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Abstract—In modern radar systems, precise target localization
using azimuth and velocity estimation is paramount. Traditional
unbiased estimation methods have utilized gradient descent algo-
rithms to reach the theoretical limits of the Cramér Rao Bound
(CRB) for the error of the parameter estimates. As an extension,
we demonstrate on a realistic simulated example scenario that our
earlier presented data-driven neural network model outperforms
these traditional methods, yielding improved accuracies in target
azimuth and velocity estimation. We emphasize, however, that this
improvement does not imply that the neural network outperforms
the CRB itself. Rather, the enhanced performance is attributed to
the biased nature of the neural network approach. Our findings
underscore the potential of employing deep learning methods in
radar systems to achieve more accurate localization in cluttered
and dynamic environments.

Index Terms—adaptive radar processing, Cramér Rao Bound,
data-driven radar, convolutional neural networks, RFView, gra-
dient descent, target localization

I. INTRODUCTION

ACCURATE target localization is a critical component in
contemporary radar systems, with applications that range

from defense and surveillance to automotive navigation and
weather prediction [1], [2], [3]. The task of estimating target
parameters including azimuth and velocity with high precision
is vital, calling for refined signal processing techniques. In this
area, gradient descent algorithms have been a primary method,
comprising iterative approaches that closely approximate the
theoretical limits set by the Cramér Rao Bound (CRB) [4], [5],
[6], [7]. These algorithms are recognized for their robustness
and efficiency in achieving the CRB.

In this study, we examine the impact of utilizing a biased op-
timization approach to estimate target parameters, specifically
focusing on the reduction of mean squared error (MSE). This
approach, despite yielding improved accuracies, should not be
interpreted as exceeding the theoretical constraints of the CRB.
Building upon this notion, our previous research explored the
potential of regression convolutional neural networks (CNNs)
in radar target localization [8]. We contrasted the performance
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of these networks with a classical ‘peak cell midpoint’ method,
which relied on aggregating test statistics [9], [10], [11] into a
multidimensional tensor to determine the target location using
the center of the dominant cell. By extracting and synthesizing
complex patterns inherent within these tensors, our proposed
CNN achieved substantial gains in localization accuracy over
this classical ‘peak cell midpoint’ approach [12].

Expanding upon these initial findings, we juxtapose gradient
descent algorithms for target azimuth and velocity estimation
with our proposed regression CNN architecture in a realistic
simulated example scenario. Our analysis assesses the parame-
ter estimation accuracies of both methodologies, underscoring
the nuanced capability of the CNN model to deliver parameter
estimates with a reduced MSE, attributed to its inherent bias.
Through this exploration, we aim to illuminate the impact and
performance improvements that data-driven models impart on
the domain of radar target localization.

The structure of the paper is as follows. Section II details the
representative scenario considered in this analysis. Section III
provides a detailed exposition of the signal model. Section IV
outlines the error metric and empirical evaluations. Section V
details the gradient descent algorithms utilized for parameter
estimation. Section VI outlines the CRB calculation. Section
VII presents the empirical results, and we conclude the paper
in Section VIII, summarizing the key insights gained from our
analysis and outlining potential avenues for future research.

II. RFVIEW® EXAMPLE SCENARIO

Developed by ISL Inc, RFView® [13] is a knowledge-aided,
high-fidelity, site-specific and physics-based RF modeling and
simulation environment that operates on a world-wide database
of terrain and land cover data. Using RFView®, we can define
synthetic example scenarios that accurately model real-world
environments — our considered example scenario consists of
a stationary airborne radar platform above coastal Southern
California. RFView® aggregates the information on land types,
the geographical characteristics across the simulation region,
and the radar parameters when simulating the radar return. The
site and radar parameters of our RFView® example scenario are
given in Table I, where we utilize a single-channel transmitter
and an L-channel receiver. The radar return is beamformed for
each size (48/L× 5) receiver sub-array, which condenses the
receiver array to size (L×1). The radar operates in ‘spotlight’
mode and points toward the center of the simulation region.
Each radar return data matrix comprises Λ transmitted pulses.
We set the elevation angle to ϕ = 0, because in our scenario,
the radar platform is far from the ground scene.
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TABLE I: Site and Radar Parameters

