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Abstract 

In this paper, we solve the bound state problem for Varshni-Hellmann potential via a useful 

technique. In our technique, we obtain the bound state solution of the Schr¨odinger equation for 

the Varshni-Hellmann potential via ansatz method. We obtain the energy eigenvalues and the 

corresponding eigen-functions. Also, the behavior of the energy spectra for both the ground and 

the excited state of the two body systems is illustrated graphically. The similarity of our results 

to the accurate numerical values is indicative of the efficiency of our technique. 
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spectrum. 
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1 Introduction 

Exact solution of Schr¨odinger equation in the D-dimensional coordinates system has been a focus 

of study in miscellaneous works of quantum physics and quantum chemistry. The energy 

eigenvalues and wave function, which are capable of showing the behavior of a quantum 

mechanical system, can be obtained from the Schr¨odinger equation. The Schr¨odinger equation is 

a second-order differential equation used to solve quantum-mechanics problems. The exact and 

approximate solutions of the Schr¨odinger wave equation in non-relativistic quantum mechanics 
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have many features because the wave functions and their equivalent eigenvalues provide a lot of 

information for the description of various quantum systems, including atomic structure 

1 

theory, quantum chemistry, and quantum electrodynamics. Using the experimental proof of the 

Schr¨odinger wave equation, researchers are motivated to solve the radial Schr¨odinger equation 

via different analytical methods. Attempts have been made to solve the Schr¨odinger and Klein-

Gordon equations through different potentials. For example, William et al. studied the Hulthen 

potential together with the Hellmann potential [3] and Hans Hellmann investigated the 

Schr¨odinger equation with a linear combination of the Coulomb and Yukawa potentials, which is 

known as the Hellmann potential [4]. Hellman potential has been applied to several branches of 

physics such as atomic physics, plasma physics, solid state physics, etc. [5-6] and it has been used 

in the study of electron nucleus [7] and electron ion [8]. 

This study seeks to obtain the eigenvalues and wave function of the 3D Schr¨odinger equation 

through the sum of Varshni and Hellmann potentials. The paper is organized as follows: In Sec. 2, 

the exact solution of the Schr¨odinger equation for Hellmann-Varshni potential is derived and we 

obtain the analytical expressions for energy levels and the corresponding wave functions for n and 

l quantum numbers. In Sec.3, the results are discussed. In Sec. 4, summary and conclusion are 

presented. 

 2 Formulation of the Approach 

Schr¨odinger equation has been solved exactly by using various potentials, and it has been 

employed in different atomic, molecular and nuclear fields. Schr¨odinger equation is a second-

order differential equation which serves to solve quantum-mechanic problems. We have attempted 

to solve Schr¨odinger and Klein-Gordon equations by using different potentials for few-quark 

systems [9-13]. In this section we solve Schr¨odinger equation by using Hellmann potential. 

Hellmann potential is of the following form: [ 14, 15] 

  (1) 

where r is the inter-nuclear interval. c and d stand for the strong points of Coloumb and Yukawa 

potentials. Varshni potential is of the following form: [16] 

  (2) 
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where a and b denote the strong points of Varshni potential. Varshni potential is a function of 

repulsive short-range potential energy, which has been studied in the formalism of Schr¨odinger 

equation and contributed greatly to chemical and nuclear physics [17,18]. In this article we study 

Schr¨odinger radial equation with a new proposed potential obtained from the sum of Varshni and 

Hellmann potential (VHP). The potential is: 

  (3) 

In fig. 1, we show the VHP Potential variations in terms of different values of α. We expand 

 

Figure 1: VHP Potential variations in terms of different values of α 

. 

the exponential part of the potential: 

  (4) 

And we write the potential in a simpler form: 

  (5) 

The systems Schr¨odinger equation is: 

  (6) 

where µ is the reduced mass and ν and l are group number and the orbital quantum number of one 

particle relative to another, respectively. By choosing ), eq. 5 appears as: 
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  (7) 

ϕ(r) can be derived from eq. 6. Assuming ~ = c = 1 and ϕ(r) = f(r)exp[g(r)] , we can pursue the 

calculations related to ϕ(r) function, and f(r) and g(r) functions are presented as: 

c=1 

where n = 1.2,3,. and f0(r) = 1, and the polynomial g(r) is defined based on the type of potential. In 

this case, it is defined based on potential 3. 

