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ABSTRACT  

Water molecules confined between biological membranes exhibit a distinctive non-Gaussian 

displacement distribution, far different from bulk water. Here, we introduce a new transport 

equation for water molecules in the intermembrane space, quantitatively explaining molecular 

dynamics simulation results. We find that the unique transport dynamics of water molecules stems 

from the lateral diffusion coefficient fluctuation caused by their longitudinal motion in the 

direction perpendicular to the membranes. We also identify an interfacial region where water 

possesses distinct physical properties, unaffected by changes in the intermembrane separation.  
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Water confined in biological nanospaces, such as the inter-membrane regions of mitochondria, 

synaptic clefts, and endoplasmic reticula, is a crucial element for cell function1–3. Extensive 

research has investigated the structure and dynamics of water molecules in the vicinity of 

phosphatidylcholine (PC) bilayers, a major component of biological membranes. These works 

employed various methods including IR pump-probe spectroscopy4–6, heterodyne-detected 

vibration sum frequency generation (HD-VSFG)7,8, nuclear magnetic resonance (NMR)9, 

microfluidics10–12, and molecular dynamics (MD) simulation13–21. It is now established that the 

motility of nanoconfined water increases with its distance from the membrane center, with which 

the major functional groups of PC phospholipids interacting with water molecules change4,9,14,17,18. 

Moreover, it has been observed that dynamic motility fluctuations lead to Fickian-yet-non-

Gaussian diffusion in complex fluids22. Despite these studies, however, a quantitative 

understanding of the time-dependent displacement distribution of nanoconfined water molecules 

has not yet been achieved. 

To address this issue, we introduce a transport equation describing the thermal motion of 

molecules confined between two planar surfaces. Using MD simulations, we investigate the time-

dependent displacement distribution of water molecules nanoconfined between two lipid 

membranes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids. The 

solution derived from our transport equation provides a quantitative explanation of the MD 

simulation results for the mean square displacement, the non-Gaussian parameter, and the 

displacement distribution. Our analysis shows that nanoconfined water exhibits a super-Gaussian 

lateral displacement distribution originating from dynamic fluctuations of the lateral diffusion 

coefficient due to its coupling to water motion in the longitudinal direction. The time-dependent 

deviation of this lateral displacement distribution from Gaussian is found to be strongly influenced 
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by the intermembrane separation. We also identify an interfacial region where water molecules 

have structure and dynamics that are distinct from bulk water and robust with respect to changes 

in intermembrane separation. 

The essential assumption underlying our transport equation is that the most important variable 

that affects the lateral thermal motion of an interfacial water molecule is the distance, z, between 

the water molecule and the center of the membrane. This is a legitimate assumption because the 

microscopic environment interacting with a water molecule, including the functional groups of 

lipid molecules and hydrogen bond network, drastically changes with z9,17,18. Under this 

assumption, we obtain the following transport equation governing transport dynamics of interfacial 

water, starting from a general model of thermal motion coupled to environmental variables23: 

 2ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , ) ( ) ( , , )p z s z s p z s L z p z s  r r r      , (1) 

where ˆ ( , , )p z sr  denotes the Laplace transform of the joint probability density, ( , , )p z tr , that a 

water molecule is located at lateral position r  ( ( , )x y ) and the distance between the water 

molecule and the center of the membrane is z at time t. ˆ ( )f s  and ˆ ( )f s  denote the Laplace 

transform of ( )f t  and ( )t f t , i.e., ˆ ( )f s
0

( )stdte f t
   and ˆ ( )f s

0
( )st

tdte f t
   . 2  

denotes the Laplacian in the two-dimensional space parallel to the lipid membrane. In eq 1, 

ˆ ( , )z s  represents the lateral diffusion kernel dependent on z. Its small-s limit, ˆ ( , 0)z , serves 

as the lateral diffusion coefficient, ( )D z , of water molecules separated by z from the center of the 

membrane. In eq 1, ( )L z  denotes a mathematical operator describing the transport dynamics of 

the water molecules in a direction perpendicular to the membrane surface. 
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We then investigate the mean square displacement (MSD), 2( )t , and non-Gaussian parameters 

(NGP), 2 ( )t 2
4 2( ) (2 ( ) ) 1t t      , of the lateral displacement distribution of the water 

molecules. Here, 2( )t  and 4( )t  denote the second and fourth moments of the time-dependent 

distribution of the water displacement, ( ) ( ) (0)t t     r r r   , in the lateral direction. The NGP 

vanishes when the displacement distribution is Gaussian24,25. From eq 1, analytic expressions of 

the 2( )t  and 4( )t  can be obtained as 

 2 2

4ˆ ˆ( ) ( )s s
s

    , (2a) 

 2
4 2

ˆ ˆ ˆ( ) 4 ( ) 1 ( )s s s sC s       .  (2b) 

In eq 2a, ( )t   denotes the mean diffusion kernel of water molecules. Q  designates the 

average of quantity ( )Q z  over the equilibrium distribution, ( )eqP z , of z. ( )t   is the same as the 

lateral velocity autocorrelation function (VAF) of water molecules divided by 223. In eq 2b, ( )C t  

denotes the lateral diffusion kernel correlation (DKC) defined by 

 0
0 0 0

0 0

ˆ ˆ( , ) ( , )ˆ ˆ( ) ( , | ) ( )
ˆ ˆ( ) ( )

eq

z s z s
C s dz dz G z s z P z

s s

 


    
   

 


 
 

, (3) 

where 0 and   denote the center positions of the two membranes confining water molecules (see 

Figure 1). In eq 3, ˆ ( , )z s   and 0( , | )G z t z  denote, respectively, ˆ ˆ( , ) ( )z s s    and the 

Green’s function, or the conditional probability that a water molecule initially located at 0z  is 

found at z at time t, defined by 0( , | )tG z t z 0( ) ( , | )L z G z t z  with the initial condition, 

0( ,0 | )G z z 0( )z z  . Equation 2 enables us to extract the time profile of the DKC from the MSD 
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and the NGP or the first two nonvanishing moments of the displacement distribution (see Figure 

S3a in Supporting Information). 

