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Abstract. Multimodal video understanding is crucial for analyzing ego-
centric videos, where integrating multiple sensory signals significantly
enhances action recognition and moment localization. However, prac-
tical applications often grapple with incomplete modalities due to fac-
tors like privacy concerns, efficiency demands, or hardware malfunctions.
Addressing this, our study delves into the impact of missing modali-
ties on egocentric action recognition, particularly within transformer-
based models. We introduce a novel concept—Missing Modality Token
(MMT)—to maintain performance even when modalities are absent, a
strategy that proves effective in the Ego4D, Epic-Kitchens, and Epic-
Sounds datasets. Our method mitigates the performance loss, reducing
it from its original ∼ 30% drop to only ∼ 10% when half of the test
set is modal-incomplete. Through extensive experimentation, we demon-
strate the adaptability of MMT to different training scenarios and its
superiority in handling missing modalities compared to current meth-
ods. Our research contributes a comprehensive analysis and an innova-
tive approach, opening avenues for more resilient multimodal systems in
real-world settings.

Keywords: Missing Modality · Multimodal Video Recognition · Ego-
centric Videos

1 Introduction

Multimodal video understanding has been the de facto approach for analyzing
egocentric videos. Recent works have shown that the complimentary multisen-
sory signals in egocentric videos are superior for understanding actions [24–26,
33,37] and localizing moments [2,41,43,47]. However, multimodal systems need
to be practical for real-world applications that could suffer from the incomplete-
ness of modality inputs due to privacy, efficiency, or simply device failures [30].
For example, when predicting in real-time using a wearable device, parts of the
recordings might be scrapped to preserve the privacy of the bystanders/camera
wearer [14,16]. Furthermore, using all sensors could be expensive for a wearable
device, opting for cheaper modalities such as audio or IMU [17]. Thus, studying
the impact of missing modalities is crucial for realistic performance expectations.
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Fig. 1: Most commonly, we train the multimodal models on modal-complete data.
These models (orange) fail when encountering modal-incomplete data at test time. Our
proposed adaptation to the missing modality (green) significantly improves the perfor-
mance across datasets. When all test inputs are modal-incomplete (rtest = 100%), we
surpass unimodal performance (purple) by 5 points in Epic-Kitchens, and double the
baseline performance in Ego4D-AR.

Still, the current effort to study the impact of missing modalities in egocentric
datasets remains rather limited. Most methods presume all modal inputs to
be intact during training and inference. Recent works have studied the effect
of missing modalities for different tasks varying from recommendation systems
to emotion recognition [29, 35, 38, 40, 44, 46]. Notably, the majority of research
concerning missing modalities has primarily addressed the issue during testing [3,
38,40,44,46,50], while just a handful studied it across both training and testing
phases [29,30,36]. Similar to our setting, Lee et al . [30] propose a strategy to learn
prompts for pre-trained backbones to deal with missing modalities. However,
they analyze their method for image and text datasets only; we implement our
version for action recognition and use it as a baseline in Sec. 4. More recently,
Gong et al . [14] proposed a benchmark for multimodal generalization, focusing on
few-shot learning recognition while considering missing modalities. Though the
latter work proposes an interesting benchmark that includes a zero-shot and few-
shot setup, no works have diagnosed how recent transformer-based approaches
perform when modalities are missing for the action recognition setting.

In this work, we study the problem of missing modalities in egocentric ac-
tion recognition. First, we investigate how current transformer-based models are
affected by incomplete modalities at test time. In Fig. 1, we observe how the
current state-of-the-art audiovisual recognition model, Multimodal Bottleneck
Transformer (MBT) [37], trained on modal-complete inputs, suffers from a crit-
ical degradation in performance when the missing modality rate increases. The
advantage of the multimodal backbone (orange) is lost when the missing modal-
ity rate in the test set exceeds ∼ 27% (Ego4D-AR) and ∼ 70% (Epic-Kitchens).
At this point, the unimodal model (purple) becomes a better alternative. To ad-
dress this problem, we propose learning the missing modality "template" during
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training to replace missing modalities at test time. We call this template the
Missing Modality Token (MMT) and explain how to learn it in Sec. 3.4. Fig. 1
(Epic-Kitchens) also shows how our approach (green) dramatically improves the
test accuracy and stays at least 5 points above the unimodal performance even
when the test set is fully modal-incomplete. Furthermore, our methods enable
better multimodal performance overall in modal-incomplete Ego4D-AR.