Parameters Values
Carrier frequency (fc) 10, 000 MHz
Bandwidth (B) & PRF (fPR) 5 MHz & 1100 Hz
Receiving antenna 48× 5 (horizontal × vertical)
Transmitting antenna 48× 5 (horizontal × vertical)
Antenna element spacing 0.015 m
Platform height 1000 m
Platform latitude, longitude 32.4275◦,−117.1993◦
Area range (rlower, rupper) (14538 m, 14688 m)
Area azimuth (θmin, θmax) (20◦, 30◦)
Area velocity (vmin, vmax) (175 m/s, 190 m/s)

For our RFView® example scenario, we consider a stationary
airborne radar platform within the scene described by Figure 1.
We randomly place a moving point target in a radar processing
region that contains κ range bins and varies in range, r, where
r ∈ [rlower, rupper], azimuth angle, θ, where θ ∈ [θmin, θmax], and
velocity, v, where v ∈ [vmin, vmax]. The size of each range bin
is ∆r = c

2B = 30 [m], where c is the speed of light and B is
the radar waveform bandwidth. The target RCS, σ, is randomly
sampled from a uniform distribution, σ ∼ U [µ− l/2, µ+ l/2].

We conduct a series of N independent experiments, wherein
each experiment involves positioning a point target uniformly
at random by following the above procedure. For every target
placement, we generate K independent random realizations of
the radar return using RFView®. The parameters pertaining to
the radar processing area are listed in Table I.

Fig. 1: The RFView® example scenario map. The blue triangle is the platform
location and the red region is the radar processing area for tatget placement.

III. SIGNAL MODEL

We now consider a radar with an L-element receiver array,
and Λ transmitted pulses. Let Yρ ∈ C(ΛL)×K denote a matrix
comprising K independent realizations of the radar return and
let Zρ ∈ C(ΛL)×K be a matrix consisting of K independently
generated clutter-plus-noise returns, both of which have been
matched filtered to range bin ρ ∈ {P, P + 1, ..., P + κ− 1}.

Subsequently, we consider a deterministic signal, SH
ρ ∈ CK ,

in the presence of clutter, cρ ∈ CΛL, and noise, nρ ∈ CΛL. We
let Cρ, C̄ρ ∈ C(Λ·L)×K denote two unique matrices consisting
of K independent realizations of the clutter return, cρ, where
cρ is dominated by nρ and has covariance matrix, Σc. We let
Nρ, N̄ρ ∈ C(Λ·L)×K denote two unique matrices consisting
of K independent realizations of the noise, where each noise
matrix is randomly sampled from nρ ∼ CN (0,Σn). Finally,

we let aρ(θ, ϕ, v) ∈ C(ΛL) be the space-time steering vector
obtained for coordinates (θ, ϕ, v) in azimuth, elevation, and ve-
locity, with array steering vector, ξρ(θ, ϕ) ∈ CL, and Doppler
steering vector, ψρ(v) ∈ CΛ, where fdop = (2 · v · fc)/c and
k = (2π · fc)/c. The sub-array phase centers are: z ∈ RL×3.

aρ(θ, ϕ, v) = ψρ(v)⊗ ξρ(θ, ϕ) (1)

ξρ(θ, ϕ) = e(i)(k)(z [ cos(ϕ)cos(θ), cos(ϕ)sin(θ), sin(ϕ) ]H) (2)

ψρ(v) =

[
e
−(i)(2π)(

fdop
fPR

)(0)
, . . . , e

−(i)(2π)(
fdop
fPR

)(Λ−1)

]H
(3)

More formally, we have that1:

Zρ = C̄ρ + N̄ρ (4)
Yρ = aρ(θ, ϕ, v)Sρ +Cρ +Nρ (5)

Accordingly, the sample clutter-plus-noise covariance matrix,
Σ̂ρ, is calculable via Eq. (8) — this matrix is used to whiten
both aρ(θ, ϕ, v), and the clutter-plus-noise component of Yρ.

Ỹρ = Σ̂ρ
−1/2Yρ (6)

ãρ(θ, ϕ, v) = Σ̂ρ
−1/2aρ(θ, ϕ, v) (7)

where: Σ̂ρ = (ZρZρ
H)/K (8)

Subsequently, the NAMF test statistic [9], Γρ(θ, ϕ, v) ∈ R+,
for coordinates (θ, ϕ, v) in range bin ρ is given by:

Γρ(θ, ϕ, v) =
∥ãρ(θ, ϕ, v)HỸρ∥22

[ãρ(θ, ϕ, v)H ãρ(θ, ϕ, v)]∥diag(ỸH
ρ Ỹρ)∥2

(9)

By sweeping aρ(θ, ϕ, v) over θ, v at azimuth and velocity step
size, (∆θ,∆v), with ϕ = 0, and then recording Γρ(θ, ϕ, v) at
each attribute step, we generate an azimuth-Doppler heatmap
matrix. Stacking these heatmap matrices over the κ range bins
comprising the radar processing area (indexed by ρ) yields a 3-
dimensional heatmap tensor. Per Section II, the N independent
experiments yield N heatmap tensors in total.

