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ABSTRACT

We compare the performance of several popular spectrum fitting codes (Firefly, starlight, pyPipe3D and pPXF),

and a deep-learning convolutional neural network (StarNet), in recovering known stellar population properties (mean

stellar age, stellar metallicity, stellar mass-to-light ratio M∗/Lr and the internal E(B-V)) of simulated galaxy spectra

in optical wavelengths. Our mock spectra are constructed from star-formation histories from the IllustrisTNG100-1

simulation. These spectra mimic the Sloan Digital Sky Survey (SDSS) through a novel method of including the noise,

sky residuals and emission lines taken directly from SDSS. We find that StarNet vastly outperforms all conventional

codes in both speed and recovery of stellar population properties (error scatter < 0.08 dex, average biases < 0.02 dex

for all tested quantities), but it requires an appropriate training set. Of the non-machine-learning codes, pPXF was

a factor of 3-4 times faster than the other codes, and was the best in recovering stellar population properties (error

scatter of < 0.11 dex, average biases < 0.08 dex). However, the errors and biases are strongly dependent on both

true and predicted values of stellar age and metallicity, and signal-to-noise ratio. The biases of all codes can approach

0.15 dex in stellar ages, metallicities and log M∗/Lr, but remain <∼0.05 for E(B-V). Using unrealistic Gaussian noise

in the construction of mock spectra will underestimate the errors in the metallicities by a factor of two or more, and

mocks without emission lines will underestimate the errors in stellar age and M∗/Lr by a factor of two.

Key words: galaxies: general, galaxies: stellar content, galaxies: evolution, methods: numerical, methods: data

analysis

1 INTRODUCTION

Determining stellar population properties (such as the mean
stellar age and metallicity) of a galaxy based on its integrated
optical spectrum has been a challenge for several decades.
Pioneers of methods to derive stellar population properties
from spectra (or broad-band spectral energy distributions)
include Morgan (1956); Wood (1966); Tinsley (1968); Faber
(1972); Spinrad (1972). See Conroy (2013) for a contempo-
rary overview of the methods, applicability, and the degenera-
cies inherent in these techniques, especially at optical wave-
lengths. The basic premise of “full spectrum fitting” (or more
generally “population synthesis”) is that the integrated spec-
trum of a galaxy is the linear combination of light from many
simple stellar populations (SSPs) of known ages, metallicities
and chemical enrichments. Decomposing a galaxy spectrum
into its constituent populations in order to derive the star for-
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mation history (SFH), or the average properties of the SFH,
is the goal of full spectrum fitting.

Several modern spectrum fitting codes have been designed
to perform this type of decomposition, and many are in
widespread use. starlight (Cid Fernandas et al. 2005), Pe-
nalized PiXel Fitting (pPXF - Cappellari & Emsellem 2004;
Cappellari 2017, Firefly (Wilkinson et al. 2017) and pyP-
ipe3D (Sánchez et al. 2016; Lacerda et al. 2022) are four
popular examples of modern spectrum fitting codes.

It has been known for some time that optical spectra are
degenerate in age, metallicity and dust properties. For exam-
ple, the spectra of populations with differing ages can have
very different UV components, but look virtually indistin-
guishable in the optical (López Fernández et al. 2016). In-
ferences of the posterior distributions of age and metallicity
for single galaxies span the entire anti-correlated locus that
marks the degeneracy in age and metallicity (Wilkinson et al.
2017).

A promising avenue for helping to resolve such degenera-
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cies is the use of Deep Learning (DL) which is becoming a
widespread tool in astronomy. DL has been used for classify-
ing galaxy images (e.g., Huertas-Company et al. 2018; Bot-
trell et al. 2019; Bickley et al. 2021), classifying galaxy spec-
tra (e.g., Teimoorinia et al. 2022), determining photometric
redshifts (e.g., Brescia et al. 2021), among many other ap-
plications (e.g., Bluck et al. 2022). DL methods use many
more parameters than conventional methods, finding its own
fitting model that translates fluxes in each pixel of a spec-
trum to a quantity of interest, such as the mean stellar age
or metallicity. Lovell et al. (2019) applied DL methods to de-
termine star formation histories from optical galaxy spectra
with some success. Although they only tested spectra with
rather high S/N (of 50), their study nevertheless motivates a
comparison with conventional spectrum fitting methods.

A troubling sign that all is not well with full spectrum
fitting is that different algorithms produce conflicting results
for basic scientific questions. For example, Zheng et al. (2017)
running starlight on the MaNGA IFU survey find slightly
negative age gradients (older centres) with very little corre-
lation with mass. In contrast, Breda et al. (2020) running
starlight on CALIFA galaxies, and Li et al. (2018) running
pPXF on MaNGA galaxies find gradients that imply older
centres for massive galaxies and younger centres for low-mass
galaxies. Correlations with galaxy morphology are also incon-
sistent. Goddard et al. (2017) using Firefly on MaNGA find
slightly younger centres in early-type galaxies and older cen-
tres for late-type galaxies, while Woo & Ellison (2019) run-
ning pPXF on MaNGA find the opposite trend: older centres
in quiescent early-type galaxies and a mix of age gradients
in late-type galaxies. González Delgado et al. (2014) running
starlight on the CALIFA sample find older centres for most
galaxies, but flatter age gradients in early-type galaxies. The
study by (Avila-Reese et al. 2023) on the evolution of galaxy
mass build-up over time is even more ambitious than the
others. Instead of using mere averages of the star formation
history, they draw conclusions based on the full detailed his-
tories on the resolution of a 1-3 Gyr. All of these authors made
scientific inferences about the evolution of galaxies based on
their results.

The study by Lu et al. (2023) investigated age and metal-
licity gradients using a single code (pPXF) but with three
different sets of model SSPs templates. Encouragingly, they
showed that the broad trends between age and metallicity
gradients with velocity dispersion were qualitatively simi-
lar between the three sets of templates, suggesting that it
is the fitting algorithms rather than the choice of templates
that may be responsible for the discrepancies between the
above studies. However, an older study by Cid Fernandes
et al. (2014) found metallicities can vary widely for differ-
ent template choices for a single code (starlight), but ages,
extinctions and masses are relatively robust to the choice of
templates.

What makes it difficult to understand the sources of these
discrepancies is the fact that not only are the codes using
different fitting algorithms, they also choose different sets of
SSP templates to fit, which are constructed from different
stellar libraries and sometimes different initial mass functions
(IMFs). An apples-to-apples comparison of the codes is rel-
atively lacking in the community, where each code is tested
with identical conditions on an identical set of optical spectra
for which the stellar population properties are known. One

study (Magris et al. 2015) compared the recovery of stellar
population parameters for four codes: starlight, DynBas,
TGASPEX and GASPEX, the last three of which are not
public. They found that all codes fit their test spectra with
“almost perfect fits” but that their recovered parameters dif-
fered significantly. Another study by (Ge et al. 2018) com-
pared the performance of two codes, pPXF and starlight,
under the same conditions, finding that pPXF recovers stellar
age, metallicity, mass-to-light ratios and dust extinction with
smaller errors and biases than starlight. However Cid Fer-
nandes & Cid Fernandes (2018) claims that the study by Ge
et al. (2018) was flawed by non-ideal choices in the range
of the colour-excess E(B-V) parameter. Pacifici et al. (2023)
compare 14 codes that fit broad-band SEDs (not spectra) and
find consistencies in stellar mass, but not star-formation rate
and dust attenuation.

The goal of our study is to systematically compare the
ability of four popular spectrum fitting codes (Firefly, pPXF,
pyPipe3d, and starlight) and one DL method (StarNet -
Fabbro et al. 2018) to recover known stellar population prop-
erties from simulated optical spectra. We specifically test the
codes’ ability to recover four properties which are commonly
measured in the literature: the mean mass-weighted stellar
age, the mean mass-weighted stellar metallicity, the r-band
stellar mass-to-light ratio, and the colour excess E(B-V).

Most codes when they are presented, are published with
mock spectra to validate their methods. These spectra were
either created from models or from degraded spectra of globu-
lar clusters. All codes claim excellent performance, often with
less than 0.1 dex error in the recovery of stellar population
properties such as the mean stellar age and the mean stel-
lar metallicity. Yet, they are not always in agreement when
applied to observational data, as evidenced by the examples
given above. The mock spectra are constructed differently
by the authors of the codes, applying different assumptions,
noise profiles, and treatment of (or lack of) emission lines.

