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Abstract—Conformal risk control (CRC) is a recently proposed
technique that applies post-hoc to a conventional point predictor to
provide calibration guarantees. Generalizing conformal prediction
(CP), with CRC, calibration is ensured for a set predictor that is
extracted from the point predictor to control a risk function such
as the probability of miscoverage or the false negative rate. The
original CRC requires the available data set to be split between
training and validation data sets. This can be problematic when
data availability is limited, resulting in inefficient set predictors.
In this paper, a novel CRC method is introduced that is based
on cross-validation, rather than on validation as the original
CRC. The proposed cross-validation CRC (CV-CRC) extends
a version of the jackknife-minmax from CP to CRC, allowing
for the control of a broader range of risk functions. CV-CRC
is proved to offer theoretical guarantees on the average risk of
the set predictor. Furthermore, numerical experiments show that
CV-CRC can reduce the average set size with respect to CRC
when the available data are limited.

I. INTRODUCTION

A. Context and Motivation

One of the key requirements for the application of artificial
intelligence (AI) tools to risk-sensitive fields such as healthcare
and engineering is the capacity of AI algorithms to quantify
their uncertainty [1], [2]. This requires guarantees on the
adherence of the “error bars” produced by the AI model
to the true predictive uncertainty. The predictive uncertainty
encompasses both the epistemic uncertainty caused by limited
availability of data and the aleatoric uncertainty inherent
in the randomness of data generation [3]. Without making
strong assumptions on the data generation mechanism it is
generally impossible to provide strict uncertainty quantification
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Fig. 1. Illustration of (top) the existing validation-based conformal risk
control (VB-CRC) [7]; and (bottom) the proposed method cross-validation-
based conformal risk control (CV-CRC), which aims at reducing the predictive
sets sizes by reusing the available data D more efficiently.

guarantees for any input, but assumption-free guarantees can
be established on average over validation and test data [4].
Conformal prediction (CP) [5], [6], and its extension conformal
risk control (CRC) [7], are widely established methodologies
for the evaluation of predictors with provable uncertainty
quantification properties.

To elaborate, assume access to a data set D of N pairs of
examples consisting of input x and output y. Based on the data
set D and on a class of point predictors, CP and CRC produce
a set predictor Γ(x|D) mapping a test input x into a subset of
the output space. The size of the set predictor Γ(x|D) provides
a measure of the uncertainty of the predictor for input x [6].
On average over the data set D and over a test input-output
pair (x, y), we wish to guarantee the calibration condition

EDDD,x,y∼p0(D,x,y)

[
ℓ
(
y,Γ(x|DDD)

)]
≤ α, (1)
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where boldface fonts denote random quantities, ℓ(·, ·) is a loss
measure, and α a user-specified maximum average loss level.
In (1), under the joint distribution p0(D, x, y), the examples
in the data set DDD and the test pair (x,y) are assumed to be
independent identically distributed (i.i.d.), or, more generally
exchangeable.

CRC can satisfy the requirement (1) for any user-specified
target average loss level α, as long as the loss function is
bounded and it decreases as the predicted set grows. Examples
of such loss functions are the 0-1 miscoverage probability

ℓ(y,Γ) = 1(y /∈ Γ), (2)

which returns 1 if the true label y is not in the set Γ and
0 otherwise, and the false negative rate, which returns the
fraction of true values of y that are not included in set Γ for
multi-label problems [7].

The requirement (1) can be always satisfied for such
monotonic loss functions by returning as set predictor Γ the
entire set of possible values for the output variable y. However,
a set predictor is useful only as long as it is of moderate
average size. The motivation of this work is to construct a set
predictor that meets (1), while producing small predictive sets
even in the presence of a limited data set D.

B. State of the Art

CP addresses the design of set predictors satisfying the
calibration condition (1) in the special case of the miscoverage
loss (2) [5], [6], [8]. There are several variants of CP, including
validation-based CP (VB-CP), cross-validation-based CP (CV-
CP) [9], and full CP [5]. While full CP is considered to be
impractical, requiring many rounds of retraining, VB-CP splits
the data set into training and validation data sets, and it operates
over a single round of training. However, the need to devote
a separate data set for validation can significantly reduce the
quality of the trained model, resulting in predictive sets of
large sizes when data are limited [9].

CV-CP reduces the computational complexity as compared
to full CP, while reducing the predicted set size as compared
to VB-CP. This is done by partitioning the available data set
into multiple folds, each acting as a validation data set for
the model trained based on leave-fold-out data. At the cost of
increasing the complexity, requiring as many training rounds as
the number of folds, CV-CP was shown to produce important
savings in terms of prediction set sizes [10], [11], [12].

