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This study overviews and extends a recently developed stochastic finite-temperature Kohn-Sham
density functional theory to study warm dense matter using Langevin dynamics, specifically under
periodic boundary conditions. The method’s algorithmic complexity exhibits nearly linear scaling
with system size and is inversely proportional to the temperature. Additionally, a novel linear-
scaling stochastic approach is introduced to assess the Kubo-Greenwood conductivity, demonstrating
exceptional stability for DC conductivity. Utilizing the developed tools, we investigate the equation
of state, radial distribution, and electronic conductivity of Hydrogen at a temperature of 30,000K.
As for the radial distribution functions, we reveal a transition of Hydrogen from gas-like to liquid-
like behavior as its density exceeds 4 g/cm³. As for the electronic conductivity as a function of
the density, we identified a remarkable isosbestic point at frequencies around 7eV, which may be an
additional signature of a gas-liquid transition in Hydrogen at 30,000K.

I. INTRODUCTION

Warm dense matter (WDM) exists in the interior of
planets [1–10] and in brown dwarfs [11–15] and white
dwarf stars [16, 17]. In inertial and fusion systems
[18, 19], WDM is generated by subjecting materials to
high-energy lasers [20]. Despite its significance, explor-
ing the diverse forms and compositions of WDM poses
a formidable challenge due to experimental complexities
associated with preparing and sustaining materials under
extreme conditions [5, 21, 22]. Consequently, computa-
tional methods have become indispensable for determin-
ing the equations of state as well as the chemical and
physical properties of different systems.

Among these methods are ab initio molecular dynam-
ics (AIMD) calculations [23–27], which rely on an "adia-
batic" approximation. This approximation assumes that
the quantum mechanical electrons reach thermal equilib-
rium under the applied temperature, electronic chemical
potential, and Coulomb potentials corresponding to the
instantaneous positions of the atomic nuclei. The lat-
ter then undergo classical motion under the conservative
force derived from the electronic free energy, effectively
acting as a potential of mean force (see, e.g., ref. [28]).

The observables can be determined by averaging over a
long adiabatic molecular dynamics (MD) trajectory.

The adiabatic and classical approximations behind
AIMD have their limitations. There is evidence suggest-
ing that a classical approximation may lack sufficient ac-
curacy, particularly for temperatures below 1000K and
under high pressures [29, 30]. Moreover, nonadiabatic ef-
fects, though often disregarded, as done here, have not
been thoroughly explored in the context of AIMD in
WDM. Previous studies of concerning nonadiabatic dy-
namics on metal surfaces introduce two distinct types of
electron-nucleus forces in addition to the adiabatic one
[31–34]. The first type manifests as rapid fluctuations
resembling a stochastic process, while the second type
involves dissipation, simulated as a friction force with a
friction constant determined by the electronic structure.
Since the molecular dynamics treats atomic nuclei as clas-
sical, the Langevin dynamics approach [28, 35] can be
used to handle nonadiabatic effects, utilizing fluctuating-
dissipating forces to impose the electronic temperature
as the average value of the atomic nuclei kinetic energy
in a canonical ensemble.

AIMD simulations for WDM need to consider both
quantum Fermionic degeneracy and strong Coulomb in-
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teractions [36]. The Kohn-Sham density functional the-
ory (KS-DFT), which has proven highly successful as an
ab initio theory for elucidating the structure of molecules
and materials at zero temperature [25, 37–45], fulfills
these requirements and has been extended to finite tem-
peratures and has become a widely employed method for
theoretical studies of WDM [46–51]. However, applying
KS-DFT to WDM challenges calculating and storing an
increasing number of Kohn-Sham eigenstates as the tem-
perature rises. Consequently, for electronic temperatures
exceeding 100, 000K, other approaches, such as the ex-
tended KS method [52, 53] or "orbital-free DFT", which
include finite temperature orbital free functionals [54–59]
and method development [60–66] are preferred. Another
emerging approach involves utilizing machine learning to
generate potential-energy surfaces and interatomic forces
based on KS-DFT and variational quantum Monte Carlo
datasets. These learned models can then be employed
in molecular dynamics calculations to predict material
properties with reduced computational costs [67–71].

A linear scaling DFT procedure holds significant
promise for investigating WDM, whether applied directly
in AIMD or for generating training data sets for machine
learning. This can be realized through stochastic DFT, as
demonstrated by various authors in recent works [72–78].
In this paper, we elaborate on additional advancements
in stochastic plane-waves Kohn-Sham density functional
theory, integrating it with Langevin dynamics and intro-
ducing a novel approach for computing electronic conduc-
tivity. We thoroughly assess and benchmark the method,
showcasing its practical application by conducting a de-
tailed study of Hydrogen at 30,000K.

II. STOCHASTIC FINITE TEMPERATURE

KOHN-SHAM DFT

A. Finite-temperature Kohn-Sham scheme

The combination of finite-temperature density func-
tional theory [46, 79] and the Kohn-Sham procedure (FT-
KS-DFT) [80] greatly simplifies the formidable problem
of treating interacting electrons under the influence of a
heat and electron bath. Under the FT-KS-DFT formal-
ism, we need only study a system of non-interacting elec-
trons in a one-body potential, which includes exchange-
correlation contributions. As a result of the exchange-
correlation potential, the non-interacting electron den-
sity is identical to that of the interacting system, and the
grand potential of the interacting electron system can be
expressed using the non-interacting grand potential to-
gether with exchange-correlation free-energy corrections.
As the finite temperature diminishes towards zero, the
FT-KS-DFT converges into the zero-temperature KS-
DFT, with corresponding exchange-correlation contribu-
tions, and the free energy converges to zero-temperature
ground-state energy [81].

To study infinite systems, it is beneficial to impose

periodic boundary conditions within the simulation cell.
The single electron wave functions of the non-interacting
system are expressed as a linear combination of the plane
wave basis eiG·r:

ψ (r) =
∑

G

c̃G
eiG·r

√
Ω
, (1)

where G = 2π
L (mx,my,mz) is the simulation cell-

commensurate wave vector and mi integers. The wave
vector parameter Gcut determines the size of the plane
wave basis by requiring that ‖G‖2 ≤ Gcut. This cutoff

identifies a subspace of dimension D =
[

3π
4

(

L
2πGcut

)3
]

of

the simulation cell’s periodic functions, which is mapped
by Eq. (1) onto the complex vector space of D-tuples
CD = {c̃G}‖G‖2≤Gcut

. The basis truncation error can be

systematically mitigated by increasing Gcut, or, equiv-

alently the cutoff energy Ecut =
~
2G2

cut

2me
. Variational

treatment of the finite-temperature Kohn-Sham equa-
tions within the subspace leads to a set of algebraic eigen-
value equations

Hc̃(j) = εj c̃
(j), j = 1, 2, . . . , D (2)

whereH is the Kohn-Sham Hamiltonian (for more details
on the representation, and the operators see, for example,
ref. [38]) and εj and c̃(j) are its (real) eigenvalues and
(complex) eigenvectors.

