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Dissolution of the non-Hermitian skin effect in one-dimensional lattices with linearly
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We study the one-dimensional non-Hermitian lattices with linearly varying nonreciprocal hopping,
where the non-Hermitian skin effect (NHSE) is found to be dissolved gradually as the strength of
nonreciprocity increases. The energy spectrum under the open boundary condition is composed of
real and imaginary eigenenergies when the nonreciprocal hopping is weak. Interestingly, the real
eigenenergies form an equally spaced ladder, and the corresponding eigenstates are localized at the
boundary with a Gaussian distribution due to NHSE. By increasing the nonreciprocity, the number of
real eigenenergies will decrease while more and more eigenenergies become imaginary. Accompanied
by the real-imaginary transition in the spectrum, the eigenstates are shifted from the boundary
into the bulk of the lattice. When the nonreciprocity gets strong enough, the whole spectrum will
be imaginary and the NHSE disappears completely in the system; i.e., all the eigenstates become
Gaussian bound states localized inside the bulk. Our work unveils the exotic properties of non-
Hermitian systems with spatially varying nonreciprocal hopping.

I. INTRODUCTION

During the past few years, the research on non-
Hermitian physics has undergone rapid development [1-
5]. Non-Hermitian Hamiltonians have been exploited to
study a wide range of classical [6-16] and quantum open
systems [17-26], and have unveiled many exotic phenom-
ena that do not exist in traditional Hermitian systems.
Since the operators are non-Hermitian, the eigenvalues,
such as the eigenenergies of non-Hermitian Hamiltonians,
are commonly complex. However, for the Hamiltonians
that are PT-symmetric [27-29] or pseudo-Hermitian [30—
35], the energy spectra can still be real.

One of the most exotic phenomena in non-Hermitian
systems is the accumulation of eigenstates at the sys-
tem’s boundaries, which is called the non-Hermitian skin
effect (NHSE) [36, 37]. The presence of NHSE results
in a variety of phenomena that are absent in the corre-
sponding Hermitian systems [38-52]. For example, the
band topology can be modified in a significant way, and
the conventional principle of bulk-boundary correspon-
dence in the Hermitian topological phase breaks down in
non-Hermitian systems due to the NHSE [36, 37, 53-61].
As a matter of fact, the emergence of NHSE itself also
has a topological origin, which is closely connected to the
point gap in the spectrum under the periodic boundary
condition (PBC) [62, 63]. The spectra of such systems are
sensitive to the change of boundary conditions [64], which
inspires the designing of new quantum sensors [65, 66].
In addition, the NHSE also influences the phenomenon
of Anderson localization significantly [67—73], where the
spectra for extended and localized states exhibit different
topological structures. So far, most studies mainly focus
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on the NHSE induced by homogeneous nonreciprocity
in the hopping amplitude of the non-Hermitian lattice
model, where the eigenstates are localized exponentially
at the boundaries. If the nonreciprocity becomes spa-
tially dependent, what will happen to the eigenenergies,
eigenstates, and the NHSE remains unexplored.

To answer these questions, in this paper, we study
the one-dimensional (1D) lattices with linearly varying
nonreciprocal hopping in the nearest-neighboring sites.
When the nonreciprocity is weak, the energy spectrum
is composed of real and imaginary eigenenergies. The
real eigenenergies are found to be equally spaced with
the eigenstates localized at one end of the 1D lattice due
to the NHSE under the open boundary condition (OBC).
Interestingly, differently from the systems with constant
nonreciprocity, where the eigenstates are exponentially
localized, here the eigenstates show Gaussian distribu-
tions at the boundary. The eigenstates corresponding
to the imaginary eigenenergies are also Gaussian. How-
ever, they are not localized at the boundary of the lat-
tice but become tightly bound states inside the bulk. As
the strength of nonreciprocity increases, the real spec-
trum will disappear gradually, and all the eigenenergies
become imaginary in the end. Accompanied by the real-
imaginary transition in the OBC energy spectrum, the
NHSE is dissolved completely, as all the eigenstates are
shifted from the boundary into the bulk and become
Gaussian bound states. Our work reveals the peculiar
behaviors of energy spectra, eigenstates, and NHSE in
the non-Hermitian 1D lattices with linearly varying non-
reciprocal hopping.