At the onset of Fickian diffusion, the NGP reaches its maximum value (Figure 2). Beyond this 

NGP peak time, the MSD of water molecules linearly increases with time, which results because 

the VAF or ( )t   is negligibly small after the NGP peak time, i.e., 2 ( )t

0 0
4 ( ) ( ) 4 ( )

t

d t t   


         . At time scales longer than the NGP peak time, ( )L z  in 

eq 1 can be approximated by the following Smoluchowski operator, i.e., ( )L z

SM ( ) [ ( )( ( ))]z z zL z D z U z    . Here, ( )D z  and ( )U z , respectively, denote the z-

dependent diffusion coefficient associated with the thermal motion of water molecules in the 

direction perpendicular to the membrane and the thermal energy-scaled potential of mean force 

with 1 Bk T . Bk  and T denote the Boltzmann constant and temperature, respectively.  After 

the onset of the Fickian diffusion, the MSD and NGP of the lateral diffusion of water molecules 

assume the following analytic forms:  

 2 ( ) 4t D t    , (4a) 

 
2

2 2 0

2
( ) ( ) ( )

t
D

Dt dt t t t
t

     .  (4b) 

In eq 4, D   and 2
D

2 2D D         denote, respectively, the mean diffusion coefficient defined 

by 
0

( )D 


      and the relative variance of the z-dependent lateral diffusion coefficient, 

with 𝛿𝑓  denoting the deviation of a quantity f from its mean, i.e., ( )f z ( )f z f   . ( )D t  

denotes the normalized time-correlation function (TCF) of the lateral diffusion coefficient 

fluctuation, i.e., 
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 2 1
0 SM 0 0 02 0 0

( ) (0)
( ) ( ) ( , | ) ( ) ( )D eq

D t D
t D dz dz D z G z t z D z P z

D

 
   


 

  
   

  
  



, (5) 

where SM 0( , | )G z t z  designates Green’s function of Smoluchowski equation governing the thermal 

motion of water molecules in the direction perpendicular to the membranes, i.e., SM 0( , | )tG z t z

SM SM 0( ) ( , | )L z G z t z , with the initial condition, SM 0( ,0 | )G z z  0( )z z  . 

Equations 4b and 5 indicate that, for nanoconfined water molecules, the non-Gaussian diffusion 

in the lateral direction originates from fluctuation of the lateral diffusion coefficient coupled to 

water motion in the longitudinal direction. We note here that the DKC defined in eq 3 reduces to 

2 ( )D D t   at long times where the MSD linearly increases with time; the long-time profile of ( )C t  

extracted from the MSD and NGP time profiles of our MD simulation results is in quantitative 

agreement with our theoretical result for 2 ( )D D t   calculated using eq 5. This agreement between 

simulation and theory supports the validity of our assumption underlying eq 1 that the dynamic 

fluctuation in the lateral diffusion coefficient of water molecules primarily originates from its 

coupling to the thermal motion of water molecules in the longitudinal direction. 

We also performed MD simulation study on the thermal motion of water molecules in the 

intermembrane space, for a system of SPC/E water molecules confined between two lipid bilayers, 

each composed of 128 DMPC molecules, systematically changing the ratio of the number of water 

molecules to the number of lipid molecules and the distance   between the two membrane centers 

(Figure 1). We employed the AMBER lipid 14 force field for simulation of the lipid molecules26 

and imposed periodic boundary conditions on the system. We also investigated the transport 

dynamics of a pure, bulk water system, using the MD simulation of 5000 SPC/E water molecules, 

and compared it to the transport dynamics of the nanoconfined water molecules. Our MD 
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simulation was conducted for a system at a temperature of 318 K in the NVT ensemble. Additional 

information about the simulations can be found in the Supporting Information. 

 

Figure 1. (a) Schematic representation of our MD simulation system: water molecules confined 

between two DMPC lipid bilayers. The simulation was performed for the system with three 

different intermembrane separations, i.e.,   = 53.2 Å, 61.8 Å, and 80.6 Å. (b) Representative 

trajectories of water molecules undergoing thermal motion between the lipid bilayers for 50 ps: 

(yellow lines) the trajectories of water molecules freely moving near the center of the 

intermembrane space; (orange lines) trajectories of water molecules strongly interacting with the 

lipid head groups of DMPC.  

 

From the MD simulation trajectories of water molecules, we obtained the MSD and NGP of the 

lateral water displacement for each system (Figure 2). The time profile of the MSD obtained from 
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the MD simulation exhibits a dynamic transition behavior that is dependent on the separation 

between the two lipid membranes (Figure 2a). The time profile of the MSD shows the transition 

from an initial ballistic motion ( 2
2 ( ) ~t t ) to terminal Fickian diffusion ( 1

2 ( ) ~t t ), with 

intermediate subdiffusion ( 2 ( ) ~t t  with 0 1  ). The short-time ballistic behavior of the 

MSD shows little variation with changes in   and quadratically increases with time, i.e., 

2
2 ( ) 2 Bt k T t M  23. Here, M denotes the mass of a water molecule. However, the intermediate 

subdiffusive regime becomes more pronounced, and the value of long-time lateral diffusion 

coefficient gets smaller as the separation,  , between lipid bilayers decreases. These findings align 

with previous studies10,12,16,21. The time profiles of the MSD could be quantitatively explained by 

using the analytic formula for the MSD of a bead in a Gaussian polymer (see Figure 2a), which is 

decomposable into an unbound-mode and multiple bound-mode terms23. For bulk water at room 

temperature, the bound-mode terms, which cause the intermediate subdiffusion, are negligible. 

However, for intermembrane water, the contribution from bound-modes increases as the separation, 

 , between the membranes decreases. This indicates that the bound mode terms result from 

interfacial water molecules, which are transiently trapped by lipid membranes.  
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Figure 2. (a) Mean square displacement (MSD) and (b) non-Gaussian parameter (NGP) associated 

with the lateral displacement of water molecules for systems with various intermembrane 

separations: (circles) simulation results; (solid lines) eq S19 for MSD and eq S21 for NGP; (square) 

the NGP peak time ( ngτ ) 

 

Our MD simulation study reveals that both the NGP peak time and the peak height increase as 

the separation,  , between the membranes decreases (Figure 2b). A longer peak time and a greater 

peak height of the NGP signify, respectively, prolonged trapping of water molecules23,27 and 

increased fluctuation in the lateral diffusion coefficient (see eq 4b). These phenomena can be 

attributed to the attractive interactions between interfacial water molecules and the functional 

groups in the lipid molecules. As   decreases, the proportion of the trapped interfacial water 

molecules grows, leading to a decrease in the mean lateral diffusion coefficient and an increase in 

the variance of the diffusion coefficient.  
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At times longer than the NGP peak time, the nanoconfined molecules undergo Fickian yet non-

Gaussian diffusion, with the NGP value decreasing with time. The nanoconfined water molecules 

have a far greater NGP value than bulk water molecules. The NGP of bulk water molecules 

becomes negligible at times longer than 10 ps; in contrast, the NGP of the nanoconfined water 

molecules does not vanish at times longer than 10 ns. The NGP shows a strongly non-exponential 

relaxation dynamics, whose time profile can be quantitatively explained by eqs 4b and 5 as shown 

later in this Letter.  

