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The transparent conducting oxide SnO2 is a wide bandgap semiconductor that is easily n-type 
doped and widely used in various electronic and optoelectronic applications. Experimental reports 
of the electron mobility of this material vary widely depending on the growth conditions and 
doping concentrations. In this work, we calculate the electron mobility of SnO2 from first 
principles to examine the temperature- and doping-concentration dependence, and to elucidate the 
scattering mechanisms that limit transport. We include both electron-phonon scattering and 
electron-ionized impurity scattering to accurately model scattering in a doped semiconductor. We 
find a strongly anisotropic mobility that favors transport in the direction parallel to the c-axis. At 
room temperature and intrinsic carrier concentrations, the low-energy polar-optical phonon modes 
dominate scattering, while ionized-impurity scattering dominates above 1018 cm–3. 

 

 

Rutile SnO2 is a transparent conductor that finds applications in devices such as 
photovoltaics, sensors, and transistors.1–3 The ease of n-type doping by unintentionally 
incorporated hydrogen or through impurities (F,  Sb) enables free-electron concentrations in the 
1016-1020 cm–3 range.4 Since the first synthesis of SnO2 single crystals,5 numerous experimental 
studies have reported a wide range of electron mobility values.6–12 In contrast, first-principles 
computational studies of electron transport in SnO2, which enable the determination of the 
theoretical upper mobility limit and the differentiation of the various electron-scattering 
mechanisms, have emerged only recently. These existing studies use models and approximations, 
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such as the Fröhlich and acoustic deformation potential (ADP) scattering models and the relaxation 
time approximation (RTA), to calculate electron mobility.13,14 While they reduce the computational 
cost needed to quantify electron scattering and its effect on transport, they have limited 
accuracy.15,16 

In contrast to models, maximally localized Wannier functions (MLWFs) provide an 
efficient and predictive computational framework to interpolate the key quantities of carrier 
transport (electron energies, phonon frequencies, scattering matrix elements) determined from first 
principles to fine Brillouin-zone (BZ) sampling grids.17–19 MLWFs exploit the spatial localization 
of electron and phonon wave-functions in real space to interpolate these quantities to arbitrary 
wave-vectors. The MLWFs are constructed using first-principles calculation on a coarse BZ grid 
and retain first-principles accuracy when interpolating to the fine grids needed to capture electron-
scattering processes. The interpolated quantities are then used to iteratively solve the Boltzmann 
transport equation (BTE) and calculate mobility values.20 To make a meaningful comparison to 
experiment, mobility calculations need to include the two dominant forms of scattering in heavily-
doped semiconductors: electron-phonon scattering and electron-ionized impurity scattering. The 
phonon-limited mobility (intrinsic mobility) represents the upper limit in defect-free 
semiconductors. However, because SnO2 is often doped to high carrier concentrations and has 
shallow donor energies,4 the resulting ionized dopants also constitute a significant source of 
scattering. While doping increases the carrier concentration and hence the conductivity, it is 
important to also consider how mobility is adversely affected by the resulting increased ionized-
impurity concentration. By including the scattering rates from both electron-phonon and electron-
ionized impurity interactions, the combined effect of the two scattering mechanisms can be 
captured in the solution of the BTE.16 

In this work, we calculate the electron mobility in rutile SnO2 as a function of temperature 
and doping concentration from first principles, accounting for scattering by both phonons and 
ionized impurities. We study the temperature dependence of the phonon-limited mobility and 
identify the polar-optical phonons as the dominant scattering modes, finding that at room 
temperature, the low-energy polar-optical phonons around 30 meV contribute to 82% of the 
scattering. The total mobility, limited by both phonons and ionized impurities, decreases with 
increasing carrier concentration due to increasing scattering from ionized dopants. The mobility is 
anisotropic and highest along the c-axis, due to lower electron effective mass and reduced 
scattering along this direction. We also calculate the Hall mobility and find good agreement with 
the highest experimentally measured room-temperature mobility values of 260 cm2/V·s.9 

 
To calculate the electron mobility of SnO2, we iteratively solve the Boltzmann transport 

equation using material parameters obtained from density functional theory (DFT), density 
functional perturbation theory (DFPT), and many-body perturbation theory (G0W0 method) as 
summarized below. Specifics of calculation parameters are provided in the supplementary material. 

