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PPNet: A Two-Stage Neural Network
for End-to-end Path Planning

Qinglong Meng, Chongkun Xia, Xueqian Wang, Songping Mai, and Bin Liang,

Abstract—The classical path planners, such as sampling-based
path planners, can provide probabilistic completeness guarantees
in the sense that the probability that the planner fails to return
a solution if one exists, decays to zero as the number of samples
approaches infinity. However, finding a near-optimal feasible
solution in a given period is challenging in many applications such
as the autonomous vehicle. To achieve an end-to-end near-optimal
path planner, we first divide the path planning problem into two
subproblems, which are path space segmentation and waypoints
generation in the given path’s space. We further propose a two-
stage neural network named Path Planning Network (PPNet)
each stage solves one of the subproblems abovementioned.
Moreover, we propose a novel efficient data generation method
for path planning named EDaGe-PP. EDaGe-PP can generate
data with continuous-curvature paths with analytical expression
while satisfying the clearance requirement. The results show the
total computation time of generating random 2D path planning
data is less than 1/33 and the success rate of PPNet trained by the
dataset that is generated by EDaGe-PP is about 2× compared to
other methods. We validate PPNet against state-of-the-art path
planning methods. The results show that PPNet can find a near-
optimal solution in 15.3ms, which is much shorter than the state-
of-the-art path planners.

Note to Practitioners—This article aims to provide an end-to-
end near-optimal path planning method for applications such
as autonomous driving, warehouse robot, and others. Sampling-
based methods are the popular algorithms in these areas due
to their good scalability and high efficiency. But the quality of
the path that these methods find in a relatively short planning
time can not be guaranteed. To guarantee the quality of the path
which is found in a short period of time, we propose a neural
network named PPNet. It can find a path with quality guarantee
by one time of forward propagation.

Index Terms—Neural Networks, End-to-End, Path Planning.

I. INTRODUCTION

PATH planning is one of the core research problems in
robotics. It is to find a collision-free, low-cost path con-

necting the initial state and goal state. The popular methods,
such as sampling-based path planners, can provide proba-
bilistic completeness guarantees, which means the probability
that the planners succeed in returning a solution increases by
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increasing the number of samples [1]. Therefore, they can’t
guarantee to find a near-optimal solution within a specific
time, especially when the required planning time is quite short
(i.e., ≤0.1s) in many applications such as the autonomous
vehicle. Thus many variants of RRT* were proposed to shorten
computation time. For example, Informed RRT* (IRRT*) [2]
is a representative variant of implementing Informed Search on
RRT*. After finding the initial solution, IRRT* can converge
to the optimal solution more quickly. Batch Informed Trees
(BIT*) [3], and Advance BIT* (ABIT*) [4] are to shorten
computation time by further using the heuristics function to di-
rect the process of exploring state space. It makes the methods
find the initial solution more quickly in some cases. However,
the heuristic sampling domain of the abovementioned methods
might be quite large in some cases, and sampling in the
domain remains random in these methods. The inefficiency of
exploring the state space makes the computation time of the
methods might be unacceptable for the applications mentioned
above.

Recently, machine learning techniques have been used in
path planning to overcome the limitations of sampling-based
path planners. Many learning-based methods can perform quite
short computation time in the learned environments. Neural
RRT* (NRRT*) [5] combines the machine learning techniques
and the sampling-based method. NRRT* uses a neural network
for segmenting the promising region in the state space. Letting
RRT* sample in the segmented region, which is smaller than
the sampling domain of the methods used informed search, can
accelerate the process of finding the initial path and converging
to the optimal path. Motion Planning Networks (MPNet) [6]
uses RNN for predicting the next waypoint directly. Without
random sampling, MPNet can lay out a near-optimal path with
the necessary iterations in some cases. However, these works
still need to increase iterations to improve the success rate,
which makes computation time uncontrollable.

To overcome the limitation abovementioned, we think that
developing an end-to-end near-optimal path planner is a
promising way that provide theoretical guarantees for finding
a near-optimal path in a short period. To achieve a method
that can find a near-optimal solution in an end-to-end way, we
first divide the path planning problem into two subproblems,
which are path space segmentation and waypoints generation
in the given path’s space. We further propose a novel two-
stage neural network named Path Planning Network (PPNet)
that can solve the path planning problem by solving the two
subproblems orderly. PPNet comprises a segmentation model
as the first stage named SpaceSegNet and a generation model
as the second stage named WaypointGenNet. SpaceSegNet
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(a) (b) (c) (d)

Fig. 1. PPNet can find a near-optimal solution in an end-to-end way. The representative classical planner—RRT* can find a similarly optimal solution of
Euclidean cost within the 5% range of the cost of the PPNet solution after the tree is expanded to have over 20,000 vertices. (a) PPNet, t = 0.015s, c = 31.49.
(b) RRT*, t = 15.002s, c = 30.69. (c) RRT*, t = 30.001s, c = 30.41. (d) RRT*, t = 60.004s, c = 30.48.

takes the map with the initial point and goal point mark as
input and outputs the path space. WaypointGenNet takes the
output of SpaceSegNet as input and outputs the probability
map indicating the probability of whether each point in the
environment is the waypoint. With the probability map, the
path can be extracted based on a simple rule during the
computation time of PPNet. Moreover, to achieve a better
success rate of PPNet, we also propose a novel efficient data
generation method for path planning named EDaGe-PP. The
results show that EDaGe-PP provides about 33× computa-
tion speed improvement and 2× success rate improvement
compared with the popular methods. The data generated by
EDaGe-PP and the two-stage structure of PPNet enable PPNet
to achieve about 41% success rate improvement compared
with the representative learning-based method and find a near-
optimal path in 15.3ms (Fig. 1).