We verify the effectiveness of our method in 3 egocentric datasets, including
Ego4D [16], which has a full coverage of RGB video, but only 70% of videos
have audio. We extensively analyze our proposed training strategies, showing
how to train with MMT under different missing modality scenarios. Our exper-
iments show that our simple yet effective approach proposes a strong solution
to this problem. Our contributions are threefold: (1) We present a thorough
study of the challenge of missing modalities in egocentric action recognition. This
involves exploring datasets with varying degrees of modal incompleteness and
assessing the influence of the fusion layer. (2) We propose the Missing Modality
Token (MMT) as a novel solution to address missing modalities during both
the training and testing phases. Additionally, we propose a training strategy,
termed random-replace, to enhance the efficacy of models utilizing MMT. (3)
We extensively evaluate our method and demonstrate its notable improvement
over existing baselines. Through our work, we provide valuable insights and lay
the groundwork for developing multimodal backbones that exhibit robustness in
the face of missing modalities.

2 Related work

Addressing missing modality. Addressing missing modalities presents a no-
table challenge, explored through various strategies by researchers from different
areas. From medical applications [1] to sentiment analysis [3], missing modal-
ities are a long-standing problem in multimodal understanding. Some meth-
ods [11, 12, 42] distill the knowledge from a multimodal teacher to an unimodal
RGB model. Others are tailored for scenarios where test data is multimodal yet
incomplete in terms of modalities. For example, Ma et al . [36] and Colombo et
al . [3] investigate missing modalities within a Bayesian Meta-learning frame-
work. Meanwhile, Tsai et al . [44], Zhao et al . [50], and Woo et al . [48] attempt
to reconstruct missing inputs. Neverova et al . [38] focus on multimodal ges-
ture recognition, employing depth, audio, and video streams, and updating net-
work parameters based on different modality combinations. Most of these works
rely on modality-specific architectures [20, 28] and/or use complex generative
pipelines. Our approach uses a generic multimodal Transformer [45]. Further-
more, these methods assume that the training data is fully modal-complete,
which is not the case in current large-scale datasets [17]. Instead, our method
applies to modal-complete and modal-incomplete training sets.

Recent studies utilizing transformers, such as the work of Parthasarathy et
al . [40], explore missing modalities at test time and propose training-time aug-
mentations. Ma et al . [35] develop strategies for optimal fusion layers and class
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tokens in the context of missing modalities, focusing on image-text datasets. Our
research differs by demonstrating the effectiveness of our method across various
fusion layers (Sec. 4.7), which avoids any expensive fusion policy learning. Lee et
al . [30] proposes to learn to prompt large multimodal backbones for image and
text classification when modalities are missing at train and test time. We adapt
their method to our setting and show that ours is more practical and effective for
dealing with missing modalities in egocentric videos. Lastly, Gong et al . [14] in-
troduce a benchmark for handling missing modalities within the Ego4D dataset,
tailored for few-shot classification 3. Our work proposes to diagnose and study
the problem in a simpler setting to understand the effect of missing modali-
ties in egocentric video understanding. We want to note that most of related
transformer-based methods [14, 35, 40] do not provide the code, which makes it
challenging to compare to.
Multimodal egocentric video understanding. Egocentric perception faces
distinct challenges compared to traditional video understanding benchmarks
such as ActivityNet [7] and Kinetics [23]. The nature of how egocentric datasets
are captured means that they usually feature strongly aligned and synchronized
audiovisual signals. Key benchmarks in this field, including Epic-Kitchens [4],
Epic-Sounds [22], and the more recent and extensive Ego4D [16], have demon-
strated the importance of audiovisual learning for understanding egocentric
videos due to the complementary nature of the audio and visual modalities [24,
25, 43]. These datasets have facilitated the creation of several audiovisual back-
bones tailored for video understanding. Xiao et al . [49] introduced a CNN-
based dual-stream architecture, utilizing SlowFast networks for the visual com-
ponent [8] and a separate stream for audio [26]. With the advent and adaptabil-
ity of transformer architectures, several studies have treated different modalities
as input tokens for a multimodal transformer encoder [10, 27, 31, 32]. However,
self-attention mechanisms can become prohibitively expensive as the number of
tokens increases. To address this, Nagrani et al . [37] offered an efficient Multi-
modal Bottleneck Transformer (MBT) that avoids costly self-attention. We build
atop MBT and introduce Missing Modality Token to make it robust for missing
modalities at train and test times.