The rest of the paper is organized as follows. In Sec. II,
we will first introduce the model Hamiltonian of the 1D
lattices with linearly increasing nonreciprocal hopping.
In Sec. ITI, we discuss the properties of the eigenenergy
spectrum of the system. Then we will further explore the
behaviors of the eigenstates and the dissolution of NHSE
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in Sec. IV. The last section (Sec. V) is dedicated to a
summary.

II. MODEL HAMILTONIAN

We introduce the 1D nonreciprocal lattice described
by the following Hamiltonian

L—-1
H = Z tjc;chrl + t;C}_HCj
j=1
L (1)

=" (t+7i) chejan + (=) chyyey
j=1

Here ¢; (c}t) is the annihilation (creation) operator of
spinless fermions at the jth site. ¢; = (t+vj) and
t’ = (t —vj) are the backward and forward hopping be-
tween the nearest-neighboring sites, which vary linearly
along the system. ¢ is the constant hopping amplitude
and is set to be 1 as the energy unit throughout this
paper. -y indicates the strength of nonreciprocity in the
hopping terms. Both v and ¢ are real numbers. L is the
number of lattice sites. Distinguished from the models
in previous studies, where the nonreciprocal hopping is
homogeneous along the whole lattice, the nonreciprocal
hopping here is site-dependent and increases linearly in

J

the system. In the following sections, we will check how
the linearly increasing nonreciprocity will affect the prop-
erties of the energy spectrum and NHSE in 1D lattices.

IIT. EIGENENERGY SPECTRUM

We first check the energy spectrum of the system.
For a 1D lattice described by Eq. (1) with L sites un-
der OBC, the model Hamiltonian can be represented by
a L x L tridiagonal matrix. Since the Hamiltonian is
non-Hermitian, the eigenvalues of the matrix are nor-
mally complex. Interestingly, for the Hamiltonian shown
in Eq. (1), we find that the eigenenergy spectrum is
composed of real and imaginary energies. To illustrate
this, we can make a similarity transformation to the ma-
trix by h = D™'HD with D being a diagonal matrix:
D = diag(dy,da, -+ ,dr), where the diagonal elements
for the case with |t/y| > L are given by

L
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Then the non-Hermitian Hamiltonian matrix H; with
[t/y| > L is transformed into the following Hermitian
matrix

Vi sgn(ty)/t1t) 0 0

sgn(t1)/t1th Vs
Sgn(tg)\/tzté V3

hi =D 'H,D = 0

Thus, the spectrum of the Hamiltonian H; is purely real.
In Fig. 1(a), we present the eigenenergies of a lattice
under OBC with v = 0.01 and L = 100, which are all
real as expected.

However, when [¢/v| < L, the situation becomes more
complicated. For instance, if we have v > 0 and |t/v] =
m < L with m being a positive integer, then the back-
ward and forward hopping between the mth and (m+1)th
site will be t,, = t + mj and t,, = 0, respectively. The
Hamiltonian can be represented as a block matrix as fol-

lows
Haplt+mj
Hy, = 4
) (Jﬁo o ) ()

where H, is an m X m dimensional matrix and Hpg is
an (L —m) x (L —m) dimensional matrix. Then the
eigenenergies of H are determined by H4 and Hp. By
performing the similarity transformation using the D ma-

sgn(ta)y/tath e 0
sgn(ts)\/tsty - | . (3)
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(

trix with the following diagonal elements

1, 7=1
h
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1, j=m+1
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(5)
we can transform H 4 into a Hermitian matrix and Hpg
into a anti-Hermitian one. The Hamiltonian matrix be-

comes

he = DVH,D = Al ¢ ) (6)