Other extensions of CP include CP-aware training strategies
[13], [14], prediction under distributional shifts [15], improve-
ments in the training algorithms [16], [17], novel calibration
metrics [18], [19], applications to engineering problems [10],
[20], and online versions [21], [22] with applications [23], [24].

CRC generalizes CP to address the calibration criterion (1)
for a wider class of risks, with the only constraints that the
risk function be bounded and monotonic in the predicted set
size [7], [22], [25], [26]. The original CRC is validation-based,
and hence it may be referred to as VB-CRC for consistency
with the terminology applied above for CP. Accordingly, it

relies on a split of the data set into training and validation sets,
resulting in inefficient predictive sets when data are limited.

C. Main Contributions

In this paper, we introduce a novel version of CRC based on
cross-validation. The proposed CV-CRC method generalizes
CV-CP, supporting arbitrary bounded and monotonic risk
functions. As we will demonstrate, the design and analysis of
CV-CRC are non-trivial extensions of CV-CP, requiring new
definitions and proof techniques.

The rest of the paper is organized as follows. Sec. II provides
the necessary background, while CV-CRC is presented in
Sec. III. Numerical experiments are reported in Sec. IV, and
Sec. V draws some conclusions. All proofs are deferred to the
supplementary material.

II. BACKGROUND

Consider N + 1 data points

(x[1],y[1])︸ ︷︷ ︸
=z[1]

, (x[2],y[2])︸ ︷︷ ︸
=z[2]

, . . . , x[N + 1],y[N + 1])︸ ︷︷ ︸
=z[N+1]

(3)

over the sample space X × Y that are drawn according to
an exchangeable joint distribution p0(D, x, y) over index i =
1, . . . , N . The first N data points constitute the data set D =
{z[i] = (x[i], y[i])}Ni=1, while the last data point z[N + 1] is
the test pair, which is also denoted as z = (x, y). We fix a
loss function ℓ : Y × 2Y → R, which, given any label y ∈ Y
and a predictive set Γ ⊆ Y , returns a loss bounded as

b ≤ ℓ(y,Γ) ≤ B (4)

for some constants B < ∞ and b ∈ {−∞} ∪ R. We further
require that the loss is monotonic in the predictive set Γ in the
sense that the following implication holds

Γ1 ⊆ Γ2 ⇒ ℓ(y,Γ1) ≥ ℓ(y,Γ2) for each y ∈ Y. (5)

Note that the 0-1 miscoverage loss (2) assumed by CP satisfies
(4) with b = 0 and B = 1, and it also satisfies the implication
(5).

For a given data set D, VB-CRC uses a two-step procedure
to satisfy the constraint (1) for some target average loss α in
the interval

b ≤ α ≤ B. (6)

To start, as illustrated in the top panel of Fig. 1, the available
data set D is split into N tr examples forming the training set Dtr

and N val = N−N tr points forming the validation set Dval with
D = Dtr∪Dval. In the first step of VB-CRC, a model is trained
based on the training set Dtr using any arbitrary scheme. Then,
in the second step, VB-CRC determines a threshold λ ∈ R
by using the validation data set Dval. As explained next, the
threshold λ dictates which labels y ∈ Y are to be included in
the prediction set Γλ(x|Dtr) for any test input x as follows.

A nonconformity (NC) score NC((x, y)|Dtr) is selected that
evaluates the loss of the trained predictor on a pair (x, y).
Examples of NC scores include the residual between the label
and a trained predictor for regression problems and the log-loss
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for classification problems [6], [27], [28]. With the given NC
score, the set prediction is obtained as

Γλ(x|Dtr) =
{
y′ ∈ Y

∣∣∣NC((x, y′)|Dtr) ≤ λ
}
, (7)

thus including all labels y′ ∈ Y with NC score smaller or equal
to the threshold λ. By design, the set (7) satisfies the nesting
property

λ1 < λ2 ⇒ Γλ1
(x|Dtr) ⊆ Γλ2

(x|Dtr) (8)

for any input x and data sets Dtr.
We define the risk as the population, or test, loss of the

predicted set (7) as

R(λ|Dtr) = Ex,y∼p0(x,y)

[
ℓ
(
y,Γλ(x|Dtr)

)]
. (9)

Given the validation data set Dval = {(xval[i], yval[i])}N val

i=1 , the
risk (9) can be estimated as

R̂val(λ|Dtr,Dval) = 1
N val+1

( N val∑
i=1

ℓ
(
yval[i],Γλ(x

val[i]|Dtr)
)
+B

)
,

(10)
which is a function of the threshold λ. This corresponds to
a regularized, biased, empirical estimate of the risk (9) that
effectively adds an (N +1)-th dummy validation example with
maximal loss B.