3 Dealing with missing modalities

This section details the aspects we consider while addressing the missing modal-
ity problem. Namely, the scenarios and evaluation (3.1), the multimodal design
and fusion (3.2), the possible naive solutions to the problem (3.3), and our pro-
posed method (3.4).

3.1 Problem statement, setup, and evaluation

Given the training and testing multimodal data samples, let us denote the miss-
ing modality rates in each set with rtrain and rtest, respectively. These rates
3 Code and data are not available
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are computed by dividing the number of modal-incomplete samples by the total
number of samples. Note that we only consider the setting of one modality being
missing in the dataset. Our work discusses the strategies of training a multimodal
model under two scenarios: modal-incomplete training set i.e., some sam-
ples in the training set are modal-incomplete (rtrain ̸= 0%), or modal-complete
training set i.e., all samples in training set all modal-complete (rtrain = 0%).

To observe the trained model’s behavior under different missing modality
severity levels, we create several variants of the test set by manually removing
the modality information from the samples until rtest = 100%.

Following previous works [35,36] when experimenting with fully modal-complete
datasets (rtrain = 0% and rtest = 0%), we assume the modality with the best
unimodal performance (dominant) to be incomplete at test-time (e.g ., audio for
Epic-Sounds). Unlike previous works [30, 35, 36], we also validate our adapta-
tion strategies on a dataset with naturally incomplete modalities in train and
test splits. We use two modalities commonly available in the egocentric video
datasets: visual (RGB frames) and audio. We evaluate classification accuracy on
egocentric action recognition datasets.

3.2 Efficient and effective multimodal fusion

We deal with missing modalities while considering the methods proven to be
the most effective for multimodal fusion. Previous transformer-based methods
addressing missing modalities looked mostly at basic methods, such as early or
mid-fusion with cross-modal self-attention, where all tokens are concatenated at
the fusion layer. This does not scale well in videos due to the attention mech-
anism’s quadratic complexity (to the input size) [30, 37]. Instead, we use the
current state-of-the-art audiovisual fusion, MBT [37], which proved to be more
efficient and effective. The bottleneck transformer in the MBT design allows the
model to distill and propagate the most essential information across modalities
where each modality performs self-attention only with a small number of learn-
able "bottleneck" tokens. Such design is especially useful for information-dense
(redundant) modalities like video.
Fusion Layer. A key aspect of a multimodal fusion approach is the design of the
fusion layer Lf . Lf is the layer at which the cross-modal interactions happen. We
observe the performance of the original bottleneck model with modal-complete
audiovisual inputs and train the model with different fusion layers. We show
the test accuracy for these models in Figure 6 (marked as baseline) for the
Epic-Kitchens and Epic-Sounds datasets. We find that the performance does
not change significantly with different fusion layers when rtest = 0. However, the
fusion layer does make a difference when inputs are incomplete (e.g ., 35% test
accuracy with Lf = 0 vs. 42% with Lf = 11 in Epic-Sounds at rtest = 50%), as
shown in Section 4.7. Overall, fusing earlier is preferred in Epic-Kitchens, but
fusing later gives better results in Epic-Sounds. This outcome is consistent with
the observations from the previous work [35]: the best fusion strategy is dataset-
specific. While this observation might be intuitive, it is impractical when the
model is very sensitive to the fusion layer, as searching for the best layer might
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Fig. 2: Learning and Predicting with Missing Modalities. Left: Given modal-
incomplete data, it is still unclear how to effectively train and predict with a multimodal
model (we present some naive baseline methods in Sec. 3.3). Right: To address this is-
sue, we introduce a Missing Modality Token (MMT). During training, MMT learns the
representation of missing inputs from modal-incomplete samples and modal-complete
samples. For the latter, we use random-replace to let the network observe the missing
inputs and thus learn better representations (Sec. 3.4). At test time, we replace the
tokens of missing inputs with MMT to effectively represent them.

be computationally expensive. Thus, we analyze the effect of the fusion layer
when modalities are missing and show the effect of our approach in Sec. 4.7.