0 ZhB
Here, both hy and hp are Hermitian matrices, and ¢
is a nonzero real number. The eigenenergies of H are
given by the eigenvalues of h4 and ihp, which means
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FIG. 1. (Color online) The eigenenergy spectrum under OBC
of the 1D lattice with different linearly increasing nonreciproc-
ity: (a) v = 0.01, (b) v = 0.02, and (c) v = 0.07. The black
circles and red squares represent the energy spectrum of ha
and hp in the matrix h in Egs. (6) and (8). The insets in (a)
and (b) show the level spacings of the real (black dots) and
imaginary (red dots) eigenenergies, respectively. Here the lat-
tice size is L = 100.

that there are m real eigenenergies and (L—m) imaginary
eigenenergies. Figure 1(b) shows the spectrum o(H) of
the original Hamiltonian matrix in Eq. (1) and those of
ha and ihp [i.e., o(ha) and o(hp)] when v = 0.02. We
can see that they are perfectly matched with each other.
Notice that if ¢/ > L, then we have hy = hy and thus
the real spectrum of h4 still matches the one of H, as
indicated by the black circles and yellow dots in Fig. 1(a).
From the above analysis, we find that in the case with ¢/
being an integer, the spectrum of the 1D lattice can be
divided into two independent parts, where H4 (or hy)
represents the part with ¢, = (¢t —~j) < 0 while Hp
(or hp) represents the part with negative (¢t — vj) > 0.
However, if ¢/~ is not an integer, the model Hamiltonian

1S
Hr=<}h t+w>7 o

t—~s| Hp

with s = [t/7] being the largest integer when (¢t — vs) is
positive. Then we can still make the similarity transfor-
mation using the diagonal matrix D with elements shown
in Eq. (2) to transform the model Hamiltonian matrix
into a block form as

_ hA a
hs = D™'H3D = , 8
: ) (b mB> (®)

where a and b are two nonzero numbers. Differently from
Hs, now the system cannot be divided into two indepen-
dent parts. As we can see from Fig. 1(c), the eigenenergy
spectrum still composes of real and imaginary values, but
the eigenvalues of H4 and Hp cannot fully match the
ones of Hs.

In Figs. 2(a) and 2(b), we plot the real and imaginary
parts of the energy spectrum as a function of the nonre-
ciprocity 7. It is clear that when |y| > ¢, the spectrum
becomes purely imaginary. The reason is that when the
nonreciprocity v > t (or v < —t), all the terms (¢t — )
[or (t 4+ 7j)] in the Hamiltonian are negative, then the
matrix after similarity transformation is anti-Hermitian,
and the spectrum will be imaginary.
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FIG. 2. (Color online) (a) Real and (b) imaginary parts of
the eigenenergies of the 1D lattice under OBC described by
Eq. (1) as a function of 7. (c)-(f) show the energy spectra and
the distribution of eigenstates under OBC and PBC when v =
0.001. The purple solid line in (d) represents the Gaussian
envelope function. Here the lattice size is L = 100.

Another interesting feature in the energy spectrum of
the 1D lattice with linearly increasing nonreciprocity is
that the real eigenenergies are almost equally spaced. To
see that, we sort the real eigenenergies in order from the
smallest to the largest and get a set {E,r}. As to the
imaginary eigenenergies, we sort them by their imaginary
part and get another set {E,;}. Then the level spacing
is defined as

5n,n+1 = En+1 - Ena (9)

where F, is the nth eigenenergy in {E,r} or {E,r}.
The insets in Figs. 1(a) and 1(b) show the level spac-
ings of the real and imaginary eigenenergies. We can see
that the level spacings of the real eigenenergies are al-
most constant, indicating that the real spectrum forms
an equally spaced ladder, similar to the Wannier-Stark
ladder in the 1D lattices imposed by a uniform exter-
nal field [74-76]. On the other hand, the behavior of
the imaginary eigenenergies is quite different, where the
level spacings are not constant. So, the real and imagi-
nary spectra behave differently in this model. It will be
interesting to check whether the eigenstates correspond-
ing to the real and imaginary energies will also exhibit
distinctive behaviors.