The electrons are in a grand canonical mixed state with
temperature parameter β = (kBT )

−1
, where kB is Boltz-

mann’s constant, and chemical potential µ. The occupa-
tion of each single particle energy level ε is given by the

Fermi-Dirac function pβµ (ε) ≡
(

1 + eβ(ε−µ)
)−1

. Corre-
spondingly, the electron density can be expressed as a
sum of level densities,

n (r) = 2×
∑

j

pβµ (εj) |ϕj (r)|2 , (3)

where

ϕj (r) =
∑

G

c̃
(j)
G

eiG·r

√
Ω

(4)

are the (normalized, so that
∫

Ω
|ϕj (r)|2 dr = 1) Kohn-

Sham eigenstates in real-space. The grand potential of
the electrons is then given by [82]

Φβµ [n] ≡ U [n]− β−1Ss [n]− µ
∫

n (r) dr, (5)

where

U [n] ≡ Eorb − EH [n] + Φβµ,xc [n]−
∫

vβµ,xc (r)n (r) dr

(6)

is the Kohn-Sham energy. In Eq. (6),

Eorb ≡ 2×
∑

j

pjβµεj (7)
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is the orbital energy, pjβµ = pβµ (εj), EH [n] is the Hartree

energy, and Φβµ,xc [n] is the βµ-dependent approximate
exchange-correlation free energy functional of the density

and vβµ,xc (r) =
δΦβµ,xc

δn(r) . While temperature-dependent

exchange-correlation density functionals have been de-
veloped recently [83–88], in this paper we approximate
Φβµ,xc [n] by the zero temperature local density approx-
imation (LDA, [80]) for the exchange correlation energy
ELDA

xc [n] and correspondingly vβµxc (r) is approximated
as the zero temperature LDA exchange-correlation po-

tential vLDA
xc (r) =

δELDA
xc

δn(r) . Finally, Ss in Eq. (5) is the

entropy of non-interacting electrons at density n (r) ex-
pressed as

Ss = −2× kB
∑

j

[

pjβµ log p
j
βµ + p̄jβµ log p̄

j
βµ

]

, (8)

where, in brevity, p̄jβµ ≡ 1 − pjβµ. In this Kohn-Sham

procedure we find the density n (r) that minimizes the

grand potential Φβµ. The number of electrons is Ñe (µ) =
(

∂Φβµ

∂µ

)

β
= 2×∑j p

j
βµ.

The ξ-component (ξ = 0, 1, 2 indicates respectively
x, y, z) of the force on an atomic nucleus A ( A =
0, . . . , Nn−1, where Nn is the number of atomic nuclei in
the simulation cell) is equal to the corresponding deriva-

tive of the grand potential, F i = −∂Φβµ

∂Ri
+ FNN

i , where

i ≡ (3A+ ξ) is the force index, and FNN
i is the sum of

forces exerted by all other atomic nuclei. This force is
an average force over all ground and excited electronic
states of all possible charge states of the system.

An alternative to working in the grand canonical en-
semble, where µ is given, is to impose a fixed average
number of electrons Ne and then tune µ accordingly.
Such an ensemble is more natural for small, finite simu-
lation cells. In this ensemble the chemical potential be-
comes a function of the imposed value of Ne, denoted
µ̃ (Ne), defined implicitly by solving the equation

Ne = 2×
∑

j

pjβµ̃(Ne)
. (9)

In this ensemble we find the density n (r) that minimizes
the Helmholtz free energy FβNe

= U − β−1Ss and the

force is its derivative, Fi = −∂FβNe

∂Ri
+FNN

i . Once again,
this force is an average over all ground and excited elec-
tronic states of all possible charge states of the system.

Regardless of the ensemble used, the electronic force
component i is obtained from the electron density and
the corresponding derivative of the electron-nucleus force
potential:

Fi = −
∫

n (r)
∂

∂Ri
veN (r) dr + FNN

i ,

and when non-local pseudopotentials are employed, i.e.,
v̂eN = vloc (r) + v̂nl the following generalization needs be

used (now in vector notation):

F = −2×
∑

j

pjβµ 〈ϕj |∇v̂eN|ϕj〉+ FNN . (10)

B. The stochastic density functional approach

Stochastic density functional theory [72] is based on
the concept of random wave functions

η (r) ≡
∑

G

η̃G
eiG·r

√
Ω

(11)

in which the random coefficients η̃G are given, in vector
notation, by operating with the square-root Fermi-Dirac
operator

√

pβµ (H) on a random vector:

η̃ ≡
√

pβµ (H)χ̃ (12)

where χ̃ is a random vector with components χ̃G ≡ eiθG ,
where θG are independent random phases (between 0 and
2π). It is straightforward to check that

E
[

χ̃G′

χ̃G∗
]

= δG′G. (13)

Here, the symbol E [r] is the expected value of a random

variable r. The random variable η̃G
′

η̃G∗ is an unbiased
estimator of the KS density matrix in G-space, relying on

the following exact identity [pβµ (H)]G′G
= E

[

η̃G
′

η̃G∗
]

.

This relation is proved by plugging Eq. (12) on the
right hand side and using Eq. (13). Similarly, sam-
pling η (r) η (r′)∗, where η (r) is defined in Eq. (11), pro-
vides an estimate for the KS density matrix ρ (r, r′) =

2 ×∑j pβµ (εj)ϕj (r)ϕj (r
′)
∗
. From this, |η (r)|2 is an

unbiased estimator for the electron density n (r), relying
on the exact identity:

n (r) = 2× E
[

|η (r)|2
]

. (14)

This expression is the essence of stochastic KS-DFT:
it replaces the calculation of the electron density n (r)
(Eq. (3)), which requires the KS-DFT eigenstates and
eigenvalues (Eq. (2)) by a statistical sampling of the ran-

dom variable |η (r)|2.
The fact that the expected value of the absolute square

of the random variable η (r) gives the density, means that
we can now use sampling methods to obtain actual es-
timates of the density. If we produce a sample of I in-
dependent random vectors χ̃i (i = 1, . . . , I) and from
them, using Eqs. (11)-(12) obtain samples of ηi (r) then
the density can be estimated as an average

n (r) = 2× 1

I

I
∑

i=1

[

|ηi (r)|2
]

.
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This sampling procedure is straightforward to paral-
lelize using distributed memory model, for example, the
message-passing-interface library. Observables, such as
the forces on atomic nuclei, can be expressed as stochas-
tic traces as well (see subsection III). From statistics,
the fluctuations in the density or forces are proportional
to the inverse square root of the sample size. For the
calculations shown below we used a sample of I = 40
stochastic orbitals (irrespective of the system size).