  (9) 

From the above equations, we have: 

  (10) 

And by introducing into eq.4: 

  (11) 

We expand the exponential part of the potential and rewrite the potential as: 

  (12) 

By introducing the potential quantity and the derivatives into eq. 10, we solve the equation for 

n=0 and angular momentum L, and the following equation is obtained: 

  (13) 

With a simple calculation and considering that the exponents of r are linearly independent, it is 

possible to set the coefficients of different powers of r equal to each other. In this case, the following 

relations are obtained between the potential coefficients and the energy can be obtained: 

j fj(r) = 

∏(r − αi
j) 

j = 1,2,.. (8) 



5 

 

(14) 

By solving the above equations, the special relation of the energy values for the state n = 0 is 

obtained as follows. 

  (15) 

  (16) 

The energy for the first excited state n = 1 and the angular momentum L is equal to: 

  (17) 

3 Numerical Results 

The detailed analysis of the results in terms of various domains of parameters a,b,c and α of the 

VHP potential reveals a few important facts concerning the application of the perturbed formalism. 

In the present study the discrete energy eigenvalues for the VHP potential have been calculated as 

functions of the strength a,b,c and the screening parameter α of the VHP potential. 

1- For VHP potential the energy eigenvalues is given by Eq. (15) and Eq. (17). In Table 1, we 

show the energy eigenvalues for VHP potential (with a = 1,b = −1,c = 4,d = −4,~ = 2µ = 1) in terms 

of different values of α. As alpha increases, the magnitude of the binding energy decreases. The 

energy values corresponding to the states n = 2,3,.. are also obtained by the same method. In this 

way, the Schr¨odinger equation was solved analytically and the eigenvalues of EnL were obtained . 

In Fig 2 and 3, we show the variation of energy as a function of α and M for different l by using 

results of table 1. As we can see, for l > 0 the energy increases with the increase of α and the energy 

decreases with the increase of µ. 

2- We have shown the energy eigenvalue for Helman potential for a = b = 0 in Table 2 and 

compared our results with [20] and [21]. Hamzavi et al in [20] have obtained the approximate 

analytical solutions of the radial Schr¨odinger equation for the Hellmann potential By using the 

generalized parametric Nikiforov-Uvarov (NU) method. Ref. [21] a perturbative treatment for the 
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bound states of the Hellman potential is used. As we have shown in Table 2, as the value of α 

increases, the correlation energy decreases. 

3- We have shown energy eigenvalue for Varshni potential a = b = −1,(~ = 2µ = 1) in table 3 

and compared our results with Ref. [19]. Ebomwonyi et al. have studied the Schr¨odinger equation 

for the Varshni potential function with two eigen-solution techniques such as the NU and the semi-

classical WKB approximation methods in Ref. [19]. Our results are in good agreement with Ref. 

[19]. 

4- Table 4 shows numerical values of the binding energies of Yukawa potential (a = b = c = 0) 

in terms of the values of M and α. The results obtained are compared with those of [22,23]. Ref. [22] 

applies the asymptotic iteration method to solve the radial Schr¨odinger equation for the Yukawa 

type potentials. Accurate numerical solutions have been obtained for Schr¨odinger equation 

through a Yukawa potential in Ref. [23]. 

 4 Conclusions 

In this research, we analyzed the Schr¨odinger equation with Varshni-Hellman potential using the 

Ansatz method. We study the discrete energy eigenvalues for the Hellmann-Varshni potential have 

been calculated as functions of the screening parameter α of the Yukawa potential. We compared 

our findings with other theoretical formalisms. We found that the energy eigenvalues obtained 

using this method are in good agreement with other works in the literature. Therefore, Analytical 

solutions while opens a new window It can be used to provide valuable information about the 

dynamics of quantum mechanics in molecular and atomic physics. 
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Table 1: Energy eigen value for VHP potential in terms of different values of α (a = 1,b = 

−1,c = 4,d = −4,~ = 2µ = 1) 

State α E(ev) 

1s 0.025 -

19.175401 

 0.050 -

19.101607 

 0.075 -

19.028616 

2s 0.025 -

4.058816 

 0.050 -

4.041517 

 0.075 -

4.034352 

2p 0.025 -

4.028798 

 0.050 -

4.021861 

 0.075 -
3.952986 

3s 0.025 -

1.247048 

 0.050 -

1.234861 

 0.075 -

1.221445 

3p 0.025 -

1.232069 

 0.050 -

1.227473 

 0.075 -

1.143767 

3d 0.025 -

1.215805 

 0.050 -

1.172321 

 0.075 -

1.139522 

Table 2: Energy eigenvalue for Helman potential a = b = 0,c = 2,d = −1,(~ = 2µ = 1) 

state α E (ev) Ref. [21] Ref. [20] 
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1s 0.001 - 2.238 00 - 2.249 00 - 2.24898 

