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Abstract

We prove that, as opposed to the familiar charged Reissner-Nordström black-hole space-

time, the spatially regular charged Ayón-Beato-Garćıa (ABG) black-hole spacetime can support

charged scalar clouds, spatially regular stationary matter configurations which are made of lin-

earized charged massive scalar fields. Interestingly, we reveal the fact that the composed black-

hole-field system is amenable to an analytical treatment in the regime Q/M ≪ 1 ≪ Mµ of weakly

charged black holes and large-mass fields, in which case it is proved that the dimensionless physical

parameter α ≡ qQ
Mµ must lie in the narrow interval α ∈ (

√

3240
6859 ,

16
23 ) [here {M,Q} are the mass

and electric charge of the central black hole and {µ, q} are the proper mass and charge coupling

constant of the supported scalar field]. In particular, we explicitly prove that, for weakly charged

black holes, the discrete resonance spectrum {α(M,Q,µ, q;n}n=∞

n=0 of the composed charged-ABG-

black-hole-charged-massive-scalar-field cloudy configurations can be determined analytically in the

eikonal large-mass regime.
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I. INTRODUCTION

Bosonic field configurations that interact with spinning black holes can be amplified if

their proper frequencies lie in the superradiant regime [1–4]

0 < ω < mΩH , (1)

where ΩH is the horizon angular velocity of the central black hole and the integer m (with

m > 0) is the azimuthal harmonic index of the co-rotating bosonic field.

Interestingly, using analytical techniques in the linearized regime [5, 6] and numerical

computations in the non-linear (self-gravitating) regime [7–9], it has been explicitly proved

that the superradiant amplification phenomenon may allow spinning black-hole spacetimes

to support spatially regular matter configurations which are made of stationary minimally-

coupled massive bosonic fields which are characterized by the critical (marginal) frequency

relation [10]

ω = mΩH . (2)

It should be emphasized, however, that not all massive bosonic fields can be supported

by a central spinning black hole which is characterized by a given value ΩH of the horizon

angular velocity. In particular, it was proved in [11] that the mathematically compact

black-hole-field inequality

µ <
√
2 ·mΩH (3)

provides a necessary condition for the existence of composed Kerr-black-hole-massive-scalar-

field bound-state configurations, where µ is the proper mass of the supported scalar field.

As nicely pointed out in [12], a physically analogous phenomenon in which a charged

bosonic field is superradiantly amplified by a charged black hole occurs if the proper fre-

quency of the incident field lies in the superradiant regime

0 < ω < qΦH , (4)

where ΦH is the electric potential at the outer horizon of the central charged black hole and

q is the charge coupling constant of the field [12].

Intriguingly, however, it has been explicitly proved in [13] that the canonical charged

Reissner-Nordström (RN) black-hole spacetime cannot support spatially regular linearized

matter configurations which are made of minimally coupled (static or stationary) charged
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massive scalar fields. In particular, it has been revealed in [13] that, as opposed to the case

of spinning black holes [5–9], the mutual gravitational attraction between a central charged

RN black hole and a charged massive scalar field cannot provide, in the superradiant regime

(4), the confinement mechanism which is required in order to prevent the scalar field from

radiating its energy to infinity [14–18].

It has recently been demonstrated numerically in the physically interesting paper [19]

that charged scalar fields can be superradiantly amplified in the charged Ayón-Beato-Garćıa

(ABG) [20] spacetime which describes a spatially regular black-hole solution of the coupled

Einstein-non-linear-electrodynamics field equations. In particular, it has been intriguingly

suggested in [19] that the charged ABG black-hole spacetime may be superradiantly unstable

to linearized perturbations of charged massive scalar fields.

The main goal of the present paper is to explore, using analytical techniques, the physi-

cal and mathematical properties of the composed charged-ABG-black-hole-charged-massive-

scalar-field system. Interestingly, we shall explicitly prove below that, as opposed to the

charged RN black-hole spacetime, the spatially regular charged ABG black-hole spacetime

can support stationary scalar clouds, spatially regular matter configurations which are made

of linearized charged massive scalar fields. These composed black-hole-linearized-scalar-field

stationary bound-state configurations, which are characterized by the critical (marginal)

frequency relation ω = qΦH for the superradiant amplification phenomenon in the charged

black-hole spacetime, mark the onset of the superradiant instabilities in the charged ABG

black-hole spacetime to perturbations of charged massive scalar fields in the frequency regime

(4).