We used Quantum ESPRESSO21,22 to carry out DFT structural-relaxation calculations 
within the local density approximation (LDA). The calculated lattice parameters and other material 
properties of SnO2 are in good agreement with previous experimental and theoretical studies (Table 
I). The phonons and electron-phonon matrix elements were calculated using DFPT.23 The phonon 
dispersion and frequencies at the Γ point are shown in Figure S2 and Table SI.24,25 
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To improve the description of the band structure, we used the G0W0 method within 
BerkeleyGW26,27 to calculate quasiparticle corrections to energies of the electronic states.28–30 The 
quasiparticle corrections improve the severely underestimated LDA bandgap (0.749 eV) to a value 
of 3.182 eV that is in better agreement with experiment (Table I). The G0W0 bandgap is still lower 
than the experimental value of 3.59 eV,31 but it is the curvature of the bands that affects the 
calculation of transport properties. The electron effective masses evaluated from the G0W0 
quasiparticle band structure, depicted in Figure 1, are in good agreement with both experiment and 
previous theoretical studies (Table I).31–36  

 

Figure 1 (a) Unit cell of rutile SnO2. The tin atoms are shown in gray and the oxygen atoms in red. (b, c) Conduction band energies 
referenced to the conduction band minimum (CBM) along high-symmetry paths X-𝛤-X and Z-𝛤-Z, with the effective masses along 
each direction labeled. 

Table I Structural, electronic, and optical properties of rutile SnO2, as calculated in this work and 
compared to previous theoretical and experimental studies. The structural parameters were 
obtained through a relaxation with the LDA functional and valence pseudopotentials. Semicore 
pseudopotentials and experimental lattice parameters were used for G0W0 quasiparticle corrections 
to the band structure. * denotes values from quasiparticle G0W0 calculations. 

  a (Å) c (Å) u 𝑬𝒈 (eV) m*⊥ 𝐜 
 

m* ∥ 𝐜 𝜺𝟎⊥ 𝜺𝟎∥  𝜺∞⊥  𝜺∞∥  

This work  4.788 3.248 0.307 3.182* 0.309* 0.211* 14.73 10.65 5.05 5.31 
Previous 
theory 

4.72732 3.20032 0.30632 3.65*32 0.26*32 0.21*32 1234 7.034 3.734 3.934 

Experiment 4.74033 3.19033 0.30633 3.5931 0.29935 0.23435 13.536 9.5836 3.78536 4.17536 

 

We used the EPW code19 to calculate the electron mobility. The quasiparticle energies, 
phonon frequencies, and electron-phonon coupling matrix elements were calculated on an 8×8×12 
Brillouin zone sampling grid and interpolated to finer grids using the maximally localized Wannier 
function method as implemented in Wannier90.17,37 We include both dipole and quadrupole 
corrections to the interpolation of the long-range components of the electron-phonon matrix 
elements.38–40 The quadrupole tensor (Table SII) was calculated using ABINIT41–43 with LDA 
pseudopotentials without nonlinear core corrections,44 while the dipole corrections are handled by 
EPW.19 The interpolated quantities were used to solve the linearized BTE to calculate the phonon-
limited and ionized-impurity-limited16 electron drift and Hall45 mobilities as a function of 
temperature and carrier concentration. The equations used for the mobility calculations are 
reported in section S2. We assume complete donor ionization and set the carrier concentration 
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equal to the ionized-impurity concentration. To examine the temperature dependence, we set the 
carrier concentration at 1017 cm-3 and calculated the mobilities from 100 – 600 K. We also 
investigated the carrier-concentration dependence over the 1016 – 1020 cm–3 range at 300 K.  

We find that the room-temperature electron drift mobility of SnO2, considering the 
combined effects of both phonon and ionized-impurity scattering, for a carrier concentration of 
1017 cm–3 is 373 cm2/V·s in the direction parallel to the c-axis and 228 cm2/V·s perpendicular to 
the c-axis. This anisotropy reflects the difference in effective masses, where m∗ is heavier in the 
perpendicular direction. The anisotropy in the mobilities is stronger than in the effective masses 
(1.64 compared to 1.46), indicating that, in addition to a directional dependence in the band 
curvature, there is also anisotropy in the scattering rates. 

 

Figure 2 (a) Electron drift mobility of rutile SnO2 along ∥ 𝑐 and ⊥ 𝑐 as a function of temperature at a carrier concentration of 
1017 cm–3. (b) Spectral decomposition of the angularly averaged electron-phonon scattering rates by phonon energy at 300 K, for 
carriers 3𝑘𝑏𝑇/2 from the band edge. The dashed line is the cumulative integral of the scattering rates and 82% represents the 
contribution from the lower-energy polar-optical phonon modes. 