 0.005 - 2.244 01 - 2.245 01 - 2.24499 

 0.01 - 2.2413 - 2.240 05 - 2.24003 

2s 0.001 - 0.5606 - 0.561 50 - 0.56150 

 0.005 - 0.5569 - 0.557 55 - 0.55754 

 0.01 - 0.55198 - 0.552 69 - 0.55269 

2p 0.001 - 0.5601 - 0.561 50 - 0.56150 

 0.005 - 0.5562 - 0.557 54 - 0.55754 

 0.01 - 0.5516 -0.552 66 - 0.55266 

3s 0.001 - 0.2381 - 0.249 00 - 0.24900 

 0.005 - 0.24378 - 0.245 11 - 0.245 

11 

 0.01 - 0.2399 - 0.240 43 - 0.24043 

3p 0.001 - 0.2478 - 0.249 00 - 0.24900 

 0.005 - 0.2436 - 0.245 10 - 0.24510 

 0.01 - 0.2390 - 0.240 40 - 0.24040 

3d 0.001 - 0.2468 - 0.249 00 - 0.24900 

 0.005 - 0.2446 - 0.245 08 - 0.24508 

 0.01 - 0.2389 - 0.240 34 - 0.24034 

Table 3: Energy eigenvalue for Varshni potential a = b = −1,(~ = 2µ = 1) 

state α E (ev) [19] 

1s 0.001 - 1.249001 - 

 0.050 - 1.203750 - 

 0.100 - 1.165000 - 

2s 0.001 - 1.0615025 - 

 0.050 - 1.0187500 - 

 0.100 - 0.9875000 - 

2p 0.001 - 1.026784 - 1.061750 
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 0.050 - 0.995277 - 

1.0256250 

 0.100 - 0.997777 - 0.990000 

3s 0.001 - 1.026781 - 

 0.05 - 0.9865277 - 

 0.1 - 0.9627777 - 

3p 0.001 - 1.014634 - 

 0.050 - 0.988125 - 

 0.100 - 1.005625 - 

3d 0.001 - 1.0090165 - 1.026944 

 0.05 - 1.001250 - 0.986736 

 0.1 - 1.075000 - 0.946944 

4s 0.001 - 1.014629 - 

 0.050 - 0.976875 - 

 0.100 - 0.960625 - 

4p 0.001 - 1.009011 - 1.01506 

 0.05 - 0.987500 - 0.99515 

 0.1 - 1.020000 - 0.990000 

4d 0.01 - 0.992075 - 1.01493 

 0.050 - 0.991805 - 0.98515 

 0.100 - 1.088055 - 0.96250 

4f 0.01 - 1.004132 - 1.01475 

 0.050 - 1.030102 - 0.97250 

 0.100 - 1.205102 - 0.97250 

 
Table 4: Energy eigenvalue for Yukawa potential d = √2,α = gd(~ = µ = 1) 

state g E (ev) Ref. [23] Ref. [22] 

1s 0.002 - 1.00133 - 0.99600 - 

0.99600 
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 0.005 - 1.00518 - 0.99004 - 

0.99003 

 0.010 - 0.9901 - 0.98015 - 

0.98014 

 0.020 - 0.9519 - 0.96059 - 

0.96059 

2s 0.002 - 0.2378 - 0.24602 - 
0.24602 

 0.005 - 0.2396 - 0.24015 - 

0.24014 

 0.010 - 0.2276 - 0.23059 - 

0.23058 

 0.020 - 0.2105 - 0.21230 - 

0.21229 

2p 0.002 - 0.2455 - 0.24602 - 

0.24601 

 0.005 - 0.2391 - 0.24012 - 

0.24012 

 0.010 - 0.22860 - 0.23049 - 

0.23049 

 0.020 - 0.21101 - 0.21192 - 

0.21192 

3p 0.002 - 0.1067 - 0.10716 - 

0.10716 

 0.005 - 0.1009 - 0.10142 - 

0.10141 

 0.010 - 0.09076 - 0.09231 - 

0.09230 

 0.020 - 0.07489 - 0.07570 - 

0.07570 

3d 0.002 - 0.1067 - 0.10715 - 

0.10715 

 0.005 - 0.1001 - 0.10140 - 

0.10136 

 0.010 - 0.0916 - 0.09212 - 

0.09212 

 0.020 - 0.0747 - 0.07502 - 

0.07503 
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Figure 2: E in terms of α for different l 
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Figure 3: E in terms of of µ for different l 
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