C. Chebyshev expansion methods

1. The essential Chebyshev expansion

We now describe a recipe for performing calculations
of the type shown in Eq. (12), i.e. operating with a func-
tion of the Hamiltonian, namely z (H) on some given a
vector χ: |ζ〉 = z (H) |χ〉. For this, we use the Cheby-

shev expansion [89] of length NC , ζG =
∑NC−1

n=0 Z(n)χG
n ,

which we write in ket-form as:

|ζ〉 =
NC−1
∑

n=0

Z(n) |χn〉 . (15)

The Chebyshev coefficients are defined by

Z(n) =
2

NC
e
i π
NC

n
z̃(n)

where the series
{

z̃(n)
}NC−1

n=0
is the discrete Fourier

transform of
{

z
(

Ē +∆E × cos
(

l+ 1
2

NC
π
))}NC−1

l=0
. In

the last expression, Ē = (Emax + Emin) /2, ∆E =
(Emax − Emin) /2 and Emin (Emax) is a lower (upper)
bound estimate to the smallest (largest) eigenvalue of H.

The expansion length NC is chosen to be sufficiently
large so that the

∣

∣Z(n)
∣

∣ are all smaller than a thresh-

old value 10−d, (typically d = 7 or 8) for n > NC . An
estimate for the Chebyshev length is the following ex-
pression:

NC ≈
3d

4
× β ×∆E. (16)

The Chebyshev vectors |χn〉 in Eq. (15) are defined
as |χn〉 ≡ Tn (Hs) |χ〉, where Tn (x) is the nth Cheby-

shev polynomial [90] and Hs ≡ H−Ē
∆E is the shifted-

scaled Hamiltonian, having all eigenvalues in the interval
[−1, 1]. Based on a recurrence formula between any three
consecutive Chebyshev polynomials [90], the Chebyshev
vectors χn can be computed iteratively (hence only three
of them are needed at a given time):

|χn〉 = 2Hs |χn−1〉 − |χn−2〉 , n ≥ 2,

The first two vectors are given by:

|χ0〉 = |χ〉 , |χ1〉 = Hs |χ0〉 ,

2. Operating with several functions of H on a given state

|χ〉

Each term in the Chebyshev expansion of Eq. (15) is a
product of a Chebyshev coefficient Zn and a Chebyshev
vector |χn〉. The former depends on the function z (H),
while the latter does not. Suppose we want to operate
with several different functions zm (H) (m = 1, 2, . . . ,M)
on the same vector χ:

|ζm〉 = zm (H) |χ〉 .

Chebyshev expansions can calculate these vectors

|ζm〉 =
NC−1
∑

n=0

Z(n)
m |χn〉 , (17)

where Z
(1)
m , Z

(2)
m , . . . are the coefficients corresponding

to the function zm (ε). Most of the numerical effort goes
into computing the vectors |χn〉 and these are shared by
all the different evaluations in Eq. (17). Therefore, there
is but a minute overhead in the effort to calculate M
|ζm〉s relative to just one |ζ〉.

3. Energy windows

An example of using this approach is the Energy Win-

dows method [91]. Here, we define Nw chemical poten-
tials

µNw
≡ µ ≥ µNw−1 ≥ · · · ≥ µ1

and corresponding energy window projections

zm (H) =
√

pβµm
− pβµm−1 , m = 2, . . . , Nw

z1 (H) =
√
pβµ1 .

Each of these functions projects a different energy range
between the chemical potentials. The sum of the square
of these functions yields the Fermi-Dirac projector

pβµ (H) = zNw
(H)2 + zNw−1 (H)2 + · · ·+ z1 (H)2 .

Therefore, for any one-body operator A, the KS expecta-
tion value 〈A〉 ≡ Tr [pβµ (H)A] can be written as a sum
of contributions from differing energy windows:

〈A〉 =
Nw
∑

m=1

Tr [zm (H)Azm (H)] .

The equivalent stochastic expression is

〈A〉 =
Nw
∑

m=1

E [〈ζm |A| ζm〉] .

Depending on the observable A, this procedure helps re-
duce the fluctuations in estimating 〈A〉 since ζm and ζm′

span largely non-overlapping energy windows.
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Figure 1. Left panel: The sDFT force standard deviation σf ≡
√

1
3NH

TrΣ2
φ (per degree of freedom) for selected electronic

temperatures as a function of the number of windows Nw in H128 at ρ = 1 g/cm3. Right panel: The instantaneous position
autocorrelation CR (ℓ) (see Eq. (25), averaged over all atoms) during a T = 30, 000K Langevin trajectory of H256 in two
densities with additional white noise force (given in terms of κ, see Eq. (23)) and a time step of ∆t = 5 ~E−1

h for ρ = 16 g/cm3

and ∆t = 10 ~E−1
h for ρ = 1 g/cm3.

In the left panel of Fig. 1, we show the standard de-
viation of the electronic force on the atomic nuclei (per
degree of freedom) as a function of the number of win-
dows for selected temperatures. It is seen that for low
temperatures this standard deviation is reduced by as
much as a factor of 2 as NW reaches 16 or 32. However,
for the high temperature considered, the windows are less
efficient, reducing the standard deviation by, at most, a
factor of 1.4.

4. Chebyshev moments

A Chebyshev moment Mn is the trace of a Chebyshev
polynomial Tn (Hs). The overlap 〈χ |χn 〉 is an unbiased
estimator of Mn, based on the identity Tr [Tn (Hs)] =
E [〈χ |Tn (Hs)|χ〉], or:

Mn = E [〈χ |χn 〉] .

Knowledge of the moments allows us to compute the
trace of any function z (H) of the KS Hamiltonian H
through the formula:

Tr [z (H)] =
NC−1
∑

n=0

Z(n)Mn,

where Z(n) are the coefficients for the Chebyshev expan-
sion of the function z (ε).

Examples where moments are useful:

1. When working in the canonical ensemble mentioned
above, with a fixed number of electrons Ne, the
chemical potential µ is a function of Ne defined im-
plicitly by Eq. (9), depending on the KS eigenvalues
εj. However, in sDFT, we do not have access to εj.

Hence, we use the Chebyshev Moments to develop
an alternative implicit equation for µ:

Ne = 2×
NC−1
∑

n=0

P
(n)
βµ(Ne)

Mn, (18)

where the P
(n)
βµ s are the Chebyshev coefficients cor-

responding to pβµ (ε). The actual determination of
µ uses a numerical root-searching algorithm (e.g.,
the bisection method) applied to Eq. (18). The
search for µ is a speedy step since the Chebyshev
moments are independent of µ, so they are calcu-
lated only once and then stored while calculating
the Chebyshev coefficients Pβµ any value of µ only
involves a single fast Fourier transform.

2. The non-interacting electron entropy of Eq. (8) is
estimated as

Ss = 2×
NC−1
∑

n=0

S
(n)
βµMn, (19)

where S
(n)
βµ are the Chebyshev coefficients

corresponding to the function sβµ (ε) =
− (pβµ (ε) log pβµ (ε) + p̄βµ (ε) log p̄βµ (ε)).

