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Abstract

We continue ongoing research work [59, 60, 61, 76, 77, 78, 79, 80, 81,
82, 83, 84] on applying the homological algebraic conceptual and tech-
nical machinery of Abstract Differential Geometry (ADG) towards
formulating a finitary, causal and quantal version of vacuum Ein-
stein Lorentzian gravity and free Yang-Mills theories, hitherto cu-
mulatively referred to as ADG-Gauge Theory (ADG-GT). In par-
ticular, we unfold, express and highlight the inherently functorial
character of ADG-GT both at the ‘kinematical’ and at the ‘dynam-
ical’ level of the aufbau of the theory, although at the same time
we observe that the traditional kinematics-versus-dynamics distinc-
tion becomes blurry in our ADG-theoretic approach as, in line with
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stitute a chapter in a research monograph type of book that we have been working on, in
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[61, 62, 79, 81, 82, 67], we maintain that there is no pre-existent geo-
metrical/kinematical space in the quantum deep, but rather, that phys-
ical geometrical space derives from (or is an outcome of) field dynam-
ics. We moreover argue that the gauge theory of the third kind and
the third quantisation schemes that ADG-GT has been seen to sup-
port [61, 81, 82], are also functorial in character. Furthermore, since
our inherently algebraic ADG-theoretic scheme has been seen to be
manifestly background geometrical C∞-smooth spacetime manifold in-
dependent [59, 60, 61, 76, 77, 78, 79, 80, 81, 82], we entertain the idea,
at the ‘dynamical’ level of functoriality, that there is both a geomet-
ric morphism and a natural transformation type of correspondences
between the relevant Einstein and Yang-Mills field functor categories
with the dynamical gauge connection and curvature sheaf morphisms
implementing the homological algebraic dynamics within each, so as
to further corroborate previous claims [78, 79, 80, 81, 82] that from an
ADG-theoretic perspective, ADG-gravity is an already finitistic, third
quantised, C∞-smooth geometrical background spacetime manifoldless,
auto-dynamical and ‘pure gauge’ field theory of the third kind. We
also cast our formal canonical sheaf cohomological Third Quantisa-
tion heuristics originally formulated in [81] in a slightly different light
so as to arrive at a new ADG-theoretic notion of ‘Unitary’ Quantal
ADG-Gauge Field which, in a tetrad of functorially and dynamically
entwined structures U := (E ,D,AutAE ,Q), it subsumes under a sin-
gle coherent and inseparable ‘unitary whole’ all the four most impor-
tant functorial structural traits of ADG-GT: ‘local quantum particle
states’ represented by local sections of a vector sheaf E, their ‘dual-
complementary’ functorial ADG-gauge field dynamics generated by an
algebraic A-connection D, the latter’s local gauge invariance of the 3rd
kind encoded in the principal structure sheaf AutAE of E’s automor-
phisms, and the dual particle-field canonical-type of 3rd quantisation,
represented by the functorial morphism Q between the sheaf categories
involved. At the end, we give a subjective (:from this author’s view-
point) account of certain key ideas, concepts and seminal mathemati-
cal results in the past that significantly motivated Professor Mallios to
develop ADG, and how these ideas subsequently inspired this author
to apply it to a finitistic and quantal theoretical scenario for Vacuum
Einstein Gravity and Free Yang-Mills theories. Throughout the sec-
ond half of the paper, we recall and analyse several pertinent quotes
that Professor Mallios and this author used to repeatedly discuss and
scrutinise in the course of the late nineties and early noughties, dur-
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ing endless late night discussions over good food and wine at our
favourite tavern, fittingly called Algebra, in Paleo Psychiko, Athens,
Greece. Addendum 1 at the end recalls an important and telling early
interaction that this author enjoyed with Professor Mallios at the end
of last century. Addendum 2 at the end discusses the importance of
using poetic language, plus imaginative and heuristic novel terminol-
ogy, both of which emanate from the novel mathematical concepts,
structures and techniques of ADG, in order to address, interpret and
formulate new theoretical concepts and calculational techniques in the
wildly speculative, glaringly non-intuitive and largely uncharted land-
scape of Quantum Gravity. An Appendix, defining, describing and
explaining all the new ADG-theoretical concepts, concludes the pa-
per.