IV. EVALUATIONS AND ERROR METRIC

In this analysis, we consider the scenario outlined in Section
II across two evaluations: [1] over the range of mean output
SCNR, where (SCNROutput)ρ ∈ {−20 dB,−15 dB, ..., 20 dB}
(see [14] for SCNR calculation), and [2] over the number of
radar returns, where K ∈ {75, 100, ..., 300}. We fix the clutter-
to-noise ratio (CNR) to −20 dB (l = 10, suitable σ is chosen),
and we let Λ = 4, L = 16. In [1], we let K = 300, and in [2],
we let (SCNROutput)ρ = 20 dB. Subsequently, we consider the
site and radar parameters provided in Table I, with range bins
of size ∆r = 30 m, and with azimuth and velocity step sizes of
(∆θ,∆v) = (0.4◦, 0.5 m/s), where κ = 5 and each heatmap
tensor is of size 5 × 26 × 21. Finally, for each value of [1]
(SCNROutput)ρ and [2] K, we produce N = 1× 104 heatmap
tensors, which we partition into training (Ntrain = 0.9N ) and
test (Ntest = 0.1N ) datasets. We train our regression CNN on
each training dataset, and evaluate the efficacy of our peak cell
midpoint, gradient descent, and regression CNN methods on
each test dataset. These results are provided in Section VII.

1We note that all relevant data matrices (e.g., Zρ,Yρ) are preliminarily
mean centered (i.e., the mean of each column in Zρ,Yρ is zero).
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Per the signal model outlined in Section III, we now define
the mean squared error (MSE) metric to interpret the parameter
estimation errors of our peak cell midpoint (ErrMP), gradient
descent (ErrGD), and regression CNN (ErrCNN) methods. Let
(θ∗i , v

∗
i ) denote the ground truth target azimuth and velocity

for example i from our test dataset. Furthermore, let (θ̆i, v̆i)
denote the azimuth and velocity values from the midpoint of
the peak tensor cell, let (θ̇i, v̇i) denote the optimal azimuth and
velocity values yielded by the gradient descent algorithm, and
let (θ̃i, ṽi) denote the azimuth and velocity values predicted
by the regression CNN, for example i from our test dataset.
The empirical MSE of the parameter estimates are defined as:

(Err)θ =

Ntest∑
i=1

(θ∗i − θ̂i)
2

Ntest
(Err)v =

Ntest∑
i=1

(v∗i − v̂i)
2

Ntest
(10)

where (θ̂i, v̂i) = (θ̆i, v̆i) for (ErrMP), (θ̂i, v̂i) = (θ̇i, v̇i) for
(ErrGD), and (θ̂i, v̂i) = (θ̃i, ṽi) for (ErrCNN). We compare
these MSE estimates with the theoretical lower bound yielded
by the Cramér Rao Bound calculation in Section VI.

V. GRADIENT DESCENT PARAMETER ESTIMATION

We now outline the gradient descent algorithm that has been
used to obtain the azimuth and velocity parameter estimates.
For the azimuth case, we note that the ground truth range bin,
ρ∗, and velocity, v∗, of each target are known beforehand. For
the velocity case, we note that the ground truth range bin, ρ∗,
and azimuth, θ∗, of each target are known beforehand.

A. Azimuth Estimation

The motivation behind the Gradient Descent Azimuth Esti-
mator algorithm is to determine the optimal azimuth estimate,
θ̇, of a given target using gradient descent. Using the matched
filtered radar array data matrix, Ỹρ∗ , and an initial estimate θ̂,
corresponding to the azimuth of the peak cell midpoint from
the provided heatmap tensor, the algorithm operates iteratively
for a total of T iterations. At each step, we obtain an estimate
for the amplitude and phase of Sρ via least squares. The least
squares solution seeks to minimize the MSE between Ỹρ∗ and
the estimated model, aρ(θ, ϕ, v

∗)ĉ, from which the optimal
array of coefficients, ĉH ∈ CK , is defined as [15]:

ĉ =
ãρ∗(θ, ϕ, v∗)HỸρ∗

ãρ∗(θ, ϕ, v∗)H ãρ∗(θ, ϕ, v∗)
(11)

Subsequently, this least squares solution is used to compute
the mean squared error loss, L(θ), which is defined as:

L(θ) = 1

LK

L∑
i=1

K∑
j=1

[(Ỹρ∗)ij − (ĉ⊗ ãρ∗(θ, ϕ, v∗))ij ]
2 (12)

Using the gradient, ∇θL(θ) and a preset learning rate, α, we
adjust the azimuth estimate to obtain an updated estimate of
θ. This procedure is summarized in Algorithm 1.

