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Characterization of structural diversity within soft materials is key for engineering new materials for various applications.
Small-angle scattering (SAS) is a widely used characterization technique that provides structural information in soft materials
at varying length scales (nm to microns). The typical output of a SAS measurement is the scattered intensity I(q) as a
function of q, the scattered wavevector with respect to the incident wave. The scattered wavevector q is represented by its
magnitude |q| ≡ q (in inverse distance units) and azimuthal angle θ. While structures with isotropic spatial arrangement can
be interpreted by analysis of azimuthally averaged one-dimensional (1D) scattering profile, to understand anisotropic spatial
arrangements, one has to interpret the two-dimensional (2D) scattering profile, I(q, θ). Manual interpretation of such 2D
profiles is complicated, and usually involves fitting of approximate analytical models to azimuthally averaged sections of the
2D profile. In this paper, we present a new method called CREASE-2D that interprets, without any azimuthal averaging,
the entire 2D scattering profile, I(q, θ), and outputs the relevant structural features. CREASE-2D is an extension of the
‘computational reverse engineering analysis for scatting experiments’ (CREASE) method that has been used successfully to
analyze 1D SAS profiles for a variety of soft materials. CREASE uses a genetic algorithm for optimization and an artificial
neural network (ANN) as the surrogate machine learning (ML) model for fast calculation of 1D ‘computed’ scattering profiles
that are then compared to the experimental 1D scattering profiles in the optimization. CREASE-2D goes beyond CREASE by
enabling analysis of 2D scattering profiles, which is far more challenging to interpret than the azimuthally averaged 1D profiles.
Further, we use XGBoost as the surrogate ML model in CREASE-2D, in place of ANNs, to relate structural features to the
I(q, θ) profile. The CREASE-2D workflow identifies the structural features whose computed I(q, θ) profiles, calculated using
the surrogate ML model, match the input experimental I(q, θ). We test the performance of CREASE-2D by using as input a
variety of in silico 2D scattering profiles whose structural features are known to us. We demonstrate that CREASE-2D works
well by showing that for every one of these input in silico 2D scattering profiles, CREASE-2D converges towards the correct
structural features. We expect this CREASE-2D method will be a valuable tool for materials’ researchers who need direct
interpretation of the 2D scattering profiles in contrast to analyzing azimuthally averaged 1D I(q) vs. q profiles that can lose
important information related to structural anisotropy.

Researchers studying soft materials, namely poly-
mers, colloids, liquid crystals, gels and chemical for-
mulations, aim to establish molecular design-structure-
property relationships to engineer new materials with
improved physical properties. Towards this goal, mi-
croscopy and scattering are two prominent characteriza-
tion techniques for understanding the structure formed
within such soft materials. Microscopy techniques that
are commonly used for soft materials include opti-
cal microscopy, to probe structures with length scales
above 10 microns, and scanning-electron/transmission-
electron/atomic-force microscopy (SEM/TEM/AFM) to
probe structures with features below 10 microns. Such
microscopy methods can reveal the pertinent structural
features in the area of the material that is imaged, albeit
only over a narrow range of length scales. Furthermore,
microscopy only outputs a two-dimensional (2D) projec-
tion of the structure and the depth information can be
non-trivial to interpret. In contrast, bulk structural char-
acterization techniques that rely on scattering of light (X-
rays/visible/infrared) or neutrons are able to reveal three
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dimensional (3D) structural information across multiple
length scales. In particular, for soft materials, small angle
X-ray scattering (SAXS) and small angle neutron scatter-
ing (SANS) techniques4,10,18,26,28,32,35,39 are used widely
to elucidate spatial distributions of amorphous (i.e., not
crystalline) ordered or disordered structures at various
length scales.

A typical SAXS or SANS measurement captures the
scattered intensity I(q) as a function of the scattered
wavevector q with respect to the incident wave, expressed
by its magnitude |q| ≡ q (in inverse distance units) and
the azimuthal angle θ. For materials that have isotropic
structural arrangements, the patterns found in the 2D
SAXS/SANS profiles, I(q, θ), are expected to exhibit
spherical or cylindrical symmetry. Analysis of such sym-
metric scattering profiles involves integrating over all az-
imuthal angles and fitting analytical models to the one-
dimensional (1D) form of the scattering profile - I(q)
vs. q. Presence of a peak in these 1D scattering pro-
files at a certain q value indicates presence of structural
correlations at length scales around 2π/q, either due to
the dimensions of the constituent particles (i.e., form
factor, P (q)) or the arrangement of particles that in-
fluences their inter-particle spacing (i.e., structure fac-
tor, S(q)). Therefore, even when a structure consists of
anisotropic particles that are devoid of any inter-particle
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orientational order, the 1D scattering profile can reveal
most of the relevant structural details about the mate-
rial. Further, in case of dilute solutions (e.g., amphiphilic
polymer solutions at low polymer concentrations), the
form factor of the primary particle (e.g., assembled mi-
celles) can be analyzed using shape-dependent or shape-
independent models to obtain the dimensions of the pri-
mary particles.33 However, in cases where there is signif-
icant dispersity in dimensions of the primary particles,
such models can be poor approximations and the result-
ing analysis can be flawed. In case of concentrated so-
lutions (e.g., amphiphilic polymer solutions at high con-
centrations), in addition to the form factor of the pri-
mary particle, one has to analyze the structure factor
which holds the information about spatial arrangement of
the primary particles (e.g., inter-particle or inter-micelle
arrangement). In such cases, if one assumes that the
form factor remains constant with changing concentra-
tion, then one can use the analyzed form factor obtained
at dilute concentration to interpret the structure fac-
tor. Analytical structure factor models like the ‘sticky
hard sphere’ or ‘Percus Yevick’21 can be used to inter-
pret isotropic structures with low dispersity. However, in
the case of systems where the values of primary particle’s
shape and size or entire distributions of shape and size
of primary particles change with concentration or sys-
tems in which the structure develops anisotropy during
processing or rheological measurements11,17,34, the inter-
pretation of these scattering profiles can be challenging.