What is needed is a standardized set of mock spectra that
truly mimic realistic spectra from a target survey (such as
the Sloan Digital Sky Survey - SDSS York et al. 2000). A key
novel aspect of our analysis is the use of realistic noise. What
has generally not been appreciated in past studies is that re-
alistic noise is often not Gaussian, with sky residuals being
a major contributor to non-Gaussian noise. In this study, we
construct a suite of mock spectra that mimic the SDSS in
nearly every way, not only in the distributions of redshifts,
signal-to-noise ratios (S/N) and velocity dispersions, but also
in the sky residuals, emission lines and even foreground red-
dening, while the underlying SFHs are from the IllustrisTNG
simulation (Nelson et al. 2019). We constructed this suite of
spectra with DL in mind: if DL is to eventually be applied
to real observed spectra, it must be trained on spectra that
actually look like real spectra, although the applicability to
real spectra will be explored more deeply in future work. In
principle, our method can be applied to create mock spec-
tra for any data set, such as MaNGA, MUSE etc. We have
chosen to mimic the SDSS simply for its unparalleled volume
and richness, public availability, prevalence and longevity in
the galaxy evolution community and beyond.

There are many spectrum fitting codes out there that could
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Stellar Populations With Optical Spectra 3

be compared1, and due to computational and human limita-
tions, we could not test them all. Our choice of Firefly, pPXF,
pyPipe3D and starlight was motivated by popularity, com-
putation time and ease of use. Notable codes that we chose
not to test include Prospector (Johnson et al. 2021), FADO
(Gomes & Papaderos 2017) and BAGPIPES (Carnall et al.
2018). Prospector is popular but performs a computationally
expensive Bayesian exploration of the full parameter space,
taking 1-2 days to analyze a single spectrum (S. Tacchella,
private communication). Thus running Prospector is unfeasi-
ble for large datasets such as the SDSS. FADO is one of the
few codes that uses emission lines to constrain the SFH. How-
ever, as detailed in §2, our mock spectra are currently con-
structed such that emission lines are unrelated to the SFH
(due to DL considerations), and are therefore not suitable
for testing FADO. BAGPIPES uses Bayesian analysis to in-
fer the parameters of parametric SFHs. Since the other codes
we tested fit non-parametric SFHs, the accuracy of the stellar
population parameter recovery could not be fairly compared
with BAGPIPES. (For a high-z comparison between BAG-
PIPES and Prospector see Kaushal et al. 2023.)

2 CONSTRUCTING A SUITE OF MOCK
SPECTRA

In order to evaluate an algorithm’s ability to derive stel-
lar population properties from spectra (namely the stellar
age, stellar metallicity, stellar mass-to-light ratio and colour
excess), we require a suite of mock spectra for which 1)
these properties are known, and 2) which closely mimic the
noise properties of observed spectra. To satisfy the first of
these requirements, we extract star-formation histories from
26201 galaxies from between z = 0 and z = 0.03 in the
IllustrisTNG100-1 simulation (Nelson et al. 2019 - hereafter
TNG), selecting as follows. First we selected all centrals with
M∗ > 109.5M⊙ at z = 0 (12200). We divided the galaxies into
star-forming (SF, 7589), green valley (GV, 1743), and quies-
cent (Q, 2868) following the same star-formation rate criteria
as Walters et al. (2021). We then randomly discarded 5589
of the star-forming galaxies to roughly balance the types of
star-formation histories and metallicity evolution (which we
collectively refer to as “SFH”) in our sample. Although hav-
ing an even distribution of star-formation histories has no
effect on the conventional spectrum fitting codes (since the
codes fit each spectrum individually), it has an impact on the
training of StarNet, which is a convolutional neural network.
If the training sample lacks variety, the network can overfit to
the most common examples. Next, we split our z = 0 sample
into a training set (∼80%) and a test set (∼20%). To expand
our sample, we further selected the galaxies at z = 0.01, 0.02
and 0.03 belonging to the main progenitor branch of our z = 0
galaxies, assigning each galaxy to a set (training/test) based
on their z = 0 descendant. It was necessary to follow the
main progenitor branch in order to ensure that there was no
cross-contamination of galaxies or their progenitors between
the training and test samples. By expanding our sample to
include progenitors at earlier adjacent snapshots, we neces-
sarily include very similar, almost duplicate SFHs in both

1 The site sedfitting.org has a long list of them.

samples. They would naturally produce nearly identical “in-
trisic” spectra, but we later apply different noise, reddening
and emission line spectra to the intrinsic spectra (described
below), producing very different final spectra. This kind of
data augmentation is important for training a convolutional
neural network to recognise the underlying stellar population
properties despite different added noise, reddening and emis-
sion lines. Our final training and test samples had 20962 and
5239 galaxies, respectively.

The age, metallicity and mass of the star particles in each
galaxy are provided in the public data release of TNG from
which star-formation histories can be constructed. Fig. 1
shows examples of the SFHs (including the metallicity evo-
lution) constructed from the star particles in TNG, mapped
onto an age-metallicity grid, and colour-coded by the mass
fraction within the grid cells. The grid cells correspond to
53 stellar ages from 0.03 to 13.5 Gyr, and 8 metallicities
[Z/H] (logarithmic metallicity relative to solar) ranging from
-1.26 to 0.26, which are covered by the E-MILES simple stel-
lar populations (SSPs) (Vazdekis et al. 2016). Specifically,
we used the SSPs that assume the Kroupa (2001) univer-
sal IMF, Pietrinferni et al. (2004) (BaSTI) isochrones and
“base” abundances (i.e., following the abundance pattern of
the Milky Way). From these maps we constructed a “noise-
less” spectrum for each galaxy by adding the spectra of the
SSPs, weighting the light from each SSP by the mass fraction
in the corresponding cell. This method is similar in spirit to
that of Nanni et al. (2023), who created mock MaNGA spec-
tra by assigning an SSP to each star particle.

We redden each spectrum using the Calzetti et al. (2000)
extinction curve assuming a uniform foreground screen and
random values of the colour excess E(B-V) following the
gamma distribution shown in Fig. 2. This distribution ap-
proximates the measured distribution of E(B-V) in the SDSS
(as measured by pPXF), but since the effects of reddening
on optical spectra are degenerate with some stellar popula-
tion properties, we did not explicitly draw from any measured
distribution of E(B-V) derived from observed spectra.

The second requirement for any set of mock spectra is
that their noise properties closely mimic observed spectra.
We chose to mimic spectra from the Sloan Digital Sky Sur-
vey (SDSS - DR14). Common practice in constructing mock
spectra is to add Gaussian noise, corresponding to typical
noise levels in the observations. Some (e.g., Cid Fernandas
et al. 2005; Nanni et al. 2023) add wavelength-dependent lev-
els of noise, according to the wavelength dependence seen in
observed spectra. However, real noise is often not Gaussian.
For example, observed spectra (at least from the ground) al-
most always suffer from sky residuals, particularly at longer
wavelengths.

Furthermore, emission lines from H II regions and/or AGN
(including broad lines) contaminate many of the absorption
features that are useful markers of stellar population proper-
ties (e.g., the Balmer absorption lines). H II regions can suffer
from their own internal reddening that differs from the av-
erage reddening of starlight. Realistic spectra should include
realistic emission lines as well as realistic noise.

In order to achieve these levels of realism, we extracted the
noise and emission line spectra directly from real galaxies in
the SDSS by using one of the conventional spectrum fitting
codes (pPXF) to fit both the continuum and emission lines
of the spectra. We chose pPXF since it had the fastest run
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Figure 1. Example star-formation histories (which include metal-

licity evolution) derived from the ages and metallicities of the star
particles of six galaxies drawn from the IllustrisTNG100-1 simula-

tion at snapshot 99. The ages and metallicities of the star parti-

cles of each galaxy are mapped onto an age-metallicity grid, and
colour-coded by their mass fraction. The star symbols indicate the

mass-weighted means of log age and metallicity. Note that the ac-

tual grid used is an irregularly-spaced grid from the SSPs provided
by Vezdekis et al (2016). The grid here has been regularized and

interpolated for illustrative purposes only.

time of the codes we tested and because it fits the continuum
and emission lines simultaneously. From these pPXF fits on
the SDSS, we extracted the residuals, the emission line fits,
the fitted redshift and stellar velocity dispersion, but oth-
erwise discarded the stellar component. An example of an
SDSS spectrum fit with pPXF is shown in Fig. 3. The resid-
uals and emission line fits are shown in the bottom panel,
and it is these that are retained to be added later to the
TNG-generated spectra. For any given TNG-generated mock
spectrum, we randomly selected an SDSS galaxy, and broad-
ened the mock spectrum using the instrumental line-spread-
function and velocity dispersion from that SDSS galaxy. We
then shifted the spectrum to the measured redshift of the
same SDSS galaxy and added its best-fit emission lines to
the mock spectrum. Note that even if the emission lines were
a poor fit, for example due to non-Gaussianity, or the pres-
ence of broad line AGN, the fact that we have also added the
residuals ensures that the entire line profile is realistic. An al-
ternative method to extract realistic noise from real spectra
is to use an autoencoder (e.g., Teimoorinia et al. 2022), but
the emission line extraction would have to be done separately.
One effect of the above procedure of extracting emission

lines from the SDSS is that the reddening and velocity dis-
persion of the emission lines is independent of the reddening
and velocity dispersion of the stellar population. This spec-
trum now represents the “intrinsic” noiseless spectrum of the
galaxy before passing through the Milky Way foreground. We
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Figure 2. The distribution of internal stellar colour excess E(B-V)
values that are applied to our suite of mock spectra.
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) Example pPXF Fit for SDSS galaxy
Data
Emission line fit
Continuum fit
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rest(Å)
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2 Residuals