We next examine the temperature dependence of the drift mobility and its decomposition 
in terms of scattering by phonons and ionized impurities (Figure 2). The phonon-limited mobility 
decreases with increasing temperature, as expected due to higher phonon occupations at elevated 
temperatures. We fit the temperature dependence of the phonon-limited mobility according to46: 

𝜇ph(𝑇) = ( 1𝜇low 𝑒−𝑇low 𝑇⁄ + 1𝜇high 𝑒−𝑇high 𝑇⁄ )−1 . (1) 
The first term on the right-hand side represents lower-energy phonon modes that dominate 
scattering at lower temperatures, while the second term represents higher-energy phonon modes 
that dominate at higher temperatures. In polar semiconductors where macroscopic electric fields 
created by longitudinal-optical phonons can couple to electrons, polar-optical phonons are often 
the dominant source of phonon scattering.15 Our calculations confirm that the polar-optical modes 
contribute the most to limiting the mobility. The 𝑇low and 𝑇high that we fit (Table SIII) correspond 
to the energies of polar-optical Eu modes with approximate frequencies of 30-40 meV and 80 meV, 
respectively. These same polar-optical modes also have the largest mode-resolved electron self-
energies (Figure S3). The spectral decomposition of scattering rates in Figure 2b show that at room 
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temperature, the lower-energy Eu optical phonon modes with energies of 30-40 meV dominate 
scattering, contributing to 82% of the scattering rate, as the occupations of the higher-energy Eu 
mode is low (4-6%). Because the dominant longitudinal-optical modes are well-described by 
dipole interactions, the inclusion of quadrupole interactions changes the mobilities by less than 1% 
(Section S5). 

We also found that the ionized-impurity-limited mobility increases with increasing 
temperature. This is because carriers with higher kinetic energy are less affected by impurities at 
higher temperatures. The temperature dependence of the ionized-impurity-limited mobility is 
characterized by a power-law model: 

𝜇ii(𝑇) = 𝜇0 ( 𝑇300)𝛼 (2) 
where we normalize temperature and set 𝜇0 to the ionized-impurity-limited mobility at 300 K. For 
SnO2, we find that α is close to 1 for both directions (Table SIII), indicating that there is a nearly 
linear dependence of the ionized-impurity-limited mobility on temperature. 

The total drift mobility, which includes the effects of both phonon and ionized-impurity 
scattering, is dominated by phonon scattering, as seen by its decreasing value with increasing 
temperature. We characterize the temperature dependence of the total mobility by combining the 
previous two equations according to a Matthiessen’s rule-like expression47: 

𝜇total(𝑇) = ( 1𝜇low 𝑒−𝑇low 𝑇⁄ + 1𝜇high 𝑒−𝑇high 𝑇⁄ + 1𝜇0 ( 𝑇300)−𝛼)−1 , (3) 
where the fitted parameters are listed in Table SIII. We find that for a moderate dopant 
concentration of 1017 cm–3, ionized-impurity scattering is weak and electron-phonon scattering 
dominates the mobility. Furthermore, Matthiessen’s rule does not describe SnO2 well across the 
entire temperature range, which can be seen in both the difference in parameters fit for the total 
mobility compared to those for the individual mobilities, as well as through a direct comparison 
of total mobilities to those computed with Matthiessen’s rule (Figure S4). This behavior has also 
been seen in other semiconductors.16 While the scattering rates are assumed to be independent and 
can be added together, this does not mean the inverse of the mobilities can likewise be added 
together because of self-consistency in the solution of the BTE and state-dependent scattering 
rates.16 Matthiessen’s rule is only a good approximation in SnO2 at high temperatures, at which 
phonon scattering dominates. 

Next, we examine the dependence of the drift mobility on the carrier concentration. While 
higher doping concentrations introduce more free electrons, they also contribute more scattering 
by ionized donor impurities. Our results (Figure 3a) show that the high mobility values in the low-
doping regime (dominated by phonon scattering) decrease by approximately 50% in the high-
doping limit. We fit the carrier-concentration dependence of total mobility with the empirical 
expression of Caughey and Thomas:48 
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 6 

𝜇total(𝑛) = 𝜇min + 𝜇max − 𝜇min1 + (𝑛 𝑛ref⁄ )𝛽 , (4) 
where 𝜇max  is the intrinsic mobility if phonons are the only source of scattering, 𝜇min  is the 
mobility when ionized impurity scattering is dominant, 𝛽 characterizes how quickly the mobility 
changes between the two limits, and 𝑛ref is the doping concentration for which the mobility value 
is halfway between the two extremes.49 The fitted parameters are listed in Table SIV. 