To circumvent these challenges with traditional ap-
proaches involving manual fitting with shape-dependent
or independent models that can be approximate or in-
correct in some cases, there is a need for other analysis
approaches. Additionally, the surge in high-throughput
measurements and the quest for artificial intelligence (AI)
driven manufacturing demand analyses methods that can
be fast and automated in interpreting scattering profiles,
and complementary characterization results, as and when
the measurement is done. We direct readers to a re-
cent perspective by Anker et al. that covers many on-
going developments and studies within this topic of fast
computational analysis of scattering and spectroscopic
measurements in materials sciences.2. The challenges for
computational methods being developed for fast and/or
automated scattering analyses in the area of synthetic
soft materials are different from inorganic hard materials
or biological molecules. This is because (non-biological)
soft materials structures tend to be mostly amorphous,
often exhibiting significant dispersity in structural di-
mensions, unlike the precise crystalline order seen in in-
organic materials or secondary and tertiary structures
of proteins,9,13,14 . To address this specific need in the
area of soft materials with amorphous structures, Jayara-
man and coworkers recently developed the ‘Computa-
tional Reverse Engineering Analysis of Scattering Exper-
iments’ (CREASE) method.3,23–25,40–44

The CREASE method outputs the features or descrip-
tors of the three-dimensional (3D) structures that pro-

duce ‘computed’ scattering profiles Icomp(q) which closely
resemble the scattering profile obtained in experiments
Iexp(q). Rather than iterating exhaustively over 3D
structures themselves, a computationally intensive and
slow process, in CREASE the optimization cycle iter-
ates over a lower dimensional representation of the 3D
structures. We call these lower-dimensional descriptors
of structure as structural features; as we use genetic algo-
rithm for optimization, in the jargon of evolutionary al-
gorithms, we refer to these structural features as“genes”.

In a typical GA optimization loop, an initial popula-
tion of “individuals” is generated, where each individual
has a unique set of structural features or “genes”. The
structural features can have single values of structural
parameters or encode parameters representing distribu-
tions of structural parameters. For each individual, these
structural features are converted to a computed scat-
tering profile using a surrogate machine learning (ML)
model. The computed scattering profile Icomp(q) of each
individual is then compared to the input scattering pro-
file Iexp(q). The extent of match between the Icomp(q)
and Iexp(q) is calculated as a fitness value for that in-
dividual. After the fitness value has been calculated for
all individuals in a generation, then a new “generation”
of individuals is created based on the current genera-
tion’s fitness ranking and genetic operations like“pairing”
and “mutations”6. As the optimization proceeds, with
each new“generation”, the individuals progressively ex-
hibit better fitness values, i.e., improvement in the match
between their Icomp(q) and the input Iexp(q). At the
end of the GA cycle, upon convergence in fitness val-
ues, CREASE outputs multiple individuals (i.e., sets of
structural features) that all have the mutually similar
scattering profiles that also match the input scattering
profile. If the GA results consist of multiple distinct sets
of structural features, then one would either use their
domain knowledge or guidance for imaging techniques
and/or molecular modeling and simulations to remove
the “individual(s)” that are deemed unphysical and keep
only those “individual(s)” that are physically possible.

Within the optimization loop, the use of surrogate ML
models for calculation of Icomp(q) for each individual
has significantly accelerated the computational speed of
CREASE. Traditionally, for 3D structures with known
positional coordinates of each particle or constituents
of each particle, one would use the computationally in-
tensive Debye scattering equation to calculate scattering
profiles. To accelerate this step of calculating Icomp(q), in
recent CREASE studies, Jayaraman and coworkers intro-
duced the idea of using a surrogate ML model (e.g., arti-
ficial neural networks or ANN) that connects the struc-
tural features (i.e., lower dimensional representation of
the 3D structure) to its Icomp(q).

25,41,43 Using this ma-
chine learning enhanced CREASE (ML-CREASE) one
can interpret input scattering profiles fast and on mod-
est computational resources as described in Refs.24,25,43

There have been multiple soft materials systems where
CREASE has been used successfully to analyze the 1D
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Fig. 1. CREASE-2D method workflow used in this paper. For proving the CREASE-2D works correctly, we used as input an
in-silico 2D scattering profile generated from a 3D structure with predefined set of structural features. Only the 2D scattering
profile, which we call “experimental” scattering profile or Iexp(q, θ) is used as the input to the CREASE-2D method. The
genetic algorithm (GA) optimizes towards structural features whose Icomp(q, θ) closely resembles Iexp(q, θ). By comparing the
optimized structural features to the ones used to create the Iexp(q, θ) we can show that CREASE-2D works well.

scattering profiles, and in many cases, CREASE has per-
formed better than existing analytical models. For exam-
ple, CREASE has been used to analyze the form factor
of assembled structures in dilute solutions; for example,
spherical micelles3, cylindrical micelles40,41 and vesicles44

formed by novel polymers or macromolecules in solution.
In these cases, the existing analytical models were either
too approximate3 or could not handle dispersity in struc-
tural dimensions well44. In some cases, CREASE was
used to test hypotheses of potential assembled structures
in the solution which could not have been done with an-
alytical models alone.27 CREASE has also been used to
interpret the scattering profiles of concentrated particle
systems where the form of the particle was known a priori
(e.g., simple spherical particles); in this case, CREASE
was used to understand the extent of mixing within bi-
nary nanoparticle mixtures23,25. CREASE has also been
extended to the ‘P(q) and S(q) CREASE’ version that
can analyze both the form and the structure factors of
the primary particles simultaneously24. This ‘P(q) and
S(q) CREASE’ method was used to understand a system
of silica particles coated with surfactant (core-shell par-
ticles) at varying temperature and salt concentrations.
Both temperature and salts affect the cationic surfac-
tants in the shell around the particles and as a result, the
form of the surfactant-coated particles and inter-particle
structure.29

While all of the above applications of CREASE in-
volved isotropic structures and the 1D scattering profile
from experiments as input, in this paper we have ex-
tended the CREASE method to CREASE-2D that can
analyze 2D scattering profiles directly and in turn, enable
interpretation of structures that may have anisotropy.

