
Data-driven compression of electron-phonon interactions

Yao Luo,1 Dhruv Desai,1 Benjamin K. Chang,1 Jinsoo Park,1 and Marco Bernardi1, 2

1Department of Applied Physics and Materials Science,
California Institute of Technology, Pasadena, California 91125, USA

2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA∗

First-principles calculations of electron interactions in materials have seen rapid progress in recent
years, with electron-phonon (e-ph) interactions being a prime example. However, these techniques
use large matrices encoding the interactions on dense momentum grids, which reduces computa-
tional efficiency and obscures interpretability. For e-ph interactions, existing interpolation tech-
niques leverage locality in real space, but the high dimensionality of the data remains a bottleneck
to balance cost and accuracy. Here we show an efficient way to compress e-ph interactions based on
singular value decomposition (SVD), a widely used matrix / image compression technique. Lever-
aging (un)constrained SVD methods, we accurately predict material properties related to e-ph
interactions − including charge mobility, spin relaxation times, band renormalization, and super-
conducting critical temperature − while using only a small fraction (1−2%) of the interaction data.
These findings unveil the hidden low-dimensional nature of e-ph interactions. Furthermore, they ac-
celerate state-of-the-art first-principles e-ph calculations by about two orders of magnitudes without
sacrificing accuracy. Our Pareto-optimal parametrization of e-ph interactions can be readily gener-
alized to electron-electron and electron-defect interactions, as well as to other couplings, advancing
quantitative studies of condensed matter.

I. INTRODUCTION

Electrons in materials are subject to various interac-
tions, including those with phonons, other electrons, and
defects. Modeling of these interactions follows two main
approaches − analytic treatments that qualitatively cap-
ture the main physics with minimal models using only a
few parameters, and first-principles calculations aiming
at quantitative accuracy but often requiring specialized
workflows, high computational cost, and large amounts
of data. A middle ground between these extremes would
require formulating models of electron interactions that
are economical, accurate, and interpretable. Examples
of efficient models exist across domains − in quantum
chemistry, low-rank approximations [1–3] can compress
two-electron integrals to reduce the computational cost
of post-Hartree Fock calculations [4, 5] and extract the
critical vibrational modes in a chemical reaction [6, 7];
in correlated-electron physics, efficient parametrization
of e-e interactions [8] enables the solution of functional
renormalization-group flow [9, 10] and the Bethe-Salpeter
equation [11, 12]. However, despite these isolated exam-
ples, it remains challenging to formulate widely appli-
cable approaches to represent electron interactions both
efficiently and accurately.

Focusing on electron-phonon (e-ph) interactions, ana-
lytic treatments such as deformation potential for acous-
tic phonons [13, 14] and the Fröhlich model for optical
phonons [15], which use only a few parameters to describe
e-ph interactions, are still widely utilized [16, 17]. In
recent years, first-principles calculations of e-ph interac-
tions using density functional theory (DFT) [18] and its
linear-response variant, density functional perturbation
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theory (DFPT) [19], have enabled quantitative studies
of properties ranging from transport to excited state dy-
namics to superconductivity [20–33]. Unlike the analytic
models, in a typical first-principles calculation one rep-
resents the e-ph interactions using a multi-dimensional
matrix with millions or billions of entries. This enormous
number of parameters, which are computed rather than
assumed, guarantees a faithful description of microscopic
details such as the dependence on electronic states and
phonon modes of e-ph interactions. Yet this complexity is
also a barrier toward obtaining minimal models and tack-
ling new physics. For example, materials with strong or
correlated e-ph interactions need specialized treatments
to capture polaron effects [28, 30, 34, 35] and electron
correlations [36, 37]. Reducing the high dimensionality of
first-principles e-ph interactions would allow one to more
efficiently describe this physics while retaining quantita-
tive accuracy. The development of data-driven methods
to tackle the high-dimensional Hilbert space in the many-
electron problem, including neural network states [38, 39]
and tensor network methods [40–43], serve as inspiration.
Here we show a low-rank approximation of first-

principles e-ph interactions which significantly acceler-
ates e-ph calculations while using only a small fraction
(1−2%) of the data and preserving quantitative accu-
racy. This is achieved by developing SVD calculations
of e-ph matrices in Wannier basis to achieve a minimal
representation of e-ph coupling. We use our compressed
e-ph matrices to compute a range of properties, including
charge transport, spin relaxation, band renormalization,
and superconductivity, both in metals and semiconduc-
tors. Across all benchmarks, the highly compressed e-
ph representation achieves a quantitative accuracy com-
parable to the standard workflow, while also providing
a deeper understanding of the dominant patterns gov-
erning e-ph interactions. Principal component analysis
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sheds light on the inherent compressibility of e-ph cou-
pling matrices. Recent interesting work on improving
the efficiency of e-ph calculations [44, 45] is distinct in
method and scope from our data-driven approach.