Figure 3. An example of a pPXF fit of the SDSS galaxy with
the PlateID of 2573, FiberID of 0262, and observed on the MJD

of 54061. The residuals (green) and the emission lines (orange) in
the bottom panel are added to the mock spectra with an unrelated
stellar continuum.

applied a foreground extinction using the position of the se-
lected SDSS galaxy, the maps of Schlegel et al. (1998), and
the Fitzpatrick (1999) extinction curve. Lastly we added the
residuals from the pPXF fit of the same SDSS galaxy to rep-
resent the noise. Note that all wavelengths from the E-MILES
templates were converted to vacuum values before the addi-
tion of the SDSS residuals and emission spectra, which are
given in the vacuum. The spectra are sampled in 4544 loga-
rithmically spaced wavelength bins from 3850-9150 Å in the
observed frame. This fits within the typical wavelength range
of most SDSS spectra to ensure that the residual spectra ad-
equately cover the range of the mock spectra. Examples of
our final mock spectra are shown in Fig. 4, which includes an
example of a broad-line AGN spectrum.

To mimic the information available in real SDSS spec-
tra, in the header of each mock spectrum file we include

MNRAS 000, 1–19 (2024)
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the redshift, velocity dispersion, original noise spectrum (not
the pPXF residuals), foreground E(B-V), and line-spread-
function FWHM from the real SDSS galaxy that provided
the realism of the mock spectrum. Thus we have made it
“easy” for the spectrum fitting codes by providing the ex-
act values of these quantities for their initial guesses (for the
redshift, velocity dispersion), so that only their ability to de-
termine the properties (age, metallicity, reddening, M∗/Lr)
of the underlying stellar population is tested.
The procedure above ensures that our suite of mock spec-

tra shares the same distribution of redshifts, velocity disper-
sion (of both the stars and gas), emission spectra, noise pro-
files and even foreground extinction as our SDSS sample, so
a description of the sample is in order. The SDSS sample
was selected to have z < 0.3, classified as a “science pri-
mary” and not a star or a sky spectrum as denoted by the
“specClass” flag (709537 galaxies). Furthermore, the pPXF
fit must have succeeded (“status” value of greater than 0),
achieved a χ2 < 3 and measured a stellar velocity dispersion
less than 1000 km/s (690790 galaxies). Lastly, some SDSS
spectra are truncated with starting wavelengths in excess of
5000 Å, or longest wavelengths shorter than 6500 Å, making
them unsuitable for extracting residuals. Requiring that the
SDSS spectra cover a wavelength range of 3850-9150 Å re-
sulted in our final sample of 613411 galaxies. It is from this
sample that redshifts, velocity dispersions, emission lines and
residuals are applied to our mock spectra.
Although our mock spectra share the same emission lines

as SDSS galaxies, since they are drawn randomly from the
SDSS sample, the emission lines are completely uncorrelated
with the SFHs that created the underlying continuum spec-
tra. Therefore these spectra are ideal for training a neural
network to identify stellar population properties that are un-
related to emission lines, but are probably unsuitable for test-
ing fitting codes, such as FADO (Gomes & Papaderos 2017),
that use the emission lines to constrain the SFH.
Lastly, recall that our TNG sample included only 26201

galaxies. We have found that the StarNet CNN required a
much larger sample to train on, so we augmented our sample
to 250000 spectra by recycling the original 26201 SFHs many
times, but applying different redshifts, dispersions, emission
lines and noise from different randomly drawn SDSS galaxies.
200000 of these were produced from our original training sam-
ple (80% of the total, or 20962) and were set aside to train
StarNet. The other 50000 were produced from our original
test sample (20%, or 5239) and were used to test StarNet as
well as the conventional fitting codes. This procedure ensured
that no SFH appeared in both sets.

3 THE SPECTRUM FITTING CODES

3.1 Commonalities and Differences in Setup
Conditions

Here we summarize the algorithms of the spectrum fitting
codes that we compare and the settings that we used to
run them. Since our goal is to compare them on as equal
a footing as possible, there were a number of conditions and
preparatory steps that were held in common before running
the codes.
The same mock spectra generated from TNG SFHs were

used for all the codes, and they were transformed to the rest-
frame using the redshift information included in the header
before feeding them to the codes since this was required by
pPXF and starlight. Furthermore, we set each code to use
the same reddening law (Calzetti et al. 2000) to fitAV or E(B-
V). (This was the same law that we used when constructing
the mock spectra.)

We also fitted the mock spectra with a subset of the same
E-MILES SSP templates used to create the spectra. Since
many of the SSP templates differ from each other by an
amount smaller than the typical errors, standard practice in
full spectrum fitting is not to use the full suite of available
SSP templates, but to use a coarse grid in stellar age for
the oldest templates, and finer binning for the youngest. Our
grid of chosen templates includes 16 bins of stellar age: (0.03,
0.05, 0.07, 0.09, 0.2, 0.4, 0.7, 1, 1.5, 2, 3, 5, 7, 9, 11 and 13.5
Gyr), and 8 bins of metallicity ([Z/H] = -1.26, -0.96, -0.66,
-0.35, -0.25, 0.06, 0.15 and 0.26), making a total of 128 tem-
plates. So, although a finer grid of 53x8 E-MILES templates
was used to construct the spectra, we use a coarser grid to fit
them. Thus, for all codes the time- and metallicity-resolutions
of the SFH’s are limited by our coarser grid.

Note that in the current version of Firefly (v1.0.1), the user
can choose between various flavours of the Maraston mod-
els for different input libraries including MILES, ELODIE,
STELIB, MARCS, and MaStar (Maraston et al. 2020). We
added a few lines to Firefly to read the E-MILES templates
instead. However we also repeated the Firefly runs to fit
MaStar templates to mock spectra created with MaStar tem-
plates, and found that our results were not significantly dif-
ferent.

The StarNet CNN uses information in the spectrum it-
self to compute stellar population properties (as described in
§3.6), and hence no SSP templates are used for StarNet.

While desiring a fair comparison between the codes, we
also wished to compare them as much as possible on the
basis of their “out-of-the-box” features, i.e., those requiring
minimal pre-processing on the the part of the user. Therefore,
some built-in features were by necessity different between the
codes.

A major feature not kept in common between the codes was
the treatment of emission lines. Both pPXF and pyPipe3D
fit emission lines as part of the spectrum fitting process, but
Firefly and starlight do not. Therefore, for the latter two
codes, we masked the regions of the following emission lines,
while for the former two we fit them explicitly:

• [OII]3726, 3729
• [OIII]4959, 5007
• [NII]6548, 6583
• [SII]6717, 6731
• Balmer lines from Hα to Hδ

These were chosen since they are the brightest nebular
lines, and all other lines are usually insignificant. pPXF in-
cludes an example of how to add emission lines to the fit
(ppxf utils.py). It was simple to comment out the extra
emission lines that are not in the above list. Sky residuals
were not masked or fitted for any of the codes.

As described in §2, some of the mock spectra contain broad-
line AGN emission in the Balmer lines because the emission
lines are drawn from the SDSS. None of the codes are de-
signed to deal with them properly: Firefly and starlight
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Figure 4. Examples of our final mock spectra created by convolving the E-MILES SSP templates with SFHs from the TNG100 simulation
at different redshifts. These spectra include realistic noise, including sky residuals, emission lines, and includes an example with broad

emission from an AGN (bottom panel).

require line masking (we chose masks 9 Åor 400 km/s) which
do not adequately cover broad lines. pPXF fits emission lines,
but imposes a maximum velocity dispersion of only 1000
km/s. This can be adjusted by the user, but we have kept
the default, and have only fit a single component for simplic-
ity. pyPipe3D’s default configuration fits a maximum velocity
dispersion of 5.5 Å for the Hα line and 7.5 Å for Hβ, also in-
sufficient for covering the AGN. Therefore we expected that
the stellar population ages to be poorly determined for these
spectra for the non-DL codes.