The input to CREASE-2D is a 2D scattering profile
coming from structures that have some orientational or-
der within the material’s structure either produced by
processing conditions (e.g., shear or field-induced align-
ment of domains) and/or because of the form of primary

particle (e.g., ellipsoidal domain). In such cases, charac-
terization of structural anisotropy requires the use of the
2D SAS profiles Iexp(q, θ) which hold information of the
length scales of arrangements that can vary along various
azimuthal angles, θ.
In this paper, we present all the relevant details of

CREASE-2D method development and demonstrate its
successful application by correctly outputting the struc-
tural features of the the 3D structures that gave rise to
the input in-silico (Iexp(q, θ)).

CREASE-2D: Overview and Development

Figure 1 provides an overview of the CREASE-2D
workflow presented in this paper. The overall develop-
ment of CREASE-2D involves four key steps:

1. Generating a dataset of 3D structures having an
extensive variation of all important structural fea-
tures. The structural features that we demonstrate
in this study are distributions of domain sizes,
shapes, orientational order, and volume fraction of
domains that produce the scattering;

2. Computing the 2D scattering profiles for each of
those 3D structures;

3. Using the combined dataset of structural features
and their computed 2D scattering to train the sur-
rogate ML model that will output a computed scat-
tering profile for an input of structural features; and

4. Incorporating the trained ML model within the GA
optimization loop to fulfill the CREASE-2D work-
flow.

While step (4) above enables a smooth and fast execu-
tion of the CREASE-2D method, steps (1) - (3) are nec-
essary for an accurate and reliable representation of ex-
perimentally relevant structural configurations and their
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scattering profiles. The amount and quality of data gen-
erated in steps (1) and (2) will also determine the ac-
curacy of the surrogate ML model in step (3), which in
turn dictates the efficacy of the CREASE-2D optimiza-
tion. Before we describe each of the above steps in more
detail, we note the similarities and differences between
CREASE-2D and prior implementations of CREASE.

Similar to previous implementations, CREASE-2D
method also uses a GA to optimize structural features.
The GA loop proceeds in a similar manner as in previous
uses of CREASE and stops when fitness of the individu-
als converges, i.e., an individual’s computed 2D scatter-
ing profile Icomp(q, θ) matches the input profile Iexp(q, θ).
One difference between the previous CREASE implemen-
tation and CREASE-2D is in the choice of the surrogate
ML model to calculate the Icomp(q, θ) for each individ-
ual. The surrogate ML model needed in this case not
only needs to handle input in the form of a table having
multidimensional variation of its structural features, but
also output a 2D scattering profile rather than a 1D scat-
tering curve of Icomp(q) vs q. More details are provided
in the steps (3) and (4) sub-sections below.

Step (1): Generating a dataset of 3D structures with
varying structural features

To develop a reliable surrogate ML model for linking
structural features to the 2D scattering profile, we need
a training dataset that contains sufficient samples of 3D
structures with all potential variations in structural fea-
tures that influence their computed 2D scattering pro-
files. This sub-section describes this process of generat-
ing such a dataset.

In principle, structural features condense the detailed
representation (e.g., x, y, and z coordinates of all parti-
cles) of the 3D structure to a few numerical values that
pertain to the distributions of parameters describing the
3D structure. In ML jargon, structural features are sim-
ilar to the lower dimensional latent space variables en-
coding a higher dimensional input function. Our philos-
ophy is that the structural features should be informa-
tion that a soft materials researcher would understand
and find relevant. By relevance we mean that the in-
terested structural features would be ones (e.g., shapes,
sizes, and spatial arrangement of the domains, extent of
mixing/demixing within domains/between domains, ori-
entational alignment of domains, grain boundaries, etc.)
that will likely control properties/function of the soft ma-
terial. Thus, we choose not to have automatically en-
coded latent space variables that lack a physical meaning
and not easily interpreted by human, and instead define
our own structural features using our soft materials do-
main knowledge.

To demonstrate our choices of structural features for a
representative example of soft materials with structural
anisotropy, we consider a model system of spheroidal par-
ticles with well-defined distributions of shapes, sizes, and

orientations (shown schematically in Figure 1), along
with variations in the particles’ packing fractions in the
material. Generation of such 3D structures is facilitated
by our recently developed (open-source) computational
method called CASGAP (Computational Approach for
Structure Generation of Anisotropic Particles)20. In the
original manuscript20, we demonstrated the versatility
of the CASGAP method to generate 3D structures for
user-provided distribution of particle sizes, shapes, and
orientations at or close to the target volume fraction.
Accordingly, the CASGAP method uses parameters Rµ,
Rσ, γµ, γσ, and κ to generate the 3D anisotropic struc-
ture with a target ϕtarget. These structural descriptors
serve as the structural features for use in this develop-
ment of the CREASE-2D workflow. While the detailed
description of these structural features can be found in
the original manuscript20, we review some relevant de-
tails below:

1. The particle sizes and shapes are expressed by the
spheroidal volumetric radius R =

3
√
a2c and the

spheroidal aspect ratio γ = c/a, where a and c are
the lengths of the semi-minor and semi-major axes
of the spheroid, respectively. As done in the origi-
nal manuscript20, the variations in size and shape
are modeled by a log-normal distribution, each with
their means (Rµ, γµ) and standard deviations (Rσ,
γσ). These quantities provide us with the first four
structural features for CREASE-2D.

2. The orientations in the structure is quantified by
a 3D vector pointing along the major axis V of
the spheroid. With such description of orienta-
tions, we adopt the 3D von Mises-Fisher (vMF)
distribution (see details in Ref.20) to model the
distribution of orientational order expressed suc-
cinctly by the κ parameter. The κ parameter is
a measure of the inverse-dispersity in orientation
and is defined around a preferred orientation Λ.
κ = 0 indicates complete lack of orientational or-
der (i.e., V is uniformly distributed on the surface
of a sphere) and κ → ∞ indicates perfect orienta-
tional order (i.e., V = Λ). Relying on the premise
that for an anisotropic structure, the principal axes
of anisotropy can be aligned with the laboratory
frame of reference during scattering measurements
such that Λ = x̂, enables us to use only κ as the
fifth structural feature.