II. RESULTS

A. compression of e-ph interactions

The key quantities in first-principles e-ph calculations
are the e-ph matrix elements gmnν(k, q), which represent
the probability amplitude for an electron in a band state
|nk⟩, with band index n and crystal momentum k, to
scatter into a final state |mk + q⟩ by emitting or absorb-
ing a phonon with mode index ν, wave-vector q, energy
ℏωνq, and polarization vector eνq [46]:

gmnν(k, q) =

√
ℏ

2ωνq

∑
κα

eκανq√
Mκ

⟨mk + q|∂qκαV |nk⟩ ,

(1)

where ∂qκαV ≡
∑

p e
iqRp∂pκαV is the lattice-periodic

e-ph perturbation potential, given by the change in the
DFT Kohn-Sham potential with respect to the position
of atom κ (with mass Mκ and located in unit cell at
Rp) in the Cartesian direction α. The inset in Fig.
1(a) shows schematically such an e-ph scattering pro-
cess. We separate the e-ph interactions into short- and
long-ranged [47–53],

gmnν(k, q) = gLmnν(k, q) + gSmnν(k, q). (2)

The long-range part gLmnν(k, q) includes dipole (Fröhlich)
and quadrupole contributions, which can be written an-
alytically, using classical electromagnetism, in terms of
Born effective charges and dynamical quadrupoles ob-
tained from DFPT. The short-ranged part gSmnν(k, q)
cannot be written in closed form and needs numerical
quantum mechanics to be computed, a consequence of
the nearsightedness of electronic matter [54]. Because
gSmnν(k, q) is a smooth function of electron and phonon
momenta, it is short-ranged in a real-space representation
using a localized basis set such as atomic orbitals [55] or
Wannier functions [46, 56].

The short-range e-ph coupling matrix in Wannier ba-
sis, gκαij (Re,Rp), is obtained by transforming DFPT re-
sults computed on a coarse momentum grid (kc, qc) [46]:

gκαij (Re,Rp) =
1

NkcNqc

∑
mnkc

∑
qc

e−i(kcRe+qcRp) (3)

× U†
im(kc + qc)∆V S

mn,κα(kc, qc)Unj(kc),

where U is a unitary transformation from Bloch to Wan-
nier basis, and ∆V S

mn,κα(kc, qc) = ⟨mk + q|∂qκαV S |nk⟩
is the short-ranged part of the perturbation potential in
Bloch basis. To separate acoustic and optical modes, we

carry out a rotation in atomic basis:

gµαij (Re,Rp) =
∑
κ

Aµ
κ g

κα
ij (Re,Rp), (4)

where Aκ
µ = exp

(
i 2π
Nat

κµ
)
adds a relative phase to differ-

ent atoms in the unit cell, and µ ∈ (0, ..., Nat − 1) labels
phonon modes (Nat is the number of atoms in the unit
cell). This way, µ = 0 corresponds to the acoustic sub-
space, where all the atoms in the unit cell move in phase,
and µ ̸= 0 labels the optical modes. Here and below,
we use a collective index F = (ij, µα) to label Wannier
orbital pairs ij and phonon mode and direction µα, sim-
plifying the notation of the Wannier-basis e-ph matrices
to gF (Re,Rp).
When viewed as a matrix for each mode and orbital

pair, gF (Re,Rp) decays rapidly with lattice vectors Re

and Rp and has a typical size NRe
× NRp

ranging be-

tween 102 × 102 and 103 × 103. After carrying out SVD
on gF (Re,Rp), we obtain

gF (Re,Rp) =
∑
γ

sFγ u
F
γ (Re) v

F
γ

∗
(Rp), (5)

where sFγ is the singular value (SV) with index γ,

and uF
γ (Re) and vF

∗
γ(Rp) are the left and right sin-

gular vectors, respectively. One can interpret sFγ as
the coupling strength between the generalized elec-

tron cloud
∑

Re
uF
γ (Re)c

†
i (Re)cj(0) and phonon mode∑

Rp
vFγ

∗
(Rp)

(
b†µα(Rp) + bµα(Rp)

)
, where (c†, c) are cre-

ation and annihilation operators for electrons and (b†, b)
for phonons. For each channel F , there is a total of
min(NRe

, NRp
) SVs; we keep only the Nc largest ones,

resulting in a truncated, low-rank e-ph matrix g̃:

g̃FNc
(Re,Rp) =

Nc∑
γ=1

sFγ uF
γ (Re) v

F
γ

∗
(Rp). (6)

This matrix can be conveniently transformed to momen-
tum space using

g̃FNc
(k, q) =

∑
Rp,Re

eikRe+iqRp g̃FNc
(Re,Rp)