We then identify the interfacial region where water molecules directly interact with the lipid 

head groups. For this purpose, we investigate the structure and dynamics of water molecules near 

the lipid-bilayers using the MD simulations. Figures 3a and 3b show the z-dependence of the 

density profile, ( )z , and the dipole orientation profile, cos z  , of the nanoconfined water. Here, 

 and bracket 
z

 denote the angle between the water dipole moment and the z-axis and the 

average over water molecules located within an interval (z0.25 Å, z+0.25 Å), respectively. As 

shown in Figure 3a, the water molecules in close vicinity of the membrane exhibit a lower density 

compared to the density, 45 C
bulk   0.99 gcm3, of bulk water28. The dipole orientation profile, 

cos z  , does not vanish for water molecules in the vicinity of the functional groups in the lipid 

molecules. This results from the non-isotropic interactions between the water molecules and those 

functional groups, whose positions along the z-direction are shown in Figure 3a. At positions near 

z 20 Å, cos z   has a negative value, while at positions near z     20 Å, it has a positive 

value, indicating that the water dipole moment tends to point toward phosphate and carbonyl 

groups rather than choline groups7,8. This is because water molecules in the vicinity of phosphate 

and carbonyl groups experience strong restrictions on their orientations due to the hydrogen 
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bonding with these groups, whereas those near choline groups exhibit broadly distributed angle 

distribution, forming the clathrate-like hydration shell around the choline groups4,13
. 

 

Figure 3. Dependence of structural and dynamical properties of the water molecules on the 

distance z from the center of the lipid membrane in the left. z-dependent profile of (a) mass density, 

( )z , (b) orientation cos z  , (c) lateral diffusion coefficient, ( )D z , and (d) longitudinal 

diffusion coefficient, ( )D z , of water molecules.   designates the angle between the water 

moment and the longitudinal axis. (dotted line) the position of the boundary, cz  = 26.6 Å, between 

interfacial water region and bulk-like water region. (dashed lines) probability distribution of the 

positions of various functional groups in the DMPC: (orange) the nitrogen atom in the choline 

group; (green) phosphorus atom in the phosphate group; (red and pink) the oxygen atoms in the 
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two carbonyl groups. The probability distribution of these functional groups as well as the z-

dependent profiles of ( )z  and cos z   are largely independent of the intermembrane separation.  

 

Remarkably, the density and dipole orientation profiles show little dependence on   for the 

interfacial water molecules at z smaller than cz   26.6 Å but recover their respective bulk-limit 

values in the intermediate region defined by c cz z z   . Based on these observations, we 

define cz  as the boundary between the interfacial water region and the bulk-like water region. The 

value of cz  (= 26.6 Å) estimated from our MD simulation is found to be comparable to the 

previously reported cz  values, 24 Å and 28 Å, which were estimated by investigating the structural 

order15 and the rotational dynamics19 of water molecules near the lipid membrane.  

The diffusion coefficients of water molecules are also strongly dependent on their distance from 

the membrane. We obtain the z-dependent profiles of ( )D z  and ( )D z  (Figures 3c and 3d) using 

umbrella sampling and mean first passage time analysis (Figures S1 and S2), respectively14,29. 

Within the interfacial water region ( cz z ), both the diffusion coefficients increase with z, and 

their z-dependent profiles are also similar across various intermembrane separations. For the 

system with  = 80.6 Å, both diffusion coefficients recover the bulk-limit value, 45 C
bulkD    

3.88101 Å2ps1, of the SPC/E water at distances greater than cz . However, for the systems with 

  < 80.6 Å, the values of ( )D z  and ( )D z  are smaller than 45 C
bulkD   across the entire z region. For 

example, when the value of   is 53.2 Å, the maximum values of ( 2)D   and ( 2)D   are only 

about 70% and 50% of 45 C
bulkD  , respectively. Noting that the longitudinal position, 𝑧, of the central 

nitrogen atom in the choline group is about 19.3   4 Å (Figure 3a), these results suggest that the 
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choline group in the lipid molecule retard the translational motion of water molecules located 

beyond its first hydration shell, which extends about 4.5 Å from the central nitrogen atom in the 

choline group13.   

The z-dependence profiles of water density ( )z  and the diffusion coefficients, ( )D z  and 

( )D z , are related to the time profile of 2 ( )D D t   and the NGP according to eqs 4b and 5. Equation 

4b tells us that, after the onset of Fickian diffusion, the NGP time profile is completely determined 

by the mean-scaled TCF, 2 2( ) ( ) (0)D D t D t D D            , of the diffusion coefficient 

fluctuation. Here, 2 2 2 1D D D           can be calculated from ( )D z  and ( )z  by using 

0
( ) ( )n n

eqD dzD z P z  


   with 
0

( ) ( ) ( )eqP z z dz z  


. ( )D t  can also be calculated from eq 5, 

where the Green’s function SM 0( , | )G z t z  is obtained by solving SM 0( , | )tG z t z

SM 0[ ( )( ( ))] ( , | )z z zD z U z G z t z    with the initial condition SM 0 0( ,0 | ) ( )G z z z z  . The 

thermal energy-scaled potential of mean force, ( )U z , can be estimated from 𝜌(𝑧) by ( )U z

45ln[ ( ) ]C
bulkz   . Across systems with various intermembrane separations, the result of 

2 ( )D D t   calculated using our theory closely matches the long-time profile of ( )C t  directly 

extracted from the MD simulation results (Figure 4a). In addition, the NGP time profiles calculated 

from eq 4b are also in quantitative agreement with the MD simulation results (Figure 4b). 

Furthermore, our theory predicts the lateral displacement distribution with a unimodal peak and a 

non-Gaussian tail for nanoconfined water molecules. We find the prediction of our theory in 

excellent agreement with the MD simulation results for the time-dependent lateral displacement 

distribution of water molecules at various times and separations between the membranes (Figure 

4c). The agreement between theory and simulation again demonstrates the validity of our 
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assumption underlying eq 1, that is, the most important variable that affects the lateral thermal 

motion of an interfacial water molecule is the distance, z, between a water molecule and the center 

of the membrane.  

 

Figure 4. Diffusion Kernel Correlation, Non-Gaussian Parameter, and Lateral Displacement 

Distribution of water molecules confined between two lipid membranes with various 

intermembrane separations. (a) Comparison between the diffusion kernel correlation and the 

mean-scaled time correlation function of the lateral diffusion coefficient fluctuation: (circles) 

Diffusion Kernel Correlation, ( )C t , from the MD simulation results; (solid lines) mean-scaled 

TCFs, 2 ( )D D t  , of the lateral diffusion coefficient fluctuation calculated by eq 5; (diamond) 

relaxation time Dτ  defined by 1( )D D e   ; (square) the value of the relative variance, 2
D , of the 

diffusion coefficient. (Inset in (a)) Dependence of Dτ  and 2
D  on the square, 2 , of intermembrane 

separation. (b) Non-Gaussian parameter 2 ( )t : (circles) simulation; (solid line) eq 4b. (c) Lateral 
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displacement distributions at various times: (circles) simulation results; (solid lines) theoretical 

predictions; (dotted line) Gaussian with zero mean and variance given by 4 D t .  