The remaining article is organized as follows. Section II
reviews the main pieces of classical and deep-learning-based
methods. Section III presents the details of EDaGe-PP. Sec-
tion IV presents the details of PPNet. Section V presents
experimental results in detail. Section VI concludes the paper
with a discussion of the technique.

II. RELATED WORK

The performance requirement that some applications such
as the autonomous vehicle require a near-optimal path in a
specific time is challenging to the computational efficiency of
path planners. However, due to the randomly ordered search,
popular methods such as sampling-based methods (e.g., RRT*
and PRM*) might not satisfy such a performance requirement.
Two reasons for the inefficiency of randomly ordered search
are random sampling in the whole state space and expansion
of the tree that is guided by the random samples. To improve
the efficiency of expanding the tree, Fast Marching Tree
(FMT*) [7] uses a marching method to process samples. But
for achieving a 100% success rate of FMT*, the number of
samples should be larger than 1000 and the execution time
might be longer than 1s [7]. If the number of samples is less
than that, the success rate will decrease with the number of
samples rapidly. The methods used Informed search [2] sample
in the heuristic sampling domain, which is determined by a

hypothesis or information that has been known. Instead of
sampling in the whole state space, the methods improve the
convergence to the optimal path. But the sampling domain
might be quite large in some cases, and the expansion of
the tree is still inefficient. BIT* [3] further uses incremental
graph-search techniques like Lifelong Planning A* (LPA*) [8]
to guide the expansion of the tree. ABIT* [4] achieves a
shorter time of finding an initial path by using more advanced
graph-search techniques, such as inflation and truncation. It
means BIT* and ABIT* are to shorten the computation time
by improving both the sampling and the expansion. However,
these improvements might be insufficient for some applica-
tions because the heuristic function that directs the expanding
of the tree makes these methods might get trapped in some
cases.

By applying the machine learning techniques there are
methods that achieve ordered search. NEED [9] uses a seg-
mentation model to segment the promising region of the state
space as the preprocessing for sampling-based methods. The
promising region is the region that has a high probability that
waypoints are in it. Neural RRT* [5] and 3D Neural RRT* [10]
can be seen as the application of NEED which combines RRT*
with NEED. Neural RRT* and 3D Neural RRT* improve
the efficiency of search by searching in the promising region
which can be seen as the variant of informed search. But
instead of searching in the ellipse that is drawn by the cost of
the initial solution, they search in the promising region which
is segmented by the segmentation model. The more narrow
sampling region makes the sampling more efficient. MPNet [6]
avoids random sampling and expanding by using a recurrent
neural network (RNN) to output the next waypoint directly.
And due to bidirectional planning like RRT-Connect [11], MP-
Net alleviates the difficulty of predicting the long sequence of
RNN. MPNet could lay out the near-optimal solution in some
learned environments without generating extra nodes. But in
complex environments the necessary number of iterations of
the abovementioned methods might be quite large, and for
improving the quality of the path the number needs to be
further increased.

Unlike the previous works that apply machine learning
techniques, PPNet solves the path planning problem by solving
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the two subproblems orderly, which makes PPNet able to
output a path in an end-to-end way. Moreover, the continuous-
curvature paths with analytical expression, which is generated
by EDaGe-PP, make PPNet achieve more efficient training and
a much higher success rate.

III. EDAGE-PP: EFFICIENT DATA GENERATION

In this section, we describe EDaGe-PP. EDaGe-PP was
proposed for generating the custom data more efficiently
for the training of learning-based path planning methods.
It can overcome four limitations of the popular data gen-
eration methods for learning-based methods. Firstly, using
classical planners to generate an optimal path is extremely
time-consuming in complex environments. Secondly, the paths
only contain a few waypoints is computationally expensive
to generate data with the custom formats for the training
of neural networks, which is usual in developing learning-
based methods. Thirdly, they both need appropriate a prior
discretization for the path planning problem with clearance
requirements, which is difficult sometimes. Fourthly, the paths
comprised of discrete waypoints make it difficult for the neural
networks to converge. To overcome the limitations of popular
data generation methods mentioned above, we propose an
efficient data generation method for path planning named
EDaGe-PP. EDaGe-PP can generate data with continuous-
curvature paths with analytical expression while satisfying the
clearance requirement. Moreover, EDaGe-PP provides about
33× computation speed improvement and 2× success rate
improvement compared with the popular methods.

In this paper, we use a 2D RGB image to represent the state
space, which is denoted as R , and use the white and black
colors respectively to indicate the free space and the obstacle
space. The initial state and goal state are both represented by
red rectangles. The data generated by EDaGe-PP is comprised
of an image representing the path planning problem, a mask
representing the space of the path with clearance requirement,
and a mask representing the waypoints of the path. EDaGe-
PP is presented in Alg. 1. The data is generated by 4 steps
in our algorithm. The first step is to randomly generate paths
that will be the near-optimal solutions in the state spaces, and
the original masks representing the waypoints of the paths
(Alg. 1, Line 3), which is described in Section III-A. The
second step is to calculate the space of the path with the
clearance requirement (Alg. 1, Line 5), which is described in
Alg. 2. The third step is to calculate the settings of obstacles
that make the path a near-optimal solution in the state space
with these settings (Alg. 1, Line 6), which is described in
Alg. 3. The last step is to add the settings which are calculated
in the second step and the random obstacles are collision-free
with the path (Alg. 1, Line 9), which is described in Alg. 4.