 

Figure 3 Room-temperature electron mobility of rutile SnO2 along ∥ 𝑐 and ⊥ 𝑐 as a function of carrier concentration. The dashed 
lines are fits to the Caughey-Thomas model. (a) Drift mobility, and (b) Hall mobility compared to experimentally measured Hall 
values. The experimental values are from Bierwagen and Galazka (B & G) and Fonstad and Rediker (F & R).9,12 

 Finally, to compare to experimental Hall measurements, we calculate the room-temperature 
electron Hall mobility of rutile SnO2 as a function of carrier concentration and find good agreement 
with experimental values. The fitted Caughey-Thomas parameters for the Hall mobility are listed 
in Table SIV. Across the examined range of carrier concentrations, the Hall mobility values are 
similar to the drift mobility and follow the same trend (Figure 3). Experimental measurements of 
the Hall mobility at various carrier concentrations are also shown in Figure 3b for comparison. 
The agreement is excellent in the direction perpendicular to the c-axis, while our calculations 
slightly overestimate mobility compared to experiment along the parallel direction. 

 We compare our results to previous theoretical investigations of carrier transport in SnO2 
to explore how different models and approximations affect the calculated mobility values. A study 
of tin-based oxide semiconductors by Hu et al. 13 used the RTA to calculate the phonon-limited 
drift and Hall mobility of SnO2. Ref. 13 calculates the acoustic phonon-limited mobility using the 
ADP scattering model, the optical phonon-limited mobility using the Fröhlich model, and 
combines the two using Matthiessen’s rule to obtain the total phonon-limited mobility. It finds the 
room-temperature drift mobility parallel to the c-axis to be 229 cm2/V·s and perpendicular to be 
166 cm2/V·s. The anisotropy in these mobility values is lower than the anisotropy in our mobility 
values, but do agree with the anisotropy of our effective masses. This is likely because  Ref. 13 
assumes isotropic phonon scattering and only considers anisotropy in the directionally-dependent 
effective masses. The mobility values in Ref. 13 are lower than ours at nondegenerate 
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concentrations (below 1019 cm–3), despite the fact that it does not consider scattering by ionized 
impurities. This difference could be attributed to the use of the RTA, which underestimates 
mobilities compared to iterative solutions of the BTE. The RTA sums scattering processes into a 
scattering rate that only accounts for scattering out of a given state, while iteration allows for 
scattering back into a state that increases the lifetime and consequently the mobility.50 In fact, we 
find that the room-temperature phonon-limited mobility calculated using the RTA is 40% lower 
than iterative solutions of the BTE (Figure S5). Ref. 13 also calculates the Hall mobility to compare 
to experiment, finding a room-temperature Hall factor of 1.38 which is higher than our Hall factors 
that range between 0.98 and 1.12 across the temperatures and carrier concentrations (Figure S6). 
This discrepancy could be due to the methodology differences for computing the Hall factor. Ref. 
13 uses energy-averaged scattering times that assume parabolic bands and isotropy, while our work 
uses the BTE augmented with a magnetic field term, which takes into account the full details of 
the band structure and scattering processes.  

A computational study on mobility in SnO2 that does take into account both phonon and 
ionized-impurity scattering was performed by Li et al.14 Similarly to our work, the scattering 
mechanisms are combined by summing the individual scattering rates, which is more accurate than 
applying Matthiessen’s rule to the individual mobilities. To calculate scattering rates, Ref. 14 uses 
the ADP and Fröhlich models for acoustic and polar-optical phonons, respectively, and the Brooks-
Herring model for ionized impurities. The mobility is calculated with the RTA using the relaxation 
times from the summed scattering rates. In contrast to this work, Ref. 14 obtains an average 
mobility by averaging along the different directions. The total average mobility Ref. 14 finds is 
lower than our mobilities in both directions, most likely due to the fact that, similarly to Ref. 13, 
this study does not use an iterative solution of the BTE. 