 

The relaxation time Dτ  of ( )D t , defined by 1( )D D e τ , quadratically increases with the 

intermembrane separation   (see inset of Figure 4a). This follows because, for the complete 

relaxation of the diffusion coefficient fluctuation, water molecules must travel the entire 

intermembrane space, and the time taken for this process should be proportional to the mean first 

passage time, which quadratically increases with   (Movie S1). On the other hand, 2
D  decreases 

with  . This is because, as   increases, the proportion of the trapped interfacial water molecules 

decreases, which leads to an increase in the mean lateral diffusion coefficient and a decrease in the 

variance of the diffusion coefficient.  

We note here that, at times shorter than 0.1 ps, the NGP increases with time, which cannot be 

explained by eq 4b. At such short times, the DKC can be approximated by ( )C t

2
2 ( ) (0)t          22 ( )t v  (see the Figure S3a in the Supporting Information), where ( )tv  

denotes the normalized VAF of water molecules. Using this approximation in eq 2, we obtained 

the following short-time asymptotic expression of the NGP as  

  2 2 3
2

1
( ) ( )

18
t t t     , (6) 

where   and   denote 
0

lim ( )
t

t t


  v  and 2 2

0
lim ( )
t

t t


 v , respectively. Explicit expressions 

of   and   are available for our model (see the paragraph below eq S24 in the Supporting 
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Information). According to this result, the NGP quadratically increases with time, which 

quantitatively explains our simulation results for the short-time asymptotic behavior of the NGP.  

The major contributor to the short-time dynamics of the NGP is the relaxation dynamics of the 

velocity fluctuation, and the two-time velocity auto-correlation function completely determines 

the NGP time profile. After the onset of Fickian diffusion, however, the relaxation dynamics of 

the diffusion coefficient fluctuation additionally contributes to the NGP time profile. For bulk 

water system, where the diffusion coefficient fluctuation is negligible, the short-time asymptotic 

expression of the NGP that only accounts for the velocity relaxation provides a quantitative 

explanation of the long-time relaxation of the NGP as well as the short-time relaxation (see the 

Figure S3b in the Supporting Information).  

We present a physical model and transport equation that quantitatively explain the stochastic 

thermal motion of water molecules in intermembrane space. The lateral displacement distribution 

of the water molecules nanoconfined between two membranes strongly deviates from Gaussian, 

which originates from dynamic fluctuation in the lateral diffusion coefficient. This fluctuation 

occurs because the lateral diffusion coefficient of a water molecule primarily depends on its 

distance from the membrane center, and this distance fluctuates over time, owing to thermal 

motion of the water molecule in the longitudinal direction. In addition, using the molecular 

dynamics (MD) simulation, we investigate the dependence of the mass density, the orientation, 

and the lateral and longitudinal diffusion coefficients of a water molecule nanoconfined between 

two phospholipid membranes on its distance from the phospholipid membrane center. This study 

shows the presence of interfacial region within 26.6 Å from the membrane center. Water molecules 

in the interfacial region have a structure and dynamics far different from bulk water molecules. 

The properties of interfacial water molecules are robust with respect to changes in intermembrane 
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separation. Our theory provides a unified, quantitative explanation of our MD simulation results 

for the mean square displacement, non-Gaussian parameter, and displacement distribution of 

nanoconfined water molecules. Our model is applicable or can be extended to quantitative 

investigation into the dynamics of transport and transport-coupled processes occurring in various 

nanoconfined environments. 
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Supplementary Text S1: Computational details of molecular dynamics 28 

simulations 29 

Molecular Dynamics (MD) simulations were carried out using the AMBER 21 program 30 

package. We constructed simulation systems composed of 128 DMPC (1,2-dimyristoyl-sn-31 

glycero-3-phosphocholine) lipids and a various number, 2560, 3840, and 6400 of water 32 

molecules, using the CHARMM-GUI membrane builder tool1–6. The force field parameters of 33 

DMPC and water molecules were replaced with the AMBER lipid 147 and SPC/E, respectively. 34 

Similarly, an MD simulation system for pure water, which is composed of 5,000 water 35 

molecules, was constructed using CHARMM-GUI solution builder1,2,6, and the MD simulation 36 

was carried out using the same SPC/E force field. Periodic boundary conditions were applied 37 

to both the pure water and the lipid bilayer systems. In the case of the pure water system, our 38 

pure water model system with the periodic boundary conditions serves as a realistic and reliable 39 

representation of bulk water without edge effects. For the lipid bilayer system, our periodic 40 

boundary conditions effectively confine the water molecules within the lipid membranes. The 41 

particle mesh Ewald method8 was used to calculate long-range electrostatic interactions, and 42 

the cutoff distance of 10 Å was used to calculate the Lennard-Jones interaction and the real 43 

space part of the Ewald sum. A time step of our MD simulations was set to 1 fs. 44 

Before obtaining the simulation trajectories of the NVT ensemble of our systems, we 45 

conducted an equilibration procedure. For the pure water simulation, the initial configuration 46 

of water molecules was first stabilized through energy minimization for 5,000 steps, employing 47 

both the steepest descent method and the conjugate gradient method. This was followed by a 2 48 

ns constant NpT equilibration at 1.0 atm and 318 K, using isotropic position scaling with a 49 

relaxation time of 2 ps. For temperature control, the Langevin thermostat, with a collision 50 

frequency of 1.0 ps1, was utilized. Subsequently, a 2 ns constant NVT simulation at 318 K was 51 
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carried out, using the Langevin thermostat to ensure that the system relaxed to the thermal 52 

equilibrium state. Regarding the DMPC lipid bilayer system simulation, the initial 53 

configuration of the system underwent a 10,000-step energy minimization using both the 54 

steepest descent method and the conjugate gradient method. Then, the system was rapidly 55 

heated from 0 K to 100 K over 40 ps, using the Langevin thermostat with a collision frequency 56 

of 1.0 ps1 and weak restraints on the lipid molecules with a force constant of 10. kcal mol1 57 

Å2. Subsequently, a gradual heating from 100 K to 318 K over 2 ns was performed with the 58 

same thermostat setting and restraints. After the heating process, a 50 ns NpT simulation was 59 

carried out at 318 K, using the Langevin thermostat with anisotropic pressure scaling (1 atm) 60 

without restraining lipids. From the results of the last process, the values of the separation,  , 61 

between two lipid membranes, i.e., system box length along the perpendicular direction to the 62 

membrane surface, were determined. The values of the intermembrane separations,  , are 53.2 63 

Å, 61.8 Å, and 80.6 Å for our DMPC lipids simulation systems containing 2560, 3840, and 64 

6400 water molecules, respectively.  65 

After the equilibration procedure, production runs were carried out for our systems at 318 66 