A. Random Path Generation

In this paper, we use a predetermined number of polynomial
functions to describe the paths that are randomly generated by

Algorithm 1: EDaGe-PP(c, nP , nI)

1 P ← ∅;D ← ∅;O ← ∅;
2 IP ← ∅; IPath ← ∅; ISpace ← ∅; IProblem ← ∅;
3 P, IP = GeneratePath(nP )
4 foreach P , IP in P , IP do
5 B, IS = CalcuSpace(c,P)
6 O = SetObstacles(c,P)
7 t = 0
8 repeat
9 IPath, ISpace, IProblem

+←−
RandomStateSpace(B,O, IS , IP )

10 until t ≤ nI ;

11 return IPath, ISpace, IProblem;

Algorithm 2: CalcuSpace(c, P )

1 IS ← black;
2 B = CalcuBoundary(P );
3 foreach ub⃗, l⃗b, i⃗b, e⃗b in uB, lB, iB, eB do
4 IS = SetFree

(
IS ,

u b⃗,l b⃗
)

;

5 IS = SetFree
(
IS , i⃗,

i b⃗
)

;

6 IS = SetFree
(
IS , e⃗,

e b⃗
)

;

7 return B, IS ;

our algorithm. The polynomial function is defined as follows:

y = wT · X⃗, (1)

w⃗ = [w0, w1, · · · , wr]
T
, (2)

X⃗ =
[
1, x, x2, · · · , xr

]T
, (3)

where r denotes the predetermined order of the polynomial
function.

The coefficients of the polynomial function are randomly
generated. But for the diversity of polynomial curves the
coefficients are not sampled from a uniform distribution, the
random coefficients are obtained from the fitting result for
random samples from a uniform distribution.

Then waypoints are sampled from the polynomial curve
at an equal distance. The matrix of the waypoints of each
polynomial curve P (i) is defined as:

P (i) =
[
p⃗
(i)
1 , p⃗

(i)
2 , · · · , p⃗(i)n

]
, (4)

p⃗
(i)
j =

[
x
(i)
j , y

(i)
j

]T
, (5)

where i = 1, 2, · · · , l denotes the index of the polynomial
curve, l denotes the number of polynomial curves, and n
denotes the number of the waypoints of each polynomial
curve.

For concatenating the polynomial curves, the gradients of
the first and last points of l curves (l denotes the predetermined
number of polynomial curves) need to be calculated for the
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Algorithm 3: SetObstacles(c, P )

1 O ← ∅;
2 HP = ConvexHull(P );
3 S = FindSubSpaces(HP );
4 foreach s in S do
5 z⃗, n⃗ = CalcuDirection(s);
6 w = CalcuWidth(s);
7 repeat

8 select randomly


radius ∈ (0, 2w]

εn ∈ (0, 1]

εz ∈ [−1, 1]
;

9 if O == ∅ then
10 tn = c;

11 else
12 tn = εn · (radius+O[−1].radius);
13 tz = εz · radius;
14 t⃗ = tnn⃗+ tzh⃗;
15 ⃗coord = t⃗+O[−1]. ⃗coord;

16 if CollisonFree(P,
[
radius, ⃗coord

]
) then

17 O
+←−

[
radius, ⃗coord

]
;

18 until
∑n

i=1 O[i].s ≥ 2w;

19 return O;

transformation. The rotation matrix R(i) and translation vector
⃗t(i) are defined as:

R(i) =

[
cosα(i) − sinα(i)

sinα(i) cosα(i)

]
, (6)

α(i) = tan−1∇y(i−1)
n − tan−1∇y(i−1)

1 , (7)
⃗t(i) = p⃗(i−1)

n − p⃗
(i)
1 , (8)

where α(i) denotes the rotation angle of i-th polynomial curve,
sin/cos denotes the sine/cosine function, and tan−1 denotes
the arctangent function.

The waypoints of the path can be obtained by concatenating
the l polynomial curves. The waypoints of the path are defined
as:

P =
[
P

(1)
T , P

(2)
T , · · · , P (l)

T

]
, (9)

P
(i)
T = R(i) · P (i) + t⃗(i), (10)

where P denotes the matrix of the waypoints of the path, and
P

(i)
T denotes the transformed P (i).
After concatenating the polynomial curves, the path’s way-

points can be used for generating the mask of the waypoints,
which is represented by IP .

B. Space of the Path

The algorithm for calculating the path’s space is presented
in Alg. 2. With the polynomial functions of the path, the
boundary of the path’s space can be calculated. The boundary
of the path’s space is defined as (Alg. 2, Line 2):

B =
[
uB,l B,i B,e B

]
, (11)

Algorithm 4: RandomStateSpaces(B,O, IS , IP ).