Note that StarNet, as all CNNs, performs computations
on uniform grids of data, and hence is not able to handle
masked data, such as masked emission lines at different red-
shifts. Therefore, emission line masking is not performed for
StarNet.

A less significant difference between the codes is the treat-
ment of the foreground extinction. Firefly reddens its tem-
plates with the foreground value before fitting (using the
Fitzpatrick 1999 parametrization) and so no de-reddening
beforehand is necessary. However the other codes required
de-reddening of the mock spectra for the foreground as a pre-
processing step (also using the Fitzpatrick 1999 curve). We
also performed a de-reddening of the foreground extinction
before running the spectra through StarNet.

We also compared the run time for each of these codes. Run
time will of course depend on a number of factors including
the number of stellar templates used (which we made the
same for all the codes), whether emission lines are fitted (2
out of the 4 conventional codes), how many pixels are masked

(differs between the codes), and of course, the CPUs involved.
We used the generous national resources of Digital Resources
Alliance of Canada (formerly Compute Canada), specifically
the Cedar heterogeneous compute cluster. We ran the codes
in an “embarrassingly parallel” manner (which refers to the
parallelization scheme where there is no communication be-
tween processes) and report the average runtime of each code
for a single spectrum on a single CPU in Table 1.

Our goal was to test the codes’ ability to recover the fol-
lowing four properties of the population: the mean mass-
weighted logarithm of the stellar age, the mean mass-
weighted stellar metallicity, the r-band stellar mass-to-light
ratio, and the colour excess E(B-V). As is common in the
literature, the mass-weights for the age and metallicity re-
fer to the total stellar mass ever formed (i.e., the integral of
the SFH), while the mass-to-light ratio refers to the current
living stars only. The non-DL fitting codes compute much
more information, such as the full SFH, and some estimate
the errors on the outputted parameters. However the StarNet
CNN needs to be trained to recover specific parameters, and
we chose the aforementioned four. Future studies will test
and compare the recovery of the full SFH.

In the next subsections, we summarize the algorithms of
each code (in alphabetical order) as well as the specific pre-
processing steps we performed to run each code. Table 1 sum-
marizes the salient points of each code.
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Firefly pPXF pyPipe3D STARLIGHT StarNet

Version v1.0.11 v8.1.02 v1.1.5 v04 N/A3

Language Python Python Python Fortran Python

Runtime (per
spectrum)

43s 11s 97s 99s 0.0004s (+9 min
one-time training)

Emission lines masked (9 Å) simultaneous fit separate fit masked (400 km/s) not fitted

Regularization No Yes No No No

Algorithm Sum of SFHs

weighted by χ2

likelihoods

Levenberg-Marquardt

and CapFit simul-

taneously fit all
parameters

Step 1: fit z, σ and

AV . Step 2: fit emis-

sion lines. Step 3:
MC fitting of SFHs

MCMC to find min-

imum of SFH pa-

rameter space

CNN: 2 convolu-

tional layers, 1 max

pooling layer, 3 fully
connected layers

Table 1. Summary of spectrum fitting codes. Notes: 1Firefly was modified to use the E-MILES templates, and fix 2 bugs (see §3.2).
2pPXF was modified to only include the emission lines listed in §3.1. 3StarNet is a simple script that was kindly provided by one of the

co-authors of Fabbro et al. (2018).

3.2 Firefly

Firefly (Wilkinson et al. 2017 and updated in Neumann et al.
2022) is a χ2 minimization code that attempts to broadly ex-
plore the χ2 parameter space of SFHs, while avoiding unnec-
essarily complex solutions that prolong computation time.
The basic algorithm is to test the χ2 values between the
model and data linear flux, combining increasingly complex
SFHs that consist of a linear combination of equally weighted
SSPs. The SFHs that do not decrease χ2 compared to sim-
pler SFHs (i.e., those consisting of fewer SSPs) are discarded.
After obtaining a set of acceptable SFHs (usually numbering
in the thousands), the likelihood of each SFH is computed
from the chi-squared probability distribution. The final solu-
tion is the sum of each SFH, weighted by their likelihoods.
Firefly performs an initial run of this algorithm to produce an
unreddened best-fit spectrum. A reddening spectrum is then
computed from the difference between data and the best-fit,
which is then applied to all templates. Then the fitting is
performed a second time on the original spectrum with the
reddened templates. A dust reddening law like Calzetti et al.
(2000) is fit separately in order to derive an E(B-V) value,
which is however not used in the fitting procedure.

Before fitting, if the user chooses, Firefly reddens the SSPs
with a foreground extinction, using the sky coordinates pro-
vided by the user and the dust maps of Schlegel et al. (1998)
and the dust law of Fitzpatrick (1999). We took advantage
of this feature by providing the foreground E(B-V) values we
used in the construction of the mock spectra.

Firefly does not explicitly fit emission lines. As suggested
by Wilkinson et al. (2017), one could provide emission lines
as templates, or fit and subtract and the emission lines sep-
arately before using Firefly. However, in the interest of min-
imizing the pre-processing needed by the user, we chose to
use Firefly’s options to mask emission lines. Firefly allows
the user to choose the wavelength window around the lines
to mask (we chose 9Å), as well as which lines out of a list of
18 lines and doublets. We masked the lines listed in §3.1.
We added a section to Firefly’s code (to the get model

function in firefly models.py) in order to use the E-MILES
SSP templates, following the same format as the reading and
preprocessing of the MaStar templates. (We also ran Fire-

fly fitting MaSTAR templates to mock spectra created with
MaStar templates and found similar results.) After convert-
ing the wavelengths to vacuum values, we sampled the tem-
plates with logarithmic binning (to mimic our input spec-
tra). We used the default option in Firefly to degrade the
templates to the resolution of the galaxy velocity dispersion
given the instrumental resolution, and then followed Firefly’s
procedure of reddening the templates using the foreground
E(B-V). Firefly later rebins the templates to the same binning
as the input spectrum, and then normalizes the templates in
order to supply SSP weights in both light and mass.

While testing, we discovered and fixed two bugs and re-
ported them on the Firefly github page (and by e-mail to the
Firefly authors). The first bug is that the emission line mask-
ing assumes air wavelengths regardless of the user’s specifi-
cation of whether the data are in air or vacuum wavelengths.
This had the effect of not completely masking the emission
lines for small masking windows (such as our window of 9Å)
when the data are in vacuum wavelengths. The second bug
is that, although we kept the default max ebv of 1.5 (i.e., al-
low a maximum best-fit E(B-V) of 1.5), the actual maximum
E(B-V) was 0.67 so that highly reddened populations had
large errors in their stellar population properties. However,
this bug did not have a significant effect on the aggregate
of Firefly’s results since most of the best-fit E(B-V) values
were well below 0.67. These two bugs remained unaddressed
at the time of paper submission. What we present in this pa-
per are the results of Firefly after applying these bug fixes. A
new version of Firefly has been published on Github in the
meantime, in which both these bugs have been fixed.

The output of Firefly consists of weights (both light and
mass) on the templates that when combined produce the
best-fit of the spectrum. Firefly outputs both the light-
weighted and mass-weighted stellar age and metallicity as
well as the E(B-V) of the stars. We used the mass weights to
compute M∗/Lr.

The average runtime of Firefly with our chosen setup on
Cedar was 43 seconds per spectrum on a single CPU.
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Figure 5. The recovery of stellar age for the 5 indicated codes. The y-axis is the predicted log Age minus the true log Age, while the

x-axis is the true log Age (top) and the predicted log Age (bottom). The contours represent the number density of points in the plot,

while the colour scale is the mean S/N. “Failures” are defined in §4.1.

3.3 pPXF

pPXF (Cappellari & Emsellem 2004; Cappellari 2017) is an-
other χ2 minimization method that fits the line-of-sight ve-
locity distribution (LOSVD), stellar population weights, dust
reddening and emission lines using a set of stellar and emis-
sion line templates. The authors of pPXF recognized that,
for a fixed set of kinematic parameters, the optimal template
weights can be obtained by solving a quadratic optimization
problem, which has an efficient and exact solution (as was
first noted and exploited by Faber 1972). Therefore, pPXF
optimizes the linear (stellar population weights) and nonlin-
ear (kinematics, reddening, etc.) parameters of the spectrum
fitting problem simultaneously, but by using different meth-
ods. The linear parameters are solved by quadratic program-
ming. The nonlinear parameters are optimized by a novel al-
gorithm (CapFit since pPXF v6.5 in 2017 - Cappellari 2023),
which combines the well-known Levenberg-Marquardt non-
linear least-squares algorithm (e.g., Press et al. 2007) with
the sequential quadratic programming method that allows
for more complex parameter constraints. The fact that pPXF
exploits the quadratic nature of the template weights fitting
sub-problem is likely the reason why pPXF is significantly
faster than the other non-DL codes we have tested.