VB-CRC chooses the lowest threshold λ such that the
estimate (10) is no larger than the target average risk α as in

λVB(Dval|Dtr) = inf
λ

{
λ
∣∣∣R̂val(λ|Dtr,Dval) ≤ α

}
. (11)

With this threshold choice, as proven in [7], the set predictor
(7) obtained via VB-CRC, i.e.,

ΓVB(x|Dtr,Dval) = ΓλVB(Dval|Dtr)(x|Dtr) (12)

ensures the desired condition (1). More precisely, the condition
(1) holds for any fixed training set Dtr, i.e., we have the
inequality

EDDDval,x,y∼p0(Dval,x,y)

[
ℓ
(
y,ΓVB(x|Dtr,DDDval)

)]
≤ α. (13)

Furthermore, in order for (13) to hold, VB-CRC only requires
the validation data Dval and test pair (x, y) to be exchangeable.

III. CROSS-VALIDATION CONFORMAL RISK CONTROL

While VB-CRC reviewed in the previous section guarantees
the average risk condition (13), splitting the available data
set into training and validation sets may potentially lead to
inefficient set predictors, having large predictive sets on average.
In this section, we introduce the proposed CV-CRC scheme
that aims at improving the efficiency of VB-CRC [7] via cross-
validation [9], while still guaranteeing condition (1).

To start, as illustrated in the bottom panel of Fig. 1, the
available data set D = {z[i]}Ni=1 is partitioned using a fixed
mapping into K folds D = {Dk}Kk=1 of N/K-samples each,
which is assumed to be an integer. We will write each k-th
fold as Dk = {(xk[1], yk[1]), . . . , (xk[N/K], yk[N/K])}, and
we will denote the mapping of the i-th data point z[i] to its

fold index as k[i] : {1, . . . , N} → {1, . . . ,K}. Like VB-CRC,
CV-CRC operates in two steps.

In the first step, for any k-th fold, a model is trained using
the leave-fold-out training set D−k = D \ Dk of N − N/K
samples. Accordingly, unlike VB-CRC, K training rounds are
required for CV-CRC. In the second step, as we will detail,
CV-CRC determines a threshold λ to determine which values
of the output y to include in the predicted set.

Given a threshold λ, CV-CRC produces the predictive set

ΓCV
λ (x|D) =

{
y′ ∈ Y

∣∣∣ min
k∈{1,...,K}

{
NC((x, y′)|D−k)

}
≤ λ

}
,

(14)
which includes all labels y′ ∈ Y with minimum, i.e., best case,
NC score across the K folds, that is not larger than λ.

To determine the threshold λ, CV-CRC estimates the
population risk (9) using cross-validation as

R̂CV(λ|D) = 1
K+1

( K∑
k=1

K
N

N/K∑
j=1

ℓ
(
yk[j],Γλ

(
xk[j]

∣∣D−k

))
+B

)
.

(15)
The cross-validation-based estimate (15) can be interpreted
as the conventional cross-validation loss evaluated on an
augmented data set

Daug =
{
D1,D2, . . . ,DK︸ ︷︷ ︸

=D

,Ddummy
}
, (16)

with the first K folds being the available data set D =
{D1, . . . ,DK}, and the additional (K + 1)-th fold containing
N/K dummy points with the maximal loss of B. In a manner
similar to VB-CRC, the addition to dummy data points acts as
a regularizer for the estimate (15), which is required to provide
performance guarantees.

Finally, CV-CRC selects the threshold λ by imposing that
the cross-validation based estimate (15) of the loss is no larger
than the target average loss value α as in

λCV(D) = inf
λ

{
λ
∣∣∣R̂CV(λ|D) ≤ α

}
. (17)

CV-CRC reduces to the jackknife-minmax scheme in [9]
when evaluated with the miscoverage loss (2) in the special
case of K = N folds.

