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Quality-Aware Hydraulic Control in Drinking Water
Networks via Controllability Proxies

Salma M. Elsherif†,¶, Mohamad H. Kazma†, and Ahmad F. Taha†,∗∗

Abstract—The operation of water distribution networks is a
complex procedure aimed at efficiently delivering consumers with
adequate water quantity while ensuring its safe quality. An added
challenge is the dependency of the water quality dynamics on
the system’s hydraulics, which influences the performance of
the water quality controller. Prior research has addressed either
solving the optimum operational hydraulic setting problem or
regulating the water quality dynamics as separate problems.
Additionally, there have been efforts to couple these two problems
and solve one compact problem resulting in trade-offs between
the contradictory objectives. In contrast, this paper takes a novel
approach by examining the water quality dependency on the
hydraulics from a control-theoretic standpoint. More specifically,
we explore the influence of accountability for water quality con-
trollability improvement when addressing the pump scheduling
problem. We examine its effects on the cumulative cost of the
interconnected systems as well as the subsequent performance
of the water quality controller. To achieve this, we develop
a framework that incorporates different controllability metrics
within the operational hydraulic optimization problem; its aim
is attaining an adequate level of water quality control across the
system. We assess the aforementioned aspects’ performance on
various scaled networks with a wide range of numerical scenarios.

Index Terms—Optimal pump schedule, hydraulics and water
quality regulation and control, controllability metrics, model
predictive control.

I. INTRODUCTION AND LITERATURE REVIEW

THE real-time management and operation of water dis-
tribution networks (WDNs) have been one of the most

researched topics in the field of water systems. The objective
is to fulfill consumers’ and end-users’ needs and deliver
clean water in a cost-effective manner while meeting water
quality (WQ) mandates. Taking into account network-wide
operational flows, pressures, and WQ, achieving the afore-
mentioned objective involves addressing multiple conflicting
objectives. These objectives include minimizing the costs
associated with pumping and disinfectant usage, meeting water
demand, maintaining adequate pressure levels, and satisfying
quality requirements.

For decision-makers (i.e., water utilities), these conflict-
ing objectives formulate challenges to be addressed utilizing
control algorithms that are built and applied in WDNs. The
regulation and control of WDNs primarily revolve around
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two aspects: quantity and quality. For the quantity aspect,
the energy required to operate pumps constitutes the main
component of the operational cost to be minimized while
achieving the target head levels and flows [1]. As for the WQ
aspect, the objective of the control problem is to maintain
desired disinfectant levels all over the WDN with minimum
injections at treatment plants and booster stations [2]. It is
noteworthy that the operation of WDNs requires the consider-
ation of variety of quality parameters (e.g., turbidity, pH levels,
and disinfectant residuals). However, among these parameters,
disinfectant residuals stand out as a crucial indicator of the
actual state of the WQ, while also posing a mathematical
challenge when optimizing its concentrations and injections.
That being said, our paper focuses on disinfectant modeling
and control. Henceforward, when we refer to WQ dynamics in
the remainder of the paper, we specifically address disinfectant
dynamics.

The vintage approach to study WQ dynamics starts with
first running hydraulic simulations that generate schedules
of pumps with their resulting heads and flows through a
WDN. This is then followed by investigating the quality via
booster station control. This is due to the fact that hydraulic
control has a slower time-constant. This paper pursues a new
approach: jointly investigating quality-quantity control via a
unified approach based on systems science and controllability
metrics of quality dynamics.

Controllability, in this context, refers to the ability to effec-
tively steer, regulate, and maintain disinfectant levels within
the network to consistently meet the established water health
standards. In short, the paper attempts to answer this research
questions: Can quality-aware pump control significantly im-
prove water quality dynamics in WDN? What are the quality
controllability metrics that can be appended to a hydraulic
control problem? When is it meaningful to integrate the time-
scales of quality and quantity?

To the best of our knowledge, this is the first attempt to
explore this particular topic from a system and control theo-
retic perspectives. The next section surveys the corresponding
literature.

A. Literature Review

The literature on the regulation and control of WDNs
to deliver clean water to the end-users is rich and briefly
summarized next. The literature on this topic is divided into
(i) studies focusing on determining the optimal operational
settings for pumps and/or control valves to attain the desired
water flows and levels specified by network topology and
characteristics, and consumers demands; (ii) studies that cover
the regulation of WQ dynamics to ensure meeting the standard
disinfectant (i.e., chlorine) residuals throughout the network
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while minimizing the source and booster stations’ injections;
and (iii) studies that propose integrating/coupling controlling
water quantity and quality, therefore considering the interde-
pendencies between them. In this section, we survey these
areas and afterward, we end this section by highlighting the
research gaps that drive the contributions of this work.

Hydraulic Control. The operational control of WDNs de-
pends on several factors including network topology, demand
cycle, tank dynamics, head loss model, pumps type, valves
type, etc. In addition, the resulting control problem is in-
herently nonlinear and nonconvex in nature. Many studies
have covered some or many of the aforementioned factors
and handled the nonlinearity and nonconvexity under different
frameworks. Studies [1], [3] perform system linearization and
apply linear programming to obtain optimal pump scheduling.
Study [4] determines the optimal scheduling by the means
of relaxation and linear programming branch and bound.
Similarly, study [5] relaxes the hydraulic constraints to second-
order cone constraints with penalty terms. On the other hand,
studies [6]–[8] solve nonlinear nonconvex problem using vari-
ations of methods including genetic algorithm and mixed-
integer nonlinear programming. Lastly, study [9] applies ge-
ometric programming-based model predictive control (MPC)
algorithms which turn the problem into a convex continuous
optimization problem. Many of these studies have compared
their results with built-in tools in hydraulics solvers (e.g.,
EPANET’s built-in rule-based control [10])—refer to [11] for
detailed review and analysis of the literature on this topic.

Quality Control. A plethora of optimization-based ap-
proaches have been used to solve the WQ control problem
including: linear programming with the objective of minimiz-
ing chlorine injections [12], mixed-integer linear program-
ming with the allocation of booster stations as a decision
variable [13], and genetic algorithm with a constraint on
the formulation of disinfectant by-products [14]. Conversely
to these studies, study [15] proposes applying MPC to an
explicit representation of the single-species WQ model that
guarantees network-wide control. More on that approach,
study [16] utilizes different techniques to implement real-time
MPC to nonlinear multi-species WQ dynamics—a framework
that covers controlling chlorine levels in WDNs under ab-
normal conditions including contamination events. It is worth
noting that these studies rely on the assumption that systems’
hydraulics are pre-computed.

Joint Quality-Quantity Control. Several studies have inves-
tigated integrating both the quantity and quality control prob-
lems by implicitly and/or explicitly incorporating one or more
quality control aspects within the quantity control framework,
or by turning them into one augmented formulation. In [17],
the authors use nonlinear programming to solve the pump
operation problem that accounts for disinfectant’s residuals
in the constraints. On the other hand, study [18] formulates
a dual quality-quantity optimization problem with a single
augmented objective that concatenates minimizing the energy
cost and maximizing system’s protection by maximizing the
injected chlorine dose. This study utilizes a genetic algorithm

to solve the optimal problem that is based on the two con-
flicting objectives. The posed problem is optimally solved
while conveying the existence of trade-offs within the solution.
Similarly, authors in [19] propose applying a genetic MPC
algorithm to the coupled control problem and compare the
results with real data records of a specific network, which
shows cost reduction. The authors in [20] utilize a nonlinear
MPC integrated optimizer. The control procedure proposed is
divided into two levels: an upper-level controller responsible
for determining optimized pump schedules while satisfying
constraints on chlorine residuals, and a lower-level controller
that computes optimized chlorine injections. More recently,
study [21] solves a two-objectives pump scheduling problem
by means of goal programming. The first objective focuses
on implicitly achieving the required chlorine residuals by
minimizing the active dynamics in storage components, while
the other objective aims towards minimizing the energy cost.

Many of the studies cited earlier on this topic solve a fully
coupled quantity and quality control problem by concatenating
the objectives of each problem into a single-objective or
multi-objective formulation. This approach results in trade-offs
between conflicting objectives, highlighting the necessity for
thorough analysis of these trade-offs. On the other hand, incor-
porating a constraint on WQ, whether implicitly or explicitly,
into the system’s operational scheduling control problem does
not necessarily guarantee the achievement of a certain level of
controllability by booster stations or reachability of the desired
final states. In other words, the notion of optimizing a pumping
schedule while attaining a certain level of WQ controllability,
based on closed-form formulation of the system’s hydraulics
and quality, has not been attempted or investigated—a gap that
is addressed in this paper.

