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Abstract

The bond-dependent Kitaev interaction K is familiar in the effective spin model of transition
metal compounds with octahedral ligands. In this work, we find a peculiar non-coplanar magnetic
order can be formed with the help of K and next-nearest neighbor Heisenberg coupling J2 on the
triangular lattice. It can be seen as a miniature version of skyrmion crystal, since it has nine spins
and an integer topological number in a magnetic unit cell. The magnon excitations in such an order
are studied by the linear spin-wave theory. Of note is that the change in the relative size of J2 and K
produces topological magnon phase transitions although the topological number remains unchanged.
We also calculated the experimentally observable thermal Hall conductivity, and found that the signs
of thermal Hall conductivity will change with topological phase transitions or temperature changes in
certain regions.
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1 Introduction

Magnon is the quantum of low-energy collective excitation in a magnetic system [1–3]. Since a
magnon does not generate Joule heating during motion and has a much longer diffusion length than an
electron [4–6], it has application prospects for storing and disseminating information in the future [6].
Inspired by topological insulators which can support chiral edge/surface states that are immune to
backscattering [7, 8], researchers are also committed to find corresponding phenomena in magnons
[9–18]. Topologically non-trivial magnons can be driven by a thermal gradient, forming transverse
heat currents by the Berry phase mechanism [19]. This is called the thermal Hall effect [20–32], which
has been experimentally observed in pyrochlore [21, 23] and kagome [11, 27] ferromagnets. Relevant
research has been in full swing [29,33].

The non-planar spin textures with non-zero topological numbers are also a key research focus
in condensed matter physics [34–40], and the most representative one is the skyrmion [34, 35]. In
the continuous limit, a skyrmion is topologically protected, which means it cannot be generated or
removed by any continuous deformation [35]. In the actual magnetic system, although the lattice is
discrete and the size of the skyrmion is limited, a skyrmion is still relatively stable, which allows it to
be manipulated independently as a quasi-particle [41]. In recent years, researchers have begun to pay
attention to the magnon excitations in the skyrmion [6]. The topological magnons in ferromagnetic
and anti-ferromagnetic skyrmion crystals have been discovered [42–48], and the topological phase
transitions caused by the interactions or magnetic field are discussed as well [44,45]. However, as far
as we know, in previous works, researchers mainly involved the skyrmions in non-centrosymmetric
magnets which are formed with the help of chiral Dzyaloshinskii-Moriya interaction. This is just the
tip of the iceberg of topological non-trivial spin textures [39]. On the one hand, it has been proved
that the skyrmion can also appear in the centrosymmetric magnets as a result of other interactions
[49–60], such as dipolar interaction [49, 50], the single-ion anisotropy [51–58] or the bond-dependent
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interactions [54, 61]. On the other hand, beyond the skyrmion, there are many magnetic quasi-
particles coming into the sight of researchers in recent years [39,62,63]. Whether topological magnons
or relevant phase transitions exist within such spin textures remains to be further explored.

In this work, we study the interplay of Heisenberg and Kitaev interactions on the triangular lat-
tice. The bond-dependent Kitaev interaction is widely considered in the theoretical model describing
transition metal compounds with octahedral crystal field [64–66]. We find a peculiar non-coplanar
magnetic order that can be formed by the competition between K and next nearest neighbor Heisen-
berg coupling J2. There are nine spins in a magnetic unit cell and the topological number is ±1(±2),
thus it can be seen as a miniature version of (high-Q) skyrmion crystal [67]. Then we focus on
the magnon excitations in such order. Through the linear spin-wave theory, we calculate the Chern
number of each magnon band, and based on this, different regions are distinguished. The change of
J2 will produce topological phase transitions although the topological number in real space remains
unchanged. Since thermal Hall conductivity is related to the magnon band topology [31], finally, we
calculate the thermal Hall conductivity and discussed its distinctions in different areas. Thermal Hall
conductivity is dominated by the Berry curvature in the lowest bands at low temperatures. We also
found that in certain regions, the signs of thermal Hall conductivity will change with topological phase
transitions or temperature changes.

z bond

y
bo

nd

x
bond

Metal cation
Anion (top)

Anion (bottom)

Figure 1: Schematic structure of the Kitaev directions in a triangular lattice. The Kitaev interaction
appears along with an octahedral crystal field where the metal cations are located at the center of
octahedral ligands [66,68]. The global coordinate system a-b-c is shown in the bottom left, where the
triangular lattice composed of metal cations lies in the a-b plane and c is perpendicular to this plane.
We mark the x, y, and z bonds in blue, green, and red, respectively. In the a-b-c coordinate system,
their corresponding Kitaev directions are given by x = [

√
2/2,

√
6/6,

√
3/3], y = [−

√
2/2,

√
6/6,

√
3/3],

z = [0,−
√
6/3,

√
3/3], respectively.