B. Velocity Estimation

As in Section V-A, the Gradient Descent Velocity Estimator
algorithm is used to determine the optimal velocity estimate,

Algorithm 1 Gradient Descent Azimuth Estimator (GDθ̂)

1: procedure GDθ̂(Ỹρ∗ , θ̂, ϕ, v∗, α, T )
2: θ ← θ̂, θmin ← 20, θmax ← 30
3: for t = 1 : T do
4: ĉ← ãρ∗ (θ,ϕ,v

∗)HỸρ∗

ãρ∗ (θ,ϕ,v∗)H ãρ∗ (θ,ϕ,v∗)

5: L(θ)← 1
LK

L∑
i=1

K∑
j=1

[(Ỹρ∗)ij − (ĉ⊗ ãρ∗(θ, ϕ, v
∗))ij ]

2

6: θ ← θ − α ·∇θL(θ)
7: θ ← max(min(θ, θmax), θmin)

8: end for
9: return θ̇ ← θ

10: end procedure

v̇, of a given target via gradient descent. Using the matched
filtered radar array data matrix, Ỹρ∗ , and an initial estimate v̂,
corresponding to the velocity of the peak cell midpoint from
the provided heatmap tensor, the algorithm operates iteratively
for a total of T iterations. At each step, we obtain an estimate
for the amplitude and phase of Sρ via least squares. The least
squares solution seeks to minimize the MSE between Ỹρ∗ and
the estimated model, aρ(θ

∗, ϕ, v)d̂, from which the optimal
array of coefficients, d̂H ∈ CK , is defined as [15]:

d̂ =
ãρ∗(θ∗, ϕ, v)HỸρ∗

ãρ∗(θ∗, ϕ, v)H ãρ∗(θ∗, ϕ, v)
(13)

Subsequently, this least squares solution is used to compute
the mean squared error loss, L(v), which is defined as:

L(v) = 1

LK

L∑
i=1

K∑
j=1

[(Ỹρ∗)ij − (d̂⊗ ãρ∗(θ∗, ϕ, v))ij ]
2 (14)

Using the gradient, ∇vL(v) and a preset learning rate, α, we
adjust the azimuth estimate to obtain an updated estimate of
v. This procedure is summarized in Algorithm 2.

Algorithm 2 Gradient Descent Velocity Estimator (GDv̂)

1: procedure GDv̂(Ỹρ∗ , θ∗, ϕ, v̂, α, T )
2: v ← v̂, vmin ← 175, vmax ← 190
3: for t = 1 : T do
4: d̂← ãρ∗ (θ

∗,ϕ,v)HỸρ∗

ãρ∗ (θ∗,ϕ,v)H ãρ∗ (θ∗,ϕ,v)

5: L(v)← 1
LK

L∑
i=1

K∑
j=1

[(Ỹρ∗)ij − (d̂⊗ ãρ∗(θ
∗, ϕ, v))ij ]

2

6: v ← v − α ·∇vL(v)
7: v ← max(min(v, vmax), vmin)

8: end for
9: return v̇ ← v

10: end procedure

VI. CRAMÉR-RAO BOUND

In this section, we derive the Cramér-Rao Bound (CRB) for
the aforementioned azimuth and velocity parameter estimation
errors. We compare each derived CRB with the MSE yielded
by each of the approaches outlined in Section IV.
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(a) Azimuth Estimation Error vs. CRB — (Err)θ vs. CRB(θ) (b) Velocity Estimation Error vs. CRB — (Err)v vs. CRB(v)

Fig. 2: Comparing azimuth and velocity estimation errors of the peak cell midpoint, gradient descent, and regression CNN methods with the CRB.