3. The orbital energy Eorb of Eq. (7) is estimated as

Eorb = 2×
NC−1
∑

n=0

E
(n)
βµMn,

where the E
(n)
βµ are the Chebyshev coefficients cor-

responding to eβµ (ε) = pβµ (ε) ε.
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Figure 2. The self-consistent-field (SCF) wall times as a func-
tion of the number of electrons Ne for Hydrogen at the speci-
fied densities and temperatures. Top panel: a single SCF it-
eration; Bottom panel: the entire SCF calculation (stopped
when the changes in energy per electron are below 10−5Eh).
The calculations used the cutoff energy of Ecut = 9Eh, 40
stochastic orbitals and a single core per stochastic orbital on
our Core-i7 cluster.

D. Performance of the sDFT calculation

Fig. 2 shows the wall time self-consistent calculations
(averaged over many sDFT Langevin dynamics steps) as
a function of the number of electrons Ne in the simula-
tion cell for Hydrogen at specified densities and tempera-
tures. The computation time of a single cycle of an SCF
calculation scales linearly in x = Ne logNe. Since the
number of SCF cycles required to converge to a given cri-
terion grows mildly with system size, the overall scaling
is x1.3. Calculations with higher temperatures and the
same number of electrons Ne are faster since the Cheby-
shev expansions shorten in inverse proportion to temper-
ature (see Eq. (16)). Higher density calculations with the
same number of atoms Ne also require less computation
time because of the smaller simulation cell sizes.

Let us discuss the wall times and their dependence on
scale the cutoff energy Ecut. The plane wave basis size is
determined by the volume in G-space of the highest mo-

mentum vectorGmax =
√

2me

~2 Ecut (whereme is the elec-

tron mass and ~ is Planck’s constant) and therefore pro-

portional to E
3/2
cut . In addition, the length of the Cheby-

shev expansion is proportional to Ecut (see Eq. (16)).

Hence, overall, the wall time scales steeply as E
5/2
cut , i.e.,

wall time increases by a factor 32 every time the cutoff
energy increases by a factor 4.

We have not yet developed a capability to expedite
the calculation speed for each stochastic orbital. We can
achieve high factors if we use a GPU on each node for
this purpose.

III. STOCHASTIC FORCES AND LANGEVIN

DYNAMICS

In the previous section, we discussed the WDM’s elec-
tronic structure at inverse temperature β. In this section
we concentrate more on the behavior of the atomic nuclei
in WDM. At thermal equilibrium their state is canoni-
cally distributed with a temperature identical to that of
the electrons. Here we discuss how we use the method
of Langevin dynamics to estimate the expected value of
various observables concerning atomic nuclei within the
canonical ensemble.

A. Regularization of the stochastic forces

In sDFT, the force on each atomic nucleus is a vector
of a random variable components [72]:

f = −2× 〈η |∇v̂eN| η〉+ FNN (20)

where η (r) is defined in Eq. (11) and FNN is the force
due to the other bare atomic nuclei. Using the stochastic
trace formula, the force F of Eq. (10) is the expected
value of the random force:

F = E [f ] .

The 3Nn × 3Nn symmetric positive-definite force co-

variance matrix is
(

Σ2
f

)

ii′
= E [fifi′ ]− FiFi′ , or, in ma-

trix notation

Σ2
f ≡ E

[

ffT
]

− FF T . (21)

To ease the handling of stochastic forces, we add inde-
pendent white noise ζ (E [ζ] = 0):

ϕ = f + ζ. (22)

The covariance matrix E
[

ζζT
]

of this additional white

noise is specially constructed to allow the covariance Σ2
ϕ

of the total force to be uniform, i.e. a multiple of the unit

matrix :

Σ2
ϕ ≡ E

[

ϕϕT
]

− FF T = σ2I = κ2σ2
f I, (23)

where σ2 is larger (κ ≥ 1) than the largest eigenvalue σ2
f

of Σ2
f . The white noise force ζ is thus sampled, using

the Metropolis-Hastings algorithm, to have a Gaussian
distribution with the positive-definite covariance matrix
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Σ2
ζ ≡ σ2I − Σ2

f . The procedure obviously requires an

estimate of the sDFT force covariance Σ2
f and we use a

sample of Ns force vectors to estimate it (with Ns = 50,
seemingly quite sufficient). The covariance estimate is
done once every Nj MD steps (we took Nj = 150). A
force having such a uniform covariance matrix enables
using the same friction coefficient for all degrees of free-
dom, and therefore simplifies the temperature control in
the Langevin dynamics calculation.

B. The stochastic Langevin equations of motion

The stochastic force ϕ (R) for a given atomic nuclei
configuration is now used to perform Langevin molecular
dynamics from which we obtain configuration and mo-
mentum samples that are canonically distributed. From
these samples we can compute the thermodynamic prop-
erties of the system. The dynamics involves solving the
Langevin equation of motion

Ṗ (t) = ϕ (R (t))− γP (t) ,

Ṙ (t) =M−1P (t) ,

where M−1 is a diagonal matrix of the inverse nuclei
mass, and γ is the diagonal matrix of friction coeffi-
cients. We use a time-discretized solver [92] for the
stochastic differential equation, from which we obtain
a discretized trajectory of NT atomic configurations

R(n) = R (n∆τ) (n = 1, . . . , NT ) and their momenta

P (n) = P
((

n− 1
2

)

∆τ
)

, where ∆τ is the time step. The
phase-space trajectory is built from the following evolu-
tion steps

P (n+1) = e−γ∆τP (n) +

(

1− e−γ∆τ

γ

)

ϕ
(

R(n)
)

,

R(n+1) = R(n) +M−1P (n+1)∆τ,

and in the limit ∆τ → 0 a Langevin trajectory is ob-
tained. Here, the (diagonal) friction matrix γ is deter-
mined from the fluctuation-dissipation relation, which is
given by

σ2 =
γ∆τ/2

tanh (γ∆τ/2)
× 2γM

β
. (24)

C. Statistical sampling

For sufficiently small ∆τ each of the trajectory

configurations R(n) is equivalent to a sample taken
from the Boltzmann distribution pBβ (R) ∝ e−βVBO(R)

where VBO ≡ Φβµ + ENN (VBO = FβNe
+ ENN ) is

the electronic grand-canonical (canonical) potential (see

Eq. (5)). The momentum P (n) is equivalent to a sam-
ple from the Maxwell-Boltzmann probability distribution

function pMB
Rβ (P ) ∝ e−β

∑NN
i=1

P
2
i

2Mi .