B. Paper Contributions

This paper’s main objective is to investigate the feasibility
and applicability of maintaining a certain level of controllabil-
ity for the WQ model while computing the optimal hydraulic
setting. This implies solving an augmented water networks
operational control problem that accounts for enhancing WQ
from a control-theoretic perspective. In this context, we refer
to the control problem that focuses solely on hydraulics as the
decoupled problem, while the joint quality-quantity problem as
the coupled problem. The corresponding paper contributions
are as follows.

• Water quality systems are inherently complex and mostly
not fully controllable. That is, we investigate the effect
of changing hydraulics on the WQ controllability. This
is measured by employing different quantitative metrics
which allows us to judge the WQ system controllability
from different energy-related perspectives. Eventually, we
judge the applicability and validity of these metrics on the
case-oriented application under our focus.

• We formulate an augmented operational pump scheduling
control problem—the coupled problem—in a way that
conserves a certain level of WQ controllability. This level
is pre-determined depending on the investigation results
performed as outlined in the previous point.
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• A wide comparison between the decoupled and coupled
control problems through various numerical case studies
is performed.

Paper Organization. We start by presenting the hydraulic and
water quality models adopted in Section II. Then in Section
III, we delineate several controllability metrics—and assess
their applicability and validity to our application. Next, we for-
mulate the pumps scheduling optimization problem with and
without the integration of the WQ controllability preservation
in Section IV. We compare between the decoupled and coupled
problems through different case studies in Section V. Lastly,
conclusions, paper’s limitations, and future work are discussed
in Section VI. Moreover, Appendix A provides a detailed list-
ing of the units associated with the variables presented in the
paper, aiding readers in understanding the quantitative aspects
of the study, while Appendix B illustrates the dependency
of WQ controllability on the system’s hydraulics through a
simple example.

II. HYDRAULICS AND WATER QUALITY MODELS

We model WDNs by a directed graph G = (N ,L). The
set N defines the nodes and is partitioned as N = J ∪T ∪R
where sets J , T , and R are collections of junctions, tanks,
and reservoirs. Let L ⊆ N × N be the set of links, and
define it as, L = P ∪ M ∪ V , where sets P , M, and
V represent the collection of pipes, pumps, and valves. In
each network, nL and nN represent the numbers of links and
nodes. Specifically, network’s nodes include numbers of nR

reservoirs, nJ junctions, and nTK tanks. The total number of
links is the summation of nM, nV, and nP, representing the
numbers of pumps, valves, and pipes, respectively.

In our paper, we have two models (i.e., hydraulic and
water quality models) with different numbers of states and
representations. Next, we succinctly list the governing equa-
tions for both models and their final representations. It is
worth mentioning that the hydraulic time-step ∆tH is different
than the water quality one ∆tWQ. The hydraulic time-step is
taken to be within an hourly scale to reflect the patterned
demand, while the water quality time-step is chosen between
minutes and seconds to allow a stable accurate numerical
simulation [22]. Then, variable t represents a specific time in
the simulation period [0, Ts] and it is updated incrementally
by ∆tWQ within each ∆tH reaching the end of the simulation
period (i.e., t = Ts).

A. Modeling Hydraulics

We apply the principles of conservation of mass and energy
to obtain the amount of water flowing in each network link and
the head at each node. For all the network components, we give
brief description of the equations that model these principles
in the next section. In the latter section and based on these
equations, we formulate a compact state-space representation
of the network hydraulics.

1) Water Network Components Modeling: For each of the
following network elements, we model the hydraulics variables
at/through this element depending on their characteristics and
their connection to other elements.

– Reservoirs: We follow the valid assumption that reservoirs
are infinite source of water with fixed head [23]. Thence, the
head at Reservoir i is calculated as hR

i (t+∆tH) = hR
i (t).

– Tanks: We consider tanks with constant cross section along
its height. Change in the head at the tank depends on its cross
section’s area and the algebraic difference between the inflows
and outflows. The head at Tank i is described as

hTK
i (t+∆tH) = hTK

i (t)+
∆tH
ATK

i

( ∑
j∈Lin

qjin(t)−
∑

k∈Lout

qkout(t)
)
,

(1)
where ATK

i is the tank cross section’s area; j and k are the
counters for total Lin links flowing into the node and Lout

links extracting flow from the node; and qjin(t) and qkout(t)
are the inflows and outflows from these links connected to the
node.
– Junctions: The conservation of mass law at junctions is
expressed as∑

j∈Lin

qjin(t)−
∑

k∈Lout

qkout(t) = qDJ
i (t), (2)

where qDJ
i (t) is the consumers’ demand withdrawn from this

junction.
– Pipes: As water flows in a pipe, it starts with the head of the
upstream node and reaches the end-node head by applying the
conservation of energy. The difference between the two heads
is due to the losses caused by friction along the pipe’s length
and localized minor losses (e.g., at bends, fittings, etc.). In
our study, we neglect the minor losses as they are relatively
small in comparison to the friction losses in water networks
[24]. That is, the change in head through Pipe i connecting
and flowing water between node j and node k is expressed in
Eq. (3)—these nodes can be junctions, tanks, or reservoirs.

∆hP
i (t) = hj(t)− hk(t) = riq

P
i (t)|qPi (t)|µ−1, (3)

where qPi (t) is the pipe flow; ri is the pipe resistance coeffi-
cient, which is a function of pipe size, length, and material;
and µ is the constant flow exponent. These parameters’ values
depend on the chosen head loss formula. In our study we use
the Hazen-Williams equation; µ = 1.852 [25].
– Pumps: As an active component with variable speeds, pumps
can provide the system with different values of head gain
according to its operating speed and the corresponding head-
flow relationship [25]. For Pump i adding energy to water
flowing from node j to node k, the head gain is calculated as

∆hM
i (t) = hj(t)−hk(t) = −s2i (t)(h

0
i −αi(s

−1
i (t)qMi (t))νi),

(4)
where si(t) is the pump relative speed varying between 0 and
the maximum speed smax

i , which is a positive unique value
(smax

i > 0) for each pump that depends on its characteristics
and impeller size; h0

i is the shutoff head; qMi (t) is the pump
flow; and αi and νi are pump characteristics coefficients. Note
that the head gain is strictly negative, as the pump provides
the water with more energy, causing the head at the delivery
node to exceed that at the suction node, and no back-flow is
allowed.
– Valves: In our model, we consider pumps to be the only con-
troller of the system. Therefore, we formulate and solve pump



4

operation problem to obtain the optimal pumping schedule that
fulfills the water flow and head constraints. That being the
case, valves in our networks are considered as on-off valves
and they have two states; fully closed or fully open. The
knowledge of valve state is predetermined along the simulation
period. In the case of fully closed, the two nodes connected
by the valve are considered decoupled. For the other case of
fully open valve, it is treated as a straight pipe section with
minor losses [26] that can be expressed as in Eq. (5) for Valve
i connecting nodes j and k.

∆hV
i (t) = hj(t)− hk(t) = miq

V
i (t)|qVi (t)|, (5)

where qVi (t) is the flow through the valve and mi is the minor
losses coefficient that depends on the valve type (e.g., ball,
butterfly, gate, etc.) and its cross-sectional area.

2) Hydraulics in State-Space Form: The hydraulics model
explained in Section II-A1 can be written in a form of nonlin-
ear difference algebraic equations (NLDAE) as expressed in
(6). In these equations, we collect the system state variables
and inputs in vectors of appropriate dimensions as follows:
heads at tanks in w; heads at junctions in l; flows at pipes,
pumps, and valves in z; and relative speed of pumps s. The
vector Ω ∈ RnJ encapsulates the junctions’ demands which
are considered predetermined in our study.

Hydraulic Dynamics: Hyd-NLDAE

w(t+∆tH) = AHw(t) +BHz(t), (6a)
0nJ

= Ezz(t) +EΩΩ(t), (6b)
0nP+nM+nV

= Eww(t) +Ell(t) +Ψ(z, s), (6c)

where {A,B,E}• are constant matrices that depend on the
network’s topology, components’ characteristics, and hydraulic
parameters. Additionally, Ψ(·) gathers the nonlinear terms in
(3), (4), and (5), and 0n is a zero-vector of size n.
B. Water Network Quality Modeling

This model traces the disinfectant concentrations through-
out the network’s components. The evolution of chlorine
concentrations follows the conservation of chemical’s mass,
transport, and single-species reaction and decay models. In
each component, we represent the chlorine concentration as
c with a superscript of the component symbol. Additionally,
we accentuate the hydraulics variables (e.g., velocities, flows,
volumes, etc.) by coloring them in violet whenever they appear
in the WQ model.

