig. 47| (the inverse temperature 3 on the z-axis is shifted
according to the theoretical value of the transition point
Bc). The method allows us to estimate the transition
point with the accuracy within the mesh size. The results
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FIG. 47. Dependence of the magnetization o and entangle-
ment gap A on the inverse temperature § for the g-Potts
model on triangular lattice. The parameters and exact val-
ues of the inverse critical temperature are: (a) isotropic case
with J1 = Jo = Js = 1,9 = 4, x = 100, and 8. =~ 0.6931;
(b) isotropic case with J1 = Jo» = Js = 1,q = 6, x = 100,
and (. = 0.7866 (note that the transition is of the first order
for ¢ > 4); (c) anisotropic case with ¢ = 4, x = 50, J1 = 1,
Jo =2, J3 =3, and S =~ 0.3535.

are shown for both isotropic and anisotropic cases. Note
that for the simulation of the anisotropic case, we em-
ploy the modification of the algorithm above with three
different bMPS and corner matrices. All other details of
the update are completely analogous.

T1ToT3 + T1To + xox3 + 123 — ¢ = 0, (B2)
where z, = exp [J,.0] — 1.
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