The estimate for the thermal average 〈O〉β ≡
∫∫

O (R,P ) pBβ (R) dRpMB
β (P ) dP of a given observable

O (R,P ) is simply the sample mean Ō ≡ 1
NT

∑NT

n=1O
(n)

over the sequence O(n) ≡ O
(

R(n),P (n)
)

. The sam-

ple variance ∆O2 = 1
NT

∑NT

n=1 ∆O
(n), where ∆O(n) =

O(n)− Ō, allows us to determine a confidence interval for
the thermal average. For example, the 70% confidence in-

terval is
[

Ō − δO, Ō + δO
]

where δO ≡
√

1
Nind

∆O2and

Nind is the number of statistically independent samples
in the sequence O(n). If the values O(1), O(2), . . . were
uncorrelated then Nind would be just the sample size

NT . However, because the configurations R(n) are part
of a molecular dynamics trajectory, O(n+1) is correlated

with O(n), and O(n+2) is correlated with O(n+1), etc.
and therefore Nind < NT . It is common to quantify
the strength of this correlation using the auto-correlation

function for O, defined by CO (ℓ∆τ) ≡ 〈∆O(n)∆O(n+ℓ)〉
〈∆O(n)2〉

(the expression on the right-hand side is independent of
n). In a given sample trajectory, the auto-correlation
function is estimated by

CO (ℓ∆τ) ≈
∑

n ∆O
(n)∆O(n+ℓ)

∑

n ∆O
(n)2

. (25)

It starts with the value CO (0) = 1 (full correlation)
and then decays steadily as step separation ℓ grows until
hitting a regime of small random fluctuations. The de-
cay is characterized by a correlation time τO, for which
CO (τO) = e−1. We also define the correlation length

ℓO = τO
∆τ . We view ℓO consecutive samples as “corre-

lated” while later samples are considered uncorrelated.
The number of effectively independent samples is thus
estimated as: Nind ≈ NT /ℓO. In the right panel of
Fig. 1 we show the Langevin dynamics position autocor-
relation function CR (ℓ∆τ) of hydrogen at T = 30, 000K,
for two densities ρ and two white noise parameters κ2

(see Eq. (23)). The correlation times τR are weakly de-
pendent on the density but grow significantly with κ.
Hence, we strive for small values of κ2 > 1.

D. Computational demonstration of µV T - NeV T
ensemble equivalence

Fig. 3 displays time-dependent values of selected ob-
servables in two Langevin dynamics trajectories of hy-
drogen at mass density ρ = 1 g× cm−3 at T = 30, 000K.
The two trajectories are calculated in different electronic
ensembles: the left panel of the plot shows the results
of an NeV T -like ensemble, where we impose a constant
electron number Ne = 128 at each time step by tun-

ing the electronic chemical potential µ̃
(

Ne;R
(n)
)

in the

Fermi-Dirac function at each time step (see Eq. (9)).
This chemical potential fluctuates in time, as do the po-
sitions and momenta of the atomic nuclei. The right
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panel shows the results of an µV T ensemble, where the
electronic chemical potential is set to a constant value
of µ = 9.56 eV . Now the number of electrons fluctuate
but on average it is 128. The observables are the ki-
netic energy per atomic degree of freedom T (n) (divided
by kB and given in kilo-Kelvin), the pressure P (n), the

chemical potential µ̃(n), the Helmholtz energy F̃ (n)
βNe

, in

the left panel, the electron number Ñ
(n)
e and the Grand

potential Φ̃
(n)
βµ in the right panel. Upon studying the nu-

merical results in Fig. 3, it is obvious that the average
over the fluctuating chemical potential on the left panel

〈µ̃〉NeV T = 1
NT

∑NT

n=1 µ̃
(

Ne;R
(n)
)

is very similar to the

constant chemical potential µ imposed in the µV T en-
semble on the right panel. Similarly, the average over
the fluctuating number of electrons on the right panel
〈

Ñe

〉

µV T
= 1

NT

∑NT

n=1 Ñe

(

µ;R(n)
)

is very close to the

imposed number of electrons Ne used in the NeV T en-
semble on the left panel. These results can be summa-
rized in the following relation:

µ = 〈µ̃〉NeV T ⇔ Ne =
〈

Ñe

〉

µV T
,

showing that in our finite-sized system, the two ensem-
bles µV T and NeV T are already equivalent, which is
characteristic of the thermodynamic limit. All calcula-
tions shown in the next section were performed in the
NeV T ensemble.

IV. KUBO-GREENWOOD CONDUCTIVITY

In this section, we consider the stochastic calculation
of the Kubo-Greenwood conductivity [93, 94]. In the
context of WDM, these calculations were addressed in
refs. [95, 96] but they become demanding as the system
size and temperature increase. Hence, a stochastic cal-
culation may be preferable for such systems as discussed
in Ref. [74]. Here, we provide an improved approach
including the DC conductivity with considerably lower
statistical errors. We also provide a detailed description
of the theory, the derivation, and how the calculations
were made.

Kubo’s analysis [93] starts with expressing the complex
conductivity

σξξ′ (ω) =

∫ ∞

0

φξξ′ (t) e
−iωtdt, (26)

as the Fourier transform of the dipole-current-density re-
sponse function:

φξξ′ (t) =
1

i~
tr

(

ρ

[

∑

n

eRnξ,
∑

n′

eVn′ξ′ (t)

Ω

])

,

where e is the electron charge, tr is a many-body trace,
ρ is the equilibrium (many-body) density matrix, Rnξ is
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Figure 3. The instantaneous values (brown) and running av-
erages (blue) of observables in two Langevin molecular dy-
namics trajectories of H128 (at mass density of ρ = 1g× cm−3

and target temperature of 30, 000K): on the left panel, the
NVT-like trajectory, where the number of electrons is fixed
(Ne = 128) by tuning the chemical potential µ̃(n) at each time
step (see Eq. (9)). On the right panel, the µV T trajectory,
where the chemical potential is fixed (µ = 9.56 eV) while the
number of electrons N

(n)
e fluctuates. Details of the Langevin

dynamics: the white noise fluctuation is σ = 4σf , i.e. κ = 4
(see Eq. (23)), the time step is ∆τ = 10 atu, and the sDFT
force covariance (see Eq. (21)) is calculated using 50 indepen-
dent samples once every 150 dynamical time steps.

the position in Cartesian direction ξ (ξ = x, y, z) of elec-

tron n, and Vnξ ≡ ~

me

(

1
i

∂
∂Rnξ

− kξ
)

is the corresponding

velocity (where kξ =
π

2Lξ
is the Baldereschi k-point). For

non-interacting electrons, the response function reduces
to a single electron expression (see Appendix (A)):

φξξ′ (t) =
4e2

~Ω
ℑTr (pµβ (H)RξVξ′ (t)) , (27)

where Tr is a single particle operator trace, Rξ and Vξ′
are single electron position and velocity operators respec-
tively, pµβ (H) is the Fermi-Dirac distribution, and H
is the single particle Hamiltonian (at the Baldereschi k-
point), which we take from KS-DFT. We have also in-
cluded a factor 2 due to spin-degeneracy. The use of
such a static KS Hamiltonian, as opposed to the TDDFT
description, is the central approximation of the Kubo-
Greenwood theory.