≈
Nc∑
γ=1

sFγ uF
γ (k) v

F
γ

∗
(q), (7)

where uF
γ (k) =

∑
Re

eikReuF
γ (Re) and vFγ

∗
(q) =∑

Rp
eiqRpvFγ (Rp) are singular vectors in momentum

space. (Note that the long-range part of the e-ph matrix
is added after interpolation of this short-ranged part.)
Eq. (7) provides a generic parametrization of e-ph in-
teractions, where by increasing the number of SVs one
can systematically tune the accuracy and computational
cost. According to the Eckart–Young-Mirsky theorem,
the truncated matrix g̃ obtained from SVD is an optimal
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low-rank approximation of e-ph interactions, in the sense
that it minimizes the Frobenius-norm distance between
the original and low-rank e-ph matrices [57]. From a com-
putational viewpoint, Eq. (7) can greatly accelerate the
calculation of e-ph interactions and the associated mate-
rial properties, with a speed up by the inverse fraction
of SVs kept in the truncated e-ph matrix. In most cases,
we will keep only 1-2% of SVs, resulting in a 50−100
times speed-up for the key step in e-ph calculations (see
Appendix A for details).

B. Error and Pareto-optimal interactions

To test the accuracy of the truncated e-ph matrix and
its convergence with respect to the number of SVs (Nc),
we define a relative error for the e-ph matrix averaged
over electron bands and momenta, and phonon modes
and wave-vectors:

ϵg(Nc) =

∑
mnν,kq |gmnν(k, q)− g̃Nc

mnν(k, q)|2∑
mnν,kq |gmnν(k, q)|2

, (8)

where g̃Nc
mnν(k, q) is the low-rank (approximate) and

gmnν(k, q) is the full first-principles e-ph matrix.
Fig. 1(a) shows this error as a function of the fraction
of SVs, Nc/NRp

, kept in the approximate matrix. In the
language of model selection [57], the resulting curve of
error versus number of parameters is the Pareto frontier
for modeling e-ph interactions. We find that the error
decreases rapidly with the number of SVs − for example,
ϵg is as low as 1% when using only 2% of SVs, which
achieves a 98% compression of the original e-ph matrix.
This error curve defines a Pareto-optimal region, high-
lighted in Fig. 1(a), where e-ph calculations are both ac-
curate and parsimonious [57]. This region spans 1−4%
of SVs in most of our calculations − which corresponds
to keeping Nc ≈ 10−50 SVs − and suggests that many
materials may possess only ∼10 dominant elementary e-
ph interaction patterns. Accordingly, the e-ph coupling
strength for each phonon mode [46, 58],

Dν(q) = ℏ−1

√
2ωνqMuc

∑
mn

|gmnν(k = Γ, q)|2/Nb , (9)

(where Muc is the mass of the unit cell and the band
indices m and n run over Nb bands), shown in Fig. 1(b),
can be computed accurately using just the largest 1.5% of
SVs, matching closely results using the full e-ph matrix.

C. Application to transport, spin and
superconductivity

We showcase the accuracy of the low-rank approxi-
mate e-ph interactions by computing a wide range of
material properties, including charge mobility, spin relax-
ation, phonon-assisted superconductivity, and phonon-
induced band renormalization. Figs. 2(a) and 2(b) show

(a)

pareto 

optimal


a

b

pareto 

optimal

(b)

FIG. 1. (a) Error on the compressed e-ph matrix, computed
using Eq. (8), as a function of the fraction of SVs used in
the low-rank approximation. The Pareto-optimal region is
shown with a shaded rectangle. (b) Mode-resolved e-ph cou-
pling strength computed using the full e-ph matrix (blue) and
the low-rank approximate matrix (orange) for silicon. The
full e-ph matrix elements are computed on a real-space grid
with size NRe =1325 and NRp =1325, the smallest values to
achieve convergence, setting the electron momentum to k=Γ
and using the Nb = 3 highest valence bands. In the SVD
calculation, we keep 20 out of 1325 SVs, corresponding to a
∼1.5% fraction of SVs, as noted in the legend.

the electron and hole mobility in silicon for tempera-
tures between 100−400 K, obtained using the full e-
ph matrix and compared with SVD using 1.5% of the
SVs (see Appendix B). The mobility is overestimated
for electrons, and underestimated for hole carriers, de-
spite the accuracy of the low-rank e-ph interactions in
silicon (Fig. 1(a)). The error comes from the acoustic
phonons, which interact weakly with electrons − and
therefore are ignored in the low-rank e-ph matrix − but
carry a considerable contribution to the mobility due to
their large thermal occupation. To improve the treat-
ment of acoustic phonons, we develop a constrained SVD
(c-SVD) which preserves the deformation potential [61]
for long-wavelength acoustic phonons in the compressed
e-ph matrix (see Appendix C). When using c-SVD, the
mobility computed using only 1.5% of the SVs is nearly
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FIG. 2. (a) Mobility of electrons in silicon, and (b) mobility of hole carriers in silicon, computed with the full e-ph matrix
(NRe = NRp = 1325) and compared with standard and constrained SVD, in both cases using 1.5% of the SVs. (c) Spin
relaxation times of electrons in silicon, computed with the full e-ph matrix (NRe =NRp = 1325) and using SVD with 1.5%

of the SVs. Experimental data from Refs. [59, 60] are shown for comparison. (d) Eliashberg spectral function α2F (ω) for Pb,
comparing full e-ph matrix (NRe =NRp = 279) with SVD results using 1.8% of the SVs. (e) Superconducting gap ∆0 as a
function of temperature, comparing full e-ph matrix results with SVD using 1.8% of the SVs. The inset shows the convergence
of the critical temperature Tc with number of SVs; the darker (lighter) colored regions indicate 5% (10%) error relative to the
full calculation. (f) Band renormalization for electronic states near the Dirac cone in graphene at 20 K, comparing the full
calculation with SVD using 1.5% of the SVs.