1) Conservation of Chlorine Mass in Nodes: For reser-
voirs, tanks, and junctions, the principles of conservation of
mass are applied. Reservoirs are considered a continuous
source of chlorine with constant concentrations over time; for
a Reservoir i, cRi (t + ∆tWQ) = cRi (t). On the other hand,
junctions and tanks are assumed to have complete immediate
mixing at place with no storage for junction and changing
volume with time for tanks [27], [28]. Accordingly, if node i
is defined as a Junction, chlorine concentration at this node is
calculated as

cJi (t) =

∑
j∈Lin

qjin(t)c
j
in(t) + qBi (t)c

B
i (t)

qDJ
i (t) +

∑
k∈Lout

qkout(t)
. (7)

While, if it is defined as a Tank, cTK
i is calculated as follows

V TK
i (t+∆tWQ)c

TK
i (t+∆tWQ) = V TK

i (t)cTK
i (t)

+
∑

j∈Lin

qjin(t)c
j
in(t)∆tWQ + V B

i (t+∆tWQ)c
B
i (t+∆tWQ)

−
∑

k∈Lout

qkout(t)c
TK
i (t)∆tWQ +RTK(cTK

i (t))V TK
i (t)∆tWQ,

(8)

where cjin(t) and ckout(t) are the concentrations in the inflow
and outflow solute; V TK

i (t) is the water volume of the tank,
i.e., V TK

i (t) = ATK
i hTK

i (t); qBi (t) and V B
i (t + ∆t) are

the flow and the volume of chlorine injected to the node
with concentration cBi (t) by booster station if located; and
RTK(cPi (x, t)) is the decay and reaction expression in tanks
(refer to Section II-B3). Booster stations located at tanks
offer water utility operators the ability to maintain constant
chlorine concentrations at outflow pipes. This scenario can
be accommodated by incorporating these constraints into the
control problem. In our paper, we present a generalized model
that can be customized to address this scenario based on
the network being studied, as well as other scenarios with
changing desired levels of chlorine to be maintained.

Booster stations located at tanks can be utilized by water
utilities operators to attain constant chlorine concentrations at
outflows pipes. This scenario is achievable by integrating these
constraints in the control problem. In our paper, we consider a
generalized model that can be tailored to this scenario or not
according to the network under study.

It is worth mentioning that from an operational prospective,
water operators tend to inject chlorine dosages in tanks to
maintain constant chlorine concentrations in th outlet pipe

2) Chlorine Transport and Reaction Model in Links: In
the water quality model, pumps and valves are considered
links with no actual length and accordingly and accordingly
there are no changes in the chemical concentration from the
upstream node. That is, for Pump i and Valve k place after
Junction j, concentrations are expressed as cMi (t+∆tWQ) =
cJj (t+∆tWQ), and cVk (t+∆tWQ) = cJj (t+∆tWQ).

Nonetheless, the transport and reaction model in pipes
is simulated by the one-dimension advection-reaction (1-D
AR) partial differential equation (PDE), which for Pipe i is
expressed as

∂tc
P
i = −vi(t)∂xc

P
i +RP(cPi (x, t)), (9)

where cPi (x, t) is concentration in pipe at location x along
its length and time t; vi(t) is the mean flow velocity which
is a hydraulic variable that characterizes the rate at which
water flows through the pipe; and RP(cPi (x, t)) is the decay
reaction expression in pipes (more explanation is given in
Section II-B3). Eq. (9) is discretized over a fixed spatio-
tamporal grid using the Explicit Upwind scheme—Eulerian
Finite-Difference based method [29], [30]. This scheme is
conditionally stable by satisfying the Courant-Friedrichs-Lewy
condition (CFL). This condition puts limits on the Courant

number λi(t) =
vi(t)∆t

∆xi
to be 0 < λi(t) ≤ 1, for a Pipe i.

Subsequently, the Pipe i with length Li is split into a number

of segments nsi =
⌊ Li

vi(t)∆t

⌋
of length ∆xi =

Li

nsi

, note that
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the symbol ⌊·⌋ donates the floor function, which takes a real
number as input and returns the greatest integer less than or
equal to that number. The chemical concentrations for the pipe
segments, ranging from the first segment cPi(1, t+∆tWQ) to
all segments in between along the pipe’s length, and reaching
the last segment cPi(s, t+∆tWQ), are calculated as expressed
in Equation (10). This calculation assumes that Junction j is
upstream of this pipe.



cPi (1, t+∆tWQ)

cPi (2, t+∆tWQ)
...

cPi (s− 1, t+∆tWQ)

cPi (s, t+∆tWQ)


= (1− λi(t))



cPi (1, t)

cPi (2, t)
...

cPi (s− 1, t)

cPi (s, t)



+ λi(t)



cJj (t)

cPi (1, t)
...

cPi (s− 2, t)

cPi (s− 1, t)


+∆tWQ



RP(cPi (1, t))

RP(cPi (2, t))
...

RP(cPi (s− 1, t))

RP(cPi (s, t))


.

(10)

3) Single-species Decay Model: The single-species decay
model is a first-order model where the chlorine concentrations
are decaying due to wall reaction dynamics in pipes and bulk
reaction dynamics in both; pipes and tanks. Henceforward,
the chlorine decay reaction rates for Pipe i and Tank j are

kPi = kb +
2kwkf

rPi
(kw + kf )

, kTK
j = kb, where kb is the bulk

reaction rate constant; kw is the wall reaction rate constant;
kf is the mass transfer coefficient between the bulk flow and
the pipe wall; and rPi is the pipe radius. It is noteworthy that
these parameters are influenced by many factors, which vary
between water chemistry and contact time for bulk parameters,
and pipe material, pipe age, and biofilm growth for the wall
decay parameters. For a more comprehensive understanding
of how these parameters are determined and the factors that
impact them, we refer readers to [2], [31]–[33]. Eventually,
the decay and reaction expressions for Segment s of Pipe i
and Tank j are

RP(cPi (s, t)) = −kPi c
P
i (s, t), RTK(cTK

i (t)) = −kTK
i cTK

i (t).
(11)

4) Water Quality State-space Representation: The water
quality model described in Sections II-B1, II-B2, and II-B3
can be formulated as the following linear difference equations
(LDE):

Quality Dynamics: WQ-LDE

x(t+∆tWQ) = AWQ(t)x(t) +BWQ(t)u(t), (12)
y(t) = CWQ(t)x(t), (13)

where vector x(t) := {cR(t), cJ(t), cTK(t), cP(t), cM(t),
cV(t)} ∈ Rnx depicts the concentrations of chlorine in
the entire network and the total number of states nx =

nR + nJ + nTK +

nP∑
i=1

nsi + nM + nV; vector u(t) ∈ Rnu

represents the dosages of injected chlorine; vector y(t) ∈ Rny

denotes the sensor measurements of chlorine concentrations
at specific locations in the network. The state-space matri-
ces {AWQ,BWQ,CWQ} are all time-varying matrices that
depend on the network topology and parameters, hydraulic
parameters, decay rate coefficients for the disinfectant, and
booster stations and sensors locations. It is customary to
assume that these matrices evolve at a slower pace than the
states x(t) and control inputs u(t). This is due to the slower
evolution of hydraulic variables, such as flows and heads used
in constructing the WQ system matrices, compared to the
states and inputs related to chlorine concentrations.

III. WATER QUALITY CONTROLLABILITY PROXIES

In this section we introduce the notions of controllability
for linear water quality dynamics. We survey controllability
measures that allow us to qualitatively and quantitatively
evaluate the controllability of the developed water quality
system (12). These metrics are assayed based on their appli-
cability to the water quality model and their suitability to the
optimal pump scheduling problem formulation. We consider
the notion of water quality system controllability and relate
it to the hydraulic pump scheduling problem formulated in
Section IV.

From a control-theoretic perspective, controllability is the
ability to steer a system from initial states xo := x0 to
xs := xTs

by some input u(t) [34]. That is, the goal is to be
able to steer complex dynamical systems to a desired state or
trajectory. Specifically, for water quality control we want to
maintain chlorine concentrations within certain levels.

Definition 1. A linear system [e.g., the water quality system
expressed as (12)] is controllable if for any finite time interval
[0, Ts] and for any initial state xo ∈ Rnx , the initial state xo

can be steered or driven to a final state xTs
∈ Rnx for some

input u(t) under the specified time interval.