Theorem 1. Fix any bounded and monotonic loss function
ℓ(·, ·) satisfying conditions (4) and (5), and any NC score
NC((x, y)|Dtr) that is permutation-invariant with respect to
the ordering of the examples in the training set Dtr. For any
number of folds satisfying K ≥ B/(α− b)− 1, the CV-CRC
predictive set ΓCV

λCV(D)(x|D) with (14) and (17) guarantees the
condition

EDDD,x,y∼p0(D,x,y)

[
ℓ
(
y,ΓCV(x|DDD)

)]
≤ α. (18)

The theorem thus confirms that CV-CRC meets the desired
condition (1). In this regard, we note that, as in (1), the average
loss in (18) includes averaging over the entire data set D,
unlike the condition (13) satisfied by VB-CRC. Furthermore,
Theorem 1 requires the NC score to be permutation-invariant
with respect to the data points in the training set, which is not
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Fig. 2. Empirical risk of VB-CRC and CV-CRC for the vector regression
problem.

the case for VB-CRC. Permutation-invariance is also needed
for CV-CP [9], as well as for full CP [5]. In practice, a
permutation-invariant NC score can be obtained by imple-
menting permutation-invariant training schemes such as full
gradient descent, in which the final trained model does not
depend on the ordering of the training data points.

IV. EXAMPLES

In this section, we numerically validate the proposed CV-
CRC using two synthetic examples. The first is a vector
regression problem, whereas the second concerns the problem
of temporal point process prediction [29], [30]. Our code is
publicly available1.

A. Vector Regression

Inspired by the example in [9], we first investigate a
vector regression problem in which the output variable y =
[y1, . . . , ym]⊤ is m-dimensional. The joint distribution of data
set D and test pair (x, y) is obtained as

p0(D, x, y)=

∫
p0(ϕ)

(N+1∏
i=1

p0(x[i])p0(y[i]|x[i], ϕ)
)
dϕ,

(19)
where (x[N + 1] = x, y[N + 1] = y) is the test example, and
we have the Gaussian distributions

p0(x) = N (x|0, d−1Id), (20a)
p0(y|x, ϕ) = N (y|ϕ⊤ · x, β−1

0 Im), (20b)

while p0(ϕ) is a mixture of Gaussians with means determined
by an i.i.d. Bernoulli vector b as

p0(ϕ) = E
b

i.i.d.∼Bern(0.5)

[
N (ϕ|µ0b, γ

−1
0 Id)

]
. (21)

We set µ0 = 10, γ0 = 1, β0 = 4, d = |X | = 50, and
m = |Y| = 30. Note that the distribution (19) is exchangeable.

1https://github.com/kclip/cvcrc
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Fig. 3. Empirical inefficiency of VB-CRC and CV-CRC for the vector
regression problem.

Using maximum-likelihood learning, given a training data
set Dtr, we obtain the model parameter ϕML

Dtr used for the linear
prediction model ŷ(x|Dtr) = (ϕML

D )⊤x as ϕML
Dtr = X†

DtrYDtr ,
where (·)† denotes the pseudo-inverse, (·)⊤ denotes transpose,
and the input and label data matrices XD ∈ RN×d and YD ∈
RN×m have input (xtr[i])⊤ and label (ytr[i])⊤ as their ith rows,
respectively.

The NC score is set to the maximum prediction residual
across the m dimensions of the output variable y as

NC((x, y)|Dtr) = 2
∥∥y − ŷ(x|Dtr)

∥∥
∞, (22)

where the infinity norm
∥∥ · ∥∥∞ returns the largest magnitude

of its input vector. This results in predictive sets (12) and (14)
with (17) in the form of Γ = Γ1 × · · ·×Γm, with × being the
Cartesian product and

ΓVB
j =

{
yj

∣∣∣ |yj − [ŷ(x|Dtr)]j | ≤ λVB(Dval|Dtr)/2
}

(23)

with [·]j standing for the jth element of its argument for VB-
CRC, and

ΓCV
j =

K⋃
k=1

{
yj

∣∣∣ |yj − [ŷ(x|D−k)]j | ≤ λCV(D)/2
}

(24)

for CV-CRC. The loss function used in the risk (1) is defined
as

ℓ(y,Γ) =
1

m

m∑
j=1

1
(
yj /∈ Γj

)
, (25)

which evaluates the fraction of entries of vector y that are not
included in the predictive set. This loss satisfies condition (4)
with b = 0 and B = 1. Note that CP is not applicable to this
loss, since it is different from (2).