Interestingly, in the present compact paper we shall explicitly prove that the composed

charged-ABG-black-hole-charged-massive-scalar-field system is amenable to an analytical

treatment in the dimensionless regime Q/M ≪ 1 ≪ Mµ of weakly charged black holes and

large-mass fields [21].

II. DESCRIPTION OF THE SYSTEM

We consider a physical system which is composed of a charged massive scalar field of

proper mass µ and electric charge q which is linearly coupled to a central charged Ayón-

Beato-Garćıa black hole [20] of mass M and electric charge Q [22, 23]. The ABG spacetime
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describes a spatially regular solution of the coupled Einstein-non-linear-electrodynamics field

equations (see [19, 20] and references therein for details).

The black-hole spacetime is described, using the familiar Schwarzschild coordinates

{t, r, θ, ϕ}, by the curved line element [24]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdϕ2) , (5)

where the metric function in (5) is given by the radially-dependent expression [19, 20]

fABG(r) = 1− 2Mr2

(r2 +Q2)3/2
+

Q2r2

(r2 +Q2)2
. (6)

The horizon radii of the charged ABG spacetime are determined by the zeros of the metric

function f(r):

f(r) = 0 for r = rH . (7)

The radially-dependent electrostatic potential of the ABG spacetime (5) is given by the

non-trivial functional expression [19, 20]

ΦABG(r) =
r5

2Q

[3M

r5
+

2Q2

(r2 +Q2)3
− 3M

(r2 +Q2)5/2

]

. (8)

The dynamics of a linearized charged massive scalar field Ψ in the curved black-hole

spacetime (5) is governed by the familiar Klein-Gordon wave equation [19, 25–27]

[(∇ν − iqAν)(∇ν − iqAν)− µ2]Ψ = 0 , (9)

where Aν = −δ0νΦ(r) is the electromagnetic potential [see Eq. (8)] of the charged black hole.

Using the field decomposition

Ψ(t, r, θ, ϕ) =
∫

∑

lm

1

r
Rlm(r)Ylm(θ, ϕ)e

imϕe−iωtdω (10)

for the scalar wave function, where Ylm(θ, ϕ) are the familiar spherical harmonic functions

(with l ≥ |m| [28]), and using the tortoise radial coordinate y(r), which is defined by the

differential relation [29]

dy =
dr

f(r)
, (11)

one finds from Eqs. (5), (6), and (9) the Schrödinger-like ordinary differential equation [30]

d2R

dy2
− V R = 0 (12)
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for the scalar field. The effective potential V [r(y)] of the composed charged-ABG-black-hole-

charged-massive-scalar-field system is given by the radially-dependent functional expression

[19]

V [r(y)] = f(r)
[

µ2 +
1

r

df(r)

dr
+

l(l + 1)

r2

]

− [ω − qΦ(r)]2 . (13)

The differential equation (12) of the charged massive scalar field is supplemented by the

large-r boundary condition [13]

R ∼ e−
√

µ2
−ω2y for r → ∞ (y → ∞) (14)

which, in the bounded frequency regime

ω2 < µ2 , (15)

characterizes normalizable (spatially bounded) scalar eigenfunctions. In addition, the inner

boundary condition [31]

R ∼ e−i(ω−qΦH)y for r → rH (y → −∞) (16)

for the scalar field, where [see Eqs. (8) and (10)]

ΦH ≡ Φ(r = rH) , (17)

describes purely ingoing waves at the outer horizon of the central black hole (as measured

by a comoving observer).

Interestingly, in the next section we shall explicitly prove that the set of equations (12),

(13), (14), and (16) determine the discrete resonance spectrum of the composed charged-

ABG-black-hole-charged-massive-scalar-field cloudy configurations.