1 HB = ConvexHull(B); repeat

2 select randomly

{
t⃗ ∈ R
r ∈ [0, 360◦]

;

R =

[
cos r − sin r
sin r cos r

]
;

3 H
′

B = R ·HB + t⃗;
4 if BoudaryCheck(H

′

B) then
5 select randomly O

′ ∈ R ;
6 foreach o

′
in O

′
do

7 if not CollisonFree(P, o
′
) then

8 O
′ −←− o

′
;

9 foreach o in O do
10 o. ⃗coord = R · o. ⃗coord+ t⃗;
11 O

′ +←− o;

12 IProb = GenerateMap(O
′
);

13 IS = R · IS + t⃗;
14 IP = R · IP + t⃗;
15 IProb = IProb ⊙ IS ;
16 break;

17 until times exceeded;
18 if Success then
19 return IP , IS , IProb;

20 else
21 return Failure;

where i/eB denotes the boundary around initial/end point, and
u/lB denotes upper/lower boundary.

The upper/lower boundary of each polynomial curve can be
calculated by the normal vector of the corresponding waypoint.
The upper/lower boundary is defined as:

u/lB =
[
u/lB

(1)
T ,u/l B

(2)
T , · · · ,u/l B(l)

T

]
, (12)

u/lB
(i)
T = R(i) ·u/l B(i) + t⃗(i), (13)

u/lB(i) =
[
u/l⃗b

(i)
1 ,u/l b⃗

(i)
2 , · · · ,u/l b⃗(i)n

]
, (14)

u/l⃗b
(i)
j = p⃗

(i)
j ± cn⃗

(i)
j , j = 1, 2, · · · , n, (15)

n⃗
(i)
j =

[
∇y(i)j ,−1

]
∥∥∥[∇y(i)j ,−1

]∥∥∥ , (16)

where c denotes the width of the required clearance.

The boundary around the initial/end point is a circle that
concatenates with the upper and lower boundary. The ini-
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Fig. 2. Four examples of the data generated by EDaGe-PP with different clearance requirements. Each figure indicates the process of generating data, which
can be divided into random path generation (blue), drawing the space of the path (orange), calculating the settings of the obstacles (green), and random
obstacles in the state space (black).

tial/end point is defined as:

i/eB =
[
i/e⃗b1,

i/e b⃗2, · · · ,i/e b⃗n′

]
, (17)

i/e⃗bj = i⃗/e⃗± ci/eRj ·i/e t⃗, j = 1, 2, · · · , n
′
, (18)

i/eRj =

[
cosi/e βj − sini/e βj

sini/e βj cosi/e βj

]
, (19)

i/eβj =
ji/et⃗ ·i/e t⃗′

n′
∥∥i/et⃗∥∥∥∥i/et⃗′∥∥ , (20)

it⃗ =u/l b⃗
(1)
1 − i⃗, (21)

it⃗
′
=l/u b⃗

(1)
1 − i⃗, (22)

et⃗ =u/l b⃗(l)n − e⃗, (23)
et⃗

′
=l/u b⃗(l)n − e⃗, (24)

where n
′

denotes the number of samples of the boundary
around the initial point or the end point.

With the boundary of the path’s space, we can consider ub⃗
(i)
j

and l⃗b
(i)
j , i⃗bj and i⃗, e⃗bj and e⃗ as pairs of points for setting

free space of the state space. Between each pair of points,
the space should be set to free for generating the image IS
representing the path’s space (Alg. 2, Lines 4–6). Since the
path is the analytical solution, the mask of the path’s space
can be generated with clearance requirements.

C. Settings of the Obstacles

For making the path a near-optimal solution in any state
space particular constraints need to be applied. In this paper,

we use obstacles that are circular as the constraints for the
path. The calculation of the obstacles’ settings is presented in
Alg. 3. The process of calculating the settings of obstacles is
divided into two steps. The first step is to calculate the convex
hull of the space and extract the subspace of the space. The
second step is to calculate the size and position of obstacles
in the subspace.

1) Find Subspaces (Alg. 3, Lines 2–3): The collection of
subspaces S is defined as (Alg. 3, Line 3):

S =
[
s(1), s(2), · · · , s(m),

]
, (25)

s(k) =
[
s⃗
(k)
1 , s⃗

(k)
2 , · · · , s⃗(k)wk

]
, k = 1, 2, · · · , n1, (26)

where m denotes the number of the subspaces, and wk denotes
the number of the boundary’s points of each subspace.

For each subspace, due to the path’s waypoints being
sampled with equal distance, the subspace can be found by
the distance of the adjoining points of the convex hull. The
indices of the pair of the adjoining points that the distance
between them exceeds the threshold is defined as f , g. The
relationship between f and g is described as:

g =

{
0, f = m,

f + 1, f ̸= m.
(27)

With the pair of adjoining points, the corresponding points in
the list of the waypoints can be found, and the indices of the
waypoints are denoted as u, v. The boundary of the subspace
is the points between p⃗

′

u and p⃗
′

v .
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With this rule, the volume threshold of the subspace is
determined by the distance of the adjoining points as a hyper-
parameter.

2) Parameters of each Subspace (Alg. 3, Lines 4–6): In
this section, we describe the algorithm on one subspace, for
simplicity, we define the subspace as:

s = [s⃗1, s⃗2, · · · , s⃗w] , (28)

where w denotes the number of the boundary’s points of one
subspace. the directions are defined as (Alg. 3, Line 5):

z⃗ = h⃗f − h⃗g, (29)
n⃗ = [z⃗ [1] ,−z⃗ [0]] . (30)

And the width of subspace in the direction of n⃗ is defined as
(Alg. 3, Line 6):

w = max
1≤i≤w

∣∣∣(s⃗i − h⃗r/s

)
· n⃗

∣∣∣ . (31)

3) Settings of Obstacles (Alg. 3, Lines 7–17): For each
subspace, the obstacles are set in the direction of n⃗ with
a random translation that doesn’t exceed the radius of each
obstacle (Alg. 3, Lines 8–14). The size of obstacles is random
in the range of the twice width of each subspace. If the random
obstacle is collision-free, the obstacle will insert the queue of
obstacles of the subspace (Alg. 3, Lines 15–17). The number
of obstacles is not predetermined and because of the random
size of each obstacle, the generation of obstacles will stop
when the width of all obstacles exceeds the threshold which
is the twice width of each subspace.