3. Lastly, the concentration of particles is quantified
by the volume fraction of particles, ϕ. If dense
particle configurations is desired, a trade-off is ob-
served between the computational time for struc-
ture generation and the value of volume fraction
achieved in that time. The CASGAP method is
designed with this trade-off in mind and can be
terminated at any point of the structure genera-
tion while maintaining a structure that adheres to
the desired structure features’ distribution. How-
ever, in such cases of early termination, the actual
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volume fraction ϕ may not reach the value of ϕtarget

leading to ϕ ≤ ϕtarget. With such an expectation,
we use the actual ϕ evaluated after the structure is
generated as the sixth structural feature since the
scattering profile computed in step (2) (described
in the next sub-section) can be significantly influ-
enced by the actual volume fraction of the particles.

Table 1. Values of Structural Features For Select Few
Samples (in the same order as) shown in Figure 2.

Sample ID Rµ Rσ γµ γσ κ ϕ

31 3.07 0.00101 7.48 0.263 3.11× 10−1 0.245

332 30.0 0.00185 0.785 0.0352 4.41× 10−1 0.389

2941 10.2 0.576 1.28 0.200 5.89× 10−10 0.361

1291 10.2 3.38 0.488 0.176 6.31× 100 0.401

1770 17.4 1.87 0.100 0.000 2.18× 10−2 0.237

1172 3.57 0.201 9.96 0.00558 1.36× 10−1 0.194

2291 19.5 2.19 1.00 0.0358 1.35× 108 0.422

949 12.9 0.802 1.00 0.591 3.83× 104 0.409

40 7.80 1.50 0.511 0.0696 1.09× 10−10 0.430

585 6.80 1.63 0.881 0.0669 1.23× 10−1 0.461

172 14.1 3.69 0.654 0.122 9.70× 100 0.459

2495 3.64 0.0662 2.99 1.24 9.68× 109 0.357
Bolded text is used to highlight the relevant structural features

depicted in Figure 2.

Leveraging the computational efficiency of the CAS-
GAP method, we generate a dataset of 3000 three-
dimensional structures. This dataset has a numerical in-
dex from 1 − 3000 used as their Sample ID along with
numerical values of all their structural features. We share
some examples from this dataset openly on Zenodo.1 In
Figure 2 we describe how each of the structural fea-
tures are varied. Since each structural feature represents
a physically relevant quantity with significant influence
over the morphology of the particles, these could not sim-
ply be varied using a uniform distribution over their re-
spective ranges. As a result, some of these quantities
have a normal-like or a skewed distribution in their cho-
sen ranges as shown in the plots in Figure 2a-d. The
numerical details of the random sampling, which is a ver-
sion of Monte Carlo sampling, is discussed in detail in
the Supporting Information Section S1. We repre-
sent all our structures by a cubic representative volume
of length L = 300 distance units (in this study 1 dis-
tance unit corresponds to 1 Å, but this correspondence
can be changed to a different length-scale, as desired).
In Figure 2e-g and the accompanying Table 1 provide
some representative structure snapshots along with their
structural features. Some extreme values of structural
features have been indicated in Table 1 with bold font;
we selected the Sample IDs with these extreme values of
structural features to visualize their effects on the overall
structure.

The mean volumetric radius Rµ is nearly uniformly

sampled over a range of 3 Å to 30 Å, representing a vari-
ation of 1% L to 10% L (as shown in the histogram of
Figure 2a). To keep the size variation reasonable within
the prescribed log-normal distributions, the standard de-
viation of volumetric radius is controlled by the mean
value, such that whenever Rµ approaches its extreme

values, i.e., 3 Å or 30 Å, Rσ → 0. This is shown in
the scatter plot of Figure 2a, where an envelop shape
over the Rσ distribution is observed. In Figure 2e Sam-
ple 31 and Sample 332 depict the structure when Rµ’s
are ∼ 3 and ∼ 30, respectively. While Sample 2941 and
Sample 1291 (with similar Rµ) depict the extreme values
of Rσ.

Figure 2b shows the variation in aspect ratios in range
of 1/10 to 10. Since this is a ratio, the values below 1
(representing oblate spheroids) are analogous, by a recip-
rocal relationship, to those above 1 (representing prolate
spheroids). To ensure fair sampling of both these shape
types, the values are nearly uniformly sampled over the
logarithmic scale between 1/10 to 10 as shown in the his-
togram of Figure 2b. Here, too, we ensure that when-
ever the mean aspect ratio γµ approaches the extremes,
γσ approaches 0 as seen from the scatter plot in Fig-
ure 2b. In Figure 2e Sample 1770 and Sample 1172
depict the structure when γµ’s are ∼ 0.1 and ∼ 10, re-
spectively. While Sample 2291 and Sample 949 (with
similar γµ) depict the extreme values of γσ.

To vary the degree of orientational order, the κ-
parameter (Figure 2c) can be varied by sampling
equally from 4 intervals defined by the end points: 10−10,
0.1, 1, 10 and 1010. Here values 10−10 ≈ 0 and
1010 ≈ ∞, are chosen to sample the perfectly isotropic
and anisotropic structures, respectively. Structures from
each of these intervals are in Figure 2e with Sample IDs
40, 585, 172 and 2495, where κ values are nearly 10−10,
0.1, 10 and 1010, respectively.

In Figure 2d the histogram shows the variation in ϕ
for the entire dataset. Unlike all other structural fea-
tures, the distribution of ϕ is not prescribed but is a re-
sult of CASGAP structure generation with ϕtarget = 0.5
as explained previously. If a stricter control over ϕ is de-
sired, more samples at lower ϕ can easily be generated
and added to the dataset to change the shape of the dis-
tribution.

Having the dataset of 3D structures, we calculate each
of their 2D scattering profiles in Step (2). The 2D scat-
tering profiles and the structural features then become
the intended “output” and “input” data for training and
testing the surrogate ML model in Step (3).