That being said, the dynamic linear system (12) is said to
be controllable if only if the controllability matrix for Ns =
Ts

∆tWQ
time-steps given as

CNs
:= {BWQ, AWQBWQ, A2

WQBWQ,

. . . , ANs−1
WQ BWQ} ∈ Rnx×Nsnu , (14)

is full row rank, i.e, rank(CNs
) = nx [35], without loss of

generality as we assume that Nsnu > nx. This is known
as Kalman’s rank condition [34]. However, matrix rank is a
generic property that might lead to similar values depending on
the relations between the variables; it therefore is informative
in a qualitative sense but fails to indicate how controllable the
system is under many cases and various scenarios.
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For the WQ dynamics (12), full row rank of CNs
seldom

occurs—this is due to the complexity and the high dimension-
ality of the system. With that in mind, it is more practical to
consider quantitative measures of controllability which, unlike
the aforementioned rank metric, are able to reflect the difficulty
in controlling the WQ system.

To that end, the notion of control energy
E(AWQ,BWQ, Ns,xo → xTs) is introduced to quantify
the energy needed to steer the system from xo to xTs [36].
Ideally, we want to minimize the energy required to control
the system. The concept of energy-related control depends on
the application. For the case of WQ control, it is related to
the amount of chlorine needed to be injected into the system
to keep a desired chlorine level at the network’s components.

Metrics related to the input energy required are based on the
controllability Gramian Wc(AWQ,BWQ, Ns) := Wc ∈ Rnx

that is defined for Ns sum of matrices pair AWQ and BWQ

as

Wc :=

Ns−1∑
τ=0

Aτ
WQBWQB

⊤
WQ(A

⊤
WQ)

τ = CNs
C⊤
Ns

, (15)

where the controllability Gramian Wc, that is a positive
semidefinite metrics, provides an energy-related quantification
of controllability such that, E ∝ trace(Wc)

−1. We note here
that Wc is non-singular if the system is controllable after time
Ts, otherwise it is uncontrollable.

Remark 1. The WQ system matrices AWQ and BWQ

are ”time-variant" throughout the simulation window due to
changes in hydraulic dynamics. However, within each hy-
draulic time-step, they are considered ”time-invariant", as the
hydraulic variables have not yet been updated till the end of
this hydraulic time-step.

In the literature [37], [38] a myriad of measures exist;
these measures provide a scalar energy-related quantification
of the controllability Gramian Wc. These measures include:
logdet(Wc), trace(Wc), rank(Wc), and minimum eigenvalue
λmin(Wc). A discussion on the aforementioned measures is
given as follows.

1) The logdet(Wc) metric is proportional to the volumetric
measure of the ellipsoid enclosing the set of states that
can be reached with at most a unit control energy input.

2) The trace(Wc) metric is inversely related to the average
controllability energy in all directions of the state-space.

3) The rank(Wc) metric quantifies the size of the control-
lable subspace.

4) The λmin(Wc) metric is inversely related to the control
energy in the most difficult control direction. The smallest
eigenvalue quantifies that the worst-case direction that
requires the largest amount of control energy.

In terms of WQ controllability, the above metrics have
several interpretations. For instance, the rank metric can be
interpreted as quantifying the extent to which an operator (i.e.,
booster station) can influence network components (extent of
WQ control coverage). As such, the larger the rank of the
controllability Gramian, the greater the number of network
components where the chlorine injections have an effective

influence on the residual concentrations within the specified
time interval. The trace and logdet quantify the energy in
all directions of the state-space. Thus, maximizing the control
energy within a system signifies a greater capacity for the
chlorine injections to impact the various states within the water
network over the specified time interval. The λmin indicates
the largest energy needed, which is translated as chlorine
injections, for a specific direction to influence its system states
and steer them to the desired states.

It is worth mentioning that the notion of controllable sub-
space is equivalent to the notion of reachable subspace, this is
related to the representation of the Gramian and its associated
metrics [39]. A system is said to be reachable in a specific
state space if the subspace of all the reachable states from an
initial state xo is equal to the whole state space. Attaining
this propriety is important while controlling complex water
quality dynamics. That is, our goal is to preserve and maintain
a certain level of energy, within a controllable and reachable
subspace. In simpler terms: reachable subspace includes all
the states that a system can reach over time, without nec-
essarily applying any specific control inputs. However, for a
controllable subspace, these states can be reached by applying
specific control inputs.

For an uncontrollable WQ system with total number of
states nx, let the rank of the controllability matrix/Gramian be
k < nx. Then there exists a nonsingular matrix T ∈ Rnx×nx

such that

ĀWQ = TAWQT
−1 =

ĀWQ,11 ĀWQ,12

0 ĀWQ,22

 ,

B̄WQ = TBWQ =

B̄WQ,1

0

 ,

(16)

where ĀWQ,11, ĀWQ,12 and ĀWQ,22 have dimensions of k×
k, k × (nx − k) and (nx − k) × (nx − k), and B̄WQ,1 has
k rows. Namely, ĀWQ,11 and B̄WQ,1 define a controllable
subspace. Defining the controllable subspace is instrumental
in measuring metrics like trace, logdet, and λmin when the
system is not full rank. Readers are referred to [40] for the
theorem pertaining to the development of reachable subspace
decomposition.

To that end, we investigate the use of the aforementioned
metrics on the real-time control and pump scheduling op-
timization problem to achieve the stated goal of preserving
energy within specific subspaces of the system.

IV. HYDRAULICS CONTROL

In this section, we build the decoupled and coupled pump
scheduling problems.

A. Decoupled Pump Scheduling Problem

We first follow the approximation approach for the system
components proposed in [41] to formulate the pump control
problem. The system components include the head loss in
pipes, head loss in valves, head gain in pumps, and pump
power consumption. For the head losses in pipes and valves,



7

we apply piecewise linear approximations that transform (3)
and (5) to multiple linear constraints.

Specifically, each pipe/valve’s head loss curve is segmented
into linear segments, which are determined by connecting
points that can be calculated offline as a pre-optimization step.
For the curve and piecewise linearization presented in Fig.
1a as an example, four points are located and the segmented
lines are connected. Using the equations for these lines, three
constraints are added to the optimization problem for this
specific pipe. When aiming for closer fits (i.e., employing
more segmentation), a drawback emerges in the context of
large network models, which is that scalability is negatively
affected. For formulations of NPW pieces, the constraints for
Pipe i connecting and flowing water between node j and node
k, are as follows

hj(t)− hk(t)−
NPW∑
n=1

m̃nζn(t)−
NPW∑
n=1

b̃ωn(t) = 0, (17a)

qPi (t)−
NPW∑
n=1

ζn(t) = 0, (17b)

NPW∑
n=1

ωn(t) = 1, (17c){
−ζn(t) + qn,minωn(t) ≤ 0,

ζn(t)− qn,maxωn(t) ≤ 0,
(17d)

where m̃n and b̃ are the n segment’s line slope and intercept,
while qn,min and qn,max are the flow boundary limits. In
addition, for the same segment n, ζn(t) and the binary ωn(t)
are decision variables to enable falling within the right segment
range. Constraint (17a) represents the linearized head loss
through the pipe within this segment, (17b) defines the pipe
segments flow equality constraint, (17c) allows the segment
selection, and (17d) are the boundary constraints for each
segment. By adding these equality and inequality constraints
to the optimization problem, new integer decision variables
are introduced; mixed integer programming.

Moreover, in contrast to study [41] we use variable speed
pumps instead of fixed speed pumps, thereby making the
problem more general yet different. This difference arises
due to the variations in pump curves based on the selected
pump speed; see Fig. 1b. Therefore, we follow the proposed
methodology by [42], [43], making minor modifications to
transform the decision variables into the flow through the
pump and pump speed, all while ensuring convexity. This
transformation is achieved by applying the affinity rules that
govern the relationship between pump shaft speed, discharge,
and head gain. These rules relate the discharge and head
gain to the shaft speed via parabolic relations. Specifically,
pump discharge exhibits a linear relationship with pump speed,
whereas head gain depends on the square of the speed. As a
pre-optimization step, both the pump performance curve and
the corresponding power consumption that we aim to minimize
are approximated to formulate two convex expressions to be
integrated in the optimization problem.
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Figure 1. (a) Linear, (b) variable-speed pump curve, and (c) the resultant
power consumption (h0 = 393.7, α = 3.7× 10−6, ν = 2.59).

First, we approximate the characteristic curve of Pump i
from Eq. (4) to the following

∆hM
i

∣∣
App

= β1

(
qMi

)2

+ β2q
M
i + β3

(
sMi

)2

+ β4, (18)

where β1, β2, β3 and β4 are coefficient calculated by mini-
mizing the error between ∆hM

i in Eq. (4) and Eq. (18) with
β1, β3 ≥ 0 to ensure convexity.