III. THE DISCRETE RESONANCE SPECTRUM OF THE COMPOSED ABG-

BLACK-HOLE-LINEARIZED-CHARGED-MASSIVE-SCALAR-FIELD CLOUDY

CONFIGURATIONS

In the present section we shall reveal the fact that the physical and mathematical proper-

ties of the composed charged-ABG-black-hole-linearized-charged-massive-scalar-field system

can be studied analytically in the dimensionless regime

Q

M
≪ 1 ≪ Mµ ≪ Mq . (18)
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The strong inequalities (18) characterize weakly charged ABG black holes and massive scalar

fields whose Compton wavelengths are much smaller than the characteristic lengthscale M

which is set by the radius of the central black hole.

In particular, we shall explicitly prove that the discrete resonance spectrum of the di-

mensionless charge-mass parameter

α ≡ qQ

Mµ
, (19)

which characterizes the composed black-hole-scalar-field bound-state configurations, can be

determined analytically in the regime (18).

The stationary (marginally-stable) bound-state scalar configurations in the ABG black-

hole spacetime (5) are characterized by the critical frequency

ω = qΦH (20)

for the superradiant amplification phenomenon of bosonic fields in the charged black-hole

spacetime. In particular, taking cognizance of Eq. (16) one deduces that, for scalar fields

with the critical frequency (20), there is no net flux of energy through the outer horizon of

the central supporting black hole.

Taking cognizance of the strong inequalities (18), the metric function (6) can be approx-

imated by

f(r) = 1− 2M

r
+O(Q2/r2) , (21)

which yields the expression [see Eq. (7)]

rH = 2M · [1 +O(Q2/M2)] (22)

for the radius of the black-hole outer horizon.

In addition, from Eqs. (8) and (18) one finds the relation

Φ(r) =
Q

r
·
[

1 +
15M

4r
+O(Q2/r2)

]

(23)

for the black-hole electric potential, which yields the simple horizon relation [see Eq. (22)]

ΦH =
23

16
· Q
M

· [1 +O(Q2/M2)] . (24)

Substituting Eqs. (19), (20), (21), (23), and (24) into Eq. (13), one finds that the

composed black-hole-field radial potential can be approximated by

V (r) = µ2 ·
(

1− 2M

r

)[

1− α2 ·
(

1− 2M

r

)(23r + 30M

16r

)2]

. (25)
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A. Upper and lower bounds on the allowed values of the dimensionless physical

parameter α

In the present subsection we shall derive two necessary conditions for the existence of com-

posed charged-ABG-black-hole-charge-field bound-state configurations in the dimensionless

regime (18).

To this end, we first point out that Eqs. (15), (20), and (24) imply that, in the regime (18),

spatially bounded scalar configurations are characterized by the dimensionless inequality

(23

16
· qQ
M

)2
< µ2 , (26)

which yields the upper bound [see Eq. (19)]

α <
16

23
. (27)

In addition, we point out that the radial potential (25) is characterized by the asymptotic

functional behaviors [see Eq. (22)] [32]

V (r → r+H) → 0+ (28)

and

V (r → ∞) → µ2 ·
[

1−
(23α

16

)2]

> 0 . (29)

The existence of a binding potential well outside the black-hole horizon provides a necessary

condition for the existence of stationary bound-state configurations of the charged massive

scalar fields in the curved spacetime (5). In particular, taking cognizance of the asymptotic

properties (28) and (29) of the composed black-hole-field radial potential, one deduces that

the requirement

minr{V (r)} < 0 (30)

provides a necessary condition for the existence of composed ABG-black-hole-scalar-field

bound-state configurations.

The dimensionless function [see Eq. (25)]

F(r) ≡ 1− α2 ·
(

1− 2M

r

)(23r + 30M

16r

)2
(31)

is characterized by the radial minimum (for r ≥ rH)

minr{F(r)} = 1− 6859

3240
· α2 for rmin =

90

7
M . (32)
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Thus, from Eqs. (25), (30), and (32) one finds that the dimensionless lower bound

α >

√

3240

6859
(33)

provides a necessary condition for the existence of composed ABG-black-hole-scalar-field

bound-state configurations.