Step (2): Calculating 2D Scattering Profile for Each
3D Structure

In all previous implementations of the CREASE
method, we used the pairwise Debye scattering equation
to calculate the scattering intensity contribution of N
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Fig. 2. (a) Histograms and scatter plots describing how the mean and standard deviations of the volumetric radius R is varied
in each of the 3000 samples in the dataset. (b) Similar to (a) but for the mean and standard deviations of the aspect ratio γ. (c)
Histograms describing the distribution in the orientational anisotropy parameter κ for the von-Mises Fisher distribution20. The
histogram in the range of 0.1 ≤ κ ≤ 10 is shown separately (on top) to indicate the distribution of nearly 50% samples uniformly
drawn from this range. (d) Histogram describing the distribution in the volume fraction ϕ of the generated structures. (e-g)
Representative snapshots of 3D structures drawn from the dataset, showing size, shape, and orientation variations, respectively.
Use of different colors facilitate easy distinction of individual particles visually. The structures in (e) and (f), correspond to
points highlighted in the scatter plots of (a) and (b), respectively. The detailed information about their structural features are
provided in Table 1.

particles with known form factors f1,2,...,N (q) as follows:

Icomp(q) =
1

V

N∑
n=1

N∑
m=1

fn(q)fm(q)
sin(qrnm)

qrnm
(1)

The above equation is only applicable for isotropic ar-
rangement of particles, and is obtained by integration
over all possible orientations of the scattering vector q,
which is equivalent to azimuthal averaging performed
on the experimental 2D scattering profiles. Notably,
this equation has a double-summation term which ne-
cessitates pairwise consideration of particles and their
contributions to the scattering profiles, and has the ef-
fect of making the scattering calculations computation-
ally intensive and harder to parallelize. Together with

the time required to generate structures, the additional
time needed to perform scattering calculations for that
structure, makes them unfit for use directly within the
CREASE workflow. This motivated the need for surro-
gate ML models that are time-efficient in the prediction
of Icomp(q) (as described in step (3) sub-section).

For CREASE-2D implementation, we compute the 2D
scattering intensity Icomp(q) from the scattering ampli-

tude Acomp(q) as Icomp(q) = 1/V |Acomp(q)|2. Here, the
Acomp(q) is the complex Fourier transform of the fluctu-
ation in the scattering length density ∆ρn

5,15,19, and is
expressed as:
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Fig. 3. (a-f) From left to right, representative snapshots of
a structure with Sample ID denoted on the top, the Carte-
sian form of their scattering intensity profile Icomp(q, θ) with
axes q and θ, and the polar form of their scattering intensity
profile Icomp(qx, qy) with axes qx and qy. Here, qx and qy are
components of the scattering vector q that are (reciprocally)
aligned with the laboratory frame axes x and y, respectively.
The polar form of the scattering intensity profile maintains
the logarithmic scaling of the scattering vector magnitudes,
and as a result the center of the profile is not at q = 0 but
truncated to q = 10−2.

Acomp(q) =

N∑
n=1

∆ρnvnfn(q) exp (−i q · rn) (2)

The above expression only has a single summation term,
which significantly reduces the computational complex-
ity of the scattering calculation from O(N2) to O(N),
and has enabled the computation to be parallelized; this
was also noted by Brisard et al. as the ‘simple sums’
computation.5 For our model system, due to the simplic-
ity of the ellipsoidal shape, computation of equation 2, is
further simplified with the anisotropic form factor fn(q)
of a spheroid, which can also be obtained from Pedersen’s
tabulation of analytical form factors.32 fn(q) is provided
as:

fn(q) ≡ fn(q, θ) =
j1(q rn(θ))

q rn(θ)
. (3)

In the above equation j1(·) is the first spherical Bessel
function, and rn(θ) is an effective radius (of particle
n) that depends on the direction (θ) of the scattering
vector q. A more detailed expression for the analyti-
cal form factor can be found in the Supporting In-
formation Section S2. We note that for shapes of
particles that are complex, without easily available an-
alytical forms of shape, one can calculate the entire 2D
scattering profile by placing point scatterers in the box
and using sufficient number of point scatterers to resolve
the particle shapes and particle-particle spatial arrange-
ments. We are currently finalizing a computational effi-
cient, GPU-based code, to calculate 2D scattering pro-
files for any shape of the particle using this scatterer
approach; we will share that as open-source code on
https://github.com/arthiayaraman-lab .
As the structure is contained in the shape of a cubical

box of length L, the scattering calculations can be heavily
dominated by the form factor of the cubical box, referred
to as the ‘finite size effects’ in literature5. These finite
size effects greatly obscure the 2D scattering profile of the
structure, and makes it hard to interpret their variation
purely due to the structural features. By accounting for
the volume fraction of each particle, the form factor of the
box can be subtracted as a correction to the scattering
profile of the structure. We have adapted the correction
scheme described by Brisard et al.5 to remove these finite
size effects as discussed in the Supporting Information
Section S2. Some simplifications like considering the
full shape of the particles at the boundaries can be made
and work well as long as the cubic box size is much larger
than the size of the particles, which in our case is below
10%L.
Figure 3a-f provides some representative examples of

scattering profile variations computed using equation 3
after applying the finite size effects correction. In each
panel a structure denoted by their Sample ID is shown
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together with two representations of the computed scat-
tering profiles, which are obtained as the color-coded in-
tensity plots for each q and θ value. The left scattering
plots in Figure 3 are referred to as the Cartesian scatter-
ing intensity plots - Icomp(q, θ), with axes q and θ. The
right scattering plots show the polar scattering intensity
Icomp(qx, qy), with axes qx and qy, two components of
the scattering vector q. The polar form is easily recog-
nizable to the soft materials experts, and is the typical
representation of 2D scattering profiles directly produced
from SAXS/SANS measurements. Both the “Cartesian”
and “polar” forms of 2D scattering profiles are numeri-
cally equivalent and only differ in their visual represen-
tation. We have included the polar scattering intensity
plots as a reference to the reader for easier comparison
to relevant experimental scattering profiles. However, for
the further analysis, the Cartesian representation pro-
vides a convenient and straightforward representation of
the numerical data, since only half of the complete plot
θ = 0◦ to θ = 180◦ needs to be represented due to the
inversion symmetry with the other half of the profile, i.e.
I(q) = I(−q). As demonstrated further, the Cartesian
representation can be easily serialized to obtain the com-
plete training and testing data in a tabular form that is
convenient for training the surrogate ML model as de-
scribed in the next sub-section.