D. Random State Space

With the mask of the path’s space and corresponding set-
tings of obstacles, we can generate the path planning problems
that the target path is a near-optimal solution. The Algorithm
for generating Random State Space is presented in Alg. 4.

The translation and rotation of the path are generated
randomly. Then the same translation and rotation are applied
to the convex hull of the path’s waypoints. Whether the convex
hull of the path exceeds the boundary of the state space
R is checked. If the convex hull is in the state space, the
algorithm will continue executing, or (Alg. 4, Lines 2–4) will
be continually repeated until the success of boundary check
or the times of repetition exceeds the predetermined threshold.
When the times of repetition have exceeded the threshold, the
algorithm of path generation will be judged as a failure and
the algorithm will be executed from the start (Alg. 1, Line 1).
After the boundary check, the size and the position of the
circle obstacles are randomly generated and only the collision-
free obstacles will remain (Alg. 4, Lines 6–8). The settings
of obstacles of the path are placed with the same translation
and rotation as the path. The original mask representing the
waypoints of the path, and the original mask representing the
path’s space are doing the same translation and rotation with
the path (Alg. 4, Lines 9–14). The image of the state space
IProb and the mask of the path’s space IS do Hadamard’s
product for making sure that no obstacles in the path’s space,

which means the path is collision-free. The calculation is
described as:

IProb =
[
a
(Prob)
ij

]
, (32)

IS =
[
a
(S)
ij

]
, (33)

IProb = IProb ⊙ IS =
[
a
(Prob)
ij a

(S)
ij

]
. (34)

At last, the data for training of PPNet is comprised of the
mask of waypoints IP , the mask of the path’s space IS , and
the image of the state space IProb.

IV. PPNET: END-TO-END PATH PLANNER

In this section, we describe the two-stage structure of PPNet.
To develop a method that can find a solution for end-to-end
path planning while satisfying the clearance requirement, we
found a key characteristic of solutions satisfying clearance
requirements, which is there is a specific relationship between
the path and its space, which means the path can be obtained
by the shape of its space. Moreover, while the path can satisfy
the clearance requirement, the space of the path should be
completely in the free space. Therefore, we divide the path
planning problem into two subproblems. The first one is to
segment the path’s space where the path is in it while satisfying
the clearance requirement. The second one is to generate the
waypoints of the path based on the shape of the path’s space
segmented in the first subproblem. This leads the structure of
PPNet to a two-stage structure in which each stage solves one
of the two subproblems (Fig. 3).

In Section IV-A, we introduce the first subproblem which is
space segmentation, and the design of the corresponding first-
stage model of PPNet named SpaceSegNet. In Section IV-B,
the second subproblem which is waypoints generation, and the
design of the second-stage model of PPNet named Waypoint-
GenNet are introduced.

A. Space Segmentation

Space segmentation is the task of segmenting the space
of the path for the corresponding path planning problem.
The segmented path’s space should be the space within the
boundary of the path that is calculated in Section III-B. This
makes the shape of the space can be used for generating the
corresponding path. Such a problem can be described as:

S = fS (xinit, xend,O) , (35)

where S denotes the path’s space, and O denotes the obstacles
in the state space.

To make it easier to solve this subproblem by neural
networks, we further transfer the problem into a binary clas-
sification task, which can be defined as:

y = f ′
S (x, xinit, xend,O) , (36)

where y is a binary result of whether the x is in the space of
the path for the corresponding path planning problem, which
is described by xinit, xend, and O.

Due to the difficulty of convergence when neural networks
take the continuous representation of xinit, xend, and O as
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Fig. 3. Model overview. PPNet consists of SpaceSegNet and WaypointGenNet. SpaceSegNet can solve the first subproblem, which is space segmentation.
WaypointGenNet can solve the second subproblem, which is waypoints generation.

input, xinit, xend, and O are discretized into a picture that
uses markers to denote xinit, xend. After discretization, the
problem can be defined as:

Y = S (M) , (37)

where S denotes the function of SpaceSegNet, M denotes
the picture that describes the path planning problems, and Y
denotes the result of space segmentation.

This leads the problem to a segmentation task, so we
develop a segmentation model to solve the first subproblem
which is space segmentation, named SpaceSegNet. SpaceSeg-
Net takes the picture that describes the path planning problem
as the input and outputs the mask of the path’s space. The
output of SpaceSegNet is a mask of the path’s space which is
a binary picture that indicates whether the point is in the path’s
space, which means each pixel is the result of the problem
defined in Equation 37 of the corresponding point x. And we
use such a picture as the representation of the path’s space.

B. Waypoints Generation

Waypoints generation is the task of generating the waypoints
by the shape of the path’s space. The problem can be described
as:

W = fG (S) , (38)

where W denotes the waypoints of the path.
We transfer the problem into a two-step process, which is

defined as:

M = G (Y ) , (39)
P ∗ = E (M) , (40)

where M denotes the probability map of whether the point x
is the waypoint of the path, and P ∗ denotes the waypoints of
the path.