Taking cognizance of the analytically derived necessary conditions (27) and (33) one

deduces that, in the regime (18), the dimensionless physical parameter α which charac-

terizes the composed charged-ABG-black-hole-charged-massive-scalar-field cloudy configu-

rations must lie in the narrow [33] interval

√

3240

6859
< α <

16

23
. (34)

B. The resonance spectrum of the composed charged-ABG-black-hole-charged-

massive-scalar-field cloudy configurations

In the present subsection we shall analyze the resonance spectrum {α(M,Q, µ, q;n}n=∞

n=0

of the dimensionless charge-mass parameter which characterizes the composed ABG-black-

hole-charged-massive-scalar-field system. Interestingly, we shall explicitly prove that the

discrete resonance spectrum can be determined analytically in the near-critical regime [see

Eq. (33)]

α >∼
√

3240

6859
. (35)

In particular, the Schrödinger-like radial differential equation (12) of the supported

charged massive scalar fields in the charged ABG black-hole spacetime (5) is characterized

by the well known second-order WKB quantization condition [34–36]

∫ yt+

yt
−

dy
√

−V (y;M,Q, µ, q) = (n+
1

2
) · π ; n = 0, 1, 2, ... , (36)

where the integration limits {yt
−

, yt+}, which are determined by the radial relations

V (yt
−

) = V (yt+) = 0 , (37)

are the classical turning points of the binding potential (25). The integer n ∈ {0, 1, 2, ...} in

the WKB integral relation (36) is the discrete resonance parameter of the composed black-

hole-field system. Taking cognizance of the differential relation (11), one can express the
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WKB resonance condition (36) in the form

∫ rt+

rt
−

dr

√

√

√

√−V (r;M,Q, µ, q)

[f(r)]2
= (n+

1

2
) · π ; n = 0, 1, 2, ... . (38)

Using the dimensionless physical variables {ǫ, x}, which are defined by the relations [see

Eqs. (32) and (35)]

α ≡
√

3240

6859
· (1 + ǫ) ; 0 ≤ ǫ ≪ 1 (39)

and

r ≡ rmin · (1 + x) ; |x| ≪ 1 , (40)

one can write the effective radial potential (25) of the composed charged-ABG-black-hole-

charged-massive-scalar-field configurations in the dimensionless form [37]

V (x) = µ2 · 38
45

·
(

− 2ǫ+
147

5776
· x2

)

· [1 +O(x, ǫ)] . (41)

Substituting Eqs. (40) and (41) into Eq. (38) and defining the dimensionless variable

z =

√

147

11552ǫ
· x , (42)

one obtains the remarkably compact WKB resonance condition

ǫ ·Mµ · 360
√
570

49

∫ 1

−1
dz

√
1− z2 = (n+

1

2
) · π ; n = 0, 1, 2, ... (43)

for the composed charged-black-hole-charged-massive-scalar-field cloudy configurations.

Performing the integration in (43), one finds the discrete resonance spectrum [38]

ǫn =
49

180
√
570Mµ

· (n+
1

2
) ; n = 0, 1, 2, ... . (44)

As a consistency check we point out that one deduces from Eq. (44) the strong inequality

ǫ ≪ 1 in the large-mass Mµ ≫ 1 regime [see Eqs. (18) and (39)].

Substituting the analytically derived relation (44) into Eq. (39), one obtains the discrete

large-mass resonance spectrum

αn =

√

3240

6859
+

49
√
3

10830Mµ
· (n+

1

2
) ; n = 0, 1, 2, ... (45)

of the composed charged-ABG-black-hole-charged-massive-scalar-field cloudy configura-

tions.
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IV. THE EFFECTIVE RADIAL WIDTHS OF THE SUPPORTED CHARGED

MASSIVE SCALAR CLOUDS

In the present section we shall determine the effective radial widths of the stationary

charged massive scalar clouds that are supported in the charged ABG black-hole spacetime

(5). In particular, we shall reveal the physically interesting fact that, in the dimensionless

large-mass Mµ ≫ 1 regime [see Eq. (18)], the supported scalar configurations can be made

arbitrarily thin.