K under constant NVT conditions with the following procedures: 67 

(1) To calculate the mean square displacement (MSD) and non-Gaussian parameter (NGP) 68 

for the lateral displacement of water molecules, shown in Figure 2, we conducted the 69 

MD simulation for each system using two different recording time intervals. The 70 

simulation trajectories were recorded every 10 fs for the first 1 ns-long NVT 71 

simulations to investigate the short-time dynamics of water molecules. Afterward, the 72 

trajectories were saved every 10 ps over the following 99 ns-long NVT simulation to 73 

investigate the long-time dynamics of the system. This 1 ns-long NVT simulations 74 

were repeated seven times for each intermembrane separation of our system. 75 
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(2) To obtain the z-dependent profile of the lateral diffusion coefficient, ( )D z , shown in 76 

Figure S1, we conducted additional simulation runs using umbrella sampling. The 77 

simulation trajectories were recorded at every 10 ps during the 1 μs-long NVT 78 

simulations. A more detailed description of this simulation process is presented in the 79 

caption of Figure S1. 80 

(3) To obtain the z-dependent profile, the longitudinal diffusion coefficient, ( )D z  , 81 

profiles shown in Figure S2, using the method presented in Ref.9–11, we conducted 82 

another set of simulations where the simulation trajectories were saved at intervals of 83 

1 ps for the 1 μs-long NVT simulations. A more detailed description of this simulation 84 

is presented in the caption of Figure S2.  85 



S6 

 

Supplementary Text S2: Derivation of analytic expressions for the 86 

MSD and NGP 87 

Let us first obtain the analytic expression for the second and fourth moments of the lateral 88 

displacement of water molecules in the intermembrane space, starting from eq 1. On the left-89 

hand-side of eq 1, ˆ ( , , )p z sr   can be replaced by ˆ ˆ( , , ) ( , , ) ( , ,0)p z s sp z s p z r r r    . Here, 90 

( , , 0)p zr  denotes the initial condition of the joint probability density, given by ( , , 0)p zr91 

,0( ) ( )eqP z r r  , where, ,0r  and ( )eqP z  denote the initial lateral position vector and the 92 

equilibrium distribution of water molecule along the z-axis, respectively. When ,0r  is chosen 93 

to be the origin of our coordinate, i.e., ,0 r 0 , r  represents the displacement vector. By 94 

taking the Fourier transform of eq 1, we obtain 95 

 2ˆ ˆˆ ˆ ˆ( , , ) ( , , ) ( ) ( , ) ( , , ) ( ) ( , , )eqp z s sp z s P z z s k p z s L z p z s   k k k k     
    . (S1) 96 

Here, ˆ ( , , )p z sk   and k   represent the Fourier transformation of ˆ ( , , )p z sr  , defined by 97 

0

ˆ ˆ( , , ) ( , , )
i

p z s d e p z s
   k r

k r r 
   , and the magnitude of the wave vector, k , i.e. |k = | k  , 98 

respectively. 99 

The first two non-vanishing moments, 2
2 ( ) ( )t t     r   and 4

4 ( ) ( )t t     r  , of 100 

the distribution of the lateral displacement ( ) ( ) (0)t t     r r r    are related to z-dependent 101 

displacement distribution, ( , , )p z tr , by 102 

 
0 0

( ) ( ) ( , , ) ( , )n
n nt dz d r p z t dz z t     r r

 

   , (S2) 103 
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where ( , )n z t  is defined by 1

0
( , ) ( ) ( , , ) 2 ( ) ( , , )n n

n z t d r p z t dr r p z t
    r r r      . The 104 

expression of ( , )n z t  can be obtained by the second and fourth derivatives of ( , , )p z tk  105 

with respect to k  and setting k  0 in the resulting equation, that is, 106 

 

 
 

cos

0 0

2

0 0
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ik rq q
k k
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qq

qq

p k z t d e p z t

i d r p z t
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z t q
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
 (S3) 107 

where    denotes the angle between the two vectors, k   and r  , defined by 108 

 cos k r  k r    . Taking the mathematical operation, 2
0(...)k k 

 
, on both sides of eq S1 109 

and using eq S3, we obtain  110 

   1

2
ˆ ˆ( , ) 4 ( ) ( , ) ( ) /eqz s s L z z s P z s

    . (S4) 111 

Equation S4 can be written as  112 

 2 0 0 0 0
0

ˆ ˆ ˆ( , ) 4 ( , | ) ( , ) ( ) /eqz s dz G z s z z s P z s  


 . (S5) 113 

where   1

0 0
ˆ ( , | ) ( ) ( )G z s z s L z z z       denotes the Laplace transform of Green’s function 114 

0( , | )G z t z   defined by 0 0( , | ) ( ) ( , | )tG z t z L z G z t z   , with the initial condition, 115 

0 0( ,0 | ) ( )G z z z z  . The Green’s function represents the conditional probability that a water 116 

molecule initially located at 0z  is found at z at time t. Integrating both sides of eq S5 over z, 117 

and using the normalization condition, 0
0

( , | ) 1dz G z t z 


, we obtain 118 
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 2
2

ˆ ˆ( ) 4 ( ) /s s s    . (S6) 119 

The analytic expression of 4( )t   can be obtained by following a similar line of 120 

derivation. Taking the mathematical operation, 4
0(...)k k 

 
, on both sides of eq S1 and using 121 

eq S3, we obtain  122 

 4 1 0 1 1 1 0 0 0
0 0

ˆ ˆ ˆ ˆ ˆ( , ) 64 ( , | ) ( , ) ( , | ) ( , ) ( ) /eqz s dz dz G z s z z s G z s z z s P z s   
 

   . (S7) 123 

Integrating both sides of eq S7 over z, and using the normalization condition, 124 

0
0

( , | ) 1dz G z t z 


, we obtain 125 

    2 2
4 23

64ˆ ˆˆ ˆ ˆ( ) ( ) 1 ( ) 4 ( ) 1 ( )s s s C s s s s C s
s

          , (S8) 126 

where ( )C t  denotes the lateral diffusion kernel correlation (DKC) defined by 127 

 0
0 0 0

0 0

ˆ ˆ( , ) ( , )ˆ ˆ( ) ( , | ) ( )
ˆ ˆ( ) ( )

eq

z s z s
C s dz dz G z s z P z

s s

 


    
   

 


 
 

. (S9) 128 

Here, the lower and upper bounds, 0 and  , of the integral denote the positions of two different 129 

membrane centers. That is to say,   denotes the separation between the two lipid membrane 130 

centers (see Figure 1). 131 

After the onset of Fickian diffusion, the MSD linearly increases with time because the 132 

mean diffusion kernel, ( , )z t  , is negligibly small at the time scale of Fickian diffusion, 133 

where we have 2
0 0

( ) 4 ( ) ( ) 4 ( )
t

t d t t   


           . After the onset of Fickian 134 

diffusion, the diffusion kernel, ˆ ( , )z s , can be replaced by its small-s limit value, ˆ ( ,0)z , 135 

which is nothing but the lateral diffusion coefficient, ( )D z , of water molecules at longitudinal 136 
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position z. Additionally, after the onset of Fickian diffusion , ( )L z   in eq 1 can be 137 

approximated by the Smoluchowski operator, defined as, SM ( )L z [ ( )( ( ))]z z zD z U z   . 138 