The first step can be seen as a generation task, so we develop
a generation model to solve it, named WaypointGenNet. Way-
pointGenNet is designed as a Transformer-based Autoencoder.
WaypointGenNet takes the binary picture Y that represents the
path’s space as input and outputs the probability map of the
waypoints.

The second step is to extract the waypoints from the
probability map M . E (·) denotes the simple rule of extracting
waypoints from the probability map that is generated by
WaypointGenNet, which is defined as:

xnext = argmaxM
Xneighbor

, (41)

where Xneighbor is the neighborhood points of the current
point on the probability map, which starts at the initial point.
The probability map M can be seen as the solution to the
given path planning problem. The computation of extracting
the waypoints from the probability map can be finished during
the executed time. So the total computation time of our method
is defined as:

t = tS + tG , (42)

where tS is the inference time of SpaceSegNet S, tG is the
inference time of WaypointGenNet G.

V. EXPERIMENTS

In this section, we demonstrate the performance of PPNet
through several simulations. The system used for experiments
has a 3.20 GHz× 8 AMD Ryzen 7 5800H processor with 16-
GB RAM and NVIDIA GeForce RTX 3060 GPU.

For training, we adopt a polynomial learning rate decay
schedule and employ SGD as the optimizer. Momentum and
weight decay are set to 0.9 and 0 respectively for all the
experiments on the three datasets. We set an initial learn-
ing rate of 0.08 for all experiments. We set the batch size
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to 8 and the total iteration to 80,000 for experiments of
comparison of different encoders of SpaceSegNet. And we
used mmsegmentation [12] for building SpaceSegNet and
experiments in Section V-A. The path planning problems used
in this section are generated by EDaGe-PP, which contains
up to 50 obstacles in each problem. In the experiments of
previous learning-based methods, they test the methods only
in a few maps, eg. NRRT* in 4 maps, and MPNet in 10
maps. Such a setting is reasonable for classic methods, but
learning-based methods need sufficient different maps to vali-
date the generalization. Therefore, we evaluate our methods
on a dataset that each data is a path planning problem in
a different map, which can validate the generalization of
our method. Unlike the previous works combining machine
learning techniques and sampling-based methods, our method
is a deep learning method without implementing traditional
path planning methods, and our method can only solve path
planning problems in 2D scenarios. Developing methods for
solving path planning problems in higher dimension space in
an end-to-end way will be our future work.

A. Comparison of Different Structures of SpaceSegNet
In this section, we test the performance of different struc-

tures of the segmentation model in path planning. For eval-
uating different structures of SpaceSegNet, the size of the
dataset used in this section is 320,000, which means the
dataset contains 320,000 different maps. Unlike the traditional
segmentation tasks that can segment target regions by texture
in images, eg. ADE20K, and crack segmentation, the space of
the target path should be completely in the free space, which
means the target region is in the white region has no texture,
this makes the task much more difficult.

1) Comparison of Encoders: In the comparison of en-
coders, four kinds of variants of vision Transformer which are
Vision Transformer (ViT) [13], Swin Transformer (Swin) [14],
Neighborhood Attention Transformer (NAT) [15] and Dilated
NAT(DiNAT) [16], are used. For making all models with
different encoder parameters similar in number, the base
variants of ViT, Swin, and NAT are used in the experiment of
comparison, which are ViT-Base, Swin-Base, NAT-Base, and
DiNAT-Base. Because ViT has no multi-level feature, we use
the Progressing UPsampling head (PUP) of SEgementation
TRansformer (SETR) [17] as the decoder for all models
in comparison of different encoders with the head of Fully
Convolutional Networks (FCN) as the auxiliary head.

In the experiments on Table I, the reason that the perfor-
mance of models with these encoders in path planning is
quite different from the performance in classical CV tasks
is the different attention mechanisms used in these encoders
introduced in different assumptions, which have quite different
influence in path planning.

ViT uses the vanilla Self-Attention (SA) [18] that each
patch can calculate attention with all patches directly. Nev-
ertheless, this makes SA can be computationally expensive
with the growth of the number of patches, SA introduces no
assumption.

Swin uses Shifted Window Self-Attention (SWSA) [14].
SWSA makes the SA more computationally efficient by only

TABLE I
COMPARISON OF DIFFERENT ENCODERS

Model # of Params FLOPs IoU(%)
ViT 98.2 M 57.23 G 54.72

Swin 102.1 M 55.21 G 53.67
NAT 104.1 M 53.47 G 61.89

DiNAT 104.1 M 57.62 G 0

TABLE II
COMPARISON OF DIFFERENT DECODERS

Model # of Params FLOPs IoU(%)
PUP-512 104.1 M 53.47 G 61.89

UPerHead-512 123.2 M 54.16 G 64.15
UPerHead-256 100.1 M 24.00 G 63.91
UPerHead-128 93.4 M 16.38 G 63.41
UPerHead-64 91.2 M 14.44 G 63.53

calculating the attention between patches in the windows. The
patches that are in the different windows establish correla-
tions by the shifted windows. This makes some patches that
are adjoining have no attention calculation directly which is
unreasonable in path planning. In our experiments, the model
using Swin as the encoder had even worse performance than
the model using ViT, although Swin outperforms ViT in all
classical tasks of Computer Vision (CV).