The “penalized” part of pPXF’s name refers to the penalty
that is applied to the χ2 merit function, which penalizes non-
Gaussian forms of the LOSVD. The penalty is applied in such
a way as to preserve the quadratic nature of the problem.

pPXF has the option of regularizing the SFH by finding
the smoothest distribution of SSP weights that is allowed by

the data, given a chosen regularization error. The regular-
ization error is a user-defined parameter that determines the
maximum smoothness the solution should seek. Cappellari
(2017) states that the regularized solution can be interpreted
in a Bayesian sense to be the most likely solution for the
SSP weights given a prior on the amplitude of fluctuations
in the SFH. pPXF achieves regularization of the SSP weights
in such a way as to preserve the quadratic nature of the χ2

minimization. Following the suggested procedure in the doc-
umentation, we normalized the templates and input spectra
and used a regularization error of 0.01 (regul=100). We did
test other values of regul, and found that pPXF’s parameter
recovery improved with higher values of regul, but improve-
ments were minimal beyond regul=100.

pPXF also has the option to fit multiplicative and additive
polynomials in order to correct the continuum shapes and
reduce χ2 further. However we did not enable either of these
options.

In order to use the E-MILES templates, we converted the
template wavelengths to vacuum values, convolved the tem-
plates to the same instrumental resolution of the test spec-
trum, and resampled the templates to be spaced logarithmi-
cally in wavelength. pPXF also requires that the spectra be
transformed to the rest-frame, which we did using the red-
shift information that was saved in the headers during the
creation of the spectra.

As mentioned above, pPXF performs emission line fit-
ting simultaneously with the stellar population weights and
LOSVD, with the kinematic properties of the gas and stars
being allowed to differ. The code package includes a func-
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Figure 6. The recovery of stellar metallicity for the five indicated codes. The y-axis is the predicted [Z/H] minus the true [Z/H], while

the x-axis is the true [Z/H] (top) and the predicted [Z/H] (bottom). The contours represent the number density of points in the plot,

while the colour scale is the mean S/N. “Failures” are defined in §4.1.

tion in ppxf util.py to provide emission lines as separate
templates, to be modified by the user as needed. The list
of emission lines includes the strong lines listed in §3.1, as
well as the Balmer lines from Hϵ to H10, and [OI]6300/6364.
It was not difficult to comment out the extraneous emission
lines in order to be consistent with the emission lines we used
in the other codes.
The output of pPXF consists of mass weights on the tem-

plates that when combined produce the best-fit of the spec-
trum, as well as E(B-V). We used these weights to compute
M∗/Lr, and the mass-weighted stellar age and metallicity.
The average runtime of pPXF with our chosen setup on

Cedar was 11 seconds per spectrum on a single CPU.

3.4 pyPipe3D

pyPipe3D (Lacerda et al. 2022) is a Python version of Pipe3D
(Sánchez et al. 2016), which was originally written in Perl
and C. The philosophy of pyPipe3D was to make the code
more modular and accessible to the astronomical community,
while preserving the original algorithms. pyPipe3D performs
its spectrum fitting in three steps.
First, pyPipe3D fits the redshift, stellar velocity dispersion

and extinction AV , exploring the χ2 parameter space one
parameter at a time. This step involves the use of a skeleton
set of SSPs to speed up the process. The public version of
the code uses three SSPs with various ages and metallicities.
For this step, we chose three E-MILES templates with similar
ages and metallicities as those used in the default set (ages:
0.07, 1, 12.5 Gyr, [M/H]: -0.66, -0.35, 0.26 dex, respectively).

At this stage, emission lines are masked, as defined by the
user, and we chose the same list of emission lines above.

Second, pyPipe3D subtracts the best-fitting combination of
the three SSPs in the first step from the observed spectrum,
leaving the noise and emission lines. The algorithm then fits
a user-defined list of emission lines, deriving their Gaussian
parameters by a combination of a random Monte-Carlo ex-
ploration of the parameter space (for robustness) and the
Levenberg-Marquardt method for speed. We used the same
list of emission lines in §3.1. One implication of this algo-
rithm is that the spectral segment underlying the emission
lines might be less well determined than in pPXF since only
three templates were used to model it.

Third, these fitted emission lines are subtracted from the
original spectrum leaving a gas-free stellar continuum. The
continuum is fitted as a linear combination of a larger set of
SSPs (the same E-MILES set we have used for all the fitting
codes), which have been transformed using the redshift, ve-
locity dispersion and AV found in the first step. The fitting
is a Monte-Carlo exploration of the parameter space of SSP
weights that produce a minimum in χ2. Several realizations
(the number is not specified in Lacerda et al. 2022) of the
spectrum are created by perturbing the spectrum on levels
consistent with the noise and the Monte-Carlo fitting is per-
formed for all realizations. This generation and fitting of mul-
tiple realizations is likely the reason why pyPipe3D is among
the slowest of all the codes we tested. The final solution and
error in the fit are the average spectrum and standard devi-
ation over the realizations. The SFH solution and errors are
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Figure 7. The recovery of stellar M∗/Lr for the five indicated codes. The y-axis is the measured log M∗/Lr minus the true log M∗/Lr,

while the x-axis is the true log M∗/Lr (top) and the predicted log M∗/Lr (bottom). The contours represent the number density of points

in the plot, while the colour scale is the mean S/N. “Failures” are defined in §4.1.

the average and standard deviations of the weights for each
SSP.
The preprocessing required for running pyPipe3D involved

transforming the E-MILES templates into vacuum wave-
lengths, normalizing them at a particular wavelength (we
chose 5500.7 Å) and saving them in the well-documented for-
mat that pyPipe3D requires. Although pyPipe3D does not
require it, we also transformed our spectra to the rest frame,
since this was done for the other fitting codes (pPXF and
starlight), or the code itself did the de-redshifting (Fire-
fly).
The output of pyPipe3D consists of mass- and light-

weighted ages and metallicities, AV (which we converted to
E(B-V) using RV = 4.05), and the light weights on the tem-
plates that when combined produce the best-fit of the spec-
trum. We used the weights to compute M∗/Lr.

The average runtime of pyPipe3D with our chosen setup
on Cedar was 97 seconds per spectrum on a single CPU.

3.5 starlight

starlight (Cid Fernandas et al. 2005) minimizes χ2 using a
mixture of simulated annealing and Metropolis MCMC tech-
niques to explore the parameter space of SFHs. Whereas Fire-
fly and pyPipe3D fit E(B-V) separately from the stellar pop-
ulation fitting, starlight (like pPXF) includes a multiplica-
tive extinction factor as a fitting parameter in the model,
assuming an extinction law chosen by the user (we chose
Calzetti et al. 2000). The other free parameters are the SSP
weights, the systemic velocity and stellar velocity dispersions,

although the kinematic components are fit separately from
the other parameters (after each annealing loop) for reasons
of efficiency. The Metropolis algorithm explores the whole pa-
rameter space but is designed to gravitate towards the region
of highest likelihood, thereby avoiding local minima in χ2.
starlight runs in 4 stages: a first fit which finds the gen-
eral location of the global minimum in χ2, a sigma-clipping
stage for poorly fit data points, a “burn-in” stage in which it
fine tunes the location of the χ2 minimum, and a final stage
removing SSPs with negligible contribution and fitting again.

starlight can be configured with many options to do with
the fitting process, including the Markov chain parameters
and clipping parameters. The package includes example con-
figuration files and modifications corresponding to a “slow”,
“medium” and “fast” configuration. We chose the fast con-
figuration.

The preprocessing required to run starlight includes de-
reddening the foreground, transforming the spectrum into
the rest-frame (which we did using the redshift saved in the
headers during the creation of the spectra), resampling the
spectrum onto a linearly spaced grid (instead of logarithmic)
with a spacing of 1 Å as instructed in the documentation, and
masking emission lines and sky residuals. starlight does not
automatically mask any emission lines, so we had to do this
ourselves. The lines we masked were 400 km/s on either side
of the lines listed above.

Preprocessing on the templates was merely to convert the
E-MILES wavelengths to vacuum values. starlight is able
to handle the irregular spacing that this conversion produces.

The output of starlight consists of the AV of the stars
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Figure 8. The recovery of the colour excess (of the stars) for the five indicated codes. The y-axis is the measured E(B-V) minus the

true E(B-V), while the x-axis is the true E(B-V) (top) and the predicted E(B-V) (bottom). The contours represent the number density

of points in the plot, while the colour scale is the mean S/N. “Failures” are defined in §4.1.