Here, ( )D z   and ( )U z   respectively denote the z-dependent diffusion coefficient 139 

associated with the thermal motion of water molecules in the longitudinal direction and the 140 

thermal energy-scaled potential of mean force. Throughout    denotes 1 Bk T   where 141 

Bk  and T denote the Boltzmann constant and temperature, respectively. Therefore, at the time 142 

scales of Fickian diffusion, the exact expression of the first two non-vanishing moments, eqs 143 

S6 and S8, can be approximated as 144 

 2 ( ) 4 )t D t    , (S10) 145 

 2 2 2
4

0
( ) 32 2 ( ) ( )

t

D Dt D t dt t t t             .  (S11) 146 

Here, D    and 2 2 2( )D D z D            respectively denote, the mean diffusion coefficient 147 

and the relative variance of the z-dependent lateral diffusion coefficient. ( )D t  represents the 148 

normalized time-correlation function (TCF) of the lateral diffusion coefficient fluctuation given 149 

by 150 

 2 1
0 SM 0 0 02 0 0

( ) (0)
( ) ( ) ( , | ) ( ) ( )D eq

D t D
t D dz dz D z G z t z D z P z

D

 
   


 

  
   

  
  



, (S12) 151 

where SM 0( , | )G z t z   designates Green’s function defined by SM 0( , | )tG z t z152 

SM SM 0( ) ( , | )L z G z t z , with the initial condition, SM 0 0( ,0 | ) ( )G z z z z  . 153 

Substituting the eqs S10 and S11 into the definition of the NGP, 2 ( )t154 

2
4 2( ) (2 ( ) ) 1t t       , we obtain the analytical expressions of the NGP time profile as 155 
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2

2 2 0

2
( ) ( ) ( )

t
D

Dt dt t t t
t

     . (S13) 156 

Equations S6, S8, S10, and S13 are equivalent to eqs 2a, 2b, 4a, and 4b in the main text, 157 

respectively.  158 
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Figure S1: z-dependent profiles of lateral diffusion coefficient  159 

 160 

To determine the z-dependent profile of the lateral diffusion coefficient, we obtain the z-161 

dependence of the MSD of water molecules in the intermembrane space. For this purpose, we 162 

estimate the MSD time profile of water molecules within each layer region defined by 163 

0 5 z1. Åz   0 5Å1.z  , systematically changing the center position 0z  of the layer. It is 164 

difficult to estimate the long-time behavior of the MSD accurately, because very few water 165 

molecules remain in the initial layer at long times11. To circumvent this difficulty, we employ 166 

a constrained MD simulation in which we randomly choose approximately 10 % of water 167 

molecules within a layer and apply Harmonic potential, 2
0( ) ( )U z k z z    to the chosen 168 

water molecules. Here, k represents the spring constant whose value is set to be 1.25 [Kcal/(mol169 
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∙Å2)]. 170 

For the first round of our constrained simulation, we set the value of 0z  to be / 2 . Then 171 

we repeatedly perform the constrained simulation, systematically changing the value of 0z  by 172 

2.5 Å, until we span the entire intermembrane space. The position of 0z  for each simulation 173 

is represented by a colored dot in Figure S1a. In the constrained MD simulation, the MD 174 

trajectories were recorded every 10 ps during 1μs-long NVT simulations. The number of water 175 

molecules constrained by the harmonic potential is about 6% for each system, which amounts 176 

to 403, 240, and 168 for the system with   = 80.6 Å, 61.8 Å, and 53.2 Å. 177 

From the trajectories of water molecules constrained by the harmonic potential, we 178 

obtained the MSDs of the lateral water displacement for every layer of the simulation system 179 

with different intermembrane separations (Figure S1b). Each solid line in Figure S1b represents 180 

the MSD obtained from the constrained MD simulation with 𝑧଴ at the position marked by the 181 

dot of the same color in Figure S1a. From the long-time MSD profile, we estimate the lateral 182 

diffusion coefficient at each z position by ( )D z  2lim ( , ) 4t z t t . These values are shown 183 

as circle symbols in Figure S1c. The resulting profile of the lateral diffusion coefficient can 184 

well be fitted to the muti-Gaussian function, 185 

 
2

,
0

1 1

( ) exp 2
2

n
c ii

i i

z za
D z y

 

                 
 , (S14) 186 

as shown as solid lines in Figure S1c. The optimized parameters for these fittings are provided 187 

in Table S1. Using the multi-Gaussian representation of ( )D z , we calculate the mean lateral 188 

diffusion coefficient, D  , by  189 
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0

( ) ( )eqD dzD z P z  


   (S15) 190 

with 
0

( ) ( ) ( )eqP z z dz z  


 . Here, ( )z   denotes the mass density profile of water 191 

molecules, shown in Figure S1a. 192 

To test the accuracy of ( )D z   obtained from our constrained MD simulations, we 193 

compared 4 D t   with the MSD obtained from the simulation of the entire system as shown 194 

in insets of Figure S1c. These results clearly show that the estimation of ( )D z  and D   195 

from our constrained MD simulation is not perfectly accurate. D    estimated from our 196 

constrained MD simulation is slightly smaller than the true value of D   estimated from the 197 

MSD of the entire system. This discrepancy is expected because 10% of the water molecules 198 

are constrained in each layer by the fictitious harmonic potential, and their transport dynamics 199 

would not be exactly the same as the transport dynamics of the free water molecules moving 200 

across various layers. 201 

We resolve this issue by introducing a correction factor, c, to ( )D z  estimated from our 202 

constrained MD simulation in such a way that the mean lateral diffusion coefficient calculated 203 

by 
0

( ) ( )eqc dzD z P z


  is the same as the true value of D   estimated from the MSD of the 204 

entire system (see insets of Figure S1d). The values of the correction factor are 1.087, 1.124, 205 

and 1.276 for the systems with   = 80.6 Å, 61.8 Å, and 53.2 Å, respectively. The value of the 206 

corrected lateral diffusion coefficient, ( )cD z , are represented by solid lines in Figure S1d and 207 

Figure 3c in the main text.  208 

We use the corrected lateral diffusion coefficient profiles in calculating the theoretical 209 

results depicted in Figure 4 of the main text. The agreement between our theoretical results and 210 
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the MD simulation results for the time profiles of the NGP, the TCF of the lateral diffusion 211 

coefficient, and the lateral displacement distribution at various times confirms the accuracy of 212 

our corrected lateral diffusion coefficient profiles.  213 
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Figure S2: z-dependent profiles of longitudinal diffusion coefficient 214 