The spectrum of our model also behaves differently
from the non-Hermitian systems with constant nonre-
ciprocity. For instance, in the 1D Hatano-Nelson model
described by the Hamiltonian Hyn =3~ (t—i—'y)c;r-HCj +
(tffy)c;( ¢j+1, the eigenenergies under OBC are real when
|v] < t but become imaginary when |y| > ¢. The real-
imaginary transition only depends on the strength of ~
and is independent of the system size. Similar behav-
iors can also be observed in other non-Hermitian lattices
with constant asymmetric hopping such as the 1D Su-
Schrieffer-Heeger model in Ref. [36] and the mosaic non-
reciprocal lattices in Ref. [52]. However, for the model we
studied here, since the nonreciprocal hopping increases



linearly and thus depends on the lattice size, the real-
imaginary transition spectrum also becomes size depen-
dent. If both v and L are small, the spectrum is purely
real. When the system size gets larger than a critical
number, there will be both real and imaginary eigenen-
ergies. If v becomes very strong, then the spectrum is
purely imaginary. So, the real-imaginary transition in
the spectrum of our model is determined by nonreciproc-
ity « and lattice size L.

While we have mainly discussed the cases with v > 0 in
the above, the method can also be used for the cases with
~v < 0, where similar conclusions will be obtained. So,
in the 1D lattices with linearly increasing nonreciprocal
hopping, we find that as the nonreciprocity gets strong
or as j increases, the eigenenergy will undergo a real-
imaginary transition. In the next section, we will further
investigate how the linearly increasing nonreciprocity will
influence the behaviors of eigenstates and the NHSE.

IV. NHSE AND TIGHTLY BOUND STATES

As the hopping amplitudes between the nearest-
neighboring sites are nonreciprocal in our model, we can
expect the emergence of NHSE, where the eigenstates ac-
cumulate at the boundaries of the 1D lattice. As shown
in Figs. 2 (c) and 2(d), the eigenenergies for lattices with
~ = 0.001 are real, and all the eigenstates are localized at
the left boundary. However, differently from the previ-
ous models with constant nonreciprocity in the hopping
terms, such as the famous Hatano-Nelson model, where
the eigenstates are exponentially localized at the bound-
ary, here we find that the eigenstates form a Gaussian
distribution instead. More interestingly, the accumula-
tion of eigenstates forms a Gaussian bell shape, as indi-
cated by the thick solid purple line in Fig. 2(d), which
can be approximately described by a Gaussian envelope
function as

(x) = maz(|p|)e” 7 #T0)°, (10)

where max(|i]) represents the largest component in the
distribution of all eigenstates and x is the center of the
distribution, which is 1 here. So, due to the spatially
linearly varied feature in the nonreciprocal hopping, the
eigenstates and the NHSE behaves differently from the
systems with constant nonreciprocity.

On the other hand, it is well known that the existence
of NHSE under OBC is closely connected to the point
gap in the PBC spectrum [62, 63]. In Figs. 2(e) and
2(f), we present the eigenenergies and eigenstates under
PBC. The eigenstates now are extended over the whole
lattice. The eigenenergies form a closed loop in the com-
plex energy plane and can be characterized by a nonzero
winding number. This is the topological origin of the
NHSE under OBC.

As stated in the above section, when the nonreciproc-
ity increases, the energy spectrum of the system under
OBC will undergo a real-imaginary transition. For the
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FIG. 3. (Color online) (al)-(cl) Energy spectrum under OBC
(yellow solid dots) and PBC (blue circles) of the 1D lattice
with different linearly increasing nonreciprocal hopping. As
the strength of 7 increases, the OBC spectrum undergoes
a real-imaginary transition. The distributions of the corre-
sponding eigenstates under OBC are given in (a2)-(c2). The
eigenstates under OBC are shifted from the boundary into the
bulk and become tightly bound states as the real eigenener-
gies change to imaginary ones. The purple dots represent the
values of the Gaussian function at jth sites, which are well
matched with the eigenstates with eigenenergies +0.68643.
Other parameters: L = 100.