(which we converted to E(B-V) using RV = 4.05), and the
mass- and light-weights on the templates that when combined
produce the best-fit of the spectrum. We used the weights
to compute the mass-weighted stellar age, metallicity and
M∗/Lr.
The average runtime of starlight with our chosen setup

on Cedar was 99 seconds per spectrum on a single CPU.

3.6 StarNet

StarNet (Fabbro et al. 2018) is a Convolutional Neural Net-
work (CNN) that was designed to analyse stellar spectra to
derive their effective temperature, surface gravity and metal-
licity. The architecture of the CNN consists of two convolu-
tional layers, a “max pooling” layer and three fully connected
layers. We refer to Fabbro et al. (2018) for details, but for
readers who are less familiar with CNNs, we briefly describe
what the layers do.
The first convolutional layer takes the spectrum as input

and detects features by multiplying the spectrum with a set
of filters (initialized with random shapes) of a user-defined
length. This process produces an activation spectrum where
high values correspond to features in the original spectrum
that are similar in shape to the filters. For example, if one
of the filters is a negative Gaussian, the activation spectrum
will consist of strong signals where the original spectrum had
absorption features. The activation spectrum is passed onto
a second convolutional layer which identifies features in the
features. An example of a feature in the features might in-
clude that certain of the original features occur in groups.

Including deeper convolutional layers like this is what makes
CNNs a type of “Deep Learning”. StarNet happens to be two
(convolutional) layers deep.

A max pooling layer selects only the strongest activations
(i.e., the features of the features) within a window length
of the second convolutional layer of the user’s choosing, and
passes them onto the three fully connected layers. The pur-
pose of this kind of selection and reduction of the dimen-
sionality of the spectrum is to extract general features that
are robust to small changes in the pixel values, such as would
be caused by noise and even redshift. This is especially useful
for recognizing a variety of spectral features in a dataset with
a range of redshifts and noise profiles, such as our spectra,
which imitate the range of redshifts and noise in the SDSS.

Fully connected layers (also called “dense layers”) are a set
of linear functions called “neurons” that map an input to an
output. The input to the first layer of neurons are the pooled
features (of the features) detected by the convolutional lay-
ers. The input for each neuron in subsequent layers are the
outputs from every neuron from previous layers (hence the
moniker “fully connected”). The output values from the final
layer are the desired stellar populations properties (mean log
stellar age, mean stellar metallicity, E(B-V) and log M∗/Lr).
At their core the fully connected layers are a multi-parameter
linear function that maps the detected features of the spec-
trum to the desired stellar population properties.

The numbers of filters, the filters lengths, and the number
of neurons in the fully connected layers are called the “hyper-
parameters”, and these are set by the user. We have used the
default settings for StarNet except for the filter length, where
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we chose 20 (instead of 8) corresponding to about 14-34Å, and
a max pooling length 10 (instead of 4). We chose to increase
the filter length (and hence the max pooling length) because
galaxy spectra have intrinsically wider features due to the
higher velocity dispersions, compared to stellar spectra. Fur-
thermore, we have chosen to use both the galaxy spectra and
the noise spectra as a 2-channel input to the StarNet to train
the CNN to recognize when certain features are noisy and
not be weighted heavily.

The shapes of the filters and the parameters of the fully
connected linear neurons comprise approximately 1.9 million
free parameters (given our chosen hyperparameters) that the
CNN initializes randomly. The CNN is trained to find the
appropriate values of these parameters that turn the input
spectra into the four stellar population properties (stellar age,
metallicity, E(B-V) and M∗/Lr) by studying the training set
spectra for which the true values of the stellar population
properties are known. Training is accomplished by adjusting
the free parameters until the output consistently matches the
true values to within a certain tolerance. The loss function
that measures success is the mean squared error, which is
the quadrature sum of the difference between the predicted
and true values of our 4 chosen stellar population properties
(which were normalized to a range of 0 to 1). The gradient
of the loss function with respect to the free parameters is
computed one layer at a time starting from the last layer and
working backwards to the first in a process called “backprop-
agation”.

In contrast to the spectrum fitting codes, StarNet does

not use SSP templates to derive stellar population proper-
ties. StarNet is in essence a complex multi-parameter func-
tion that computes 4 numbers from an input spectrum. In
principle, one could train StarNet to output many more than
just four numbers, and we are investigating the abilities of
StarNet to reproduce entire SFHs (Walters et al., in prep.).
Although StarNet does not require a prior in the form of a set
of SSP templates, it does require a substantial training set,
which we constructed from SSP templates and TNG SFHs.
Therefore, it is important to stress that StarNet is trained
to recognize SFHs only from the TNG universe, and only
through the linear combination of the E-MILES SSPs. We
settled on a training set of 200 000 spectra since our tests did
not yield substantial improvements in parameter recovery for
larger samples.

Since StarNet runs on a GPU, it required 9 minutes to train
on 200000 spectra (done once), and thereafter took less than
0.0004s per spectrum to compute the four stellar population
properties we tested.

4 RESULTS

4.1 Recovery of Four Test Properties of the Stellar
Population

Given the conditions described above, we ran the four spec-
trum fitting codes and one CNN on the mock spectra con-
structed in §2. We test each code’s ability to recover the
mean of the logarithm of the mass-weighted stellar age, (i.e.,
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Figure 10. The effect of noise and gas emission lines on the recovered stellar metallicity, namely the scatter in the errors, the mean

offsets, and the failure rate as a function of mean S/N in each grid cell for the five tested codes. The type of noise seems to have a bigger
effect on the recovery of stellar metallicity than the presence of emission lines (the red dashed curves are close to the blue dotted curves,

and they are both significantly offset from the fiducial solid black curves).

⟨log t⟩), the mean mass-weighted stellar metallicity, the stel-
lar mass-to-light ratio in the SDSS r-band and stellar colour
excess E(B-V). Our results are presented in Figs. 5-8. Each
of these figures shows the error in the predicted values (i.e.,
the predicted minus the true value) of the quantity in ques-
tion, vs. the true value of the quantity (top panels) and the
predicted values (bottom panels). The black contours shows
the distribution of points in the plot while the colour scale
represents the mean S/N. The scatter and mean offset biases
(also called the bias) are indicated in the top panels, and are
the same in the bottom panels.

A successful recovery of the test quantities means that the
error in the predicted values is close to 0, which is marked
by a dashed horizontal line in each plot. One could debate
what error threshold constitutes a successful recovery or a
failure, and the answer likely depends on the science case for
which these quantities are used. For the sake of comparison
between the codes, we defined a “failure” to be an error of
greater than 25% of the full range of true values. This limit
is marked by the two dotted lines in each panel. The points
falling outside of these limits are “failures” and the failure
rates are indicated in all panels of Figs. 5-8.

For all the quantities studied, StarNet recovered the stellar
population properties with the smallest scatter (< 0.08 dex
for all quantities), the lowest biases (< 0.02 dex for all quan-
tities), the least systematic dependence of the bias on either
the true or predicted values, the lowest failure rates (< 1%
except for [Z/H] which was 2.7%) and by far the fastest run
time. These results show that CNNs have great potential as

a tool for determining stellar population properties from op-
tical spectra. The limitations of CNNs are well-known and
will be discussed in §5.

Among the conventional spectrum fitting codes, pPXF has
the smallest errors in recovering all our test quantities (scat-
ter of < 0.11 dex, average bias of < 0.08) with the exception
of E(B-V), which pPXF recovered with slightly worse scatter
than pyPipe3D (0.038 vs 0.034 dex). Given the superior speed
of pPXF as well as its low errors, we conclude from these tests
that pPXF is the best code overall (out of the conventional
spectrum fitting codes) for recovering mean stellar popula-
tion properties, within our experimental setup. Firefly had
the worst performance of all the codes, having the largest
scatter and highest failure rates in the recovery of the test
properties. We discuss possible reasons for this in §5.