For ω 6= 0, we multiply and divide by −iω the integral
of Eq. (26), use the identity −iωe−iωt = d

dte
−iωt and then
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Figure 4. Pressure and conductivity averaged over a Langevin trajectory. Left panel: Size-dependence of pressure at density
1 g/cm3. Each point on the graph is an average over the pressure estimates along the xDFT (x=”s” or “d”) trajectory, performed
using 9 or 25Eh cutoff energy at the Γ or B (Baldereschi) k-point, as indicated in the legend. The sDFT calculations for
each point on the Langevin trajectory used 40 stochastic orbitals at the LDA/NCPPs level. The dDFT calculations were
performed by the VASP program [97–101], at the LDA/PAW level. The trajectory time-step was ∆τ = 5atu, and white
noise parameter κ2 = 2. Right panels: Size-dependence of the conductivity where the top (bottom) panel shows results for
ρ = 1 (16) g/cm3. Each conductivity curve is an average over the conductivity curves calculated for Ns = 20 configurations of
the atomic nuclei (snapshots) taken every 1000 atu along the sDFT/Langevin trajectory. The error bars are ±s/

√
Ns, where s

is the standard deviation. One conductivity calculation produces an entire conductivity curve (σ (ω)) based on 120 stochastic
orbitals, performed at the Baldereschi k-point, with a 15Eh cutoff energy. Dark empty circles appearing in the top-right panel
are conductivity calculations for H128 on the identical configurations using the deterministic conductivity method of Ref. [95]
using VASP.

integrate by parts, obtaining

σξξ′ (ω) =
1

iω

(

−φξξ′ (0) +
∫ ∞

0

φ̇ξξ′ (t) e
−iωtdt

)

, (28)

which involves the velocity-velocity response function:

φ̇ξξ′ (t) = −
4e2

~Ω
ℑTr (pµβ (H)VξVξ′ (t)) .

For evaluating the trace, we use the stochastic trace for-
mula:

Tr (pVξVξ′ (t)) = E [〈ζξt |Vξ′ | ηt〉] , (29)

where, for brevity, p = pβµ (H) and

|ηt〉 ≡ e−iHt/~√p |χ〉 , |ζξt〉 ≡ e−iHt/~Vξ |η〉 ,

and |χ〉 is a stochastic state. To use Eq. (29) we gen-
erate a sample of Ns stochastic vectors χ, and for each,
we obtain a specific value of 〈ζξt |Vξ′ | ηt〉. Averaging these
values gives an estimate of the trace in the response func-
tion with a statistical error proportional to 1/

√
Ns.

The trace operations provide correlation functions,
which we denote φ̇ (t), (whether φ̇ξξ′ (t) described above

or ψ̇ξξ′ (t) described below). To use it for obtaining the
conductivity as a function of ω, we first select a desired

spectral energy resolution ~ν, which defines a frequency
grid ωg = g × ν, where g = 0, 1, . . . , Nω, and then per-
form the Fourier integral of Eq. (28) for these frequen-
cies. Given the resolution, the integral of the correlation
function φ̇ (t) is augmented by a Gaussian window, dis-
cretized, and summed utilizing the fast-Fourier algorithm
∫ ∞

0

φ̇ (t) e−iωgtdt→
∫ ∞

0

e−
ν2t2

2 φ̇ (t) e−iωgtdt (30)

→ τf
Nω

Nω
∑

g′=0

wg′e−
ν2τ2

g′

2 φ̇ (τg′) e−iωgτg′

on an equally spaced time-grid τg = g × τf
Nω

, extend-

ing from zero to τf = 7/ν. The number of time and

frequency grid points is taken as Nω = qfac × Ecut

~ν ,
where the quality factor qfac > 1 determines the preci-
sion of the time integration. We also inserted integra-
tion weights, the simplest of which is the trapeze rule:
wk = (1− δk0/2). These weights are essential as the in-
tegral is a half-Fourier transform, which means that the
integrand does not decay smoothly to zero at the time-
grid boundaries. We experimented with various choices
of ν and qfac, finding that a resolution of ~ν = 0.025Eh

and a quality factor in the range of 3 to 5 yield mean-
ingful and stable results. Dividing these values by iωg

(g > 0), we obtain the AC conductivity σξξ′ (ωg).
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Since evaluating the conductivity in Eq. (28) requires
division of the Fourier integral by ω, the statistical fluc-
tuations are amplified as ω → 0. The procedure is unde-
fined for ω = 0, the DC limit. In this case, we could use
the analytical limit of Eq. (28),

ℜσξξ′ (0) =
∫ ∞

0

φ̇ξξ′ (t) tdt, (31)

which does not divide by zero. We can use the same in-
tegration procedure outlined above for the integral. But
experience shows that the stochastic error in Eq. (31), al-
though finite, it is not small and requires extensive sam-
pling. For the important case of ξ = ξ′ it is possible to
show (see Appendix (B)) that

ℜσξξ (0) =
∫ ∞

0

ψ̇ξξ (t) dt, (32)

where (see Eq. (B4)):

ψ̇ξξ (t) = −
2e2

Ω
ℜTr

(

p′µβ (H)VξVξ (t)
)

,

and p′µβ (ε) = −βpµβ (ε) (1− pµβ (ε)) is the derivative
of the Fermi-Dirac function. The stochastic evaluation
of the correlation function Tr

(

p′µβ (H)VξVξ (t)
)

follows

the same procedure as Tr (pµβ (H)VξVξ (t)) except that
this time we take p = p′βµ (H). Then, the same time-
integration scheme outlined above for the Fourier integral
of φ̇ξξ can be used to evaluate the integral of Eq. (32).

The problem of high fluctuations in the low-frequency
part of the AC conductivity is exacerbated due to the
need to take smaller ν for converging the AC results
to the DC limit: the smaller ν, the larger the fluctu-
ations. Thus, we developed an interpolation procedure
for the low-frequency spectrum relying on the steadiness
of the DC conductivity. This procedure is described in
Appendix C.

For calculating the direction-averaged conductivity,
σ̄ = 1

3 (σxx + σyy + σzz), we replace the ξ component
of the velocity (Vξ) in the above equations by a random-
direction component Vd = ηTV , where η = (ηx, ηy, ηz),
taken as a random point on the 3D unit sphere. Since
E
[

ηηT
]

= 1
3I, where I is the 3× 3 unit matrix. Averag-

ing over Vd automatically computes σ̄.

V. TEST CASE: HYDROGEN AT 30,000K

In this section, we use as a test case Hydrogen at
30,000K. We first consider system-size effects on the es-
timation of pressure and conductivity. Then, we give its
equation of state, electric conductivity, and radial distri-
butions, comparing, where possible, with VASP [97–101].

All sDFT calculations in this section used 40 stochas-
tic orbitals (for all system sizes), the LDA exchange-
correlation energy functional, and norm-conserving pseu-
dopotentials [102]. Unless specifically mentioned other-
wise, we use 9Eh cutoff energy and the Baldereschi k-
point [103].