Lastly, we define the inefficiency as the size of the predictive
set evaluated as the average over all dimensions of the
predictive intervals across the m dimensions of the output
y, i.e., ineff(Γ) = 1

m

∑m
j=1

∣∣Γj

∣∣.
For target risk α = 0.1, the empirical risk and empirical

inefficiency of N te = 200 test covariate-output pairs, averaged

4
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Fig. 4. Temporal point process prediction: After observing the past d times
t1, . . . , tn, a point process set predictor outputs predictive intervals Γj(x|D)
for each of the next m points with j = 1, . . . ,m.
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Fig. 5. Empirical risk (top) and inefficiency (bottom) of VB-CRC and N -CV-
CRC for the temporal point process prediction problem.

over 50 independent simulations, are shown in Fig. 2 and Fig. 3.
Fig. 2, validates the theoretical result that CRC schemes satisfy
condition (1). However, from Fig. 3, VB-CRC is observed to
have a larger inefficiency than CV-CRC, particularly in the
small data set size regime. Thus, CV-CRC uses data more
efficiently, with K = 20 folds striking a good balance between
inefficiency and computational complexity in this regime.

B. Temporal Point Process Prediction

A temporal process consists of a sequence of events at
random times t1, t2, . . . with t1 < t2 < . . . As illustrated in
Fig. 4, given the past d events’ timings x = {t1, . . . , td}, the
goal is to output intervals Γj(x|D) for each of the following
m events with j = 1, . . . ,m. The loss function is defined as
in (25).

Data and test sequences of timings are generated following
a self-exciting Hawkes process [31] with intensity function

λ(t|Ht) = µ+
∑
i:ti<t

(
α1β1e

−β1(t−ti) + α2β2e
−β2(t−ti)

)
,

with µ = 0.2, α1 = α2 = 0.4, β1 = 1 and β2 = 20 [29]. The
predictor is a recurrent neural network that outputs a predictive
density function p(ti+1|t1, . . . , ti, ϕDtr) with trained parameter
ϕDtr [29]. The median t̂i+1(t1, . . . , ti, ϕDtr) of the predictive
distribution is used as the point estimate for the (i + 1)-th
event. For i > d, estimates {t̂j}i−1

j=d+1 are used in lieu of the
correct timings in the point prediction.

VB-CRC (12) produces intervals

ΓVB
j =

{
yj

∣∣∣ |yj − t̂d+j(Dtr)| ≤ γjλVB(Dval|Dtr)/2
}
, (26)

where multiplication by the interval common ratio γ = 1.2
increases the interval sizes for later predictions, and for the
CV-CRC (14), we have

ΓCV
j =

K⋃
k=1

{
yj

∣∣∣ |yj − t̂d+j(D−k)| ≤ γjλCV(D)/2
}
. (27)

We set the length of the observed sequence as d = 60, and
predict the next m = 6 events. We allow one event on average
to lie outside the predicted intervals, i.e., α = 1/6. We average
over 200 independent simulations with N te = 1000 test points
in each run.

The top panel of Fig. 5 illustrate the test risk (25) as function
of data set size N , validating that both scheme attain risks
lower than the desired level α. The bottom panel of the figure
shows that CV-CRC with K = N reduces the average size of
the predicted intervals.

V. CONCLUSION

In this paper, we have introduced a novel conformal risk
control (CRC) scheme based on cross-validation, generalizing
cross-validation CP to losses beyond miscoverage. The pro-
posed CV-CRC was shown to provably control the average risk,
with experiments demonstrating it to be more efficient than VB-
CRC when the available data for training and calibration are
scarce. Further work may consider using the jackknife+ of [9]
instead of the jackknife-minmax for more efficient predictive
sets; and extending the scheme to meta-learning [32].
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APPENDIX A
PROOF THAT VB-CRC ACHIEVES TARGET RISK

In this appendix, we prove condition (13) for VB-CRC. While this result was originally shown in [7], here we provide an
equivelant proof that is more convenient to support the proof of Theorem 1 in Appendix C. We start by bounding the VB-CRC
threshold (11) using the following steps

λVB(Dval|Dtr) = inf
λ

{
λ

∣∣∣∣∣ 1
N val+1

( N val∑
i=1

ℓ
(
yval[i],Γλ(x

val[i]|Dtr)
)
+B

)
≤ α

}

≥ inf
λ

{
λ

∣∣∣∣∣ 1
N val+1

( N val∑
i=1

ℓ
(
yval[i],Γλ(x

val[i]|Dtr)
)
+ ℓ
(
y,Γλ(x|Dtr)

))
≤ α

}
(28)

=: λ′(Dval, x, y|Dtr),

where the inequality in (28) follows from (4). The ground-truth risk averaged over test example (x, y) and validation set Dval

is upper bounded as

EDDDval,x,y∼p0(Dval,x,y)

[
ℓ
(
y,ΓλVB(DDDval|Dtr)(x|Dtr)

)]
≤ EDDDval,x,y∼p0(Dval,x,y)

[
ℓ
(
y,Γλ′(DDDval,x,y|Dtr)(x|Dtr)

)]
(29a)

≤ α, (29b)

where the first inequality (29a) follows the nesting property (8) given inequality (28). The second inequality (29a) is an
application of the following lemma, whose proof is deferred to Appendix B.