 215 

We obtain the longitudinal diffusion coefficient profile, ( )D z  , from the mean-first 216 

passage time profile (MFPT), using the method developed in Ref.9–11. The MFPT, fp ( , )tz zτ , 217 

denotes the average time required for a water molecule initially located at z to arrive at a target 218 

position 𝑧௧. This method is based on the analytic results of the previous theories that represent 219 

fp ( , )tz zτ  as a functional of ( )D z  and the potential of mean force, 𝛽𝑈(𝑧)12,13. According to 220 

Ref. 9, ( )D z  can be obtained from 221 

 
refl

( )
( )

fp

( )
( , ) /

U z z
U z

z
t

e
D z dz e

z z z


 

 
  τ

. (S16) 222 

Here, thermal energy scaled potential of mean force, ( )U z  , of water molecules can be 223 
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calculated from the density profile of water molecules, shown in Figure S2a, i.e., ( )U z 224 

45log[ ( ) / ]C
bulkz     with 45 C

bulk    being the density of bulk water at 45℃. In eq S16, reflZ  225 

designates the position of the reflecting boundary. As the number of water molecules passing 226 

through the lipid bilayer membrane is negligibly small throughout our MD simulation, we set 227 

the reflecting boundary at the membrane center, i.e., refl 0z  .  228 

To calculate ( )D z   using eq S16, we computed the z-dependent profile of fp ( , )tz zτ  229 

using our MD trajectories, systematically changing the value of tz   by 1 Å. The various 230 

positions of 𝑧௧ for each system are represented by the dots of different colors in Figure S2a. 231 

The z-dependent profiles of MFPT for various values of tz  have the same slope through the 232 

entire z range, as shown in Figure S2c. Each solid line in Figure S2c represents fp ( , )tz zτ  with 233 

the target position, tz , represented by the dot of the same color in Figure S2a. As fp ( , )z tz z τ  234 

is independent of tz , so is ( )D z  calculated from eq S15 (see Figure S2d). The profile of 235 

( )D z  was well fitted to a multi-Gaussian function,  236 
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,
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1

( ) exp 2
2

n
c ii

i ii

z za
D z y

 


                
 , (S17) 237 

shown as dotted lines in Figure S2d. The optimized parameters for these fittings are provided 238 

in Table S2. These best-fitted results, shown as dotted lines in Figure S2d, are represented by 239 

the solid lines in Figure 3d of the main text. 240 

  241 
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Figure S3: Diffusion Kernel Correlation and Non-Gaussian Parameter 242 

 243 

The lateral diffusion kernel correlation (DKC), ( )C t , is a key dynamic quantity that 244 

characterizes the environment-coupled fluctuation of water molecule’s motility in the lateral 245 

direction. Based on the eq S8, we express the DKC in the Laplace domain as 246 

 4

2 2
2

ˆ ( ) 1ˆ ( )
ˆ4 ( )

s
C s

ss s

 
  (S18) 247 

To extract the time-profile of the DKC of water molecules by performing numerical inverse 248 

Laplace transform of eq S18, it is convenient to have analytic expressions of the first two non-249 

vanishing moments, 2( )t  and 4( )t , of the distribution of the lateral displacement of water 250 

molecules. 251 

The time profile of the MSD, 2( )t  , is well represented by the following formula 252 

according to Ref.14: 253 

  0

2

2 0 02 2
10 0,

( ) 4 1 4 1 cosh sinhit ti iB B
i i

i i i

ck T k T
t c t e e t t

M M
    

  
 



               
  (S19)254 

This formula represents the MSD of a bead in a Gaussian polymer composed of three beads in 255 
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a high friction regime. The first and second terms on the R.H.S of eq 19 account for the 256 

contribution from the unbound mode and bound modes, respectively. 𝑐௜ designates the weight 257 

coefficient of ith mode, which satisfies the following condition 
2

0

1j
j

c


  . The optimized 258 

parameters for this fitting are provided in Table S3.  259 

The analytic expression of the fourth moment, 4( )t , is obtained from  260 

 2
4 2 2( ) 2 ( ) [1 ( )]t t t     (S20) 261 

which is obtained from the definition of the NGP. The simulation result for the time profile of 262 

the NGP, or 2 ( )t , could be well fitted to the following function (see Figure 2): 263 

  
2or3

2

2 10
1

( ) exp logi i i
i

t a t b c


      . (S21) 264 

The optimized parameters for this fitting are provided in Table S4. Substituting eqs S19 and 265 

S21 into eq S20, we obtain the fully analytic expression of the fourth moment.  266 

Taking the Laplace transforms of 2( )t  and 4( )t , and substituting the results into eq 267 

S18, we obtain the expression of DKC in the Laplace domain. To obtain the value of DKC at a 268 

specific timepoint, t, we perform the numerical Laplace inversion of eq S18, by using the 269 

Stehfest algorithm. These results are shown in Figure S3 and Figure 4a. The DKC values in 270 

various conditions are shown as solid lines in Figure S3a. At short times, where MSD is not 271 

linear in time yet, the DKC can be approximated by 
2( ) 2 2( ) 2 ( ) (0) 2 ( )shortC t t t          vv v v272 

14. Here, v   denotes the water molecule’s velocity vector in the lateral direction, and the 273 

velocity autocorrelation function, ( ) (0)t  v v  , is equivalent to twice the lateral diffusion 274 

kernel, ( )t  14. From eqs S6 and S19, an analytic expression of the lateral diffusion kernel 275 
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can be obtained as 276 
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 (S22) 277 

where (0)   denotes Bk T M . 278 

To verify the correctness of 2( ) 2 ( )C t t v , we made a comparison between 22 ( )tv  of 279 

bulk water, depicted as the dashed line in Figure S3, and the time profile of the DKCs. The 280 

agreement between 22 ( )tv  and the DKCs at short times confirms the validity of our short-281 

time asymptotic expression of the DKC. As shown in Figure S3a, the short-time dynamics of 282 

the DKC is largely independent of the degree of confinement, or  . 283 

The short-time asymptotic expression of the DKC enables us to obtain the short-time 284 

asymptotic behavior of 2
2 ( )t t  . Using the asymptotic expression of the DKC in the exact 285 

analytic expression of the fourth moment, given in eq S8, we obtain 286 

 2 ( )
4 2

ˆ ˆ ˆ( ) 4 ( ) [1 ( )]shorts s s s C s     . (S23) 287 

Substituting the time-domain version of eq S23 into the definition of the NGP, 2 ( )t288 

2
4 2( ) (2 ( ) ) 1t t       , we obtain the following short-time asymptotic expression of 2 ( )t :  289 

  2 2 3
2

1
( ) ( )