A. Azimuth Estimation

Deriving from the signal model in Section III, we note that
Yρ consists of K radar return realizations randomly sampled
from yρ ∼ CN (bρ(θ)S̄ρ,R), wherein bρ(θ) = aρ(θ, ϕ, v

∗),
S̄ρ ≈ (

∑K
j=1[Sρ]j)/K, and R ≈ Σc+Σn. Using the Slepian

formula [16], the Fisher Information for θ is defined as:

I(θ) = E

[(
∂

∂θ
ln p(yρ|θ)

)2
]

(15)

= (S̄ρ)
2

(
∂bρ(θ)

∂θ

)H

R−1

(
∂bρ(θ)

∂θ

)
(16)

Wherein (
∂bρ(θ)

∂θ ) = (aρ(v
∗)⊗ [(i)(k)aρ(θ, ϕ)⊙ [zg]]), with

g = [−cos(ϕ)sin(θ), cos(ϕ)cos(θ∗), 0 ]H ∈ R3. Therefore,
the Cramér Rao Bound, which provides a lower bound on the
MSE of any unbiased estimator of θ, is defined as:

E[(θ̂ − θ)2] ≥ I(θ)−1 = CRB(θ) (17)

For both of the evaluations outlined in Section IV, we average
CRB(θ) over the N different point target locations for θ = θ∗.
We compare (ErrMP)θ, (ErrGD)θ, (ErrCNN)θ with CRB(θ).

B. Velocity Estimation

Paralleling the derivation in Section VI-A, we first note that
Yρ consists of K radar return realizations randomly sampled
from yρ ∼ CN (bρ(v)S̄ρ,R), wherein bρ(v) = aρ(θ

∗, ϕ, v),
S̄ρ ≈ (

∑K
j=1[Sρ]j)/K, and R ≈ Σc+Σn. Using the Slepian

formula [16], the Fisher Information for v is defined as:

I(v) = E

[(
∂

∂v
ln p(yρ|v)

)2
]

(18)

= (S̄ρ)
2

(
∂bρ(v)

∂v

)H

R−1

(
∂bρ(v)

∂v

)
(19)

Wherein ∂bρ(v)
∂v = [aρ(v) ⊙ ([2 · fc]/c)h)] ⊗ aρ(θ

∗, ϕ), with
h = [(2π)(0)/fPR, · · · , (2π)(Λ−1)/fPR]

H . Consequently, the
Cramér Rao Bound, which provides a lower bound on the MSE
of any unbiased estimator of v, is defined as:

E[(v̂ − v)2] ≥ I(v)−1 = CRB(v) (20)

For both of the evaluations outlined in Section IV, we average
CRB(v) over the N different point target locations for v = v∗.
We compare (ErrMP)v, (ErrGD)v, (ErrCNN)v with CRB(v).

VII. EMPIRICAL RESULTS

As detailed in Section IV, we compare our peak cell mid-
point, gradient descent, and regression CNN methods versus
the CRB across two evaluations: [1] over the range of mean
output SCNR, and [2], over the number of radar returns, K.
For the gradient descent approach, the azimuth estimates were
compiled using α = 1× 10−5 and T = 100, and the velocity
estimates were compiled using α = 1×10−2 and T = 150. For
the regression CNN case, the azimuth and velocity estimates
were compiled using our Doppler CNN introduced in [8]. The
results of this empirical study are provided in Figure 2.

Per Figure 2, we observe that our regression CNN provides
improved azimuth and velocity parameter estimates, yielding a
test MSE that is below the CRB — this is due to the inherently
biased nature of the regression CNN. More concretely, in each
of our empirical evaluations (for the regression CNN case), we
observe that the bias term comprising the MSE is nonzero and
large, supporting the notion that the regression CNN is a biased
estimator. This evaluation underscores that the enhancements
achieved with the regression CNN are not attainable utilizing
conventional unbiased estimation methods.

VIII. CONCLUSION

In this paper, we first reviewed the performance of gradient
descent algorithms for estimating azimuth and velocity in radar
systems, confirming their efficiency in approaching the Cramér
Rao Bound (CRB). Despite their effectiveness, we highlighted
that our proposed regression CNN architecture can outperform
these classical methods. In particular, our comparative analysis
demonstrated that this regression CNN consistently achieves a
reduced MSE when predicting target azimuth and velocity due
to its biased nature; the CNN is not to be interpreted as outper-
forming the CRB. These findings, validated through RFView®

simulations, demonstrated the feasibility of our neural network
approach in complex radar environments. Future research will
be directed toward uncovering the underlying mechanisms of
this improvement and optimizing neural network architectures
for enhanced radar target parameter estimation.
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