identical to the full-matrix result for both carriers.
We also apply the low-rank approximation to spin-

dependent e-ph matrices governing spin-flip e-ph inter-
actions; these matrices enable first-principles calcula-
tions of spin relaxation times (SRTs) in centrosymmetric
materials via the Elliot-Yafet mechanism [62] (see Ap-
pendix D). The SRTs for electrons in silicon between
150−400 K are shown in Fig. 2(c). Our results from
SVD with Nc=20 (corresponding to ∼1.5% of the SVs)
match closely the full e-ph matrix calculations and agree
with experimental results [59, 60]. Different from charge
transport, standard SVD gives accurate SRTs in silicon
because the optical phonons govern spin-flip processes.
For materials where acoustic phonons contribute to spin
relaxation, our c-SVD approach can be readily extended
to the spin-dependent case.

Calculations of phonon-mediated superconductiv-
ity, presented here using lead (Pb) as an example,
can also leverage our low-rank approximation (see Ap-
pendix E). Fig. 2(d) compares the Eliashberg spectral
function α2F (ω) from full e-ph matrix calculations with
SVD results; using only the first Nc=5 SVs (here equal
to 1.8% of the SVs) suffices to reproduce the full calcu-
lation. We solve the isotropic Eliashberg equation self-

consistently (see Methods for details) and compute the
superconducting gap ∆0 as a function of temperature
(Fig. 2(e)) as well as the critical temperature Tc ver-
sus number of SVs (inset of Fig. 2(e)). The low-rank
e-ph matrix with Nc = 5 SVs provides a gap function in
good agreement with the full-matrix calculation, which
can be further improved by using a larger fraction of
SVs; the critical temperature for Nc = 5 SVs is very ac-
curate, Tc = 6.9 K which is within 5% of the Tc = 6.6
K value obtained using the full e-ph matrix. This result
implies that as few as five elementary e-ph interactions
determine Tc in Pb. Finally, we compute band renor-
malization from e-ph interactions [64] ] focusing on the
contribution from the Fan-Migdal e-ph self-energy (see
Appendix F). The Debye-Waller term can also be added
following Ref. [65]. Results for graphene show that band
renormalization near the Dirac cone can be computed
keeping only the five largest SVs; this highly compressed
e-ph matrix correctly predicts the kinks near the Dirac
cone and matches full e-ph matrix results over a 2 eV
energy range. We also carry out convergence tests with
respect to the fraction of SVs included in the calculation
for all the materials studied here (see the Supplemental
Material [66]). The rapid convergence with respect to
the fraction of SVs guarantees that the full e-ph matrix
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(a)

(b)
4.6 h

0.12 h
(38 ) ×

FIG. 3. (a) e-ph coupling constant λ in doped monolayer
MoS2 computed with our compression method using different
fractions of SV. The doping concentration is 0.22 electrons per
formula unit. The shaded region corresponds to an accuracy
greater than 95% relative to the fully converged calculation.
(b) Comparison of the wall time for computing the e-ph cou-
pling constant λ with the full e-ph matrices and with our SVD
compression technique using 1% of the SVs. The 38× speed-
up achieved by the SVD compression is indicated in red font.

calculation is not needed, and one can obtain accurate
results by converging the desired property with respect
to the fraction of SVs with minimal computational over-
head.

While all the examples discussed above are for materi-
als with nonpolar bonds, polar materials are even simpler
to study with our compression method because the long-
range (Frohlich) dipole contribution is dominant and is
well modeled by an analytic formula using Born effective
charges [47–49]. To illustrate this point, we demonstrate
accurate mobility calculations in GaAs and PbTiO3 using
only 1% of the SVs (see the Supplemental Material [66]).