2 Model

We consider the following model on a triangular lattice,

H = J2
∑
⟨⟨ij⟩⟩

Si · Sj +K
∑
⟨ij⟩γ

Sγ
i S

γ
j − h ·

∑
i

Si, (1)

where J2 is the exchange parameter of the next-nearest neighbor Heisenberg coupling. Si represents
the spin at site i and Sγ

i = Si · γ⃗, where γ⃗ is the bond-dependent Kitaev direction. For the three
types of bonds x, y, and z, as shown in Fig. 1, γ⃗ corresponds to x, y, and z, respectively. The
vectors x, y, and z are perpendicular to each other, forming a coordinate system x-y-z. K is the
exchange parameter of Kitaev interaction. In practical materials related to triangular lattices, the
Kitaev interaction appears along with octahedral ligands [66, 68]. Accordingly, the Kitaev directions
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Figure 2: (a) Typical spin configuration of the non-coplanar order when K = −1, J2 = 1, and
h = 0.05. The small arrows indicate directions of spins and their colors are based on the out of plane
component. The magnetic unit cell includes nine spins. (b) The spin structure factor corresponds
to (a), the peaks are located at the point of 2M/3. (c)-(d) The classic ground-state energy Eg as a
function of J2 when K = −1, h = 0.05. The result of energy optimization method (EOM) and Monte
Carlo method is consistent. The ground state begins with the ferromagnetic (FM) order and rapidly
transitions through a narrow transition region (TR) to the non-coplanar (NC) order. As J2 increases
further, the ground state remains in non-coplanar order. (e)-(f) The topological number Q versus J2
in the non-coplanar order region. The topological number changes from −1 to −2 when J2 ≈ 0.326.

are fixed. To better illustrate them, we introduce a global coordinate system a-b-c. In Fig. 1, the
a-b-c and the x-y-z coordinate systems are shown on the bottom left and bottom right, respectively.
The relationship between the x-y-z and the a-b-c coordinates systems satisfies x

y
z

 =


√
2
2

√
6
6

√
3
3

−
√
2
2

√
6
6

√
3
3

0 −
√
6
3

√
3
3


 a

b
c

 . (2)

The last term is the Zeeman term caused by a magnetic field h = hc, which is perpendicular to the
triangular lattice plane.

We use the parallel-tempering Monte Carlo simulations [69,70] to uncover the spin textures. After
Monte Carlo simulations, the classic ground state is then obtained by iteratively aligning the spins
with their local fields [71]. Other numerical energy optimization methods are also used to check if
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the energy is at a minimum. Then we use the ground-state energy as well as the spin structure

factor Sk = 1
N2

total

∣∣∑
i Sie

−ik·Ri
∣∣2 [49,72] to distinguish different phases. In the following, all the spin

configurations are plotted in the a-b-c coordinate system.

3 The non-coplanar order

Through the above methods, we find a non-coplanar order can be stabilized by the competition
between negative K and small positive J2. We take a representative point (K = −1, J2 = 1,
h = 0.05) as an example to illustrate its typical spin configuration in Fig.2 (a). The configuration has
C3 rotational symmetry around the c-axis. There are nine spins in a magnetic unit cell (N = 9) and
the ordering wave vector is located at the 2M/3 point, as shown in Fig.2 (b). Since the skyrmion
crystal has an integer topological number in a magnetic unit cell, first, we calculate the solid angle
Ω∆ of each elementary triangle. In the discrete lattice, it can be obtained as [73]

cos

(
Ω∆

2

)
=

1 + Si · Sj + Si · Sk + Sj · Sk√
2 (1 + SiSj) (1 + SiSk) (1 + SjSk)

, (3)

where Si is the spin at site i. The sign of Ω∆ is determined as sign(Ω∆) = sign [Si · (Sj × Sk)]. Note
that on each triangle, the i, j, and k are arranged counterclockwise. The topological number Q is the
sum of solid angles in a magnetic unit cell,

Q =
1

4π

∑
∆

Ω∆. (4)

The topological number Q of the non-coplanar order can be either ±1 or ±2 (for details, see the next
paragraph), and the positive and negative signs can be selected by magnetic fields of different signs.
The magnetic field is not the cause of the formation of this magnetic order, but it can eliminate the
degeneracy when all spins are reversed.