lattice with size L = 100, the hopping terms (¢t —~j) > 0
when 0 < v < 0.01, and the OBC spectrum will be purely
real, as shown in Fig. 3(al) for the case with v = 0.01.
The eigenstates accumulate at the left end of the lat-
tice and the whole distribution can be encapsulated by
a Gaussian envelope function as represented by the solid
purple line. If we increase the strength of nonreciprocity
a little, for instance, we set v = 0.011, then 10 out of
the 100 eigenenergies will become imaginary, as shown in
Fig. 3(bl) (notice that there are two imaginary energies
that are very close to zero). Now, the PBC spectrum
again forms a closed loop, implying that there will be
NHSE under OBC. It seems that all eigenstates will still
localize at the left end. However, we find that the eigen-
states corresponding to the imaginary eigenenergies un-
der OBC will not be localized at the boundary. Instead,
they are shifted into the bulk, as shown in Fig. 3(b2).
The larger the imaginary part is, the further will the cor-
responding eigenstate be moved away from the bound-
ary. Moreover, these eigenstates are still Gaussian. For
instance, for the two eigenstates v; o with eigenenergies
+0.68641, the distribution of the wave functions can be
well approximated by using Eq. (10), where max(|y)])
now is the largest component of |v1] or |vs| and xy = 32.
Thus the states with imaginary energies become tightly
bound states in the bulk, and the NHSE is partially dis-
solved. Even though the PBC eigenenergies enclose the
whole OBC spectrum and the point gap still exists, not
all the eigenstates are accumulated at the boundary un-
der OBC.

If we increase the strength of the nonreciprocity in the
hopping terms further, then more and more eigenener-
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FIG. 4. (Color online) The distribution of the eigenstates
with real eigenenergies of the 1D nonreciprocal lattice when
(a) v = 0.02 and (b) v = 0.021. The lattice size here is
L = 100.

gies under OBC will become imaginary. Correspondingly,
more and more eigenstates will be shifted into the bulk as
a tightly bound state, as shown in Fig. 3(c). Notice that
in this case, some of the eigenenergies under PBC also
become imaginary. When -y becomes strong enough, all
the eigenenergies become imaginary, and the PBC spec-
trum will be identical to the OBC spectrum. The closed
loop formed by the PBC eigenenergies disappears, and
there is no point gap anymore. Accordingly, no states
will be localized at the end of the 1D lattice under OBC;
i.e., the NHSE totally disappears. The disappearance of
NHSE can be qualitatively understood as follows. When
v is very strong, the constant term ¢ in the forward and
backward hopping can be ignored. Then the hopping am-
plitudes are almost the same for the two directions, lead-
ing to the dissolution of NHSE. So, by tuning the strength
of the linearly increasing nonreciprocity, the NHSE can
be dissolved gradually, which is accompanied by the real-
imaginary transition in the energy spectrum under OBC.

The behaviors of the eigenstates of our model described
above are totally different from the 1D lattice with con-
stant nonreciprocity, where the eigenstates are localized
at the boundaries exponentially under OBC. The situa-
tion also differs from the system with disorders, where
localized eigenstates arise in bulk due to the Anderson
localization phase transition. The model studied here
is disorder-free. The emergence of tightly bound states
is similar to the Wannier-Stark (WS) localization in 1D
lattices with a uniform external field [74-76], which re-
sults in a linear variation in the onsite potential in the
model Hamiltonian. It is known that in the WS lo-
calization phenomenon, the eigenenergies will form an
equally spaced ladder, and the eigenstates are tightly
bound states. However, our model differs from the WS
Hamiltonian in that the linear variation is only added in
the hopping terms instead of the onsite terms. Moreover,
the bound states in the WS localization are localized in-
side the bulk, which is not the case for our model since the
linearly increasing hopping is asymmetric and the bound
states can be localized at the boundary by NHSE . Here
the more peculiar feature is that the equally spaced lad-
der only exists in the real spectrum with the correspond-
ing eigenstates localized at the boundary due to NHSE,
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FIG. 5. (Color online) Energy spectra of the 1D lattice with
« = 0.01 and different sizes: (al) L = 200, (bl) L = 400. The
yellow solid dots and blue circles represent the OBC and PBC
spectra, respectively. (a2) and (b2) show the corresponding
eigenstates under OBC.

while the tightly bound states in the bulk have imaginary
eigenenergies. In this sense, the ladder in the spectrum
and the tightly bound states in the bulk are separated in
our model.