D. Computational speed-up from compression

We illustrate the computational speed-up achieved by
our compression method using the e-ph coupling con-

stant λ in doped monolayer MoS2 as a case study [67].
Following Ref. [67], we employ a grid size of 2882 k- and
q-points for numerical integration and a Gaussain smear-
ing of 0.002 Ry. We also leverage the improved Brillouin-
zone sampling technique where only electronic states in
a small energy window (0.006 Ry) near the Fermi sur-
face are included in the calculation. In Fig. 3(a), we
show the convergence of λ with respect to the fraction
of SVs. The shaded region corresponds to an accuracy
greater than 95% compared to the fully converged re-
sult. Similar to other quantities computed in this work,
λ converges rapidly with the fraction of SVs; in particu-
lar, using only 1% of the SVs gives λ within 2% of the
converged result. Fig. 3(b) compares the computational
wall time for the calculation employing the full e-ph ma-
trices and for our SVD compression method with 1% SVs
(note that both calculations use the same improved Bril-
louin zone sampling scheme). Our approach achieves a
speed-up by 38 times relative to using the full e-ph matri-
ces; if we count solely the time for e-ph interpolation, the
speed-up is 83 times. This example illustrates the 1−2
orders of magnitude speed-up deriving from compressing
the e-ph matrices with SVD. For a more detailed analysis
of computational complexity, see Appendix A.

E. Dominant modes and
principal-component analysis

To understand the inherent compressibility of the e-ph
matrices, we analyze the SV spectrum in graphene and
silicon (Figs. 4(a) and 4(b)). In both materials, the SVs
decay rapidly, dropping by 1−2 orders of magnitude from
the largest to the 10th largest SV. In principal component
analysis (PCA) [57, 63], this decay can be understood as
a consequence of high-variance generalized directions in
the e-ph matrix, gF (Re,Rp), which capture the vast ma-
jority of the physics, while other principal components
can be viewed as noise and neglected [63]. We carry out
PCA by treating each row of the matrix gF (Re,Rp) as
a feature vector, and find that the variance of the two
leading principal components is one order of magnitude
greater than for the 10th or following principal compo-
nents, indicating that most of the physical information
is already captured by the first few SVs (see the insets
of Figs. 4(a) and 4(b)). This analysis reveals that only a
few atomic vibrational patterns dominate e-ph coupling.
Although these dominant modes are not known a priori,
they can be learned efficiently with SVD. We also apply
the PCA to lead (see Fig. S4 in Supplemental Material
[66]) ]) and observe a similar rapid decay of the SVs. We
remark that the dimensionality reduction is general – it
occurs in all the materials studied here, and it is associ-
ated to the rapid decay of the SVs, which we view as a
consequence of the nearsightedness of electronic interac-
tions.

We visualize the atomic vibrations with dominant e-ph
interactions by analyzing the vibrational singular vectors.
To that end, we introduce a modified SVD that includes
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(a) (b)

(a) (b) (c)

(d) (e) (f)(a) (b) (c)

(d) (e) (f)

(c) (d)

Graphene Silicon

FIG. 4. (a) Decay of the SVs in graphene and (b) decay of the SVs in silicon, shown by plotting the SVs referenced to

the largest SV. Here, s̃i refers to the SVs averaged over Wannier orbitals and vibrational modes, s̃i =
√∑

F (s
F
i )

2. The

respective insets show the real part of the 2nd versus 10th principal components, obtained from the PCA of the e-ph matrices;
in parentheses we give the fraction of explained variance [63], λ̃i = σ2

i /
∑

i σ
2
i , where σ2

i is the variance of the i-th principal
component. The red oval shows the standard deviation of the corresponding principal components, obtained by dropping
feature vectors with norm smaller than 10−3 × s̃0. (c) Atomic vibrations associated with the dominant e-ph interactions in
graphene, and (d) the same quantity in silicon, obtained by analyzing the phonon singular vectors, ṽ(καRp) in Eq. (10), for
the two largest SVs.

Wannier orbitals and phonon modes in the decomposi-
tion:

gκαij (Re,Rp) =
∑
γ

sγ ũγ(ijRe) ṽ
∗
γ(καRp). (10)

In this global SVD, the singular vectors ũ depend only on
electron variables and ṽ only on phonon variables. This
way, the phonon singular vectors ṽ∗γ(καRp) can be inter-
preted as local vibrational modes (in the Wigner-Seitz
cell associated with the coarse grid [46]) and visualized
to study the dominant e-ph couplings. We show these
singular vectors for the two modes with largest SVs in
graphene and silicon in Figs. 4(c) and 4(d), using arrows
on each atom, with length proportional to the singular
vector ṽ∗γ(καRp), to indicate the atomic displacements
in the modes obtained from SVD.

In graphene, where the electronic states consist of pz
orbitals centered on each carbon atom, the dominant
mode resembles a longitudinal optical phonon that brings
the pz orbitals closer together in the unit cell. The
second-strongest mode is a shear vibration resembling
a transverse optical phonon, which spreads over multi-

ple unit cells (Fig. 4(c)). For the other modes, we ob-
serve that the vibrational pattern progressively delocal-
izes over multiple unit cells for decreasing values of the
SVs. In silicon, where the electronic states consist of sp3-
like Wannier orbitals oriented along the chemical bond di-
rections, the two modes with dominant e-ph coupling are
associated with compression and stretching of the bonds
(Fig. 4(d)). The intuition gained from this mode analysis
can aid the formulation of model Hamiltonians in chem-
ically and structurally complex materials, where keeping
only the dominant e-ph interactions can provide effec-
tive models of transport and polaron physics informed
by first-principles calculations [68–72].