J2 = 0.2, Q = −1 J2 = 0.34, Q = −2

Ω4 ≈ 2π Ω4 ≈ −2π

Figure 3: We compared the solid angle Ω△ distribution when topological number is -1 and -2. Three
spins are almost in-plane and they have the same out of plane component Sc. As J2 increases, the
Sc continuously changes from a small positive value to a small negative value, the solid angle formed
by three spins changes as (< 2π) → 2π → −2π → (> −2π). Thus, the topological number (in unit of
4π) as the sum of solid angle reduce by 1.

Now we illustrate the influence of J2 interaction. The ground state of the pure Kitaev model
is ferromagnetic order [74]. As shown in Fig. 2(c), after fixing K = −1 and h = 0.05, a small J2
(≈ 0.016) will induce the non-coplanar order. A narrow transition area has been identified before
entering the non-coplanar order, and we omit its details. Next, we continue to increase J2. As shown
in Fig. 2(d), at least when J2 is less than 5, the non-coplanar order has always existed as the ground
state. Of note is that the topological number will undergo a change as J2 increases. As shown in
Fig. 2(e) and (f), when J2 ∈ [0.016, 0.326] the topological number is −1, and it becomes −2 when J2
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is larger than 0.326. Since the energy and its derivatives are continuous at J2 ≈ 0.326, to understand
what changes have occurred, we compared the solid angle distribution before and after such point. As
shown in Fig. 3, the jump of topological numbers is due to the continuous variation of three almost
in-plane spins. They have the same out of plane components Sc, and as Sc continuously changes from
a small positive value to a small negative value, the solid angle formed by three spins will decrease
by 4π.

(a) (b)

(c)

(d)

I II III IV V

J2 J2

Figure 4: (a)-(c) Chern numbers as a function of J2, and C1, C2, ..., C9 correspond with the lowest to
the highest band, respectively. Five areas are distinguished by different Chern numbers. We marked
them with Roman numerals I-V in (a). (d) The magnon thermal Hall conductivity as a function of
temperature for variant J2, which belong to different areas in (a).

4 Topological magnon and thermal Hall effect

To consider magnon excitations in our non-coplanar order, we use the linear spin-wave theory. Its
details can be found in Appendix. A. If a magnon band is separate from the upper and lower energy
bands, we can capture its topological properties by calculating the Chern number. The Chern number
of the band n (Cn) is defined as the integral of the Berry curvature Ωn,k over the first Brillouin zone
(FBZ) of a magnetic unit cell

Cn =
1

2π

∫
FBZ

Ωn,kd
2k. (5)
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The Berry curvature can be calculated as [30]

Ωn,k = −2 Im
2N∑
m=1
m̸=n

(
GT †

k∂aHkTk

)
nm

(
GT †

k∂bHkTk

)
mn

[(GEk)nn − (GEk)mm]2
, (6)

where G, Hk, Tk and Ek are all 2N ×2N matrices, and G is a diagonal matrix whose first N diagonal
elements are 1, and the final N diagonal elements are −1. The definitions of the rest matrices are
shown in Appendix. A.

In this section, we mainly focus on the impact of J2, and consider a moderate parameter range
J2 ∈ [0.3, 1.2] since there are degeneracy points in the energy band when J2 is smaller. Fig. 4(a)-(c),
show the variation of Chern number with J2 while fixing K = −1, h = 0.05. The nonzero Chern
numbers are widely present within the parameter range, indicating the existence of non-trivial band
topology. The Chern number of the lowest three bands (C1, C2, C3) changes with the increase of J2
as (0, 1, 0) → (0, 1,−1) → (1, 0,−1) → (1,−1, 0) → (2,−2, 0), sequentially. Five different areas are
distinguished, and we marked them with Roman numerals I-V in Fig. 4(a). Specifically, the real
space topological number Q changes from −1 to −2 when J2 ≈ 0.326, but there is no corresponding
topological phase transition occurring at this point. Topological phase transitions mostly occur on
the three lowest energy bands, for the rest bands, only C4, C8 and C9 show jumps at J2 ≈ 0.43.
Since magnons follow the Bose-Einstein distribution, they prefer to stay in low energy states at low
temperatures. The above fact highlights the importance of the role played by the lower energy bands.