 Many experimental measurements of mobility have been reported for SnO2,6–8,10,11 but we 
compare our results to that of Fonstad and Rediker9 and Bierwagen and Galazka12 because they 
specify the direction of mobility measured. Since our work finds that the mobility values are 
strongly directionally-dependent, a proper comparison to experiment must take this anisotropy into 
account. The mobility is highest along the c direction, which implies that aligning the c-axis along 
the direction of transport would result in better performance for SnO2 electronic devices. The 
anisotropy we find at room temperature is stronger than that found by Bierwagen and Galazka12 
through van der Pauw measurements, which can be seen by our relatively larger mobility along 
the c-axis. The overestimation of mobility can be attributed to extra sources of scattering in 
experiment that our theory does not take into account, such as point defects and dislocations. This 
implies that to optimize device performance, it would be best to focus on minimizing other sources 
of scattering as the intrinsic mobility of the material itself is high. Thin-film devices in particular 
would benefit most from a reduction in interface roughness, which accounts for the largest 
additional source of scattering. Overestimation of the mobility can also be due to overscreening of 
the electron-phonon matrix elements by DFT.45 

 In summary, we calculate the phonon and ionized-impurity-limited electron drift and Hall 
mobility of rutile SnO2 and examine its dependence on temperature and carrier concentration. We 
find that the mobility along the c-axis is approximately 1.6 times higher than in the perpendicular 
direction. The low-frequency polar-optical phonon modes contribute the most to scattering near 
room temperature, while high-frequency polar-optical modes dominate at higher temperatures. We 
also examine the carrier concentration dependence of the mobility, including the effects of both 
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phonon and ionized-impurity scattering, and find that the trend is described well by the empirical 
Caughey-Thomas model observed in other semiconductors. We also find good agreement between 
our calculated Hall mobility values and experimental measurement, particularly along the direction 
perpendicular to the c-axis. Our work provides rigorous, first-principles insights into the dominant 
scattering mechanisms and the upper bounds to the electron mobility in rutile SnO2 and can guide 
the further development of SnO2-based electronic devices. 

 

 

Supplementary Material 

See the supplementary material for more details on the calculation parameters and convergence, 
the full band structure calculated with the LDA functional and with G0W0, the phonon dispersion 
and frequencies, the quadrupole tensor, the highest mode-resolved self-energies, the fitted 
mobility parameters, a comparison of mobilities calculated with Matthiessen’s rule, a comparison 
of the RTA and BTE mobilities, and the Hall factors. 
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The data that support the findings of this study are available from the corresponding author upon 
reasonable request. 
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S1. Calculation parameters 

 

The DFT and DFPT calculations to obtain the electronic wave functions and phonon 

properties used valence pseudopotentials that contain the Sn 5s, 5p, and 4d electrons and the O 2s 

and 2p electrons. We relax the structure to prevent any imaginary phonon frequencies and find 

lattice parameters to be 𝑎 = 4.788 Å and c = 3.248 Å, which underestimate experimental lattice 

constants by 1.0% and 1.8%, respectively.1 The total energies of the DFT calculations were 

converged to within 1 meV/atom with an 8×8×12 k-grid and 140 Ry energy cutoff. 

 

The DFT starting point for the G0W0 calculations used semicore pseudopotentials, which 

include the Sn 4s and 4p electrons, because it has been shown that including semicore states can 

improve the agreement of the bandgap with experiment.2,3 Because the localized semicore states 

would need a high energy cutoff to converge a structural relaxation, we use experimental lattice 

parameters in the DFT starting point calculations. The generalized plasmon-pole model was used 

to include the frequency dependence of the dielectric screening,4 and the convergence of the self-

energies was accelerated with respect to the sum over empty bands using the static-remainder 

approach.5 The G0W0 calculations were converged within 20 meV error with a 45 Ry energy cutoff 

and a sum over 2000 and 2506 total bands for the dielectric matrix and self-energy calculations, 

respectively. 

 

The EPW calculations of the mobilities were converged to within 5% with respect to the 

coarse grid, fine grid, and the energy window. The quasiparticle energies from the G0W0 



 

 2 

calculation and the electron-phonon couplings were interpolated from a coarse 8 × 8× 12 BZ 

sampling grid to a fine grid of 80×80×120 for both the k- and q-points. The number of electron 

states considered was truncated within an energy window around the conduction band minimum 

that ranged from 200 meV for the lowest carrier concentration to 500 meV for the highest carrier 

concentration. 