On the other hand, by taking a more careful investi-
gation of the eigenstates with real eigenenergies, we can
find that the behaviors of these states localized at the
boundary depend on whether |¢/7| is an integer or not.
If we have |t/v| = m < L, the Hamiltonian matrix takes
the form of Eq. (4), where the eigenenergies are deter-
mined by Hs and Hp. Let us further show that the
eigenstates for the real eigenenergies are also only deter-
mined by Ha. In Fig. 4(a), we present the distribution
of one of the eigenstates with real energy for Hy with
v =0.02 and L = 100. We can see that for j > 51, the
jth component of the eigenstate becomes zero, meaning
that the eigenstates with real eigenenergies in this case
are fully restricted in the region with j < m. These states
are also the eigenstates of H 4. To see this, suppose that
14 is the eigenstate of H,4 with eigenenergy E4; then
we can construct a state vector as 1 = (4 0)T and we
can prove that Hot) = FE41). Thus, the eigenenergies and
eigenstates are the same for H4 and Hs, and they are not
dependent on the rest of the lattice at all. However, if ¢/
is not an integer, then such decomposition will not hold.
In Fig. 4(b), we also present the profile of one eigenstate
with real energy from the system with v = 0.021 and
L = 100. We can find that components of the state at
the lattice sites with j > [t/v] are very small but not
zeros; thus they cannot be taken as an independent part.

Since the nonreciprocal hopping increases linearly with
7, there will always be negative hopping terms in the
model Hamiltonian, as long as the lattice is long enough.
Thus in the thermodynamic limit, there will always be



imaginary eigenenergies in the spectrum with the corre-
sponding eigenstates shifted from the boundary into the
bulk. In Fig. 5, we present the energy spectrum and the
profile of eigenstates for the 1D lattice with L = 200 and
400, respectively. Here, the nonreciprocity v = 0.01. The
hopping between the first 100 sites will be positive, while
the rest of the forward hopping terms are negative. Then
some of the eigenstates will be localized at the boundary
due to NHSE, and the others are tightly bound states
in the bulk. Moreover, according to the above analy-
sis, as t/ = 100 is an integer, the real eigenenergies and
the corresponding eigenstates are only determined by the
first 100 sites.

V. SUMMARY

In this paper, we study the 1D non-Hermitian lattices
with linearly increasing nonreciprocal hopping between
the nearest-neighboring sites. We find that due to the
spatially varying nonreciprocity, the eigenenergies and
eigenstates behave quite differently from those of non-
Hermitian systems with constant nonreciprocity. When
the nonreciprocity is weak, some of the eigenenergies un-
der OBC remain real and form an equally spaced ladder.
The corresponding eigenstates are localized at one end of
the 1D lattice due to the NHSE and exhibit a Gaussian
distribution. The rest of the eigenenergies are imaginary
with the eigenstates shifted from the boundary into the
bulk and forming tightly bound states. As the strength of
nonreciprocity increases, the energy spectrum undergoes
a real-imaginary transition, accompanied by the shifting

of eigenstates from the boundary to the bulk. Thus, the
NHSE is dissolved gradually. When the nonreciprocity
becomes strong enough, there will be no NHSE in the
system, and all the states are Gaussian bound states in
the bulk. It is quite interesting to see that the increment
in nonreciprocal hopping does not necessarily lead to the
enhancement of NHSE. On the contrary, the model we
studied here shows that the linear variation in the non-
reciprocal hopping terms can dissolve the NHSE. Our
work reveals the exotic properties of non-Hermitian lat-
tices with spatially varying nonreciprocity and opens a
door for future studies on such systems. As to the exper-
imental realization, it has been reported that nonrecip-
rocal hopping can be realized by using photonic coupled
resonant optical waveguides, where judicious optical gain
and loss elements in the coupling link rings can be de-
signed [77]. The variation in the hopping terms can be
realized by tuning the distance between the neighboring
waveguides.
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