The thermal Hall conductivity (THC) as an observable physical quantity in experiments is related
to the magnon band topology [31]. The THC can be obtained as follows with the help of Berry
curvature [25],

κab = − k2BT

(2π)2h̄

N∑
n=1

∫
k∈FBZ

{
c2 [ρ (En,k)]−

π2

3

}
Ωn,kd

2k, (7)

where T is temperature, N is the number of sub-lattices, and ρ (En,k) is the Bose distribution function

ρ(En,k) =
(
eEn,k/kBT − 1

)−1
. The weighting function c2(x) is defined as c2(x) = (1 + x) ln2 1+x

x −
ln2 x− 2Li2(−x) with the Spence function Li2(z) = −

∫ z
0 ln(1− t)/tdt.

Fig. 4(d) shows temperature-dependent THC curves of representative points in different areas. At
higher temperatures (T > 0.34), THC monotonically decreases with increasing J2. This relationship
no longer exists at low temperatures. Specifically, the curves of J2 = 0.5 (which belongs to area II)
and J2 = 1.0 (which belongs to area IV) both show a sign change as the temperature changes. Among
them, the THC of J2 = 1.0 has a larger positive area at low temperatures. The curves of the rest
parameters maintain negative values at low temperatures, and the absolute value of J2 = 0.3 (which
belongs to area I) is much larger than that of J2 = 0.8 (which belongs to area III) and J2 = 1.1 (which
belongs to area V).

To further clarify the differences in THC, we present the energy bands with corresponding Berry
curvatures of each parameter point in Fig. 5(a)-(e). For all points, the lowest energy position is at the Γ
point. The energy gap at the Γ point indicates the lack of continuous symmetry, and the gap decreases
with increasing J2. Strictly speaking, all energy bands contribute to THC at finite temperature, as
shown in Eq. 7. However, as the c2 function drops quickly [10], the THC at low temperature is
most related to the Berry curvature in the lowest energy regions. Fig. 5(a) shows the result when
J2 = 0.3. Due to the fact that the lowest two bands both have positive Berry curvatures near the
Γ point, the THC has the maximum negative value at low temperatures. As shown in Fig. 5(b),
although the lowest two bands have inverse Berry curvatures near the Γ point when J2 = 0.5, the
Berry curvatures of the lowest band make greater contributions, resulting in a totally positive THC
at low temperatures. Fig. 5(c) and (d) show the results of J2 = 0.8 and J2 = 1.1 respectively. The
contribution of Berry curvature to THC near the Γ point is almost completely canceled out, since
the Berry curvatures has opposite signs and the energetic separation of the lowest two bands is very
small.
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(a) (b) (c) (d)

(e)
(f)

I, J2 = 0.3 II, J2 = 0.5 III, J2 = 0.8 V, J2 = 1.1

IV, J2 = 1.0
IV, J2 = 1.0

Figure 5: (a-e) Dispersion relations of different values of J2 when K = −1, h = 0.05. They belong to
different areas in Fig. 4(a) respectively. The line color stands for the normalized Berry curvature of
each band. (f) The magnon thermal Hall conductivity κab as a function of kBT at the same parameter
point with (e). The curves n = 1, n = 2, and n = 3 are the results coming from the single band n,
and n = 1, 2, 3 is the sum of them. n = 1, · · · , 9 is the overall result which includes nine bands.