Furthermore, alongside the system dynamics and their ap-
proximations addressed in the preceding sections of the paper,
we also account for the physical constraints on the head levels
and flow values among the various network components—
expressed in Eq. (19). Pump speed vector s(t) is constrained
to be between 0 and smax, where the zero values indicate that
the pump is off. These considerations can all be written as
box constraints

w(t) ∈ [wmin,wmax], l(t) ∈ [lmin, lmax],

z(t) ∈ [zmin,zmax], s(t) ∈ [0, smax].
(19)

Lastly, the objective function for this problem enforces
minimizing the cost of power consumption by pumps. This
objective function is expressed as

Π(t) = φEL

nM∑
i

ρWg

ηi(t)
∆hM

i (t)qMi (t), (20)

where φEL is the price of each kW of electricity per hour
($/kWh), ρW is water density, g is the gravity acceleration,
ηi(t) is the efficiency of Pump i under a head gain of ∆hM

i (t)
and flow of qMi (t).

As illustrated in Fig. 1c, the power consumption of pumps
exhibits a nonlinear relationship with respect to the flow
rate, and this relationship shifts when the pump speed is
altered. For a specific pump speed, this objective function
can be approximated to a convex second-order function [43].
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However, when the actual pump speed deviates from the
speed at which the curve is approximated, the optimized pump
power consumption varies substantially from the actual power
consumption—a limitation of [43] to work in a vacancy of the
approximation region. To overcome this issue, we approximate
the objective function to be function in the pump speed
and flow. This approach allows us to avoid constructing an
approximate formulation reliant on head gain with inherent
error, thereby preventing an increase in inaccuracies. We define
this function for Pump i to be

ΠApp(t) = θ1 + θ2q
M
i + θ3

(
qMi

)2

+ θ4s
M
i

+ θ5

(
sMi

)2

+ θ6q
M
i sMi .

(21)

The vector θ := {θi|i ∈ {1, · · · , 6}} collects the coefficients
of the approximate second-order power consumption function.
These coefficients are derived by solving a straightforward
optimization problem aimed at ensuring the convexity of this
function. This function is convex under the condition that its
Hessian is positive semidefinite. The Hessian is defined to

be H =

2θ3 θ6

θ6 2θ5

. That is, we obtain these coefficients

by solving the following optimization problem (22) after pre-
calculating the power consumption (20) for different NM,OP

operating points in the domain of the characteristic curve of
Pump i. Thereby, qMi,j and sMi,j represent the flow rate and
relative speed, respectively, at the j-th operating point (j =
1, . . . , NM,OP) on the characteristic curve of Pump i.

minimize
θ

NM,OP∑
j=1

(ΠApp(q
M
i,j , s

M
i,j)−Π(qMi,j , s

M
i,j))

2 (22a)

subject to H ⪰ 0. (22b)

Eventually, the decoupled pump scheduling optimization
problem is formulated to minimize the pump power con-
sumption while being subjected to the system dynamics and
functional constraints. The modifications made to the pipe
and pump dynamics to ensure a convex formulation lead to
the elimination of the nonlinear formulation in (6); Eq. (6c).
Henceforward, we incorporate these modification in addition
to the linear expressions in (6), referring to this combina-
tion as Hyd-LDAE. The decision variables are collected in
vector Υ(t) := {w(t), l(t), z(t), ζ(t),ω(t), s(t)}. Therefore,
the final optimization problem is represented as mixed-integer
quadratic constrained quadratic problem (MIQCQP) for each
hydraulic time-step:

Decoupled Hydraulic Control

minimize
Υ(t)

ΠApp(Υ(t))∆tH (23a)

subject to Hyd-LDAE (6a), (6b),
(17), (18), (19).

(23b)

B. Coupled WQ-Aware Pump Control

In this paper, we include the discussed water quality
controllability Gramian (WQ-CG) metrics in the previously
developed pump scheduling problem to formulate the cou-
pled WQ controllability-guided pump scheduling optimization
problem. The dependency of those metrics calculations on the
hydraulics settings is direct, yet complex and lead to highly
nonlinear expressions—Appendix B showcases the raised con-
cern for the case of the Three-node network. In addition, mul-
tiple factors should be taken into consideration that reflect the
general and specific characteristics of the operation of WDNs.
These factors impose logical and physical constraints on the
choice and purpose of controllability metric integrated in our
problem. For instance, during the initial simulation time with
zero initial chlorine concentrations throughout the network, we
aim for a higher controllability Gramian rank along with high
energy. This approach also applies to branched networks with
numerous dead-ends to ensure chlorine concentrations remain
within standard limits. Another scenario arises when we need
to store water with sufficient chlorine concentrations in tanks
during off-peak demand periods, ready for distribution when
the tanks are in demand, supplying either specific network
sections or the entire network.

Formulating and solving a problem that takes into account
these factors and achieves the desired level of WQ controlla-
bility presents several challenges. These challenges primarily
arise from the high nonlinearity and complexity involved in
defining these metrics. Note that, as emphasized in Remark
1, the WQ system matrices are time-invariant within the same
hydraulic time-step. Consequently, the controllability Gramian
and associated metrics, as discussed, are also invariant over
this period. However, the formulation of the WQ state-space
matrices, and consequently, its controllability Gramian, de-
pends on factors such as flow directions in each pipe and the
number of segments into which it is discretized. Yet, these
factors are to be determined by solving the problem itself.
In response to these challenges, we propose the approach we
have developed to address these issues effectively.

First, we overcome the flow directions issue while formulat-
ing the AWQ matrix by building it for both cases and use the
introduced binary variables ω(t) for each pipe. These variables
define which pipe piecewise-linearization segment is chosen
and accordingly the flow direction. For each element of the
matrix depending on the flow direction for a specific pipe, it
is multiplied by the summation of half of the ω(t) variables
representing the corresponding direction.

In addition, as explained in Section II, the number of
segments defined for each pipe depends on the water veloc-
ities (i.e., hydraulics in the system and decision variable of
our problem). This number of segments defines the water
quality model dimensions for the simulation window and
accordingly the dimensions of the AWQ and BWQ matrices.
Yet, the hydraulics variables are to be determined by the
problem through which we aim to account for the water
quality controllability. To that end, we define the water quality
system dimensions offline as a prior-control step that preserves
WQ model stability and hydraulics applicable scenarios. We
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randomly generate pump speeds between 0 and 1 and solve
the systems’ flow and heads according to variety of demands
patterns. Then, we calculate the number of segments needed
for each pipe to ensure a fulfilled stability condition. Finally,
we define that number to be the minimum for each pipe out of
all the scenarios. This approach guarantees that after solving
the pump scheduling problem and obtaining actual operational
hydraulic setting, the water quality model is stable and has
been well-represented.

Last, given that our optimization problem is tailored for the
specific purpose of enhancing dynamics within WDNs, we
simplify the utilization of WQ controllability metrics within
this context. This simplification is based on the characteristics
of the dynamics inherent to these systems. These distinctive
dynamics include: (i) booster stations are located on nodes
only, (ii) as each pipe is discretized into number of segments
for WQ dynamics simulation then ensuring controllability
should be over the whole length of it, and (iii) in many
scenarios, we aim for higher controllability coverage and/or
energy to reach specific junctions/dead-ends that serve large
areas and/or tanks scheduled for on-demand operation dur-
ing various simulation intervals. To that end, we adopt the
concept of target controllability [44] given in Definition 2.
Target controllability allows us to choose the desired target
nodes and accordingly eliminates the large dimentionality
issue associate with the WQ representation. In this case, the
metrics are applied to the targeted controllability Gramian
WT = CT WcC

⊤
T .

Definition 2. A discrete linear system is said to be target
controllable with respect to the target set T ⊆ G; |T | = nyf

over time [0, Ts], if for any final output yf (t) = CT x(t), yf ∈
Rnyf and xo ∈ Rnx , the initial state xo can be steered or
driven to final state of the target nodes as yf for some input
u(t) under the specified time interval. The output matrix CT
identifies the set of target nodes T .

By integrating constraints on the target controllability
Gramian to Eq. (23), the coupled optimization problem is
formulated in (24) as nonconvex nonlinear problem.

minimize
Υ(t)

ΠApp(Υ(t))∆tH −Θ1trace(WT (Υ(t)))

−Θ2λmin(WT (Υ(t))), (24a)
subject to Hyd-LDAE (6a), (6b), (17), (18), (19),

rank(WT (Υ(t))) ≥ nyf
− 1, (24b)

where Θ1 and Θ2 are scaling factors.
We choose the target nodes to be the one listed in point (iii)

along with the first and last segment of the connecting pipes
to assure the validation of the flow directions. However, while
employing the targeted controllability Gramian helps reduce
the number of constraints, integrating the metrics results in
nonlinear formulations. Nonlinear solvers can address these
issues, but they demand significantly more runtime, which
escalates exponentially as network size increases. Additionally,
the presence of the "rank" constraint imposes limitations on
this formulation, as many solvers do not support constraints
related to rank. That is, we employ the following simplifica-
tions to accelerate the computational process while achieving

Figure 2. Proposed Quality-Aware Hydraulic Control Framework Flowchart.

the desired output. Some of these simplification strategies are
suitable to relatively small systems, while others are tailored
for larger networks. In addition, some preparation steps can
be taken for all sizes.