A. System-size dependent pressure and

conductivity

In Fig. 4 we present the pressure (left panel) and
the conductivity (right panel) estimates for Hydrogen at
30,000K and density ρ = 1 g/cm3, as a function of the
system size. The pressure estimates at the Baldereschi
k-point are rather steady and change only mildly with
system size. Those done at the Γ point show a stronger
sensitivity to system size, peaking at H256 and then de-
creasing towards the steadier k-point values. The sDFT
pressure estimates increase by about 5% when going from
cutoff energy of 9 to 25Eh. The dDFT results, based on
the VASP code, are less sensitive to the cutoff energy and
change by only 2.5%. This reflects the superiority of the
PAWs used by VASP over the norm-conserving pseudopo-
tentials used in the sDFT calculation when converging to
the infinite energy cutoff limit. The sDFT and the VASP
pressure estimates are similar at the higher cutoff energy.

The size dependence of Hydrogen conductivity at
30,000K, calculated at the Baldereschi k-point, is shown
for two density values in the right panel of Fig. 4. For
1 g/cm3, the conductivity curves of H128 and H512 are
already quite close (a difference of 3%). Note that the
larger the system, the smaller the fluctuations. We also
show results from a deterministic calculation on H128,
which tend to be too small as ω decreases but fit our
results well for all other frequencies.

Finally, the conductivity for the high-density systems
is much more noisy than at low density, and the system
size effects are more noticeable, since the simulation cell
size is small for these systems.

B. Density-dependent properties of Hydrogen at

30,000K

The estimated pressure of Hydrogen at T = 30, 000K
as a function of density is depicted for sDFT and dDFT
(using VASP) in the left panel of Fig. 5. The two curves
are generally close. The more significant difference in
the lower-pressure estimates stems primarily from the
smaller cutoff energy used in our calculation. The equa-
tion of state can be fitted by a van der Waals form,

P = Pideal

(

1 + ρ
ρ0

)

with ρ0 = 0.87 g/cm3.

The right panel of Fig. 5 illustrates the radial distribu-
tion for Hydrogen at T = 30, 000K, with varying densities
from 0.25 to 16 g/cm3. At the lowest density, it reveals
a relatively large excluded volume with some corrugated
pattern. As the density increases to 1 g/cm3, the radial
distribution curve steepens as the proton-proton repul-
sion range shortens, and the corrugated pattern largely
dies out, leaving a shallow signature of a correlation shell
at r = 1.5ï¿œ. This feature is enhanced and contracts to
a shorter distance of 0.75ï¿œ at the density of 4 g/cm3.
In this regime, the radial distribution signifies a com-
bined short-range repulsion and longer-range attraction
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Figure 5. Left panel: the estimated pressure as a function of density for Hydrogen at T = 30, 000K. The results of
the sDFT calculations are shown together with the calculations taken from ref. [13] and a dotted van der Waals trend of

P (ρ) = ρ

mp
kBT

(

1 + ρ

ρ0

)

, where ρ0 = 0.87 g/cm3 is obtained by fitting. Right panel: the H-H radial distribution for different

densities.

between pairs, typical of a gas. Finally, at the highest
density considered, 16 g/cm3, the correlation shell con-
tracts further to 0.5ï¿œ while a second correlation shell
seems to form 0.9ï¿œ, hence a radial distribution typical
of a liquid emerges at these high densities.

We now turn to studying hydrogen conductivity using
Drude’s theory of metals [104] as reference point. Drude’s
theory gives the real part of the normalized conductivity
at frequency ω as

ℜσ (ω)
n

=
e2

me

τc
1 + ω2τ2c

, (33)

where n = Ne

Ω is the average electron density, and τc, the
collision time, is the only material parameter. τc is as-
sumed independent of n. In Fig. 6 (left panel) we plot our
stochastic estimates of the ab initio normalized conduc-
tivity for Hydrogen in various densities at 30,000K. While
the normalized conductivity in Drude’s theory (Eq. (33))
does not depend on n, the ab initio DC normalized con-
ductivity does depend on it: it changes fourfold as n
changes 64fold. Yet, as seen in Fig. 6, at ~ω = 7.2eV,
all four ab initio curves cross at approximately the same
point, the isosbestic point, where they assume the same

normalized conductivity value of 0.6× 10−3Sa20. The ex-
istence of the isosbestic point, especially in the rather
large density range seen here is sometimes indicative of
a system composed of two phases or two states [105–
107]. The value of τc at the isosbestic point is equal
to (0.084± 0.035i) fs, with the real part small relative
to typical values of τc for room-temperature metals (be-
tween 1 and 10 fs [104]). This result is consistent with the
dense metal (with rs between 0.28 and 0.7) we have, and
the high temperatures should speed up relaxation times
and shorten mean free paths in the material. Eq. (33),
also shows that ℜσ is proportional to ω−2 for high fre-
quencies, ωτc ≫ 1 (in our case, ~ω > 30eV). As seen
in the inset of the figure, the ab initio conductivity de-

creases faster than the Drude second power law in the
frequency.

The relative statistical errors in the conductivity eval-
uation (before stabilization according to the method of
Appendix C) are shown in the right panel of the figure. In
general, they grow with the density of the gas. Remark-
ably, the DC conductivity, calculated through Eq. (32),
has a much smaller statistical error than the AC conduc-
tivity.

VI. SUMMARY

We developed a linear-scaling stochastic DFT imple-
mentation in periodic boundary conditions combined
with Langevin dynamics, which we applied to Hydrogen
at 30, 000K. Our pressure estimates at various Hydrogen
densities between 0.125−16 g/cm3 matched well with re-
sults based on deterministic DFT for high cutoff energy
(near convergence). The sensitivity to the cutoff energy
reduced as the density increased.

The pair correlation functions showed that Hydrogen
exhibits gas-like behavior at densities below 4 g/cm3 and
liquid-like behavior above it. We also developed a new
stochastic method to estimate the Kubo-Greenwood con-
ductivity with minimal statistical noise at ω → 0. All the
calculations were done in the Baldereschi k-point, and
then the overall size effects in the hydrogen systems were
not large once H512 was used, except for the high density
which required a large number of atoms.

Future work will focus on adapting stochastic time-
dependent DFT [108–110] and Green’s function method-
ologies [111–113] for WDM applications, building on the
foundation of our current work.
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Figure 6. Left panel: The real part of the Kubo-Greenwood conductivity normalized by the electron density at T = 30, 000K.
The black circle indicates an isosbestic point, which appears at 7.2eV, where all systems have the same normalized conductivity
of ∼ 0.5 × 10−3 Sa2

0 . The inset shows the conductivity in log-log scale, with dashed lines indicating slopes of ω−2. Right

panel: The relative error bars for the conductivity calculations, as described in the caption of Fig. 4.
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Appendix A: Proof of Eq. (27)

For non-interacting electrons, the Hamiltonian and the
grand canonical distribution are

H =
∑

i

εini, ni ≡ a†iai, N =
∑

i

ni, ρ =
e−β(H−Nµ)

tr
[

e−β(H−Nµ)
]

where, ai (a†i ) are electron annihilation (creation) op-
erator into eigenstates of the Hamiltonian, with the stan-

dard anti commutation relations {ai, aj} =
{

a†i , a
†
j

}

= 0,
{

aia
†
j

}

= δij .