The bias depends on both the true and predicted values
of the four properties for most of the codes. For example,
the tilt of the contours in the top panels Fig. 6 shows that
all codes slightly overpredict the metallicities of the popu-
lations with the lowest true metallicities. Given that we do
not know the true values in real data, the lower panels show
the measurement bias as a function of the measured (pre-
dicted) values. Fig. 5 and 6 show that the biases in age and
metallicity are strongly dependent on the predicted values for
all the codes. Even StarNet is not immune to these system-
atics, but the CNN had the weakest systematic dependence
between the bias and the true and predicted values compared
to the conventional codes. For log M∗/Lr and E(B-V), the
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Figure 11. The effect of noise and gas emission lines on the recovered stellar mass-to-light ratio, namely the scatter in the errors, the

mean offsets, and the failure rate as a function of mean S/N in each grid cell for the five tested codes. Emission lines seem to have a bigger
effect on the recovery of stellar M∗/Lr than the type of noise applied (the red dashed curves are more offset from the fiducial solid black

curves than the blue dotted curves).

correlation between the bias and the true/predicted values is
weaker, except perhaps for Firefly’s measured log M∗/Lr.
The black curves in Figs. 9-12 show the scatter, offset and

failure rate as a function of S/N for log age, [Z/H], log M∗/Lr

and E(B-V) respectively. (The blue and red curves will be
discussed in §4.3.) Most of the codes predict values that are
on average biased (offset) from the true values by about 0.1
dex in [Z/H] (Fig. 6), but they can approach 0.2 dex for high
S/N spectra (Fig. 10). The biases are 0.08 dex or smaller for
stellar age and log M∗/Lr (Figs. 5 and 7), but can reach as
high as 0.15 dex for higher S/N spectra (Figs. 9 and 11).
Note that we have chosen to test mass-weighted quanitities

since these are more physical (and are directly taken from
the simulation), while the light-weighted quantities are more
directly related to the data. However we did perform the same
tests for the light-weighted quantities and found very similar
results for the metallicities, and only minimal improvements
in predicting light-weighted age.

4.2 The Degeneracies Betweeen Age, Metallicity
and Reddening

Figs. 5-8 are colour-coded by the mean S/N of the spectra
in the pixels. For the most part, the errors in the predicted
stellar population quantities depend on S/N as we expect:
regions farthest away from the zero lines (the highest errors)
in Figs. 5-8 also have the lowest S/N on average (red pixels in
those plots). However, there are some cases where the codes
performed poorly on spectra even with high S/N. For exam-

ple, Fig. 7 shows that Firefly, pPXF and pyPipe3D all per-
form poorly for some high-S/N spectra with low true M∗/Lr

(blue pixels in those panels have large errors).

Why do some of the parameters have large errors? Fig. 13
shows an example spectrum that was fit by the four conven-
tional codes. The fitted parameters have large errors in age,
metallicity and M∗/Lr, despite the fact that all four fits to
the SED have acceptably small χ2 errors. The obvious culprit
for these large errors are the known degeneracies in optical
spectra, particularly between age, metallicity and dust red-
dening, three of the four quantities we are testing.

In order to examine how degenerate these quantities are
for all tested codes, we show the errors in predicted stel-
lar age versus the errors in predicted stellar metallicity in
Fig. 14, colour-coded by the errors in the predicted E(B-V).
The contours show the distribution of points on the plot.
The classic age-metallicity degeneracy manifests if the con-
tours show that the errors in age are anti-correlated with
the errors in metallicity. The contours for pPXF (once the
[Z/H] offset is taken into account) and StarNet show that
they are slightly affected by the classic age-metallicity degen-
eracy, although their contours are tight, reflecting the small
scatter in their errors. Firefly is a bit more strongly affected
by the age-metallicity degeneracy, showing negative errors in
age when the errors in metallicity are positive. For pyPipe3D
and starlight the errors in age and metallicity are instead
positively correlated (though the effects are small for both).

The colour code in Fig. 14 shows how the errors in E(B-
V) depend the errors in age and metallicity. For the most
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Figure 12. The effect of noise and gas emission lines on the recovered stellar E(B-V), namely the scatter in the errors, the mean offsets,

and the failure rate as a function of mean S/N in each grid cell for the five tested codes. The recovery E(B-V) seems not to depend much
on the type of noise applied, or the presence of emission lines (the red dashed curves and blue dotted curves mostly stay close to the

fiducial solid black curves).

part, errors in E(B-V) are small (see Fig. 8), but for all codes
they depend on the errors in age and/or metallicity. For all
codes, errors in E(B-V) depend on the errors in age, and in
the expected manner: if they overpredicted the mean stellar
age, they also underpredicted the E(B-V). All codes except
Firefly were able to predict metallicity separately from E(B-
V), likely recognizing the spectral indices. However for Firefly,
the errors in E(B-V) depend on both age and metallicity. For
Firefly, if the population age was underpredicted, then errors
in E(B-V) depend positively on errors in metallicity.
We note that Firefly is the only code that leaves the red-

dening law completely free, while the other codes assume the
same law (Calzetti et al. 2000) that was applied to the mocks
in the first place, which may have a significant impact on the
recovery of E(B-V).

4.3 The Importance of Realistic Mock Spectra

What difference does it make to use realistic noise and/or
emission lines in these tests? The effort to produce a suite
of mock spectra that closely mimic the non-Gaussian noise
and emission lines of the SDSS was non-trivial. Was it worth
it? To answer this, we created two more sets of 50000 mock
spectra that had identical SFHs to our fiducial set, but one
set used Gaussian noise instead of SDSS residuals, and the
other used Gaussian noise AND excluded the emission lines.
We ran the five codes on these additional mock spectra and
compared their results. Figs. 9-12 show the scatter, offset
and failure rate as a function of S/N for log age, [Z/H], log

M∗/Lr and E(B-V) respectively. The results for the fiducial
set of mock spectra are shown as solid black lines (labeled
“Realistic Noise, With Gas”), the results for spectra with
Gaussian noise are the dotted blue lines, and the result for
spectra with Gaussian errors and no emission lines are the
dashed red lines.

By comparing the red dashed and blue dotted curves with
the solid black curves in Figs. 9-12, it is clear that neglecting
realism in mock spectra can lead to significant underestima-
tion in the errors of the recovered stellar population prop-
erties. The largest underestimates are in the recovery of the
stellar metallicity [Z/H] (Fig. 10). If one were to use Gaussian
noise instead of realistic noise, one would conclude that the
scatter in the recovered [Z/H] values is only half as bad than
is realistic. The red and blue curves in Fig. 10 show that the
bias and failure rate appear to be nearly 0 for spectra with
high S/N when in reality they should be significantly higher
(the solid black curves). Therefore, by ignoring realistic noise,
parameter recovery tests may significantly underestimate er-
rors in [Z/H].

If one uses Gaussian noise, the addition or omission of gas
emission lines makes little difference in the recovery of [Z/H]
(the red and blue curves are similar in Fig. 10). The unimpor-
tance of emission lines to [Z/H] is not surprising because the
main markers for stellar metallicity (e.g., the Mg and CaII
absorption lines) are not usually contaminated by emission.
Where gas emission makes more of a difference is in the re-
covery of stellar age, and the related M∗/Lr (Figs. 9 and 11).
The difference is most pronounced for pPXF, pyPipe3D and
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Figure 14. Plots exploring the age-metallicity-reddening degeneracy of each code. The y-axis is the measured-minus-true log Age, and
the x-axis is the measured-minus-true [Z/H]. The contours represent number density of points in the plot, while the colour scale shows the

mean measured-minus-true E(B-V). Firefly suffers the most from the age-metallicity-reddening degeneracy while the other codes suffer
somewhat from a degeneracy between age and colour excess.

starlight. The scatter in logM∗/Lr can be underestimated
by as much as a factor two, and by as much as 50% for stellar
age. The offsets and failure rates for both age and logM∗/Lr

are misleadingly close to zero if no emission lines (and Gaus-
sian noise) are added (Fig. 11). This makes sense since some
of the main markers of stellar age, namely the Balmer ab-
sorption lines, are often contaminated by gas emission.

Fig. 11 shows that the recovery of stellar E(B-V) is affected
very little by the presence or absence of emission lines, or by

the use of realistic vs Gaussian noise (since the red and blue
curves mostly follow the solid black curves). This is under-
standable since reddening affects the shape of the continuum,
which is relatively insensitive to the type of noise or the pres-
ence of emission lines.

For the StarNet CNN trained on realistic spectra, running
the model on spectra with Gaussian noise and emission lines
made very little difference in the scatter and failure rates of all
four stellar population parameters. However, the mean offsets
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of the recovered parameters (except for E(B-V)), worsen with
the simpler spectra. This is perhaps a sign of overfitting in
the training (more on this in §5), and further study is needed
before StarNet can be used on real spectra.