NAT uses Neighborhood Attention (NA) [15]. NA can be
seen as a sliding window variant of SWSA. In NA, each
patch only calculates attention with the adjacent patches which
makes the computation more efficient, and the correlation
of adjacent patches tends to be higher than SA. Such an
assumption is reasonable for path planning. And in our ex-
periment, the model using NAT as an encoder obtained the
best performance.

DiNAT uses Dilated NA (DiNA) [16] which is inspired
by dilated convolution that can make the window of NAT
extremely large with the same amount of computation. With
the larger window, the model can obtain the receptive field as
large as the task needs. But in DiNA, patches can not calculate
attention directly with adjoining patches after the first layer
which makes the model using DiNAT can not converge in
path planning.

In summary, the model using NAT obtained the best per-
formance due to the assumption which is introduced by NA.
Nevertheless Swin outperforms ViT in all classical tasks in
CV, and models using Swin and ViT perform similarly in
path planning. Model using DiNAT can not converge in path
planning.

2) Comparison of Decoders: In the comparison of de-
coders, due to the multi-scale feather that NAT extracts from
input, the head of UPerNet (UPerHead) [19] is chosen to
compare with PUP which is used in the comparison of
different encoders. For making the number of parameters and
FLOPs of NAT-PUP-512 and NAT-UPerHead-512 similar in
number, the numbers of PUP’s embedding dimensions and
upsampling operations are set to 512 and 5 respectively. The
other follows the configuration for SETR-PUP in SETR. The
number of UPerNet’s embedding dimensions is 512. The other
follows the configuration for UPerNet-NAT in NAT.

Following the configuration of decoders above, the number
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TABLE III
DATA GENERATION TIME, PATH COST, AND SUCCESS RATE COMPARISON OF THE VARIANTS OF PPNET

Methods Generation Time Path cost Success rate(%)
RRT* 25.6min (+14.2h) 37.3± 9.44 40.80
IRRT* 10.1min (+14.1h) 37.8± 8.20 48.84
BIT* 5.96min (+16.3h) 37.8± 8.19 45.21

ABIT* 5.86min (+16.0h) 37.9± 8.04 40.92
EDaGe-PP 0.963min (+0.425h) 39.0± 7.39 94.47
* The variants of PPNet are trained by datasets which were generated by

EDaGe-PP and data generation methods that solutions were found by
RRT*, IRRT*, BIT*, and ABIT* respectively.

** Data generation time is divided into two parts, which are time for
generating solutions and time for generating data with the format for
training of PPNet.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Solutions found by PPNet under different clearance settings. (a), (b), (c), and (d) clearance=1. (e), (f), (g), and (h) clearance=3.

of parameters of NAT-PUP-512, and NAT-UPerHead-512 are
104.1M, and 123.2M respectively. The numbers of FLOPs
of NAT-PUP-512, and NAT-UPerHead-512 are 53.47G, and
54.16G respectively. In the experiment on Table II, all NAT-
UPerHead models outperform NAT-PUP-512. As the perfor-
mance of NAT-UPerHead models is quite similar, we choose
the NAT-UPerHead-64 as the model for SpaceSegNet.

B. EDaGe-PP Comparison with Popular Data Generation
Methods

In this section, we evaluate EDaGe-PP against the pop-
ular methods that use different classical planners for find-
ing solutions to random path planning problems, including
RRT*, IRRT*, BIT*, and ABIT*, which are represented
by PPNet-RRT*, PPNet-IRRT*, PPNet-BIT*, PPNet-ABIT*
respectively. Due to the computational inefficiency of classical
planners, the size of the dataset used in this section is 10,000.

In the comparison of data generation methods, we divide
the data generation time into two parts, which are the time
for generating solutions and the time for generating data with
the format for training of PPNet. For evaluating the time of
generating solutions, we let RRT*, IRRT*, BIT*, and ABIT*
run until they find a solution of Euclidean cost within the 5%
range of the cost of the PPNet solution. As shown in Table III,
the data generation methods that apply RRT*, IRRT*, BIT*,
and ABIT* for finding solutions have about 27×, 10×, 6×,
6× computation time for generating solutions respectively
compared to EDaGe-PP, and have about 33×, 33×, 38×, 38×
computation time for generating data respectively compared
to EDaGe-PP. For the cost of the solutions, We report mean
computation times with standard deviation over 10,000 path
planning problems. Due to the solutions that are generated by
EDaGe-PP being continuous-curvature, PPNet can not output
solutions comprised of broken lines, which makes the cost



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

of the solutions that are found by PPNet-EDaGe-PP slightly
higher than others. However, because of the continuous-
curvature solutions, the success rate of PPNet-EDaGe-PP is
about 2× compared to the other methods.

C. Path Planning Under Different Clearances

In this section, we test the performance of our PPNet on
the path planning problems under different clearances.

Two kinds of clearance (1, 3) are used. We generate two sets
of data with each clearance requirement (1, 3). Then using
the two datasets train PPNet respectively. The structure of
PPNet this section uses is NAT-UPerHead-64. Fig.4 presents
four different path planning problems, which have divergent
optimal solutions with different clearance requirements. As
shown in Fig.4, PPNet can find different near-optimal solutions
that satisfy different clearance requirements respectively.