III. DISCUSSION AND CONCLUSION

The accuracy of the low-rank e-ph matrices implies
that current brute-force first-principles calculations over-
parametrize e-ph interactions, falling too far on the right
side of the Pareto-optimal region in Fig. 1(a). Conversely,
textbook approaches such as Holstein and Fröhlich mod-
els, which use only a handful of e-ph couplings, may fall
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short of achieving quantitative accuracy by using too few
parameters. Our SVD compression in Wannier basis (fol-
lowed by interpolation) provides a systematic route to
achieve Pareto-optimal calculations. These optimal mod-
els enhance interpretability and enable a deeper under-
standing because they concentrate all the relevant e-ph
physics in just a few parameters − in our case, the lead-
ing SVs and singular vectors, which represent dominant
e-ph interactions.

In summary, our results unveil the hidden low-
dimensional nature of e-ph interactions. While accu-
rate, current first-principles calculations overparametrize
these interactions due to a lack of a priori knowledge of
the dominant atomic vibrational patterns governing e-ph
coupling. We have shown that when this optimal rep-
resentation is achieved via SVD, using only 10−20 pa-
rameters (for each orbital pair and vibrational mode) is
sufficient to obtain results with state-of-the-art accuracy.
Surprisingly, this is only a small fraction (1−2%) of the
typical size of first-principles e-ph matrices. Compress-
ing e-ph interactions significantly accelerates calculations
of material properties ranging from transport to spin re-
laxation to superconductivity. Future work will extend
these ideas to other electronic interactions, with the goal
of advancing “precise but parsimonious” quantum many-
body calculations in real materials. Our approach works
equally as well for small systems with a few atoms and
for large systems with tens of atoms in the unit cell (see
Fig. S5 in Supplemental Material [66]). In addition, as
we plan to show elsewhere, our method enables many-
body e-ph calculations that are currently inaccessible
with standard Wannier interpolation, including the de-
velopment of first-principles diagrammatic Monte Carlo,
which sums e-ph diagrams to all orders from first princi-
ples, thus providing a gold standard for quantitative e-ph
studies.
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Appendix A: Computational complexity analysis

From a computational viewpoint, Eq. (7) can greatly
accelerate the calculation of e-ph interactions and the
associated material properties. The key bottleneck
in these calculations is obtaining the e-ph matrix ele-
ments on fine momentum grids, gmnν(kf , qf ), starting
from the Wannier representation, with a cost scaling

as O(NRp
Nkf

Nqf
) for an optimal implementation [46]

(for a fixed number of Wannier functions and atoms in
the unit cell), where Nkf

and Nqf
are the number of

points in the fine-momentum electron and phonon grids,
with typical values of order Nkf

≈ Nqf
≈ 106. In con-

trast, when using SVD, this interpolation step costs only
O(NcNkf

Nqf
), with a speed up by a factor NRp/Nc, the

inverse fraction of SVs kept in the truncated e-ph ma-
trix. In most cases, we will keep only 1−2% of SVs,
resulting in a 50−100 times speed-up for the key step in
e-ph calculations. We show specific timing comparisons
for all the materials studied in this work in Fig. S1 of the
Supplemental Material [66]. In all cases, our algorithm
achieves a speed up close to the ideal value of NRp

/Nc.
The memory improvement is also dramatic. A converged
transport calculation in silicon requires a k grid of 1003

and q grid of 503 points [46]; on these fine grids, the mem-
ory required to store the entire e-ph matrix gmnν(kf , qf )
is 700 TB, while the memory needed to store the singu-
lar vectors uF

γ (kf ) and vFγ (qf ) is only 128 GB when we
retain 1.5% of SVs, which guarantees accurate results as
we show in Figs. 2(a) and 2(b). This efficiency removes
the key bottleneck in first-principles e-ph calculations.

Appendix B: Mobility calculations

The first-principles mobility calculations in silicon fol-
lows our previous work [51]. We include the quadrupole
contribution analytically for silicon. The quadrupole ten-
sor can be written as

Qsi,αβγ = (−1)κ+1Qsi|ϵαβγ |, (B1)

where ϵαβγ is the Levi-Civita tensor and the value of
Qsi = 13.67 is taken from Refs. [73, 74].
We compute the phonon-limited mobility at temper-

ature T using the BTE in the relaxation time approxi-
mation (RTA) [46]. We first obtain the e-ph scattering
rate Γnk using Fermi’s golden rule, which is equivalent
to using the imaginary part of the lowest-order e-ph self-
energy [75]:

Γnk =
2π

ℏ
1

Nq

∑
mνq

|gmnν(k, q)|2

× [(Nνq + 1− fmk+q)δ(ϵnk − ϵmk+q − ℏωνq)