3.3 Intuitive baselines

While designing effective solutions for missing modalities is challenging (Fig. 2),
one could suggest simple and intuitive ways of adapting to missing inputs at
test time. We propose the following training-free baselines to deal with missing
modality at inference time.
Passing missing inputs as tensors with zeros. We employ a straightforward
approach of substituting missing modality inputs with tensors filled with zeroes.
This method, widely acknowledged in the literature [1, 30, 40], is favored for its
simplicity and ease of implementation in practice. Thus, unless stated otherwise,
we adopt this method as our primary baseline and refer to it as baseline.
Only pass complete inputs. As transformers can process sequences of vary-
ing lengths, we can selectively omit tokens corresponding to missing signals and
exclusively supply the transformer with non-missing modality tokens. While in-
tuitive, this approach becomes less practical when inference involves batch sizes
greater than 1 and not all inputs within the batch exhibit modal incompleteness.

3.4 Our approach to dealing with missing modalities

We suggest a simple and generic way to deal with missing modalities. Instead of
passing tensors filled with zeroes or discarding the tokens of the missing inputs at
test time, we propose to learn a "template" for the missing inputs. We introduce
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a learnable Missing Modality Token (MMT), which is trained to represent the
tokens of the missing modality by learning from the tokens of the non-missing
modality.

Figure 2 (right) illustrates how MMT represents the tokens of the missing
modality at train and test time. When the model encounters a modal-incomplete
sample, MMT, a shared parameter, is repeated to match the missing modality
token number and passed to the transformer, along with the tokens of non-
missing modalities. Note that each token has a different positional embedding
added, similar to the mask token in [18]. With this intuitive way, MMT observes
all modal-incomplete samples and leverages the non-missing modality tokens to
learn.

If trained with modal-incomplete samples only, the model never encounters
the inputs it tries to mimic. Furthermore, MMT is limited in the number of
training samples (e.g . in a dataset with rtrain = 10%, MMT will only encounter
10% of the data). We try to facilitate it and suggest random-replace strategy.
With random-replace, input tokens of modal-complete samples can also be used
to train MMT. Namely, for each modal-complete training sample, with proba-
bility p, the tokens of one modality will be replaced with MMT. When p = 0,
the MMT learns with naturally missing inputs only. If p is set to a non-zero
value, the strategy provides more training samples for learning MMT and lets
the network observe the same sample as modal-incomplete and modal-complete;
thus encouraging the model to understand the relationships and dependencies
of the modalities. However, setting p too high might cause high information
loss and hinder the performance, especially if we drop the tokens of a more
information-dense modality, as we will show in Sec. 4.4

Thus, there are 2 ways of providing training samples for MMT: (1) Using
samples with naturally missing modalities and (2) Randomly replacing the to-
kens of complete samples with MMT. Below, we discuss how both ways are used
with modal-complete and modal-incomplete training sets.
Modal-incomplete training set. Recall that rtrain of the training samples
are modal-incomplete and 100%− rtrain are modal-complete. Thus, MMT can:

1. Learn from modal-incomplete only. During training, we use MMT to rep-
resent the missing modality inputs for modal-incomplete samples. The tokens of
modal-complete samples are never replaced with MMT i.e., p = 0.

2. Learn from modal-complete and modal-incomplete. Use modal-incomplete
samples as in (1), and random-replace with non-zero p.
Modal-complete training set. As all training samples have complete multi-
modal inputs, MMT is trained using random-replace with p > 0.
Inference. Regardless of the strategy, we replace the missing input tokens with
the learned MMT at test time.