As shown in Fig. 5(e), when J2 = 1.0, the position of the band with the third-lowest energy at the
Γ point is close to the positions of bands with lower energy. To further illustrate the positive region
of THC, we consider the contributions of each of the three lowest energy bands to THC separately.
It can be seen in Fig. 5(f), the THC of the lowest band n = 1 changes sign at kBT/S ≈ 0.14. This
is because the sign of Berry curvature quickly changes from negative to positive outside the Γ point.
The second band n = 2 consistently contributes positively to THC, and the contribution of the third
band n = 3 to THC is always negative and cannot be neglected at low temperatures. In short, the
total negative THC region stems from the combined effect of three bands. Moreover, we calculated
the sum of the contributions from the lowest three bands and compared it with the total THC, and
found that there is relative consistency between the two curves at low temperatures.
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5 Summary

In summary, we found a peculiar non-coplanar order formed by the competition between bond-
dependent Kitaev interaction K and next-nearest neighbor Heisenberg coupling J2 in the triangular
lattice. It can be seen as a miniature version of (high-Q) skyrmion crystal since its magnetic unit
cell includes nine spins and has ±1(±2) topological number. Through the linear spin-wave theory, we
studied the magnon excitations in such order. The dispersions and the corresponding Chern numbers
are obtained as well. Multiple topological phases (areas) are distinguished by the Chern numbers.
Of note is that the change in the relative size of J2 and K will produce topological phase transitions
although the topological number in real space remains unchanged. Then we calculated the thermal
Hall conductivity and discussed its differences in different areas. We found that the thermal Hall
conductivity is dominated by the Berry curvature in the lowest bands at low temperatures, and in
certain regions, the signs of thermal Hall conductivity will change with topological phase transitions
or temperature changes. Based on these results, we hope our work will enlighten the future research
of magnonics on trigonal Kitaev materials.
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A Linear spin wave theory

When considering the magnon excitations in a non-coplanar configuration with multiple spins in
a magnetic unit cell, we perform the Holstein-Primakoff (HP) transformation with the quantization
axis based on spin orientation. In our global coordinate system, the orientation of spin i is

Si =
(
Sa
i , S

b
i , S

c
i

)
= (sin θi cosϕi, sin θi sinϕi, cos θi) . (8)

With the help of polar angles, we can find a rotation matrix

Ri =

 cos θi cosϕi − sinϕi sin θi cosϕi
cos θi sinϕi cosϕi sin θi sinϕi
− sin θi 0 cos θi

, (9)

and determine a local coordinate system ã-b̃-c̃ that satisfying
(
Sa
i , S

b
i , S

c
i

)T
= Ri

(
Sã
i , S

b̃
i , S

c̃
i

)T
. The

spin model Eq. [1] can be rewritten as

H =
∑

⟨i,j⟩,⟨⟨i,j⟩⟩ S
T
i ·Jij ·Sj −

∑
i h·Si, (10)

where J2 and K terms are uniformly written into the interaction matrix Jij . After performing coor-
dinate transformation on all spins separately, the model has the following form [75]

H =
∑

⟨i,j⟩,⟨⟨i,j⟩⟩ S̃
T
i R

T
i ·RiJ̃ijR

T
j ·RjS̃j −

∑
i h̃R

T
i ·RiS̃i. (11)

The Holstein-Primakoff expansion [76] on spin i is

S c̃
i = S − b†ibi = S − ni

Sã
i =

√
2S − nibi + b†i

√
2S − ni

2
≈

√
S

2

(
bi + b†i

)
S b̃
i =

√
2S − nibi − b†i

√
2S − ni

2
≈ −i

√
S

2

(
bi − b†i

)
,

(12)
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and we keep only the lowest order of the boson operator. Then we substitute S̃i =
(
Sã
i , S

b̃
i , S

c̃
i

)T
for

each spin in a magnetic unit cell and apply the Fourier transformation

bi = bn,j =
1√
L

∑
k∈FBZ

bj(k)e
ik·(Vn+rj), (13)

where n is index of unit cell, j (∈ 1, · · ·N) marks the sub-lattice inside unit cell, L is the total number
of unit cells and Vn is Bravais lattice coordinate. Finally, we can obtain the spin wave Hamiltonian,
and we focus on the quadratic term,

H2 =
1

2

∑
k

ψ†
kHkψk, (14)

where ψ†
k =

(
a†1,k, a

†
2,k, · · · , a

†
N,k, a1,−k, a2,−k, · · · , aN,−k

)
and Hk is a 2N×2N matrix. We can use a

transformation matrix Tk to diagonalize the matrix Hk [77],

Ek = T †
kHkTk, (15)

where Ek = diag (E1,k, E2,k, · · · , EN,k, E1,−k, E2,−k, · · · , EN,−k) contains the magnon dispersions.
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