The structures chosen in Figure 3 are used to demon-
strate how structural variations can influence the scat-
tering profile. For example, Figure 3a and 3b each
demonstrate an isotropic scattering profile, while having
different shapes of the individual particles; more spherical
in the former and disordered (low κ) prolate-spheroidal
in the latter. Figure 3c shows weakly aligned structure
(intermediate κ), while Figure 3d-f show highly aligned
structures (high κ). Another distinguishing effect is the
change in the intensity at low q for Figure 3d and Fig-
ure 3e; this is due to the drastic change in average size
of the particles.

Step (3): Training the Machine Learning (ML)
Model to Link Structural Features to Computed

Scattering Profile

With a streamlined implementation of steps (1) and
(2), the dataset of 3000 3D structures and their corre-
sponding 2D scattering profiles is ready for the ML model
training and testing (or validation). 80% of the data
(2400 structures) are used for training the ML model and
remaining 20% (600 structures) are used for validation of
the ML model’s performance.

In our efforts to apply an appropriate ML method that
predicts the 2D scattering profile from a given set of
structural features, we identify the need to use a super-
vised ML approach where continuous-valued quantities
can be predicted from a small set of other continuous
parameters. Traditionally, both deep learning (DL) and
ensemble learning approaches have been successfully ap-

plied to achieve these tasks.

With the many DL approaches, one can create a gener-
ative model that is conditionally trained on all the struc-
tural features. However, successful training of genera-
tive models requires a lot more data than provided in
our dataset, roughly estimated to be well above 10,000
- 100,000 images for model training alone.12,36 On the
other hand, ensemble learning methods combine the pre-
diction of multiple standalone models, to create an overall
‘ensemble’ predictive model that is more accurate than
the individual predictions from the standalone models.
Many ensemble learning approaches can be easily imple-
mented using decision trees which are simpler to work
with than neural networks, and have been shown to per-
form exceptionally well, outperforming neural networks31

for tabular data, as is also the case for Icomp(q, θ). Moti-
vated by these advantages, we use a decision tree-based
ML model to predict the value of Icomp(q, θ) for each of
the 6 structural features and the given q and θ values.

In the realm of decision tree-based ML models, espe-
cially when dealing with tabular data, boosting ML tech-
niques have gained popularity.8,16,37,45 This is because
boosting ML techniques combine groups of weak predic-
tive learners sequentially and correct previous models’
training loss to form a strong ensemble model. Here we
choose XGBoost algorithm,7 which stands for eXtreme
Gradient Boosting, to be the surrogate ML model in
CREASE-2D, due to its exceptional performance and
lower scope of over-fitting.

XGBoost is a generalized algorithm that can be imple-
mented to solve a wide range of problems. During train-
ing, XGBoost assigns weights to all features it trains on,
referred to as feature importance and accordingly adjusts
the construction of decision trees. XGBoost also offers a
wide range of hyper-parameters that can be fine-tuned
to a diverse set of training data. In our work, we uti-
lize these advantages of XGBoost to train the surrogate
ML model that outputs a 2D scattering intensity for the
input of structural features and (q, θ) values.

To use XGBoost algorithm, the training dataset is re-
formatted into a table, where each row contains all the
6 structural features as fields, combined with a serial-
ized representation of the scattering profiles. Thus, each
training dataset row reads as: Rµ, Rσ, γµ, γσ, κ, ϕ, q, θ,
and I(q, θ). During serialization of the dataset, the reso-
lution of the scattering profile can have a dominant effect
on the efficiency of training. This is because a higher
resolution will result in better quality of the data, but
also increases the computational overhead and memory
requirements during training. The 2D scattering profiles
calculated in step (2) are generated over a (q, θ) grid of
501×181 = 90681 data points, which amounts to over 200
million points for all 2400 samples in the training dataset.
In principle one could use all these points to train the
surrogate ML model, if the user has outstanding compu-
tational resources with limitless memory. For users with
modest computational resources (including cost-effective
subscriptions to Google-Colab) sub-sampling of the data
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Fig. 4. (a) Correlation matrix for all 6 structural features along with q, θ and I(q) values, that together form the dataset for
training and validation. (b) The importance histogram for each feature evaluated by the model after training. (c) Learning
curve during training of the surrogate ML model, where R2 error of the training (black) and validation (green) data entries
is plotted against the number of data entries. (d) Performance of the ML model using the R2 and the Structural Similarity
Index Measure (SSIM) scores for all 3000 samples in the dataset. We note that the index in the x-axis for this plot runs from
1 to 3000 but it is different from Sample IDs; the index distinguishes the randomly selected 2400 samples used for training and
600 samples for the validation. (e-h) Original and predicted scattering profiles for a selected few samples from the validation
dataset, each marked with their R2 and SSIM scores.

is deemed necessary. We therefore adopted a grid-based
sub-sampling approach where we uniformly sample every
4th q value and every 5th θ value to obtain a (q, θ) grid
of 127 × 37 = 4662 data points. This results in around
11 million tabular entries for the 2400 samples that can
be handled reasonably well by the ML model.