D. PPNet Comparison With Learning-Based Planner

In this section, we evaluate PPNet against the representative
learning-based planner MPNet. We choose MPNetPath:NP
(B), called MPNetPath in this paper, which is the variant with
the best performance of all variants of MPNet in computation
time, for the experiments in this section. For following the
settings of the dataset of MPNet, the size of the dataset
used in this section is 4,000, but the dataset contains 4,000
different maps, which is much larger than the setting in the
experiments of MPNet (number of maps: 10). The maximum
number of iterations of MPNetPath is set to 130, and the part
of replanning is 50.

Table IV present the numerical result of comparison of
PPNet and the five variants of MPNetPath that are trained
by the datasets generated by EDaGe-PP and the methods
that apply classical planners, including RRT*, IRRT*, BIT*,
and ABIT*, which are represented by MPNetPath-EDaGe-
PP, MPNetPath-RRT*, MPNetPath-IRRT*, MPNetPath-BIT*,
MPNetPath-ABIT* respectively. As shown in Table IV, PPNet
outperforms all variants of MPNetPath in computation time,
path cost, and success rate. In all variants of MPNetPath,
MPNetPath-PPNet outperforms other variants in path cost.
But MPNetPath-EDaGe-PP obtains the worst performance in
success rate. The reason is RNN that the neural networks
used in MPNet have the limitation in predicting long sequence
results, and the solutions generated by EDaGe-PP have more
waypoints than other methods. However, this feature is suitable
for the methods that apply the neural networks with structures

for CV, which is exhibited in the success rate of PPNet which
is about 2× compared to MPNetPath. As for computation
time, because of the end-to-end way that PPNet uses for solv-
ing path planning problems, PPNet provides about 7×, 9×,
9×, 8×, and 8× computation speed improvements compared
to MPNetPath-RRT*, MPNetPath-IRRT*, MPNetPath-BIT*,
MPNetPath-ABIT*, MPNetPath-EDaGe-PP respectively.

E. PPNet Comparison With Sampling-Based Planners
In this section, we evaluate PPNet against the sampling-

based planners including RRT*, IRRT*, BIT*, and ABIT*.
PPNet was compared to the OMPL implementations of RRT*,
IRRT*, BIT*, and ABIT*.

We let RRT*, IRRT*, BIT*, and ABIT* run until they find
an equivalent solution to PPNet and a solution of Euclidean
cost within the 2%, and 5% range of the cost of the PPNet
solution respectively. We report mean computation times with
a standard deviation over 10,000 random path planning prob-
lems. PPNet can find a solution within a specific planning time,
which is 15.3ms. The state-of-the-art classical planners, RRT*,
IRRT*, BIT*, and ABIT* exhibit shorter computation times in
simple planning problems, but higher mean computation times
than PPNet. Furthermore, standard deviations of computation
times are high, which is unacceptable in some tasks (Fig.5).
As shown in Table V, RRT*, IRRT*, BIT*, and ABIT* need
about 15×, 8×, 8×, and 8× computation time for finding an
equivalent solution to PPNet respectively. And Fig.5 presents
a difficult case for sampling-based planners. For solving this
path planning problem, RRT*, IRRT*, BIT*, and ABIT* need
2.452s, 0.580s, 60.001s, and 9.564s of computation time. And
PPNet can still output the near-optimal solution in 15.3ms.

VI. CONCLUSION

In this article, we also propose PPNet, which is a two-
stage neural network in which each stage solves one of the
two subproblems of the path planning problem. Moreover, we
also propose EDaGe-PP, an efficient data generation method
for path planning. Due to the continuous-curvature path with
analytical expression, the dataset is beneficial for the training
of neural networks. PPNet can find a near-optimal solution in
an end-to-end way within 15.3ms.

In future work, we will try to improve our neural net-
work structure to develop an end-to-end near-optimal path
planner in 3D space. In addition, extending EDaGe-PP to
3D space is also challenging work. Code is available at:
https://github.com/AdamQLMeng/PPNet.

TABLE IV
COMPUTATION TIME, PATH COST, AND SUCCESS RATE COMPARISON OF PPNET AND MPNETPATH

Methods Time Path cost Success rate(%)
MPNetPath-RRT* 0.110± 0.123 43.8± 10.8 29.75
MPNetPath-IRRT* 0.137± 0.131 52.7± 16.1 53.68
MPNetPath-BIT* 0.131± 0.141 48.3± 13.7 40.90

MPNetPath-ABIT* 0.126± 0.139 47.3± 13.4 40.35
MPNetPath-EDaGe-PP 0.115± 0.156 42.8± 10.7 24.48

PPNet 0.015 39.3± 7.30 94.68
* The Variants of MPNetPath are trained by datasets that were generated by data

generation methods that solutions were found by RRT*, IRRT*, BIT*, and
ABIT* respectively.

https://github.com/AdamQLMeng/PPNet
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(a) (b) (c) (d) (e)

Fig. 5. An example of PPNet, RRT*, IRRT*, BIT*, and ABIT* run on a random R2 world. Each algorithm was run until it found an equivalent solution to
PPNet (c = 31.49). (a) t = 0.015s. (b) t = 2.452s. (c) t = 0.580s. (d) t = 60.001s. (e) t = 9.564s.

(a) (b) (c) (d) (e)

Fig. 6. An example of PPNet, RRT*, IRRT*, BIT*, and ABIT* run on a u-turn environment. Each algorithm was run until it found an equivalent solution
to PPNet (c = 50.03). (a) t = 0.015s. (b) t = 0.539s. (c) t = 0.503s. (d) t = 0.220s. (e) t = 0.104s.
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