Lemma 2. Let v1, . . . ,vM be random variables with an exchangeable joint distribution such that the equation P
(

1
M

∑M
i=1 vi ≤

α
)
= 1 holds. Then, we have the inequality Ev1:M∼p0(v1:M )[vm] ≤ α for all m ∈ {1, ...,M}.

To apply Lemma 2 in (29a), we define M = N val + 1 variables by

vi =

{
ℓ
(
yval[i],Γλ′(DDDval,x,y|Dtr)(x

val[i]|Dtr)
)

i = 1, . . . , N val

ℓ
(
y,Γλ′(DDDval,x,y|Dtr)(x|Dtr) i = N val + 1,

(30)

whose empirical average is, by (28), no greater than α. Furthermore, to comply with the technical conditions of Lemma 2,
variables v1:M need to be exchangeable. This is justified by the following lemma, which is a corollary of [33, Theorem 3] or
[34, Theorem 4].

Lemma 3. Let w1, . . . ,wM ∈ W be a collection of exchangeable random vectors, f : W → R be a fixed mapping, and
g : WM → R be a fixed mapping that is permutation-invariant, i.e., oblivious to the ordering of its M input values. Then, the
M random variables formed as v1 = f(w1, g(w1:M )), . . . ,vM = f(wM , g(w1:M )) are exchangeable.

Lemma 3 implies the exchangeability of variables (30) by defining the N val + 1 exchangeable vectors as

wi =

{
zval[i] i = 1, . . . , N val

(x,y) i = N val + 1;
(31)

the permutation invariant function is set as g(·) = λ′(·|Dtr); the fixed mapping is

vi = f
(
wi = (xi,yi), g(w1:M )

)
= ℓ(yi,Γg(w1:M )(xi|Dtr)); (32)

and we focus on the average risk of the last term, i.e., m = M = N val + 1. This completes the proof of (13).

APPENDIX B
PROOF OF LEMMA 2

In this appendix, we prove Lemma 2. To start, define a bag u = Hu1, . . . , uMI of M elements u1 . . . , uM as a multiset, i.e.,
as an unordered list with allowed repetitions [5]. By definition, two bags u and v are equal if they contain the same elements,
irrespective of the ordering of their identical items, which we write as u

bag
= v. One can form a bag out of a random vector

v1, . . . ,vM ∼ p0(v1:M ) by discarding the order of the items. Accordingly, the distribution of the bag u is given by

p0(u) = P
(
Hv1, ...,vMI bag

= Hu1, . . . , uMI
)
=
∑

π∈ΠM

P
(
v1 = uπ(1), ...,vM = uπ(M)

)
, (33)
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where the sum is over the set ΠM of all M ! permutations. For example, three Bernoulli variables v1,v2,v3 ∼
i.i.d.

Bern(q) with

parameter q ∈ [0, 1] can constitute four different bags. In fact, bag u
bag
= Hv1,v2,v3I equals H0, 0, 0I with probability (w.p.)

(1− q)3, H0, 0, 1I w.p. 3(1− q)2q, H0, 1, 1I w.p. 3(1− q)q2, and H1, 1, 1I w.p. q3.
With these definitions, we obtain the following chain of inequalities

Ev1:M∼p0(v1:M )[vm] = Eu∼p0(u)

[
Ev1:M∼p0(v1:M |u)

[
vm

∣∣∣Hv1, ...,vMI bag
= u

]]
(34a)

= Eu∼p0(u)

[
1
M

M∑
l=1

ul

]
(34b)

= Ev1:M∼p0(v1:M )

[
Eu∼p0(u|v1:M )

[
1
M

M∑
l=1

ul

∣∣∣u bag
= Hv1, . . . ,vMI

]]
(34c)

= Ev1:M∼p0(v1:M )

[
Eu∼p0(u|v1:M )

[
1
M

M∑
l=1

vl

∣∣∣u bag
= Hv1, . . . ,vMI

]]
(34d)

= Ev1:M∼p0(v1:M )

[
1
M

M∑
l=1

vl

]
(34e)

≤ α. (34f)

The inequalities of (34) are justified as follows: (34a) and (34c) stem from the law of iterated expectations over all possible
bags of M items; (34b) arises from the fact that each item in the bag has an equal likelihood to be the realization of the m-th
variable vm; is again the law of iterated expectation with the reintroduction of the random vector; (34d) stems from the fact
that if two bags have the same items, their sum is identical; (34e) leverages the fact that the bag given its random variables is a
deterministically specified; and lastly, (34f) is by the assumption in Lemma 2. This concludes the proof of Lemma 2.