4 Experiments

We present a detailed analysis of our MMT under both modal-complete and
modal-incomplete training sets. For both scenarios, we explore the usage of
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random-replace. Namely, in Sec. 4.4 we ablate the effect of p. In Sec. 4.5, we
study how the severity of missing modality in the training data affects the per-
formance. Sec. 4.6 we extend the setup to multiple missing modalities. Addition-
ally, we study the effect of fusion layers Lf in Sec. 4.7. Then, we compare our
method to the baselines we proposed and [30] in Sec. 4.8.

4.1 Datasets

We use videos from Ego4D [16] for pre-training the MBT backbone. Due to
privacy and regulations, only 2.5K of 3.7K video hours have original audio in
this dataset. We trim 450K 10-second modal-complete audiovisual clips spanning
all 2.5K modal-complete hours. For the downstream tasks, we use the following
egocentric action recognition benchmarks:
Epic-Kitchens-100 [5] has 90K trimmed clips of variable length, spanning 100
video hours. Each clip is labeled with a noun + verb pair, which describes the
camera-wearer action. In total, there are 300 noun and 97 verb classes in the
dataset. We train the model with 2 heads to jointly predict verb and noun classes.
All videos in the dataset have complete visual and audio streams (rtrain = rtest =
0%).
Epic-Sounds [22] spans the same 100 video hours as Epic-Kitchens but is an-
notated with sound labels. This dataset does not follow the noun and verb an-
notations from Epic-Kitchens; instead, it has 44 unique class labels. The dataset
is composed of 79K annotated clips.
Ego4D-AR: We use the annotated clips from the Short-Term Action Antici-
pation task in Ego4D benchmark [16] to create an action recognition dataset
that we dub as Ego4D-AR4. Specifically, we use the provided time-to-contact
timestamps to trim the clips and the anticipated actions as labels. Ego4D-AR
contains 142K clips annotated as noun and verb pairs. Overall, there are 128
noun and 81 verb classes. We find that the verb classes are highly imbalanced
in this dataset. Therefore, we balance the class weights in the cross-entropy loss
during training. We provide more details on the dataset in Supplementary. Sim-
ilarly to Epic-Kitchens, we use 2 heads to predict the nouns and verbs. As we
didn’t filter the Ego4D videos for this dataset, it has naturally missing modal-
ity. Only 71% of training clips and 73% of test clips have audio (rtrain = 29%,
rtest = 27%).
For clarity and due to space constraints, we report the verb accuracy for Epic-
Kitchens, the class accuracy for Epic-Sounds, and the noun accuracy for Ego4D-
AR in this section. We report the rest of the metrics for Supplementary.

4.2 Implementations details

Pre-training. We use the audiovisual MAEs [9, 13, 18] protocols and train
our own implementation of Audiovisual Bottleneck MAE. We use the trimmed
Ego4D clips and train for 200 epochs. We mask 70% of audio and 90% of video
4 Ego4D does not have an action recognition benchmark
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tokens. We use the same pre-trained model for all experiments. More details of
the decoder used in the pre-training can be found in the supplementary material.
Architecture. Following [21], we use ViT-Base [6] with 12 transformer layers, 12
attention heads, and embedding dimension 768 as the encoder for each modality.
For the fusion design, we follow MBT [37] and fix the number of bottlenecks to
B = 4 and the fusion layer to Lf = 8 (except for Sec. 4.7).
Inputs. Following [15, 21], we convert an audio waveform of t seconds to log
Mel-filterbank with 128 Mel-frequency bins, with a Hanning window of 25ms,
shifting every 10ms. The output is a spectrogram of 128×100t. We use 8-second
audio and the patch size of 16×16, resulting in (128×100×8)/256 = 400 audio
tokens. For video, we sample 16 RGB frames at 8 fps of 224 × 224. Similarly
to [21], we tokenize the frames with 3D convolutions, using the spacetime patch
size of 16× 16× 2. Each video input produces (16× 224× 224)/(256× 2) = 1568
tokens.
Finetuning. We train for 50 epochs in Epic-Kitchens experiments, 20 in Epic-
Sounds, and 15 in Ego4D-AR. We use SpecAugment [39] for audio augmentation
and Augmix [19] for video augmentation. We use AdamW [34] optimizer with
half-cycle cosine learning rate decay.