First, we approximate the Gramian by eliminating the
denominator in all values of AWQ and BWQ to only result
in polynomial expressions in the Gramian and change its
notation to W̃T . This helps the distinguish process between
the columns/rows for the rank determination and also the
increase in the trace and λmin. Second, depending on the
scenario under consideration, the optimization problem (24)
can be modified to be rank-oriented to achieve desired con-
trollability coverage or/and energy-oriented to achieve desired
controllability energy. To solve the rank constraint issue, we
employ the approach detailed in [45], which involves applying
a convex relaxation of the rank constraint by using a nuclear
norm penalty and specifying the required rank—formulated
as Eq. (25). On the other hand, the energy-oriented problem
(Eq. (26)) is formulated to avoid the transformation needed
to maximize the λmin by maximizing the trace of the target
controllability Gramian built for specific direction.

Quality-Aware Hydraulic Control — Rank-Informed

minimize
Υ(t)

ΠApp(Υ(t))∆tH −Θ3||W̃T (Υ(t))||∗, (25a)

subject to Hyd-LDAE (6a), (6b), (17), (18), (19),

lr||(W̃T (Υ(t)))||2 − trace(W̃T (Υ(t))) ≤ 0,
(25b)

where Θ3 is scaling factor, ||W̃T ||∗ is the nuclear norm,
||W̃T ||2 is the second norm, and lr is the desired rank of
the target controllability Gramian.

Quality-Aware Hydraulic Control — Energy-Driven

minimize
Υ(t)

ΠApp(Υ(t))∆tH −
n∑

i=1

Θitrace(W̃Ti
(Υ(t)))

(26a)
subject to Hyd-LDAE (6a), (6b), (17), (18), (19),

trace(W̃Ti
(Υ(t))) ≥ 0 ∀i = 1, . . . , n. (26b)
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The proposed framework is suitable for networks of all
sizes. However, in scenarios where multiple controllability
constraints need to be satisfied for large networks, the com-
putational time can become demanding. That is, for these
networks the controllability Gramian can be built for a defined
important path of the network.In such cases, we propose
focusing on building the controllability Gramian for specific
important network paths. Depending on network character-
istics, this path can be determined based on factors like high
demands, water transfer between reservoirs and elevated tanks,
or mainline locations before branching occurs. To that end, our
approach is applicable for the entire or parts of the network.

It is worth mentioning that the final formulation is nonlinear
and nonconvex, yet tackled by several solvers and the level
of complexity and accordingly the runtime are determined by
the scenario under consideration. Additionally, In some cases
constraining the optimization problem to reach specific level of
controllability results in infeasible problem. To address this,
we put a condition on our formulation to reduce that level
for such case and re-solve the problem successively until a
minimum level of controllability is proven to be unattainable.
Under such condition, we transition to solving the decoupled
problem and focus on further improvements in subsequent
time-steps. Fig. 2 summarizes the flowchart of the proposed
framework.

After building the proposed framework, we discuss herein
the expected results according to the pump status post-solving
the decoupled problem (23) or any of the coupled problems
(25) or (26). Firstly, we emphasize that the flow is one-
directional in pumps, which leads for the pump to only
provide head increase. That is, while the pump is switched
on, the variables associated with the pump outputted from
either control problems are the flow through the pump, its
operating relative speed, and the difference in head between
the downstream and upstream nodes. Nonetheless, while the
pump is switched off, there are two possible scenarios of
outputs that can be obtained:

1) The pump to have a positive flow with a zero head
increase. This is considered a valid scenario as it can
present a bypass link to the pump to allow water to flow
from the upstream to downstream nodes. As the pump is
assumed to be a link with a really small and almost zero
length, the bypass link can hold the same assumption and
accordingly, the change in head to be zero is valid.

2) The pump to have a zero flow, yet the head increase is
positive. Practically, this head increase is called the shut-
off head of the pump. However, achieving this condition
practically is not feasible as there is no water flowing
through the pump. Similarly to the first scenario, it is
a valid scenario but reflects on a different operation
setting. Typically, pumps are equipped with valves to
prevent backflow, ensuring that all the head above the
pump is dissipated in that valve. In this scenario, water
flows towards the pump from the downstream node, and
the head difference is lost in the valve. To validate this
scenario, it is assumed that the node downstream of the
pump is at an equal or higher elevation than the upstream
node, eliminating the need for the head through the pump

Figure 3. Networks under study and their layouts: (a) Three-node network,
(b) Net1, and (c) Richmond skeleton network.

to incur a head loss under any circumstance.
In both scenarios, the results of the decoupled or coupled
problems may display a pseudo pump relative speed, identified
by examining the flow and head increase, and subsequently
disregarded.

In last, after the pump schedules are computed for the
simulation period, the WQ control problem can be solved by
the appropriate chosen technology. In our paper, we apply
the model predictive control (MPC) algorithm adopted in
[15]. For brevity, we do not include the details and the
derivation of the control problem and we refer the reader to the
cited study reaching the final formulation. Note that, the WQ
control problem is constrained by upper and lower bounds
on the chlorine concentrations at all network components.
These bounds are specified by EPA regulations to be between
xmin = 0.2 mg/L and xmax = 4 mg/L [47].

V. CASE STUDIES

In our study, we investigate the validity of our proposed
control algorithms on three networks; Three-node network,
Net1, and the Richmond skeleton network [48] (see Fig. 3
illustrating their layouts). The Three-node network consists of
a reservoir, a pump, a junction, a pipe, and a tank, in addition
to one booster station located at Junction J1 and one WQ
sensor located at Tank TK1. Net1 has a reservoir, a pump,
a tank, 9 junctions, and 12 pipes. Two booster stations are
positioned at Junctions 1 and 6 of Net1, and two WQ sensors
are placed at Junctions 4 and 9 within the network. Lastly, the
Richmond skeleton network is a schematic representation of
the Richmond water distribution system, which is composed
of one reservoir, 7 pumps, 41 junctions, 6 tanks, 8 valves, 37
pipes, 4 booster stations, and 3 WQ sensors.

A. Hydraulics Settings vs. Water Quality Controllability

Before we showcase the developed optimal pump schedul-
ing approach, that is augmented with a desired level of control-
lability of water quality states, we first provide an investigation
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Figure 4. Flow velocity pattern in P1 of the Three-node network in com-
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towards how varying the pump schedule actually affects the
water quality dynamics. First, we run a hydraulic simulation
on the Three-node network which has a simple layout where
chlorine travels along a single available path. This simulation
results in the heads at TK1 and J1 and the head loss in P1
shown in Fig. 5 and the corresponding velocity profile of P1
as demonstrated in Fig. 4 under the flow directions indicated
in Fig. 3. Next, we construct the WQ-CG and employ the rank
metric to assess the system’s performance. It is important to
note that in our analysis, we exclude Reservoir R1 and Pump
M1 from the assessment as they are upstream of the booster
station located at J1. This exclusion allows us to focus on
evaluating the metric results specifically within the subspace
of interest. We present these results as a percentage of the
rank calculated within every hydraulic time-step, relative to the
total number of states within this subspace (nJ +ns1 +nTK),
number of segments ns1 of P1 is 100 segments.
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Figure 5. Head at Tank TK1 and Junction J1 (top) and the corresponding
head loss in Pipe P1 (bottom) of the Three-node network.

In this particular scenario, the hydraulic time-step is set to 1
hour, while the WQ time-step is 10 seconds. Considering that
Pipe P1 has a length of 1,000 ft, it is necessary for a water
parcel to achieve a minimum velocity of 0.278 ft/sec in order
to traverse the entire length of the pipe and reach Tank TK1
within the specified hydraulic time-step. This velocity directly
influences the change of chlorine concentrations over time and
space as expressed in the advection-reaction equation (Eq. (9)).
It is obvious in Fig. 4 that this characteristic has vital influence
on the WQ controllability; when the velocities through P1
surpass this velocity boundary, the WQ-CG exhibits full rank,
indicating full controllability of the system. On the other hand,
in most cases where the velocities are lower, the system is
uncontrollable with different deviations in the rank of the WQ-
CG. It is worth mentioning that other factors are affecting
the response of the system states to the inputs (in this case,
the chlorine injections at J1). For instance, the rate of change
of water volume at TK1 and the flows rates in the system’s
components, which are directly related to the head levels at
the nodes and the head loss/gain at the links—refer to Fig.
5 and Appendix B. Note that, the rank is calculated with
keeping original MATLAB’s machine epsilon which is equal
to 2.2204e−16. Accordingly, with relative difference in that
metric less than that machine epsilon, the two elements are
considered dependent.
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Figure 6. Controllability metrics, trace and λmin of the controllable subspace
Gramian (Wc) of the Three-node network vs. the percentage (%) of the WQ-
CG rank out of the # states. Change in bars colors to highlight (darker shade)
the windows where the WQ-CG is not full rank.