+ (Nνq + fmk+q) δ(ϵnk − ϵmk+q + ℏωνq)], (B2)

where Nq is the number of q points and δ is the Dirac
delta function. Then we obtain the mobility from the
BTE by summing over contributions from different elec-
tronic states and scattering processes [46]:

µαβ(T ) =
e

ncΩNk

∫
dE

(
− ∂f

∂E

)∑
nk

τnk v
α
nkv

β
nkδ(E−ϵnk),

(B3)
where Ω is the volume of the unit cell, τnk = (Γnk)

−1

are relaxation times, nc is the carrier concentration, f
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is the Fermi-Dirac distribution, and Nk is the number
of k points; ϵnk and vnk are electron energies and band
velocities, respectively. Our calculations in silicon use a
uniform grid with 2003 k points and a uniform random
grid with 105 q points, where k and q are electron and
phonon momenta respectively. The delta function is ap-
proximated as a Gaussian with a 10 meV smearing [46].

Appendix C: c-SVD algorithm

Let us briefly describe our c-SVD algorithm. Simi-
lar to the acoustic sum rule (ASR) for the dynamical
matrix [19], we formulate an ASR for the e-ph matrix
elements:

gνA
(k, q = 0) = 0, (C1)

where νA labels the acoustic modes, and we omit band
indices for simplicity. The rationale for this e-ph ASR is
that a rigid translation of the lattice will not change the
electronic band structure. The real-space version of this
e-ph ASR reads∑

κ,Rp

gκαij (Re,Rp) =
∑
Rp

gµ=0,α
ij (Re,Rp) = 0, (C2)

where gµ=0,α
ij (Re,Rp) accounts for the acoustic subspace

of the e-ph matrix defined in Eq. (4). With this ASR, the
e-ph matrix for long-wavelength acoustic phonons can be
approximated to first order in q as

lim
q→0

gµ=0,α(Re, q) = lim
q→0

∑
Rp

gµ=0,α(Re,Rp)e
iqRp

≈ iq ·Aα(Re) , (C3)

where we defined a real-space deformation potential,
which in general can be anisotropic, as

Aα(Re) ≡
∑
Rp

Rpg
µ=0,α(Re,Rp). (C4)

In the limit of |q| → 0, g̃µ=0,α(Re, q) vanishes linearly in
|q|, but the phonon occupation number diverges as 1

|q| ;

therefore in the long-wavelength limit acoustic phonon
scattering is often important. This acoustic phonon con-
tribution is challenging to preserve when using the com-
pressed e-ph matrices because standard SVD primarily
captures large entries in the e-ph matrix. To address
this point, we compress the e-ph matrix while conserving
Aα(Re) by imposing the following constraint:∑

Rp

Rp g̃
µ=0,α
Nc

(Re,Rp) = Aα(Re). (C5)

Satisfying this set of linear equations leads to a con-
strained low-rank approximation [76], a more general op-
timization problem.

The c-SVD is applied only to the acoustic subspace,

which corresponds to F = (ij, µ = 0α), resulting in a
compressed e-ph matrix of rank Nc:

g̃FNc
(Re,Rp) = g̃FNc−3(Re,Rp) (C6)

+
∑

ββ′∈(x,y,z)

(δAα(Re))β λββ′ (Rp)β′ ,

where g̃FNc−3(Re,Rp) is the truncated SVD of the e-ph
matrix with Nc − 3 singular values (see Eq. (6)); δAα is
the residual term for g̃FNc−3(Re,Rp), defined as

δAα(Re) = Aα(Re)−
∑
Rp

Rp g̃
µ=0,α
Nc−3 (Re,Rp), (C7)

and λββ′ is the inverse of the overlap matrix between Rp

vectors: ∑
β′

λββ′

∑
Rp

(Rp)β′ (Rp)β′′ = δββ′′ . (C8)

Using this approach, the compressed e-ph matrix
g̃FNc

(Re,Rp) gives the same deformation potential as the
full e-ph matrix in Eq. (C4), and its rank is smaller than
or equal toNc. This c-SVD workflow requires only a min-
imal computational overhead relative to standard SVD.

Appendix D: Spin relaxation times

The first-principles calculation of SRTs in silicon fol-
lows our recent work [62]. The spin-flip relaxation time

τflipnk , for a band electron in state |nk⟩, accounts for the
Elliott-Yafet spin relaxation mechanism and is computed
using [62, 77, 78]

1

τflipnk

=
4π

ℏ
∑
mνq

|gflipmnν(k, q)|2

× [(Nνq + 1− fmk+q) δ(ϵnk − ϵmk+q − ℏωνq)

+ (Nνq + fmk+q) δ(ϵnk − ϵmk+q + ℏωνq)]. (D1)