The effective widths of the supported charged scalar clouds in the charged ABG black-hole

spacetime are determined by the classically allowed radial region [see Eq. (37)]

∆r(M,Q, µ, q) ≡ rt+ − rt
−

(46)

of the composed black-hole-field binding potential (25). In particular, from Eq. (41) one

finds the simple functional relation

∆x(M,Q, µ, q) ≡ xt+ − xt
−

=

√

46208

147
·
√
ǫ , (47)

which, taking cognizance of Eqs. (32) and (40), yields the expression

∆r

M
=

4560
√
6

49
·
√
ǫ (48)

for the effective dimensionless widths of the charged massive scalar field configurations that

are supported in the charged ABG black-hole spacetime (5).

Substituting the resonance relation (44) into Eq. (48), one obtains the dimensionless

expression

∆r

M
=

8
√
19 4

√
570

7
·
√

n +
1

2
· 1√

Mµ
(49)

for the effective widths of the scalar clouds. From the analytically derived functional ex-

pression (49) one finds that the stationary charged scalar clouds, which are supported in the

charged ABG black-hole spacetime (5), can be made arbitrarily thin in the dimensionless

large-mass Mµ ≫ 1 regime [39].

V. SUMMARY AND DISCUSSION

It has recently been demonstrated in the physically important paper [19] that charged

scalar fields can be superradiantly amplified in the charged ABG black-hole space-
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time [20] which describes a spatially regular solution of the coupled Einstein-non-linear-

electrodynamics field equations.

Motivated by the interesting numerical results presented in [19], we have studied, using

analytical techniques, the physical and mathematical properties of charged massive scalar

field configurations (stationary scalar clouds) that are supported by charged ABG black

holes. In particular, we have explicitly proved that the composed charged-ABG-black-hole-

charged-massive-scalar-field system can be studied analytically in the dimensionless regime

Q/M ≪ 1 ≪ Mµ of weakly charged black holes and large-mass fields.

The main analytical results derived in this paper and their physical implications are as

follows:

(1) We have proved that, in the regime (18), the dimensionless physical parameter

α ≡ qQ/Mµ, which characterizes the composed charged-black-hole-charged-field bound-

state configurations, must lie in the narrow interval [see Eqs. (19) and (34)]

qQ

Mµ
∈

(

√

3240

6859
,
16

23

)

. (50)

(2) Using a WKB analysis in the eikonal large-mass regime (18), we have derived the

remarkably compact analytical resonance formula [see Eqs. (19) and (45)]

( qQ

Mµ

)

n
=

√

3240

6859
+

49
√
3

10830Mµ
· (n+

1

2
) ; n = 0, 1, 2, ... (51)

for the dimensionless charge-mass parameter qQ/Mµ which characterizes the composed

charged-ABG-black-hole-charged-massive-scalar-field bound-state configurations.

(3) We have proved that the stationary charged massive scalar clouds are characterized

by the effective dimensionless widths [40]

∆r

M
=

4
√
38 4

√
570

7
· 1√

Mµ
. (52)

Interestingly, the analytically derived functional expression (52) reveals the fact that the

charged scalar configurations, which are supported in the charged ABG black-hole spacetime

(5), are extremely thin (with ∆r/M ≪ 1) in the dimensionless large-mass Mµ ≫ 1 regime.

(4) It is worth emphasizing that the analytically derived critical existence-line [41]

qQ

Mµ
=

√

3240

6859
+

49
√
3

21660Mµ
, (53)
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which characterizes the stationary charged-ABG-black-hole-charged-massive-scalar-field

bound-state configurations, marks in the dimensionless large-mass regime (18) the sharp

boundary between bald ABG black-hole spacetimes and charged black holes that are super-

radiantly unstable to perturbations of charged massive scalar fields.

In particular, the expected onset of superradiant instabilities in the composed ABG-

black-hole-scalar-field system above the critical existence-line (53) hints that this physically

interesting system may be characterized by the existence of charged hairy black-hole config-

urations that support non-linear (self-gravitating) charged massive scalar fields.

Finally, we would like to stress again that, in the present analysis, the minimally cou-

pled charged massive scalar fields were treated at the linearized level. As we explicitly

shown, the main advantage of this approach lies in the fact that the composed charged-

ABG-black-hole-charged-massive-linearized-scalar-field system is amenable to an analytical

treatment. We believe that it would be highly interesting (and physically important) to use

non-linear numerical techniques in order to prove the existence of genuine spatially regular

hairy (scalarized) charged ABG black-hole spacetimes.
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