Table 1: The performance of the audio, video, and bottleneck audiovisual
models on each dataset. We train and evaluate all models with rtrain = 0 and
rtest = 0%. In Ego4D-AR, this is done by filtering out the modal-incomplete samples.
In all datasets, multimodal performance beats unimodal performance.

Dataset Audio Video Audiovisual
Epic-Kitchens 40.0% 63.2% 64.0%
Epic-Sounds 46.5% 41.4% 55.2%
Ego4D-AR 26.3% 34.6% 36.4%

4.3 Unimodal and baseline multimodal models

In Table 1, we show the unimodal and multimodal performance for each down-
stream dataset. As the original MBT, the multimodal models are trained with
fully modal-complete samples. For our baseline results across all datasets, we
employ these multimodal models. In scenarios where rtest is small, indicating
that the testing data is nearly modal-complete, it is desired that the adapted
model exhibits performance more closely aligned with the multimodal baseline
model. Consequently, this adaptation should uphold the multimodal reasoning
capabilities of the model.

As expected due to the annotation strategy, video serves as the dominant
modality in Epic-Kitchens and Ego4d-AR, and audio takes precedence in Epic-
Sounds. Consequently, as detailed in Sec. 3.1, we train our models to be robust
to missing video in Epic-Kitchens and Ego4D-AR and to missing audio in Epic-
Sounds (except for Sec. 4.6 where we assume that any modality could be absent).
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Fig. 3: Modality drop probability p vs. accuracy for modal-complete Epic-
Sounds, Epic-Kitchens and Ego4D-AR. In all datasets, our method dramatically
improves the performance of the baseline (orange).

Additionally, we report the unimodal performance of the non-missing modality
(referred to as unimodal, i.e., video in Epic-Sounds) as we expect the adapted
models to converge towards this performance at higher values of rtest.

Since Epic-Sounds has fewer training samples and exhibits a more balanced
unimodal performance across each modality, we leverage it more extensively in
Sec. 4.5 and Sec. 4.6.

4.4 Results with MMT.

We apply MMT as mentioned in Sec. 3.4. Fig. 3 shows changes in performance
with different p in random-replace and compares it with the unimodal (purple)
and baseline multimodal (orange) performance in each dataset. We use p ∈
{12.5%, 25%, 50%} for Epic-Kitchens. Ego4D-AR has naturally missing modality
with rtrain = 29%, and we ablate with p ∈ {0%, 25%, 50%, 75%}. We observed
that higher values of p yield better performance in Epic-Sounds; hence, we use
p ∈ {30%, 60%, 90%} in this dataset.

By looking at the model’s performance across all p values, we notice the
importance of picking p large enough for the model to adapt well but not too
large to avoid high information loss. On the one hand, if there are insufficient
training samples for MMT (smaller p), the model does not perform optimally
at higher rtest. For example, in Epic-Sounds, the model trained with p = 30%
reaches 42.7% at rtest = 25% while increasing p to 60% gives 44.6%. Similarly,
if we only use naturally modal-incomplete samples to train MMT in Ego4D-
AR (p = 0%), the model reaches 28.6% at rtest = 25%, while if we increase
to p = 25%, the performance increases to 33.5%. On the other hand, if p is
too large, the model performs suboptimally for more modal-complete test data
(smaller rtest). For example, while the model trained with p = 75% achieves
higher accuracy at rtest = 100% in Ego4D-AR, it seems that it learns to ignore
the audio completely, as the performance at rtest = 0% drops to the unimodal
video performance in this dataset.
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Fig. 4: Results with the modal-incomplete training data. As Epic-Sounds does
not naturally have missing modality in the training data, we manually remove the
audio from (left) rtrain = 25% and (right) rtrain = 50% of samples in the train set.