To tune the architecture of the decision trees in the
XGBoost model, Bayesian search optimization38 with
cross validation is performed over a large range of hyper-
parameters to identify their best configuration that pro-
vides reliable accuracy in the predicted 2D scattering pro-
files. More details about configurations of Bayesian op-
timization is provided in the Supporting Information
Section S3. As an example, after this optimization, we
find that the predicted intensity values are the most re-
liable when for each decision tree and for each node of
a decision tree only 90% and 80% of the structural fea-
tures are randomly sampled, respectively. Other hyper-
parameters which determine the learning rate, step-size,
maximum depth of the decision tree, etc. are also op-
timized and described in more detail in the Support-
ing Information Section S3 along with their optimum
value that are used to train the ML model. Careful tun-

ing of these hyper-parameters is essential for achieving
optimal model performance and avoiding over-fitting on
the given dataset. Bayesian optimization of the hyper-
parameters takes just over an hour to optimize, when us-
ing the V100 GPUs with 51 GB RAM as provided by our
Google Colab Pro subscription. Once the tuned hyper
parameters are obtained, the XGBoost model is trained
on CPUs within 10 minutes.

To understand the data, we present the correlation
matrix in Figure 4a and to understand how the ML
model interprets the data after training we present the
histogram that measures the feature importance in Fig-
ure 4b. The correlation matrix indicates weak correla-
tions between the means and standard deviations of R
and γ, possibly due to the way these values are sam-
pled, as indicated in Step (1). Some correlations are
also observed for ϕ and all remaining structural features;
as noted above in the CASGAP structure generation,
the volume fraction ϕ value is not directly varied dur-
ing structure generation and is only evaluated after the
structure is generated. The strongest (inverse) correla-
tion is observed between the scattering intensity I(q, θ)
and the magnitude of the wavevector q; this is expected
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as the scattering intensity values display a drastic depen-
dence on the q values. Consequently, after training, the
ML model assigns the highest importance to q, as shown
in Figure 4b. Figure 4c shows the learning curve where
the performance is measured using the R2 error, which is
a normalized version of the mean squared error (MSE),
and is plotted against the number of data entries that the
model has already used for training. Both the training
and the validation errors are found to converge quickly
to beyond 99.5% indicating that the surrogate ML model
does not over fit the training data.

In Figure 4d we evaluate the performance of the sur-
rogate ML model using two metrics for all 3000 samples,
where we have assigned an index (different from Sample
ID) to separate the training samples from the validation
(or test) samples. The first metric is the R2 error evalu-
ated in a similar way as done during ML model training.
These R2 scores provide information about the prediction
accuracy of the ML model at each q and θ value on an
individual basis (i.e., without necessarily considering the
local context). We find that the R2 values converge to
0.995 and do not differ much for training vs. validation
samples, indicating excellent prediction accuracy of the
ML model. However, to also evaluate the performance of
the ML model to output the entire 2D scattering profile
we need another metric that takes into account the per-
formance of the model at all values in the local vicinity
of a q and θ. For this reason, we choose the structural
similarity index (SSIM) scores which infers the structural
differences between the two scattering profiles, by using
image-based characteristics like luminescence, contrast,
and pattern; these quantities are derived from the mean,
variance, and covariance information of the local pixel
data. An SSIM score near 1 indicates a good performance
of the ML model in predicting the entire scattering pro-
file for a given set of structural features. In Figure 4d
the SSIM scores converge to above ∼ 0.8 indicating a
reliable prediction accuracy of the ML model.

A visual comparison between the original and the ML
predicted scattering profiles is also shown in Figure 4(e-
h), along with their R2 and SSIM scores. We note that
among all the Sample IDs, Sample 1910 shown in this
figure has the least SSIM score. A more detailed com-
parison between the original and predicted profiles is pro-
vided in the Supporting Information Section S4, by
overlaying their 1D scattering profiles at a few selected
θ values to further demonstrate the similarities in the
two profiles. These results demonstrate that the trained
surrogate ML model performs reasonably well. It is im-
portant to note that the quality of the surrogate model
training will impact how well CREASE-2D performs. We
encourage users of CREASE-2D to invest the appropri-
ate time for the ML model training, and to ensure that
poor training and testing do not manifest as poor analy-
ses from CREASE-2D.

Step (4): Optimization within Genetic Algorithm
(GA) in CREASE-2D

The final step in CREASE-2D implementation is to put
together the predictive capacity and the speed of the sur-
rogate ML model within the genetic algorithm (GA) opti-
mization loop. We refer the reader to previous CREASE
publications3,23–25,40–44 for detailed implementations of
the GA optimization loop in the successful execution of
the CREASE (1D) method. In the current implemen-
tation, one major distinction is the use of a continuous
parameter GA in contrast to the binary GA used in the
previous work. The continuous parameter GA is better
suited for evolving “genes” that represent continuous pa-
rameters, and has a more straightforward interpretation
of the crossover and mutation operations.22 As noted be-
fore, the 6 structural features (Rµ, Rσ, γµ, γσ, κ, ϕ) are
represented as 6 corresponding “genes” and every “indi-
vidual” has a unique set of values for these genes in the
GA optimization loop . We first normalize values of the
genes, using a scheme similar to the one used to obtain
their randomized distribution; for more detail see Sup-
porting Information Section S5. The normalization
schemes assigns a value between 0 − 1 as the value of
the gene and has a monotonic one-to-one correspondence
with the value of the corresponding structural feature.

For every “individual” with a unique set of genes, a
scattering profile is predicted from the surrogate ML
model using the individual’s structural features as the
input. All individuals in each generation are then ranked
by their “fitness” value which is quantified by the struc-
tural similarity index (SSIM) of the individual’s com-
puted scattering profile with respect to the experimental
input scattering profile. The objective of the GA opti-
mization loop is to improve the fitness of an individual;
in other words, improve the SSIM score of its computed
scattering profile Icomp(q, θ) as compared to Iexp(q, θ).