 

S2. Linearized BTE for drift and Hall mobilities 

 

 Carrier mobility 𝜇 is the change in carrier drift velocity with respect to electric field at the 

limit of zero field (𝜇 = (𝑑𝑣𝑑𝑟𝑖𝑓𝑡/𝑑𝐸)|𝐸=0). This is calculated from first principles by integrating 

over band velocities weighted by the response of the carrier occupation to electric field6: 

𝜇𝛼𝛽 =
−1

𝑉𝑢𝑐𝑛𝑐
∑ ∫

𝑑𝒌

Ω𝐵𝑍
𝑣𝑛𝒌α

𝑛

∂𝐸β
𝑓𝑛𝒌, (S1) 

where α and β are Cartesian directions, 𝒗𝑛𝒌 is the velocity of the state at band index 𝑛 and crystal 

momentum 𝒌, and ∂𝐸β
𝑓𝑛𝒌 ≡ (∂𝑓𝑛𝒌/ ∂𝐸β)|𝑬=𝟎 is the linear response of the carrier occupation with 

respect to the electric field. The drift mobility, or the response of the carrier drift velocity in the 

presence of only an electric field, is calculated by solving for the linear response coefficients using 

the linearized BTE: 

∂𝐸β
𝑓𝑛𝒌 = 𝑒𝑣𝑛𝒌

𝜕𝑓𝑛𝒌
0

𝜕𝜀𝑛𝒌
𝜏𝑛𝒌 + 𝜏𝑛𝒌 ∑ 𝛤𝑚𝒌+𝒒→𝑛𝒌

𝑚𝒒

∂𝐸β
𝑓𝑚𝒌+𝒒. (S2) 

This equation has the linear response coefficients on both the left- and right-hand sides and is 

solved iteratively until self-consistency is reached. The self-energy relaxation time approximation 

can be derived by dropping the last term in Eqn. S2, which removes the need for iteration. 𝑓𝑛𝒌
0  is 

the equilibrium Fermi-Dirac occupation and 𝜀𝑛𝒌 is the energy of the 𝑛𝒌-th state. 𝜏𝑛𝒌 is the state-

dependent total scattering lifetime and its inverse is defined as: 

𝜏𝑛𝒌
−1 = ∑ 𝛤𝑛𝒌→𝑚𝒌+𝒒

𝑚𝒒

. (S3) 

𝛤𝑛𝒌→𝑚𝒌+𝒒 is the partial transition rate from the 𝑛𝒌-th state to the 𝑚𝒌 + 𝒒-th state and, in this work, 

is the sum of transitions due to electron-phonon scattering and electron-ionized impurity scattering: 

𝛤𝑛𝒌→𝑚𝒌+𝒒 = 𝛤𝑛𝒌→𝑚𝒌+𝒒
𝑝ℎ + 𝛤𝑛𝒌→𝑚𝒌+𝒒

𝑖𝑖 . (S4) 

The partial transition rate due to electron-phonon scattering is calculated by summing over all 

phonon modes, using the electron-phonon matrix elements.7 The partial transition rate due to 

electron-ionized impurity scattering is calculated using an ensemble average of randomly 

distributed point charges.8 

 To calculate Hall mobility, or the response of the carrier drift velocity in the presence of 

both an electric and a magnetic field, the linearized BTE is augmented with a magnetic field term: 

[1 −
𝑒

ℏ
𝜏𝑛𝒌(𝑣𝑛𝒌 × 𝑩) ⋅ ∇𝐤] ∂𝐸β

𝑓𝑛𝒌 = 𝑒𝑣𝑛𝒌

𝜕𝑓𝑛𝒌
0

𝜕𝜀𝑛𝒌
𝜏𝑛𝒌 + 𝜏𝑛𝒌 ∑ 𝛤𝑚𝒌+𝒒→𝑛𝒌

𝑚𝒒

∂𝐸β
𝑓𝑚𝒌+𝒒. (S5) 

A small, finite magnetic field of 10-10 T is applied in the calculation and the gradient calculated 

with finite differences. The linear response coefficients from the self-consistent solution of this 

equation are used to calculate the Hall mobility. 
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S3. Band structure 

 

 
Figure S1 G0W0 quasiparticle band structure (solid) and LDA band structure (dotted) of rutile tin dioxide along selected high-

symmetry Brillouin-zone paths. The bands are aligned at the conduction band minimum, which is located at 𝛤.The direct bandgap 

is located at 𝛤 with a magnitude of 3.182 eV (G0W0) and 0.749 eV (LDA). 
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S4. Phonon properties 

 

 
Figure S2 Phonon dispersion of rutile tin dioxide along selected high-symmetry Brillouin-zone paths. 