We find that the models trained with p = 60%, p = 25%, and p = 25%
in Epic-Sounds, Epic-Kitchen, and Ego4D-AR, respectively, yield the best over-
all performance in each dataset. These models perform significantly better than
the baseline models (orange) in the missing modality scenarios. For instance,
at rtest = 50%, the adapted models improve the baseline performance by 11.5%
points in Epic-Sounds, 7.8% points in Epic-Kitchens, and 9.3% points in Ego4D-
AR. Furthermore, for Epic-Sound and Epic-Kitchens, the models trained with
MMT reach or surpass the unimodal performance at extremely severe rtest =
100%. Nevertheless, the adapted models maintain the multimodal baseline per-
formance at rtest = 0%, showing that the adaptation strategy does not harm the
model’s capabilities.

Note how in Ego4D-AR, the baseline fails to reach the unimodal accuracy
event at the lowest rtest = 27%, making our models trained with MMT a signifi-
cantly better choice. This happens because rtrain = 29% of samples were filtered
out to train the multimodal baseline, causing information loss. This demonstrates
how MMT enables better leverage of data in modal-incomplete datasets.

In Epic-Kitchens, the model performs better with p = 25% much smaller
than in Epic-Sounds. We believe this is because video (the missing modality)
produces almost 4× more tokens than audio; thus, replacing video tokens causes
more information loss.

4.5 Datasets with modal-incomplete training data.

In Sec. 4.4, Ego4D-AR is the only naturally modal-incomplete dataset, and we
want to know how our method generalizes in other datasets with different rtrain.
What happens if a dataset has even higher rtrain than Ego4D-AR? Filtering out
noisy or corrupted data causes significant information loss if rtrain is high. By
using MMT, we can mitigate that and learn from all instances.
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Fig. 5: Results on Epic-Sounds with rAtrain = 25%, rVtrain = 25%. We train our model
with two MMTs: one for missing video and one for audio. We run the inference twice:
(left) with missing video and (right) missing audio.

We show the results with our modal-incomplete version of Epic-Sounds with
rtrain = 25% and rtrain = 50% in Fig. 4. We discuss the details of creating
this version of the dataset in Supplementary. We can see how, indeed, the base-
line model performs suboptimally, similarly as in Ego4D-AR in Sec. 4.4. Using
random-replace with p = 60% significantly improves the baseline accuracy at
rtest = 100% by 20 points when rtrain = 25% and 30 points when rtrain = 50%.
Furthermore, using modal-complete samples to train MMT (p = 60%) causes
a significant performance boost compared to the model trained with modal-
incomplete samples only (p = 0%).

4.6 Both modalities missing

In our setup, we train one MMT per dataset because we assume that only one
modality could be missing. However, in more realistic scenarios, either modality
could be missing for each sample in the dataset. Training a conventional multi-
modal baseline involves filtering out all modal-incomplete samples, causing the
training data to shrink to a small intersection subset where all modalities are
available, which could negatively affect the model’s performance.

Luckily, it is quite straightforward to extend our approach to two MMTs, one
for each modality. To simulate this scenario, we use Epic-Sounds and remove
audio from rAtrain = 25% 5 of the training samples and video from another
rVtrain = 25% of the training samples. For simplicity, we set p = 0 for both
MMTs when training our adapted model. To train a multimodal baseline, we
filter out all modal-incomplete samples i.e., half of the training samples. Fig. 5,
we show how our model’s performance compares to the baseline. We evaluate it
for missing video (left) and audio (right). As can be seen, training with MMT
dramatically improves the model performance.

5 We use superscripts {A,V } to refer to the missing modality
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Fig. 6: Fusion Layer Lf vs. accuracy in the models trained with no adap-
tation strategy (Baseline) and trained with MMT (Ours). For training with
MMT, we use random-drop strategy with p = 60% for Epic-Sounds and p = 25% for
Epic-Kitchens. This strategy makes MBT more robust to missing modalities across all
Lf and significantly reduces the negative effect of missing modalities.