The other important considerations in the implemen-
tation of the GA optimization loop is the choice of the
number of individuals to sample in each generation (i.e.,
the population size) as well as the selection procedures
for determining individuals that move to the next gener-
ation. In our implementation, we use a fixed population
of 100 individuals per generation that are always ranked
according to their fitness. In each generation, the top 30
individuals with the highest fitness are selected. These 30
individuals serve as parents who are randomly paired to
form 70 children using a single-point cross-over method.
Subsequently, the 30 parents and 70 children together
form the 100 individuals for the next generation. For
these 100 individuals, the next set of operations are re-
lated to mutation. The top two elite individuals’ gene
values are kept unchanged as they progress to the next
generation. The remaining 98 individuals undergo adap-
tive mutation, where the mutation probability and step
size is varied based on the L2 distance (or the squared Eu-
clidean distance) of the individual from the mean value
of all individuals. Adaptive mutation is usually recom-
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Fig. 5. Performance of Genetic Algorithm (GA) in CREASE-2D. (a) Structural Similarity Index or SSIM scores for all 600
samples input to CREASE-2D; SSIM quantifies the similarity between the GA-optimized or ‘best’ Icomp(q, θ) at the end of the
GA loop with the input Iexp(q, θ). (b) The comparison of GA-optimized values of the normalized “gene” or structural features
and the original value of the structural feature, normalized to represent a target gene value for all 600 samples tested with
CREASE-2D. (c-d) Two selected samples - Sample IDs 1910 and 1076- out of the 600 samples tested with CREASE-2D. We
show visual comparison of the input scattering profile and outputs from three independent GA runs and plot their corresponding
evolution of structural feature predictions during each GA run for Sample IDs 1076 and 1910. The solid colored curves in the
plots in (c) and (d) are the three GA runs and the black dashed curve is the value of the structural feature corresponding to
the original scattering, with the exact value of that structural feature denoted in text.

mended to prevent the GA from converging too quickly
to a local minimum, and to have sufficient diversity in
the genes and individuals in the population.30 With this
next generation of 100 individuals, the GA optimization
loop is then continued. As the number of generations in-
creases, the fitness of a generation should converge, and
upon convergence the GA loop can be stopped.

Performance of CREASE-2D

To evaluate the performance of the CREASE-2D
method, we use all the 600 test samples out of the 3000
test samples (the reader will recall that out of the dataset
of 3000 samples, 2400 samples are used to train the sur-
rogate model) and run GA five separate times for each
sample. We run five GA separate runs for each sam-
ple to check how different the output structural features
from CREASE-2D are for each sample’s input scattering
profile; this allows us to understand degeneracy in opti-
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mized GA solutions. In Figure 5a the fitness measured
in the form the SSIM scores for all 600 samples tested in
CREASE-2D are all found to in the 0.7 to 0.9 range. We
note that this SSIM score range is similar to the perfor-
mance of the surrogate ML model indicating a reliable
match between the input and output scattering profiles.
For each sample, the standard deviations in the SSIM
scores from its five GA replicates are small (within 1%
of the value shown) and thus, not shown in the plot for
clarity. We note that the CREASE-2D method performs
only as well as the surrogate ML model and it should not
be expected to outperform the prediction accuracy of the
surrogate ML model.

In Figures 5b, we compare how well CREASE-2D
predicts each structural parameter value for all 600 test
sample whose structural features we (but not CREASE-
2D) know a priori. To make an effective visual com-
parison, we use the gene values directly instead of the
structural features in these plots. For some structural
features, especially ϕ, Rµ and γµ (i.e., volume fraction
and means of particle size and shape distributions) the
accuracy of prediction is high, as indicated by the clus-
tering of points close to red line with unit slope. For Rσ

and γσ (which measure of the dispersity in particle size
and shape) the prediction accuracy is low, despite having
a high SSIM score. This indicates that precise values of
extent of dispersity in the particle size and shape have a
minimal impact on the variation of the scattering inten-
sity; this is in line with observations in experiments that
presence of dispersity broadens peaks of scattering profile
but does not alter the shape of the profile with the value
of dispersity. As a result, for Rσ and γσ, CREASE-2D
method is dealing with larger degeneracy in solutions.
For κ, that quantifies orientational order, the accuracy is
high only for samples that have high values of κ, and the
accuracy is low for samples with lower κ values (i.e., low
orientational order). As one would expect, at low values
of κ which represent isotropic ordering of anisotropic par-
ticles, the precise numerical value of κ value has minimal
impact on the scattering intensities.

To further demonstrate the performance of CREASE-
2D method for the four representative samples (same as
from Figure 4), in Figure 5c and 5d the results for
Sample IDs 1076 and 1910 are presented and the results
for Sample IDs 1097 and 2176 are provided in Support-
ing Information Section S5. The evolution of their
fitness values is also presented in Supporting Infor-
mation Section S5. In Figure 5 we show the pre-
dicted scattering profiles for the best outputs from 3 out
of the 5 GA runs per system along with the evolution
of structural features over 1000 generations from those
3 GA runs. In each run, the GA loop converges closely
to the original value of the structural feature in the first
few generations, as indicated by the convergence of the
curves to the dashed line (the numbers in the plots de-
note the target structural feature value of that sample).
We note that one GA optimization loop with 1000 gener-
ations of 100 individuals uses 30-45 minutes in real-time

to complete when implemented on a single-(CPU) core
laptop/computer with modest hardware.

In conclusion, we have developed a new CREASE-2D
method that analyzes 2D scattering profiles as is with-
out any averaging along all or few angles, and outputs
relevant structural features like domain size and shape
distribution, extent of orientational order in the struc-
ture, and packing fraction of the domains in the struc-
ture. The development of CREASE-2D relied on the
generation of dataset with 3000 samples each with a de-
sired set of structural features and the corresponding 3D
structures generated using CASGAP20 and correspond-
ing computed 2D scattering profile. This dataset enabled
training of a surrogate XGBoost-based model that out-
puts 2D scattering profile for a given set of structural
features. Using this surrogate ML model within a ge-
netic algorithm (GA) optimization loop, we are able to
identify all the structural features (and reconstruct 3D
real-space configurations, if needed) that produce a scat-
tering profile that matches the input 2D scattering pro-
file. We believe soft materials researchers who aim to
understand how macroscopic properties (e.g., rheology,
flow) depend on the structural anisotropy and the hi-
erarchy of structural length scales within the materials
will find this CREASE-2D method useful. CREASE-2D
enables users to analyze the output of scattering experi-
ments holistically without having to use approximate an-
alytical models to fit to averaged 1D profiles or limiting
to analyzing only averaged angular sections of the 2D
profiles.
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