In addition, in Fig. 6 we showcase the trace(Wc) and
λmin(Wc) metrics of the controllable subspaces of the system
over the same simulation period of 24 hours. It is noticeable
that in many cases where the WQ-CG is full rank, there is
change in the trace and λmin values which reflects varying
levels of energy stored in the system and their respective
directions. Furthermore, the greater the disparity between the
trace and λmin values, the more pronounced the sparsity in
the distribution of energy.

Secondly, we apply three different hydraulic settings on
Net1 resulting in the change in tank volume and the oper-
ational pump head gain depicted in Fig. 7. In the Hyd#1
scenario, Tank 11 is filling throughout the whole simulation
window. Whilst, Hyd#2 and Hyd#3 scenarios have smaller



12

0 2 4 6 8 10 12 14 16 18 20 22 24
0.5

0.75

1

1.25

1.5

T
an

k
V
ol

u
m

e
(f
t3

)

#105

0.5

0.75

1

1.25

1.5
#105

Hyd#1
Hyd#2
Hyd#3

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hr)

210

220

230

240

P
u
m

p
H

ea
d

G
ai

n
(f
t)

210

220

230

240

Figure 7. Change in the volume of Tank 11 and the operational pump head
gain in Net1 under three different hydraulic scenarios; Hyd#1, Hyd#2, and
Hyd#3.

windows where Tank 11 is on demand. This results in different
flow directions for specific pipes, which directly influence the
water quality dynamics. In addition, it results in different total
number of states (i.e, changes the number of segments into
which each pipe is divided). All these scenarios are run over
a 24 hours simulation period with a hydraulic time-step of 1
hour and a WQ time-step of 10 seconds. The total number of
states for Hyd#1 is 490, 470 for Hyd#2, and 425 for Hyd#3.

Fig. 8a shows the change in the rank of the controllability
Gramian for each of the scenarios. The controllability ma-
trix/Gramian does not reach full rank under the conditions
where the booster stations are located at Junctions 1 and 6 and
the water is drawn from Tank 11. In addition, the trace metric
for the controllable subspace is calculated and the results are
illustrated in Fig. 8b. These values are affected by the direction
in which the energy is distributed and the response of the
system states to the inputs. Such response is affected by the
input values in comparison to the systems states—the rate
in which chlorine is injected into the system and the flow
rates in the system. Note that, the results of the logdet metric
for all hydraulic simulations under consideration are equal to
the values of the trace presented in Fig. 8b.This observation
implies that either of these metrics can be effectively employed
in our study. In conclusion, each of the rank, trace, and
λmin reflects an important behavior of the WQ dynamics and
can be taken into consideration to reach the desired level of
controllability over the system tailored to the scenario under
focus.

B. WQ Controllability-Aware Optimal Pump Scheduling

In this section we showcase the results of solving the
decoupled and coupled pump optimal scheduling problems.
The optimization problems are interfaced using YALMIP in
MATLAB R2023a and solved using Gurobi and/or BMIBNB
optimization solvers. The use of two optimization solvers
is to compensate for the difference in the underlying prob-
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Figure 8. For each of the three hydraulic scenarios (Hyd#1, Hyd#2, and
Hyd#3) applied on Net1, (a) the percentage (%) of the WQ-CG rank out of
the # states and (b) trace of the controllable subspace Gramian.

lems formulated for each network and each scenario. The
problems formulations differ in the their level of complexity
and nonlinearity order. That being said, Gurobi is utilized to
solve problems with lower nonlinearity order as it is a robust
and fast solver capable of handling binary decision variables.
Since Gurobi is limited under a highly nonlinear setting, the
BMIBNB solver is used. BMIBNB is a global nonlinear solver
capable of handling nonconvex problems, however as with
all global solvers, the computational time is relatively more
expensive in comparison to Gurobi.

With that in mind, first we apply the decoupled and coupled
problem on the Three-node network under different scenario.
The first scenario imposes no restrictions on the times when
Tank TK1 is in an on-demand or off-demand state. Tank TK1
has a minimum of 904 ft, maximum of 924 ft, and an initial
head level of 912 ft. Fig. 9a shows the optimal pump speed
and Tank TK1 head levels obtained by solving the decoupled
and coupled problems. For this scenario, the coupled problem
is formulated to achieve higher and wider controllability at
the beginning of the simulation period by constraining it with
higher energy. This is done while filling the tank so that when
it is in the on-demand state; it can supply the system with
water that has sufficient chlorine levels. Filling the tank for this
specific window is achieved by initially operating the pump at
a higher speed. However, this increase in the pump speed is
balanced later in the day when the tank supplies the network
and the pump speed is lower compared to the decoupled
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Figure 9. Optimal Tank TK1 head, Pump M1 speed and power unit cost
obtained by solving the decoupled and coupled pump scheduling problems of
the Three-node network under the (a) first and (b) second hydraulic scenarios.

problem. In this scenario, the water quality controller’s per-
formance is effectively improved by injecting chlorine at the
start of the simulation period with fully controllable system.
This approach reduces the reliance on the water volume stored
in TK1, where chlorine concentration tends to decay over
time. In addition, when utilizing the coupled optimization
approach for pump scheduling, the total resulting cost is
8.9% higher compared to the decoupled approach. In terms of
computational efficiency, the solver completes the decoupled
problem in 3.8 seconds, while the coupled problem requires
4.7 seconds to reach a solution. The second hydraulic scenario
that we adopt has an initial tank head level at 908 ft and safe
water level of 909.5 ft (Fig. 9b). The goal of maintaining a safe
water level in TK1 leads to it being in the filling state at the
beginning of the simulation period. Additionally, the coupled
problem aims to higher controllability energy and coverage
levels resulting in higher velocity in Pipe P1. In addition, the
flow directions for both problems differ for the remainder
of the simulation period, and the total operational cost of

pump operation for both problems is comparable. In fact, the
coupled problem’s total cost is lower by 2% in comparison to
the decoupled problem. Moreover, under zero initial chlorine
concentrations at Tank TK1 and Pipe P1, the WQ controller
succeeds to achieve the set point concentration faster by 20
minutes.
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Figure 10. Optimal Tank 11 head and Pump speed obtained by solving the
coupled pump scheduling problem of the Net1 network under the (a) first and
(b) second hydraulic scenarios.

Second, we validate the performance of the coupled problem
on Net1 network. It is worth noting that the pre-computation
of the target controllability Gramian for this network requires
approximately 2 seconds. Consequently, the runtime listed
below exclusively pertains to solving the optimization problem
separated for a 24-hour simulation period. As for the decou-
pled problem, the time required to solve it for this network
using Gurobi is 8.7 sec and 161.1 sec using BMIBNB. On the
other hand, the computational time for the coupled problem–
where both solvers are used alternately during the hydraulic
time-steps based on the constraints developed for each time-
step–amounts to 145.2 seconds. For the first scenario, the
initial Tank 11 head is 920 ft, while the minimum bound on
the head is 910 ft. In this scenario, Junctions 2, 4, and 9 have
water demands with different patterns and bases. Results from
this simulation scenario are illustrated in Fig. 10a. For the
first 6 hrs of the simulation period, Tank 11 is being filled
and accordingly is included in the target nodes while solving
the rank-informed control problem. For the next simulation
window till the 20th hour, Tank 11 is on demand allowing
the pump to work on lower speeds. During this window, the
coupled problem is formulated as an energy-driven problem
with the network’s junctions as the target nodes. However, the
water head in Tank 11 reaches the minimum head level which
requires activating a constraint in the optimization problem
to recover the water level in the tank for the next simulation
period. During the last 4 hrs of the simulation, the energy level
required at start for some directions resulted in an infeasible
solutions and accordingly, the problem is solved decoupled.