The key ingredients in this equation are the spin-flip e-ph
matrix elements,

gflipmnν(k, q) = ⟨mk + q ⇓ |∆V̂νq|nk ⇑⟩ , (D2)

with ⇓ and ⇑ denoting nearly spin-down and nearly spin-
up states, respectively. These matrix elements describe
the probability amplitude to flip the spin of a band elec-
tron due to a particular phonon mode νq. The macro-
scopic spin relaxation time, τs(T ), is a thermal average
over electronic states of the spin-flip scattering rates [62]:

τs(T ) =

〈
1

τflipnk

〉−1

T

=


∑

nk
1

τ flip
nk

(
−dfnk

dE

)
∑

nk

(
−dfnk

dE

)


−1

. (D3)

The SRT calculations employ a uniform grid with up to
1403 k points and a 5 meV Gaussian smearing for the
delta functions.
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Appendix E: Eliashberg spectral function and
superconducting gap

We carry out DFT calculations on lead (Pb) using the
generalized gradient approximation [79] in theQuantum
ESPRESSO code [80]. The ground state and electron
wave functions are computed on a 14 × 14 × 14 k-point
grid with a kinetic energy cutoff of 90 Ry, and the lattice
constant is set to 4.88 Å. We use DFPT to calculate
the phonon frequencies and eigenvectors, and the e-ph
matrix elements gmnν(k, q), on coarse 6 × 6 × 6 k- and
q-point grids. We wannierize the 4 bands near the Fermi
surface using the Wannier90 code [81], and obtain the e-
ph matrices in Wannier basis using Perturbo [46]. The
Eliashberg spectral function is computed as

α2F (ω) =
1

2

∑
νq

ωνq λνq δ(ω − ωνq), with

λνq =
1

N(ϵF )ωνq

∑
mnk

|gmnν(k, q)|2 (E1)

× δ(ϵnk − ϵF )δ(ϵmk+q − ϵF ),

where N(ϵF ) is the density of states at the Fermi en-
ergy (ϵF ). The Eliashberg function α2F (ω) encodes the
isotropic and retarded effective attraction between elec-
tronic states on the Fermi surface. Using α2F (ω), we
obtain the gap function by solving the isotropic Migdal-
Eliashberg Eq. [82]:

Z(iωj) = 1 +
πkBT

ωj

∑
j′

ωj′√
ω2
j′ +∆2(iωj)

λ(ωj − ωj′),

Z(iωj)∆(iωj) = πkBT
∑
j′

∆(iωj′)√
ω2
j′ +∆2(iωj′)

(E2)

× [λ(ωj − ωj′)− µ∗
c ] ,

where T is the temperature, ωj = (2j + 1)πkBT is
the Matsubara frequency, µ∗

c is the screened Coulomb
potential, Z(iωj) is the mass renormalization func-
tion, ∆(iωj) is the superconducting gap function, and
λ(ωj) =

∫∞
0

dωα2F (ω) 2ω
ω2

j+ω2 is the isotropic e-ph cou-

pling strength.

For the numerical integrations in Eq. (E1), we employ
a k-point grid consisting of 400,000 quasi-random Sobol
points (generated using SciPy[83]) and a q-point grid
with 30,000 uniformly distributed random points; the
delta functions are approximated as Gaussians with a
30 meV smearing for electrons and 0.1 meV smearing for
phonons. Using the converged α2F (ω) function, we set
µ∗
c = 0.1 and solve Eq. (E2) iteratively for a range of tem-

peratures. The critical temperature Tc is obtained as the
temperature where ∆o = ∆(iωj = iπkBT ) extrapolates
to zero.

Appendix F: Band structure
renormalization

The DFT ground state calculation in graphene uses
the local density approximation with a norm-conserving
pseudopotential from Pseudo DOJO[84]. We employ a
90 Ry plane-wave kinetic energy cutoff, a 60× 60× 1 k-
point grid, and a 2.46 Å lattice constant. For the DFPT
calculation, we use coarse grids with 36×36×1 k-points
for electrons and 18× 18× 1 q-points for phonons. The
band structure renormalized by e-ph interactions, ϵ̃nk, is
obtained as the DFT band structure plus the real part of
the e-ph self-energy evaluated on-shell,

ϵ̃nk = ϵnk +ReΣnk(E = ϵnk, T ). (F1)

We use the lowest-order (Fan-Migdal) e-ph self-energy,

Σnk(E, T ) =
1

Nq

∑
νqm

|gmnν(k, q)|2 (F2)

×
[

Nνq + 1− fmk+q

E − ϵmk+q − ℏωνq − iη
+

Nνq + fmk+q

E − ϵmk+q + ℏωνq − iη

]
,

where η is a Lorentzian smearing [85]. We employ 107

uniform random q-points for the numerical integration in
Eq. (F2) and set the Lorentzian smearing to 15 meV.
For more accurate band renormalization calculations,

one could use Wannier function perturbation theory
(WFPT) to overcome errors resulting from finite num-
ber of Wannier functions [86].
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network solution of the electronic schrödinger equation,
Nat. Chem. 12, 891 (2020).
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