18
t t t      (S24) 290 

In eq S24,    and    are given by 
0

lim ( )
t

t t 


  v 0 0 1
2

n

i ii
c c 
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0
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
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2

0 0c   2 2

1
3

n

i i ii
c  


   , respectively14. These results are shown as 292 

the solid lines in Figure S3b. The short-time asymptotic behavior of the NGP given in eq S24 293 

is found to be in good quantitative agreement with our MD simulations results.  294 
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Figure S4: Relationship between DKC and NGP at long times 295 

 296 

The relaxation dynamics of the DKC, ( )C t , determines the NGP time profile of water 297 

molecules in the intermembrane space after the onset of Fickian diffusion, where the time 298 

profile of ( )C t  can be obtained by the NGP time profile, i.e., 299 

 
2

2 2
22

1
( ) ( ) [ ( )]

2D DC t t t t
t

   
 . (S25) 300 

Solid lines in Figure S4 represent the time profiles of ( )C t  obtained from eqs S25 and S21. 301 

Circles represent the time profiles of ( )C t  extracted from our MD simulation results, using 302 

the method described in the paragraph below Figure S3.  303 

  304 
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Caption for Movie S1: Heatmap of discrete Green’s function 305 

As we mentioned in the main text, linear dependence between Dτ  and 2 , as shown in 306 

the inset of Figure 4a, arises because the time taken for water molecules to traverse the entire 307 

intermembrane space increases quadratically with separation,  , between center membranes. 308 

To show the stochastic transport dynamics of water molecules at various initial positions, we 309 

present a movie showing the time-dependent changes in the probability distribution of water 310 

molecules in the intermembrane space. For this purpose, we first discretize the intermembrane 311 

space into three regions: two interfacial regions near the two membranes confining the water 312 

molecules, defined by cz z  and cz z   with 23.6cz   Å, and one bulk water-like 313 

region between the two interfacial regions (see Figure 3 in the main text). The bulk water-like 314 

region does not exist for our system with   53.2 Å; however, it exists for our system with 315 

a greater value of intermembrane separation  .  316 

We identify the entire bulk water-like region as a single layer named layer 0. Each 317 

interfacial water region is divided into 5 layers. Specifically, the interfacial water region on the 318 

left side is divided into the following layers: (i) 0 Å z 15.2 Å, (ii) 15.2 z   18 Å, (iii) 319 

18 Å z   20.8 Å, (iv) 20.8 Å z   23.6 Å, and (v) 23.6 Å z   𝑧௖ (= 26.6 Å). These 320 

layers are respectively labeled as -5, -4, -3, -2, and -1 layers. Similarly, the interfacial water 321 

region on the right side is divided from the membrane center on the right side with identical 322 

widths, and the corresponding layers are designated as 5, 4, 3, 2, 1 layer, respectively. 323 

Consequently, the total number of layers is 11 for   80.6 Å and   61.8 Å, and 10 for 324 

  53.2 Å.  325 
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In Supplemental Movie, we show how the spatial distribution of water molecules in each 326 

layer changes over time. For this purpose, we present heat maps, each of which represents the 327 

probability distribution of water molecules for our system at a given time. In each heat map, 328 

the color of the cell in the n-th column and m-th row represents the probability, 𝑔(𝑛, 𝑡|𝑚), that 329 

a water molecule initially located in the m-th layer is found in the n-th layer at time t. By 330 

definition, the initial condition of ( , | )g n t m  is given by 
0

lim ( , | ) nm
t

g n t m 


  where nm  331 

designates Kronecker’s delta. 332 

The evolving heatmap patterns, as shown in Supplemental Movie, clearly demonstrate 333 

that the time required to reach the equilibrium state increases with the length of  . Specifically, 334 

in the system with   80.6 Å, water molecules located in the interfacial region do not 335 

transfer to the opposite side of the interfacial water region within the first 50 ps. This behavior 336 

can be attributed to the increased size of the bulk-water-like region, which hinders the fast 337 

exchange of water molecules between the interfacial water regions.  338 
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Tables S1-S4 339 

  (Å) 80.6 61.8 53.2 

0y  0.007 0.008 0.005 

1a  0.636 0.374 0.029 

2a  0.636 0.374 0.029 

3a  5.061 4.412 1.951 

4a  5.061   

5a  0.721   

1  5.944 4.797 4.079 

2  5.944 4.797 4.079 

3  12.226 11.100 7.449 

4  12.226   

5  7.060   

,1cz  -14.750 -6.131 -10.790 

,2cz  14.750 6.131 10.790 

,3cz  -8.002 0 0 

,4cz  8.002   

,5cz  0   

Table S1. Lateral diffusion coefficient fitting parameters (eq S14). 340 

  341 
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  (Å) 80.6 61.8 53.2 

0y  0.021 0.018 0.014 

1a  0.063 -0.400 0.973 

2a  0.058 -0.400 0.953 

3a  3.122 5.460 0.055 

4a  2.286   

5a  1.015   

6a  0.974   

7a  2.138   

8a  1.826   

1  5.873 6.282 5.554 

2  5.856 6.281 16.780 

3  8.568 12.991 1.901 

4  8.089   

5  5.958   

6  6.136   

7  7.413   

8  13.114   

,1cz  -22.820 -9.125 0 

,2cz  22.777 9.125 0 

,3cz  -11.448 0 0 

,4cz  11.914   

,5cz  -5.603   

,6cz  5.456   

,7cz  -0.453   

,8cz  5.456   

Table S2. Longitudinal diffusion coefficient fitting parameters (eq S17). 342 

  343 



S25 

 

 Bulk   80.6 Å  61.8 Å  53.2 Å 

0c  0.0552 0.0624 0.0126 0.0970 

1c  0.0386 0.0403 0.4937 0.4515 

2c  0.9062 0.8973 0.4937 0.4515 

0  2.0867 3.2698 0.9116 11.4206 

1  2.1041 4.9715 9.8813 11.4206 

2  9.1332 9.5602 11.0886 11.7578 

0,1  2.1041 1.8450 9.8813 11.4206 

0,2  9.1332 9.5602 4.4480 6.0659 

1  0.0017 4.6165 0.0001 0.0002 

2  0.0018 0.0026 10.1574 6.0659 

Table S3. Diffusion Kernel fitting parameters (eq S19). 344 

 345 

 346 

 347 

 348 

 Bulk   80.6 Å  61.8 Å  53.2 Å 

1a  0.166 0.247 0.269 0.263 

2a  0.021 0.105 0.131 0.513 

3a   0.191 0.330  

1b  -0.111 0.007 0.018 0.210 

2b  0.961 1.041 0.916 1.633 

3b   2.148 1.925  

1c  0.606 0.637 0.618 0.817 

2c  0.713 0.584 0.607 2.279 

3c   1.634 1.864  
Table S4. NGP fitting parameters (eq S21). 349 
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