From these relations alone we find the following:
[

a†iaj , a
†
kal

]

= δjka
†
ial − δila

†
kaj , (A1)

tr
[

ρa†ial

]

= δiltr [ρni] ≡ δilpµβ (εi) , (A2)

and

eiHta†kale
−iHt = e−i(εl−εk)ta†kal. (A3)

From Eqs. (A1) and (A2)

tr
[

ρ
[

a†iaj , a
†
kal

]]

=
(

piµβ − pjµβ
)

δjkδil. (A4)

and

tr
[

ρ
[

a†iaj , a
†
k (t) al (t)

]]

= ei(εi−εj)t/~
(

piµβ − pjµβ
)

δjkδil.

(A5)

Therefore, first quantization (single-particle) observables
A and B, summed over all electrons A =

∑

nAn and

B =
∑

n Bn correspond, in second quantization, to Â =

a†iajA
ij and B̂ = a†iajB

ij (Aij = 〈i |A| j〉 and Bij =
〈i |B| j〉). We find from Eq. (A4):

tr
[

ρ
[

Â, B̂
]]

= Tr [pµβ (H) [A,B]] ,

and from these:

ℑ tr
[

ρÂB̂
]

= ℑTr [pµβ (H)AB] . (A6)

Using Eq. (A3) we obtain the generalization of Eq. (A6)

ℑ tr
[

ρÂB̂ (t)
]

= ℑTr [pµβ (H)AB (t)] . (A7)

This latter equation, used with Â →
∑

nRnξ and B̂ →
∑

n Vnξ′ gives Eq. (27).
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Appendix B: Proof of Eq. (32)

The Fourier-transform of Eq. (A5) gives:

∫ ∞

−∞

e−iωttr
[

ρ
[

a†iaj , e
iHta†kale

−iHt
]]

dt = 2πδ

(

εi − εj
~

+ ω

)

(pµβ (εj − ~ω)− pµβ (εj)) δjkδil,

where we used the spectral representation of Dirac delta functions, 2πδ (ω) =
∫∞

−∞ e−iωtdt, and the identity

δ (x− y) f (x) = δ (x− y) f (y). Dividing the above expression by iω and taking the limit ω → 0 we find:

lim
ω→0

1

iω

∫ ∞

−∞

e−iωttr
[

ρ
[

a†iaj , e
iHta†kale

−iHt
]]

dt = 2π~iδ

(

εi − εj
~

)

p′µβ (εj) δjkδil.

Using the spectral representation in the reverse direction, we find:

lim
ω→0

1

iω

∫ ∞

−∞

e−iωttr
[

ρ
[

a†iaj , e
iHta†kale

−iHt
]]

dt = i~

∫ ∞

−∞

e−i(εi−εj)tp′µβ (εj) dtδjkδil.

From these, it is now straightforward to show the two one-body observables

lim
ω→0

1

iω

∫ ∞

−∞

e−iωttr
[

ρ
[

Â, B̂ (t)
]]

dt = i~

∫ ∞

−∞

Tr
[

p′µβ (H)B (t)A
]

dt. (B1)

For the case A = B, the left-hand side can be developed to give an integral over positive times

lim
ω→0

1

iω

∫ ∞

−∞

e−iωttr
[

ρ
[

Â, Â (t)
]]

dt = 4iℜ
[

lim
ω→0

1

iω

∫ ∞

0

e−iωtℑ tr
[

ρÂÂ (t)
]

dt

]

. (B2)

The right-hand side of Eq. (B1) can also be developed in a similar fashion:

i~

∫ ∞

−∞

Tr
[

p′µβ (H)A (t)A
]

dt = 2i~ℜ
∫ ∞

0

Tr
[

p′µβ (H)AA (t)
]

dt. (B3)

Equating both right sides:

ℜ
[

lim
ω→0

1

iω

∫ ∞

0

e−iωtℑ tr
[

ρÂÂ (t)
]

dt

]

=
~

2
ℜ
∫ ∞

0

Tr
[

p′µβ (H)AA (t)
]

dt.

Finally, using Eq. (A7) we obtain:

ℜ
[

lim
ω→0

1

iω

∫ ∞

0

e−iωtdtℑ tr [pµβ (H)AA (t)]

]

=
~

2

∫ ∞

0

ℜTr
[

p′µβ (H)AA (t)
]

dt, (B4)

from which Eq. (32) can be directly deduced.

Appendix C: Stabilizing the low-frequency

conductivity spectrum

One of the practical problems in calculating the con-
ductivity at low frequencies arises in connection with in-
troducing a finite resolution parameter ν in Eq. 30. The
finite resolution distorts and usually underestimates the
conductivity. This is seen in the red empty dots of Fig. 4
which shows reduced conductivity as ω → 0.

A second problem involves the fact that our conduc-
tivity calculations use a stochastic approach, which has
fluctuation errors. For the low-frequency these fluctu-
ations grow considerably as ω → 0 (see right panel of
Fig. 6) due to the division by ω in Eq. (28).

The two problems described above combine: the high
fluctuations in the low-frequency part of the AC conduc-
tivity is exacerbated when we take smaller ν, needed for
converging the AC results to the DC limit.

Here, we introduce an approximation that helps con-
verge the low frequency AC conductivity, which relies on
the fact that the DC conductivity (ω = 0), calculated
by a different expression, Eq. (32), has finite and small
fluctuations (seen in the right panel of Fig. 6). Our stabi-
lization procedure mixes the low-frequency conductivity
with that of an optimized model:

σk ← (1− wk) σk + wkσmodel (ωk) ,

where σk is the conductivity corresponding to the fre-
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quency ωk = kν, k = 0, 1, 2, . . . . Here, wk are mixing
weights

wk =
1

1 +
(

ωk

ωc

)6 .

Emphasizing the low-energy spectrum. Since our system
exhibits a metallic behavior, we choose ωc as the highest
frequency in the spectrum for which σc > 0.7σ0 and we
use the Drude model σmodel (ω) =

σ0

1+ω2τ2
c
, depending on

the single parameter τc, the collision time. Given the

calculated spectrum, we set this parameter as follows:

τ2c =

∑

k wkω
2
kσk (σ0 − σk)

∑

k wkω4
kσ

2
k

.

This choice of parameter makes the calculated con-
ductivity values σk as close as possible, in the root-
mean-square sense to those of the model conductivity
σmodel (ωk), by minimizing the Lagrangian L

(

τ2c
)

=
∑

k wk

((

1 + ω2
kτ

2
c

)

σk − σ0
)2

.
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