 

Table SI Optical phonon frequencies (meV) at the Brillouin zone center of rutile tin dioxide 

calculated in this work using the LDA functional, compared with values from experimental studies 

and previous theoretical studies also using the LDA functional. 

  
Phonon mode This work 

(theory) 

Previous theory9 Experiment10 

B1g 10.3 10.2 – 

B1u 17.2 17.2 – 

Eu 24.9 24.8 30.3 

Eu 31.2 31.2 34.2 

Eu 33.7 33.5 36.3 

Eu 37.9 38.0 45.4 

A2g 39.9 39.7 – 

A2u 56.8 56.7 59.1 
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Eg 57.4 57.3 59.0 

B1u 68.7 68.5 – 

Eu 72.8 72.4 76.6 

A1g 76.7 76.5 79.1 

A2u 80.5 80.4 87.4 

Eu 88.2 88.2 95.5 

B2g 91.4 91.0 97.0 

 

 

S5. Quadrupole tensor 

 

The interpolation of the electron-phonon matrix elements includes both dipole and quadrupole 

corrections. The quadrupole corrections were included by supplying the quadrupole tensor (listed 

below) to the EPW calculations. The quadrupole tensor was computed using perturbation theory11 

as implemented in the ABINIT software.12,13 The tin atoms have zero quadrupole tensor because 

their octahedral sites have inversion symmetry, while the oxygen atoms do not.11 We also ran an 

EPW calculation without the quadrupole tensor to quantify the effect of the quadrupole correction, 

and we found a less than 1% difference in the mobility values. At 300 K and a carrier concentration 

of 1017 cm–3, the phonon-limited mobilities are 413.29 cm2/V·s and 247.24 cm2/V·s parallel and 

perpendicular to the c-axis, respectively, with quadrupole corrections, and 413.65 cm2/V·s and 

247.91 cm2/V·s without quadrupole corrections. Quadrupole corrections have been shown to 

mainly affect acoustic modes in polar semiconductors.14 They likely have little effect in this work 

because it is the polar-optical phonons that dominate electron-phonon scattering.  

 

Table SII The quadrupole tensor (in e Bohr) of rutile tin dioxide calculated using ABINIT. Used 

for the interpolation of the long-range component of the electron-phonon matrix elements by EPW. 

(𝑄κα
𝛽𝛾

= 𝑄𝜅𝛼
𝛾𝛽

) 

 

κ α 𝑄11 𝑄22
 𝑄33

 𝑄23
 𝑄13

 𝑄12
 

Sn1 1 0 0 0 0 0 0 

 2 0 0 0 0 0 0 

 3 0 0 0 0 0 0 

Sn2 1 0 0 0 0 0 0 

 2 0 0 0 0 0 0 

 3 0 0 0 0 0 0 

O1 1 2.44970 1.32250 -0.37641 0 0 0.02175 

 2 -1.32250 -2.44970 0.37641 0 0 -0.02175 

 3 0 0 0 0.21113 -0.21113 0 

O2 1 -2.44970 -1.32250 0.37641 0 0 0.02175 

 2 -1.32250 -2.44970 0.37641 0 0 0.02175 
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 3 0 0 0 0.21113 0.21113 0 

O3 1 2.44970 1.32250 -0.37641 0 0 -0.02175 

 2 1.32250 2.44970 -0.37641 0 0 -0.02175 

 3 0 0 0 -0.21113 -0.21113 0 

O4 1 -2.44970 -1.32250 0.37641 0 0 -0.02175 

 2 1.32250 2.44970 -0.37641 0 0 0.02175 

 3 0 0 0 -0.21113 0.21113 0 

 

 

S6. Electron self-energies 

 

Labeling the phonon modes according to increasing frequency at the BZ center, the Eu modes 7, 9, 

and 17 have the largest imaginary self-energies, with mode 17 showing a sharp increase at 

approximately 80 meV above the conduction band where there is enough energy for phonon 

emission. Modes 7, 9, and 17 have frequencies of 31.2, 37.9, and 88.2 meV, respectively, which 

correspond well to both the range of characteristic temperatures that we fit for the temperature 

dependence of the phonon-limited mobility (Table SIII) and the peaks in the spectral 

decomposition of the electron-phonon scattering rates (Figure 2b). 