5 DISCUSSION

In our tests of stellar population parameter recovery, we have
created mock spectra using realistic noise and emission lines,
which turns out to be important for estimating errors and bi-
ases in the recovered parameters. We also found that the Star-
Net CNN significantly outperforms the conventional codes in
both parameter recovery and computation time. Out of the
conventional spectrum fitting codes, pPXF had the best per-
formance overall in both parameter recovery and computa-
tion time.
CNNs are known to outperform traditional algorithms in

many applications (Huertas-Company et al. 2018; Lovell et al.
2019; Brescia et al. 2021; Teimoorinia et al. 2022). Our re-
sults add to the growing literature demonstrating the signif-
icant potential of CNNs to aid astronomy in an age of ever-
increasing data and computational demands. The limitations
of machine learning are well-known, including the need for a
training set, and the lack of an error estimate on the derived
parameters (although see Bialek et al. 2020 on estimating
uncertainties for CNNs using an ensemble of models). Fur-
thermore, it is unknown how generalizable the trained model
is to data that are dissimilar to the training set. In our case,
StarNet was trained to recognize SFHs drawn from TNG100
and it is unclear how realistic these are, and how well Star-
Net can derive stellar population properties from spectra in
the real universe. We have already seen signs of overfitting in
§4.3, namely that StarNet trained on realistic spectra show
worse offset bias when run on simpler spectra. We remind the
reader that, although the training set consists of 200 000 spec-
tra, they are created from only 20962 unique SFHs. However
we include StarNet in this study to demonstrate its poten-
tial to outperform conventional tools in every respect, and
to motivate the study of the limitations of CNNs in more
detail (Walters et al, in prep.). One of our future goals is to
produce a model-independent training set, the SFHs of which
produce spectra with the same range of continuum properties
as observed (i.e., not just in noise and emission lines). (For a
model-dependent “forward-modelling” approach to this prob-
lem, see Sarmiento et al. 2023.)
In our tests, Firefly had the largest scatter, bias offsets

and failure rates in the recovery of our chosen stellar popula-
tion parameters (but was the 2nd-fastest of the conventional
codes). As explained in §3.2 we had to modify the code to use
the E-MILES templates, since the mock spectra were created
from E-MILES and since we used the E-MILES templates
in all the other codes. To check that this modification was
the not the source of Firefly’s performance, we created an-
other set of mock spectra using the the MaStar templates,
and re-ran Firefly using the MaStar templates to fit these
new spectra. We found similar values in the scatter, bias off-
set and failure rates for all four quantities tested. A simi-
lar recovery test by Nanni et al. (2023) with mock MaNGA
spectra (but using Gaussian noise) found similar scatter and
bias offsets. We suspect that the culprit behind Firefly’s rel-
atively high errors is the use of SFHs that are a combination

of SSPs with equal weights (in light). The resulting best-fit
SFH is constructed by weighting these unrealistic SFHs by
their likelihood, producing a final more realistic-looking SFH
(i.e., one that has non-uniform weights on the SSPs). How-
ever, using only combinations of uniform SFHs (for runtime
considerations) is perhaps too restrictive and likely misses
non-uniform SFHs that have higher likelihood.

starlight ranks third in terms of parameter recovery out
of the four conventional spectrum fitting codes. It had rel-
atively high scatter and failure rates in the recovery of all
parameters except E(B-V). Cid Fernandes & Cid Fernan-
des (2018) suggested that it can take the Markov chains in
starlight a longer time to reach the extreme corners of the
χ2 parameter space, such as highly reddened populations, and
therefore for such galaxies, the “slow” mode of starlight
might be more appropriate. Indeed we have found that it
is the youngest populations with low metallicity and high
E(B-V) that have the largest errors. Note that starlight
in the default mode was already the slowest of the codes we
tested. However we note that there is a non-public version
of starlight that is significantly faster (R. Cid Fernandes,
private communication).

pyPipe3D ranks second in our tests in terms of param-
eter recovery. Like starlight, pyPipe3d also uses an MC
method to solve the SFH part of the problem, but has a sim-
ilar accuracy to pPXF in recovering our 4 stellar population
parameters. Therefore, MC methods do have the potential
to accurately recover stellar population properties, with the
major added benefit of estimating the parameter errors us-
ing the exploration of the parameter space. However the cost
is speed, as pyPipe3D was the second-slowest of the tested
codes, being an order of magnitude slower than pPXF. (Note
that Pipe3D was originally written in faster languages, but
since pPXF was also written in Python, the speed comparison
is fair.) The fact that pyPipe3D had slightly worse parameter
recovery compared to pPXF may be due to the fitting of the
SFH separately from the kinematics, the emission lines and
the reddening, compared to simultaneous fit of all parameters
in pPXF.

pPXF had the best performance out of the four non-DL
codes we tested in both recovery of our four chosen parame-
ters and in speed. Its speed is due to the exploitation of the
quadratic nature of the χ2 merit function and the use of well-
known efficient least-squares solutions to such problems. The
ability to regularize the SFHs is a major additional benefit to
pPXF. In fact, we also tested pPXF without regularization
enabled and found that pPXF’s parameter recovery was com-
parable to that of starlight’s. Parameter recovery generally
improved for higher values of the regularization (“regul”) pa-
rameter, but improvements were minimal beyond regul=100.
Therefore regularization results in a significant improvement
to the recovery of stellar population parameters, and appears
to be the reason that pPXF had the best parameter recovery
(aside from the StarNet CNN).

Yet pPXF and even StarNet, along with the other codes,
show systemic dependence between the bias errors and the
true and predicted values of the stellar age, metallicity and
M∗/Lr. Metallicity is especially difficult for all codes to re-
produce, and our study underscores the caution needed when
inferring stellar population properties via full spectrum fit-
ting of optical spectra.

Although our suite of mock spectra include realistic noise
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and emission lines, our tests of parameter recovery are still
only lower limits on the parameter errors, offset biases, and
failure rates of the tested codes for a number of reasons.
Firstly, we have used (a subset of) the same SSP spectra
that were used to create the mock spectra. Real spectra likely
consist of more complex populations, perhaps with different
IMFs and alpha-enrichments. Secondly, we have not taken
any AGN contribution to the continuum into account, even
though broad-line and narrow-line AGN emission has been
included when SDSS emission lines and residuals were added
to the mock spectra. Thirdly, we have also assumed TNG
SFHs which may or may not be a realistic representation of
the universe. Therefore the statistical measures of the suc-
cess the parameter recovery may not represent the rate of
successful parameter measurement in the real universe.

6 SUMMARY AND CONCLUSIONS

In summary, we have tested the ability of several spectrum
fitting codes (Firefly, pPXF, pyPipe3D and starlight), and
one DL code (StarNet) to recover four stellar population pa-
rameters: the stellar age, the stellar metallicity, the stellar
mass-to-light ratio, and the colour excess due to reddening.
For this purpose, we created a realistic set of mock spectra
constructed from SFHs drawn from the IllustrisTNG simula-
tion, the E-MILES SSP templates and real noise profiles and
emission lines from observed spectra in the SDSS. Our main
findings are as follows:

(i) The StarNet CNN vastly outperforms the conventional
codes in both parameter recovery (scatter in the errors of
< 0.08 dex, biases < 0.02 dex for all quantities) and compu-
tation time (see Table 1).

(ii) Of the conventional (non-DL) codes, pPXF had the
best parameter recovery overall (errors of < 0.11 dex, biases
< 0.08 dex), and also the fastest computation time. pyPipe3D
was a close second in terms of parameter recovery, but its
computation time was almost an order of magnitude slower.

(iii) Firefly suffers the most from the age-metallicity-
reddening degeneracy while the other codes suffer somewhat
from a degeneracy between age and colour excess.

(iv) We have found that using realistic noise in mock spec-
tra is most crucial for an estimate of errors in the stellar
metallicity, where unrealistic Gaussian noise can lead to an
underestimate of the errors by as much as a factor of two.
The addition of emission lines was important for the error
estimation in stellar age and M∗/Lr, where neglecting to add
emission lines could lead to an underestimate of the errors in
M∗/Lr by a factor of two, and in stellar age by 50%. Fur-
thermore, systematic biases in age, metallicity and M∗/Lr

can be missed entirely if using unrealistic noise or neglecting
nebular emission in mock spectra.

(v) The recovery of E(B-V) did not depend significantly
on the type of noise or the presence or absence of emission
lines.

Our results demonstrate the potential of CNNs as a tool
in stellar population studies, but further study with larger,
more diverse and realistic training sets, is needed to deter-
mine the generalizability of such tools. Although we found
pPXF to be the best of the conventional codes, all codes ex-
hibit systematic biases, especially in the recovery of stellar

metallicity, but also in stellar age and M∗/Lr. Furthermore,
our tests have used several assumptions, including simula-
tion SFHs and a particular set of SSPs. Therefore our results
represent a lower limit to the errors, offset biases and failure
rates of the codes we tested.

DATA AVAILABILITY

Our entire suite of mock spectra is available to download from
https://tiny.cc/Woo2024.
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López Fernández R., et al., 2016, Monthly Notices of the Royal

Astronomical Society, 458, 184

Lovell C. C., Acquaviva V., Thomas P. A., Iyer K. G., Gawiser E.,

Wilkins S. M., 2019, Monthly Notices of the Royal Astronom-

ical Society, 490, 5503

Lu S., et al., 2023, arXiv, 000, arXiv:2304.11712
Magris G. C., Mateu J. P., Mateu C., Bruzual G. A., Cabrera-Ziri
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