Another scenario for Net1, Tank 11 has initial head of 915
ft and minimum safety head of 908 ft. In addition, the stored
water volume in the tank has sufficient chlorine levels of 1.5
mg/L to serve parts of the network, that is, it is excluded from
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the target nodes. Also, the demands’ bases at the junctions are
higher than the first scenario. As shown in Fig. 10b, the pump
speed is lower for the first half of the simulation period to
fulfill the demands at the start of the network while Tank 11
is serving the rest. For the second half, the tank reaches the
minimum safety head and keeps alternating between filling
and emptying states. The coupled problem for this scenario if
formulated to achieve higher controllability energy as the tank
helps with serving the network with water that has sufficient
chlorine levels and accordingly higher network chlorine cover-
age, specifically at the start of the simulation. The integration
of the energy metrics in the hydraulic optimization problem for
this scenario results in balancing the injections of the booster
stations located at Junction 1 and Junction 6, in comparison to
scenarios where the booster station at the start of the network
is overworked and may run to an over capacity state.

Last, we implement our proposed quality-aware pump con-
trol framework on the Richmond skeleton network which has
a more branched layout. This network comprises multiple
elevated tanks at varying elevations, each serving distinct areas
of the network with differing and varying water demands. For
this network, we run multiple hydraulic scenario with varying
target nodes throughout the simulation window. The selection
of target nodes is based on the main pipeline leading to the
tank during filling operations and the inclusion of dead-end
points covered by booster stations. Essentially, the coupled
problem for this network is designed to achieve extensive
controllability coverage in specific network segments while
maintaining a high controllability energy level within areas
with low expected disinfectant residuals. This case study
serves as a validation of the proposed framework’s perfor-
mance on a complex, branched real network and provides
insights into the implementation of WQ control based on the
obtained pump schedule. The average computational time to
solve the coupled optimization problem for these scenarios is
432 seconds. Furthermore, across various scenarios involving
distinct hydraulic settings and constraints, the WQ controller
demonstrates improved and more efficient performance. This
conclusion is drawn from the following observations made
during the aforementioned scenarios: (i) chlorine is injected
by booster stations near tanks that are being filled to reach
desired levels that are set to 2 mg/L; (ii) chlorine injections
are balanced among booster stations to distribute the workload.
For instance, booster station at J9 is not overworked for
the whole network and alternates based on tanks’ on- and
off-demand schedules and J15 supports the network while
ensuring adequate residuals at J20; and (iii) reduction in chlo-
rine injections varies between 3-11% when compared to the
decoupled framework for scenarios with no firm restrictions on
flow directions. However, for scenarios with such constraints,
the increase in injections does not exceed 9%, yet, dead-ends
maintain sufficient chlorine residuals.

VI. SUMMARY, LIMITATIONS, AND FUTURE WORK

This paper provides a comprehensive analysis of how
improving WQ controllability impacts the solution of the
hydraulic settings optimization problem. This aims to enhance

the performance of the WQ control and regulation algorithms.
Specifically, these algorithms’ performance is directly affected
by the system hydraulics. To accomplish this, we incorpo-
rate the goal of improving various controllability metrics
into the operational hydraulics optimization problem, aiming
to achieve a targeted level of water quality controllability
throughout the system. The performance of this approach is
evaluated on three networks: a Three-node network, Net1,
and the Richmond skeleton network. These networks vary
in terms of scale and configurations. Additionally, different
initial hydraulic and quality dynamics are examined for each
network.

The results demonstrate the efficacy of the proposed ap-
proach in enhancing WQ controllability metrics, leading to
a more efficient controller performance in achieving desired
chlorine levels across the network. However, the enhancement
of this performance is significantly influenced by variations
in consumer demand patterns, leading to substantial shifts
in system hydraulics in certain scenarios. Moreover, the net-
work’s configuration has a pivotal role in determining the
operational schedule and chlorine injections, with limitations
imposed in some cases on the feasibility of chlorine reaching
uncontrollable regions due to resultant flow directions. In
conclusion, this approach is a step-forward in advancing the
performance of regulating the water distribution networks
dynamics and further improvement can be achieved by in-
cluding these aspects while designing the network’s layout
and the functional constraints, which can be posed as work
extensions in our group’s future studies. Other future work
encompasses the formulation of joint real-time WDNs control
where hydraulics are updated with feedback that implies the
foreseen effect on both; future hydraulic and WQ settings and
dynamics not an optimization problem that is solved every
hydraulic time-step with no feedback from the future of the
impact of the control action.

It is important to highlight that the main focus of this
work is on addressing an academic and theoretical research
problem within the field of water systems. Our work bridges
various areas of research including hydraulics, water quality,
control theory, and optimization. This highlights the academic
contributions presented herein hold their own merit. There-
fore, while our research may not have immediate practical
implications, it lays the groundwork for future advancements
in the field and highlights the potential benefits of integrating
pump scheduling optimization and enhancing water quality
controllability in WDN regulation and management.

It is essential to recognize limitations in our study, particu-
larly concerning the assumption of pre-allocated booster sta-
tion locations throughout the network. Their locations directly
impact water quality controllability. In our study, we set a
specific befitting configuration that ensures a satisfactory level
of controllability across the entire network under different
scenarios of hydraulic settings. Moreover, the chlorine control
problem addressed in this paper does not account for the health
risks associated with the formation of disinfectant by-products.
To that end, we leave this problem for future work. This entails
optimizing chlorine injections while ensuring that the forma-
tion of disinfectant by-products remains below standard levels,
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thereby mitigating potential health risks. In addition, while
the linear MPC algorithm demonstrates robustness against
uncertainties in chlorine bulk and wall decay parameters [15],
our paper does not explicitly consider these uncertainties in our
chlorine control framework. Consequently, the results obtained
may not fully represent the optimal solutions in the absence of
accounting for these uncertainties. Another limitation of our
study is the reliance on simplified models (e.g., approximate
pump power, pump affinity rules, and pipe head loss dynamics
piece-wise linearization), which may not capture the full
complexity and variability of real-world hydraulic dynamics.
To that end, our future work on this topic will pursue more
advanced models, realistic scenarios involving formation of
the disinfectant by-products, and understanding the role of
uncertainty in impacting WQ controllability and subsequent
pump control problems solutions.

APPENDIX A
VARIABLES AND UNITS

In this appendix, we present the variables used in this
paper, along with their respective unit dimensions, and the
units employed for each variable in the Case Studies section
(Section V).

Table I
VARIABLES AND UNITS

Variable Description Dimensions Units

t Time [T ] second, minute, hour

∆tWQ Water quality time-step [T ] second, minute, hour

∆tH Hydraulic time-step [T ] second, minute, hour

h Head [L] feet

A Area [L2] square feet (ft2)

q Flow rate [L3T−1] gallon per minute (GPM)

s Pump relative speed — —

c Chemical concentration [ML−3] milligram per liter (mg/L)

V Volume [L3] cubic feet (ft3)

v Flow velocity [LT−1] feet per second (ft/sec)

APPENDIX B
WATER QUALITY CONTROLLABILITY DEPENDENCY ON

SYSTEM HYDRAULICS—AN EXAMPLE

In this appendix, we demonstrate the dependence of water
quality controllability on system hydraulics using a straight-
forward example of the Three-node network. In our example,
flow directions are assumed to be as illustrated in Fig. 3. Tank
TK1 is considered filling and off-demand and a booster station
is located at Junction J1 dosing chlorine into the system at a
rate of qB1 (t). The WQ system matrices of Eq. (12) are as
expressed in (27) for this scenario. Note that, to calculate
the concentrations at Junction J1 at time-step t + ∆tWQ

following Eq. (7), the flow rates need to be at the same time-
step. Nevertheless, the water quality time-step operates at the

seconds/minutes scale, whereas the hydraulic time-step is on
an hourly scale. That is, within the same hydraulic time-step,
q(t+∆tWQ) = q(t) for all links.

AWQ(t) =



1 0 0 0 0 0 0

0 0 0 aJ 0 0 0

0 0 aTK 0 0 0 aTK

1 0 0 0 0 0 0

0 aP 0 0 aP 0 0

0 0 0 0 aP aP 0

0 0 0 0 0 aP aP



R1

J1

TK1

M1

P1

,

(27a)

BWQ(t) =



0 0

aB
J 0

0 0

0 0

0 0

0 0

0 0



R1

J1

TK1

M1

P1

, (27b)

where

aJ =
qM1 (t)

qDJ
1 (t) + qP1 (t)

, aBJ =
qB1 (t)

qDJ
1 (t) + qP1 (t)

,

aTK =
(1− kb)V

TK
1 (t)

V TK
1 (t+∆tWQ)

, aTK =
qP1 (t)∆tWQ

V TK
1 (t+∆tWQ)

,

aP = 1− λ(t)− kb∆tWQ, aP = λ(t).

The formulation of the water quality system matrices clearly
demonstrates a strong dependency on the system hydraulics,
which extends to the water quality controllability matrix and
Gramian as well. However, when these matrices are multi-
plied to calculate the water quality controllability matrix and
Gramian in (14) and (15), the nonlinearity order increases
exponentially.
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