APPENDIX C
PROOF OF THEOREM 1

To prove Theorem 1, let us introduced an augmented data set, such that the last, (K + 1)-th, fold Dte = DK+1 is composed
of N/K arbitrary test points

D̃ =
{
D1,D2, . . . ,DK︸ ︷︷ ︸

=D

,DK+1︸ ︷︷ ︸
=Dte

}
(35)

with the test point (x, y) included as the first point in the test set, i.e., (x, y) = (xte[1], yte[1]) = (xK+1[1], yK+1[1]). By
construction, all N +N/K points in the augmented data set D̃ are exchangeable and distributed according to joint distribution
p0(D̃) = p0(D,Dte). We denote the elements of the augmented set D̃ in (35) as

(x̃k[j], ỹk[j]) = (xk[j], yk[j]) for k ∈ {1, . . .K} (36a)
(x̃K+1[j], ỹK+1[j]) = (xte[j], yte[j]). (36b)

Note that the augmented set D̃ in (35) is different than the augmented set using dummy points Daug (16). For a pair of folds
indices k′, k ∈ {1, . . . ,K + 1} with k ̸= k′, we also define the augmented leave-two-folds-out (L2O) set as the augmented set
without the two indexed folds, i.e.,

D̃−(k′,k) = D̃ \ {Dk′ ,Dk}. (37)

As a special case, when one of the indices points to the (K + 1)-th fold, which is the test fold, the L2O reduces to the
leave-one-out of the available data set D̃−(K+1,k) = D−k. For every fold within the augmented data set D̃ (35), we evaluate
the average L2O loss (37), minimized over the second fold index as

R̂CV
L2O(λ|D̃) = 1

K+1

K+1∑
k=1

K
N

N/K∑
j=1

min
k′∈{1,...,K+1}\{k}

{
ℓ
(
ỹk[j],Γλ(x̃k[j]|D̃−(k,k′))

)}
. (38)

Finally, we define the L2O threshold as the minimal threshold value for which the estimated average L2O risk (38) is no larger
than α, i.e.,

λCV
L2O(D̃) = inf

λ

{
λ
∣∣∣R̂CV

L2O(λ|D̃) ≤ α
}
. (39)
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Corollary 4. The L2O threshold λCV
L2O(D̃) in (39) is fold-permutation-invariant, i.e., for any of the (K + 1)! possible fold-

permutation mappings π, we have

λCV
L2O

(
D̃
)
= λCV

L2O

(
{D̃k}K+1

k=1

)
= λCV

L2O

(
{D̃π[k]}K+1

k=1

)
. (40)

This is due to the commutative property of the outer fold-summation and of the inner, within-fold, summation in (38).

Lemma 5. The L2O threshold λCV
L2O(D̃) in (39) lower bounds the K-CV-CRC threshold (17)

λCV
L2O(D̃) ≤ λCV(D). (41)

The proof of Lemma 5 is given in Appendix D.
We now define K + 1 random variables v1, . . . ,vK+1, whose randomness stems from their dependence on the augmented

data set D̃DD. Each k-th random variable vk is the minimal leave-two-fold-out empirical risk averaged over the N/K examples
in the validation fold DDDk, i.e.,

vk = K
N

N/K∑
j=1

min
k′∈{1,...,K+1}\{k}

{
ℓ
(
ỹk[j],ΓλCV

L2O(D̃̃D̃D)(x̃k[j]|D̃̃D̃D−(k′,k))
)}

for k = 1, . . . ,K + 1. (42)

The random variables
{
v1, . . . ,vK+1

}
=
{
v1(λ, D̃̃D̃D), . . . , vK+1(λ, D̃̃D̃D)

}
are exchangeable for any fixed threshold due to the

exchangeability of the folds in the augmented data set. Therefore, by Lemma 2, we have the inequality

ED̃̃D̃D∼p0(D̃)

[
vK+1(λ

CV
L2O(D̃̃D̃D), D̃̃D̃D)