 

 
Figure S3 Imaginary part of the electron self-energies due to the electron-phonon interaction. The total self-energy is shown along 

with mode-resolved energies of the top three modes. 
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S7. Mobility parameters 

 

We fit the temperature and carrier concentration dependence of the electron mobility to the 

analytical models described in the main text. Listed here are the parameters of the models. 

 

Table SIII Fitted parameters for the temperature dependence of the phonon-limited, ionized 

impurity-limited, and total drift mobilities. 

 

 
𝝁𝐥𝐨𝐰 

(cm2/V·s) 

𝝁𝐡𝐢𝐠𝐡 

(cm2/V·s) 
𝑻𝐥𝐨𝐰 (K) 𝑻𝐡𝐢𝐠𝐡 (K) 𝜶 

𝜇ph(𝑇) ∥ 𝑐 228.12 34.96 361.10 972.23 - 

𝜇ph(𝑇) ⊥ 𝑐 114.50 33.79 393.89 854.67 - 

𝜇ii(𝑇) ∥ 𝑐 - - - - 1.01 

𝜇ii(𝑇) ⊥ 𝑐 - - - - 1.07 

𝜇total(𝑇) ∥ 𝑐 713.44 36.73 123.23 827.82 0.0 

𝜇total(𝑇) ⊥ 𝑐 406.41 30.15 146.18 736.88 0.0 

 

 

Table SIV Fitted parameters for the carrier concentration dependence of the total drift and Hall 

mobility. 

 

 
𝝁𝐦𝐢𝐧 

(cm2/V·s) 

𝝁𝐦𝐚𝐱 

(cm2/V·s) 
𝜷 𝒏𝐫𝐞𝐟 (cm-3) 

𝜇total(𝑛) ∥ 𝑐 163.80 425.89 0.656 7.49×1017 

𝜇total(𝑛) ⊥ 𝑐 139.72 247.26 0.879 5.90×1017 

𝜇total
Hall (𝑛) ∥ 𝑐 161.99 481.16 0.657 5.82×1017 

𝜇total
Hall (𝑛) ⊥ 𝑐 136.33 277.77 0.820 4.72×1017 
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S8. Matthiessen’s rule 

 

 Matthiessen’s rule is a widely used approximation that mobilities limited by different 

scattering mechanisms add in inverse15: 
1

𝜇𝑡𝑜𝑡𝑎𝑙
=

1

𝜇𝑝ℎ
+

1

𝜇𝑖𝑖
 . 

In contrast, we calculate total mobilities by summing the transition rates due to the various 

scattering mechanisms and then solving the BTE with the total transition rates. A comparison of 

the total mobilities calculated each way is shown below in Figure S4. While Matthiessen’s rule 

does describe the total mobility well in the high temperature regime at which phonon scattering 

dominates, it overestimates mobility at lower temperatures where electron-phonon and electron-

ionized impurity scattering are comparable. 

 
Figure S4 Total mobilities computed by summing the scattering rates and then solving the BTE compared to mobilities computed 

using Matthiessen’s rule to combine the phonon-limited and ionized-impurity-limited mobilities. 
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S9. SERTA vs IBTE mobility 

 

For the highest level of accuracy, the Boltzmann transport equation needs to be solved self-

consistently to find the linear response of the carrier distribution to the electric field, which can 

then be used to calculate mobility. The self-consistent procedure is often referred to as the iterative 

Boltzmann transport equation (IBTE). A faster but less accurate approach that doesn’t require 

iteration is the self-energy relaxation time approximation (SERTA), which is a specific form of the 

relaxation time approximation.7 The relaxation time approximation often leads to underestimated 

mobilities,16 which we observe in this system. 

 
Figure S5 The phonon-limited mobilities calculated from iterative solutions of the Boltzmann transport equation (IBTE) and from 

the self-energy relaxation time approximation (SERTA) as a function of temperature. 
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S10. Hall factors 

 

To calculate Hall mobility, we solve a form of the BTE augmented with an electric field term.17 

We find similar drift mobilities and Hall mobilities, signified by Hall factors close to 1 across the 

range of different temperatures and carrier concentrations. 

 

 
Figure S6 The Hall factors for the phonon-limited mobilities as a function of temperature. 
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