4.7 The effect of the fusion layer.

As we mentioned in Sec. 3.2, the fusion layer does affect the performance of the
bottleneck model, especially when test inputs are modal-incomplete. In Fig. 6, we
examine whether training with MMT enhances robustness to a missing modality
at various fusion layers and whether models trained with MMT (ours) show the
same sensitivity to the fusion layer as those trained without it (baseline). As
we observe, the introduction of MMT makes the model more robust
to the missing modality across all fusion layers in both Epic-Sounds and
Epic-Kitchens. With extremely severe rtest = 100%, the adapted models perform
with ∼ 45% accuracy in Epic-Kitchens, while the unimodal audio model achieves
40% in this dataset. Furthermore, these adapted models do not exhibit similar
sensitivity to the fusion layer as the baseline. For example, in Epic-Sounds, the
baseline models trained with Lf = 11 exhibit superior performance, which is not
the case for the adapted models (at rtest = 100%, 37% accuracy with Lf = 11 but
∼ 40% for other Lf ). Overall, all adapted models perform consistently well, each
providing decent performance in a modal-incomplete inference. Our approach
effectively addresses a long-standing issue [35] of selecting the appropriate fusion
layer when faced with missing modalities.

4.8 MMT vs. other missing modality representations

In Tables 2, we report the results using our random-replace and the baselines
from Sec. 3.3 for Epic-Sounds, Epic-Kitchens, and Ego4D-AR. We also report
the accuracy of the unimodal model in each dataset. Interestingly, passing zeroes
as missing modality works better for Epic-Sounds and skipping missing modality
tokens works better for Epic-Kitchens and Ego4D-AR.
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To compare to the baseline tailored to the missing modality problem, we
implement the multimodal prompts method [30]. It was originally based on
ViLT [27] for image-text classification, so we implemented our version for action
recognition based on MBT. Note that this method relies on a strong pre-trained
backbone to efficiently finetune it by optimizing a few network parameters. As
we deal with audiovisual learning in egocentric videos, we rely on large-scale
egocentric pre-training using MAEs. As seen in Tab. 2, our method outperforms
the one proposed by [30].

Table 2: Comparison of our method with baselines in Epic-Sounds, Epic-
Kitchnes, and Ego4D-AR. We demonstrate the accuracy across different missing
modality ratios rtest. We show in bold the best result and underline the runner-up.
We mentioned the way of representing the missing modality in brackets: zeros for the
baseline of passing zeros, skip for the baseline skipping the tokens of the missing input,
as mentioned in Sec. 3.3, or MMT.

Dataset rtest
Unimodal Baseline Baseline Prompts [30] Ours

(zeros) (skip) (MMT)

Epic-Sounds

0% 41.4 55.2 55.2 36.7 56.3
25% 41.4 45.6 47.0 33.3 52.3
50% 41.4 37.1 39.9 30.0 48.6
75% 41.4 28.3 32.5 26.1 44.6
100% 41.4 19.5 25.0 22.6 40.7

Epic-Kitchens

0% 40.0 63.9 63.9 32.5 63.4
25% 40.0 55.5 53.2 31.1 59.0
50% 40.0 46.8 42.1 30.2 54.6
75% 40.0 37.9 30.8 29.2 50.0
100% 40.0 29.5 20.0 28.2 45.3

Ego4D-AR

27% 34.6 30.5 32.5 18.4 36.7
50% 34.6 25.9 30.8 16.4 35.2
75% 34.6 21.1 29.1 13.9 33.5
100% 34.6 16.0 27.2 11.5 32.0

We find that across all datasets, our MMT trained with random-replace ei-
ther reach (in Epic-Sounds and Ego4D-AR) or exceed (in Epic-Kitchens) the
unimodal performance in extreme rtest = 100%. Interestingly, in Epic-Sounds,
random-replace also regularizes the training and increases the rtest = 0% per-
formance by 1.1 points.

5 Conclusion

We explore the missing modality problem in multimodal egocentric datasets. We
suggest a simple yet effective method by learning the optimal token represen-
tation of the missing modality (MMT). Placing learnable tokens to represent
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missing inputs provides an easy and intuitive way to train and test with modal-
incomplete inputs. We propose strategy random-replace to learn MMT when
training action recognition models and show how their performance brings us
closer to robust and effective multimodal systems.
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