]
≤ α. (43)

We are now ready to follow the steps

EDDD,x,y∼p0(D,x,y)

[
ℓ
(
y,ΓCV(x|DDD)

)]
= EDDD,x,y∼p0(D,x,y)

[
ℓ
(
y,

K⋃
k′=1

ΓλCV(DDD)(x|DDD−k′)
)]

(44a)

≤ EDDD,x,y∼p0(D,x,y)

[
min

k′∈{1,...,K}

{
ℓ
(
y,ΓλCV(DDD)(x|DDD−k′)

)}]
(44b)

= EDDD,DDDte∼p0(D,Dte)

[
min

k′∈{1,...,K}

{
ℓ
(
yte[1],ΓλCV(DDD)(x

te[1]|DDD−k′)
)}]

(44c)

= EDDD,DDDte∼p0(D,Dte)

[
K
N

N/K∑
j=1

min
k′∈{1,...,K}

{
ℓ
(
yte[j],ΓλCV(DDD)(x

te[j]|DDD−k′)
)}

(44d)

= ED̃̃D̃D∼p0(D̃)

[
min

k′∈{1,...,K}

{
K
N

N/K∑
j=1

ℓ
(
ỹK+1[j],ΓλCV(DDD)(x̃K+1[j]|D̃̃D̃D−(k′,K+1))

)}]
(44e)

≤ ED̃̃D̃D∼p0(D̃)

[
min

k′∈{1,...,K}

{
K
N

N/K∑
j=1

ℓ
(
ỹK+1[j],ΓλCV

L2O(D̃̃D̃D)(x̃K+1[j]|D̃̃D̃D−(k′,K+1))
)}]

(44f)

≤ α, (44g)

where (44a) is a consequence of (14), which is equivalent to ΓCV
λ (x|D) =

⋃K
k=1 Γλ(x|D−k); inequality (44b) is due to the

nesting property (5) applied on a particular left-fold-out k′ which is a subset of the union of all left-fold-out sets; (44d) leverages
exchangeability as all test points have the same expected loss; (44e) uses the augmented data set notations (36b); inequality
(44f) is an outcome of the nesting properties (8) and (5) with inequality (41); in inequality (44g), we have used (43), alongside
Corollary 4, stating that the L2O threshold is fold-invariant. This completes the proof of Theorem 1.
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APPENDIX D
PROOF OF LEMMA 5

The proof of Lemma 5 stated in Appendix C follows the steps

λCV
L2O(D̃) = inf

λ

{
λ

∣∣∣∣∣ 1
K+1

K+1∑
k=1

K
N

N/K∑
j=1

min
k′∈{1,...,K+1}\{k}

{
ℓ
(
ỹk[j],Γλ(x̃k[j]|D̃−(k,k′))

)}
≤ α

}
(45a)

= inf
λ

{
λ

∣∣∣∣∣ 1
K+1

(
K∑

k=1

K
N

N/K∑
j=1

min
k′∈{1,...,K+1}\{k}

{
ℓ
(
ỹk[j],Γλ(x̃k[j]|D̃−(k,k′))

)}
(45b)

+K
N

N/K∑
j=1

min
k′∈{1,...,K}

{
ℓ
(
ỹK+1[j],Γλ(x̃K+1[j]|D̃−(K+1,k′))

)})
≤ α

}

≤ inf
λ

{
λ

∣∣∣∣∣ 1
K+1

( K∑
k=1

K
N

N/K∑
j=1

min
k′∈{1,...,K+1}\{k}

{
ℓ
(
ỹk[j],Γλ(x̃k[j]|D̃−(k,k′))

)}
+ K

N

N/K∑
j=1

B
)
≤ α

}
(45c)

≤ inf
λ

{
λ

∣∣∣∣∣ 1
K+1

( K∑
k=1

K
N

N/K∑
j=1

ℓ
(
ỹk[j],Γλ(x̃k[j]|D̃−(k,K+1))

)
+B

)
≤ α

}
(45d)

= inf
λ

{
λ

∣∣∣∣∣ 1
K+1

( K∑
k=1

K
N

N/K∑
j=1

ℓ
(
yk[j],Γλ(xk[j]|D−k)

)
+B

)
≤ α

}
(45e)

= λCV(D), (45f)

where (45a) stems from the definition in (39); (45b) is obtained by decomposing the first sum into its first K summation terms,
and by listing the last term, the (K + 1)-th, on its own; and (45f) follows the definition in (17). This completes the proof of
Lemma 5.
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