PACS numbers: 04.60.-m, 04.20.Gz, 04.20.-q

Key words: functoriality, quantum gravity, quantum Yang-Mills theories,

causal sets, differential incidence Rota algebras of locally finite partially or-

dered sets, finitary spacetime sheaves, abstract differential geometry, sheaf

theory, sheaf cohomology, category theory, topos theory, geometric prequan-

tisation, canonical quantisation
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1 Technical Prolegomena: A Brief History

of Finitary ADG-Gravity and Yang-Mills

Theories with an Emphasis on the Func-

torial Character of our Concepts, Methods

and Constructions

In this section we give a brief account of the main milestones reached along
our way towards arriving at a purely algebraic, finitistic, causal and quantal
theory of spacetime, gauge theories and gravity. As we outline the main
results, we highlight and emphasise the homological algebraic (:category-
theoretic), and especially functorial, nature of our basic concepts, structures
and methods of their use in various constructions and associated (abstract
differential geometric) calculations (:Differential Calculus), while all this is
accomplished purely algebraically, manifestly without any recourse to or de-
pendence on a background C∞-smooth geometrical base spacetime manifold.

1.1 Finitary Substitutes of Continuous Spacetime Man-

ifolds, their Incidence Algebras, and the Finitary
Sheaves Thereof: ‘Kinematical’ Functoriality

1.1.1 Sorkin’s Finitary Posets

Our journey begins with Sorkin’s ‘prophetic’ finitary substitutes of continuous
spacetime manifolds [89]1. In that paper, with every locally finite (:finitary)
open cover Ui = (Ui) of a (real) topological (C0) spacetime manifold M ,
Sorkin assigns a so-called finitary partially ordered set (finposet) Pi:

Ui −→ Pi (1)

The collection
←−
P = (Pi)i∈I of such finposets is seen to constitute a so-

called inverse or projective system, or net, of posets, which is seen to have a
projective limit space effectively homeomorphic to the continuous C0-manifold
M .2

1Refer to this paper for various mathematical concepts, structures and technical defi-
nitions thereof.

2The index i ∈ I in Pi is the so-called refinement net index, whereby Ui ≺ Uj (reads:
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Three bullet points must be emphasised here in connection with (1) from
[89]:

• First, Sorkin’s original intuition that every geometrical point of a point-
manifold is an ideal, operationally unrealistic and physically untenable
plus problematic (:singular), dimensionless and structureless object,
that better be ‘smeared’ and blown-up by ‘enlarged’ open sets (neigh-
bourhoods) about it.3 The open sets and their set-theoretic algebra are
the carriers of the manifold’s topology and its continuity, not its ideal
points.4

• Sorkin’s original idea strongly resonates with Grothendieck’s pioneering
idea to categorically abstract and generalise pointed topological spaces
to pointless ones called sites by abstracting from the usual topological

open covers like in
←−
P = (Ui) = (Pi)i∈I to families (=sieves) of covering

arrows in a category defining a Grothendieck topology on the category
[41, 42, 43].5

• Once we have done away with the pointed geometrical manifold contin-
uum, we can work further with their poset substitutes (Pi) and build
on them. That is what we do next.

First encounter with ‘Kinematical’ Functoriality. Before we go on to
work with the finitary posets, we catch a first glimpse of functoriality of our
constructions. Let Ti = span{U : U ∈ Ui} be the topology ‘spanned’ or
generated by arbitrary unions and finite intersections of the open sets in each
locally finite open covering Ui. Then, a continuous map

f : Ti −→ Tj (2)

the open cover Uj is finer than the open cover Ui, and conversely, Ui is coarser than Uj) if
Uj has ‘smaller’ and more numerous open sets than Ui. The aforementioned inverse limit
now reads: the C0-manifold is recovered at the inverse limit of infinite refinement of the
open covers Uis in the net (as i→∞).

3Let it be noted here that a pointed background geometrical spacetime continuum is a
problematic, pathological structure that is arguably responsible both for the singularities
plaguing General Relativity (GR) and for the pestilential non-renormalisable unphysical
infinities marring Quantum (Gauge) Field Theories (QFT) of matter.

4In the ensuing discussion, by introducing sheaf theory, we will refine this statement
even more.

5A site is by definition a category endowed with a Grothendieck topology.
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induces (:maps functorially to) a poset morphism f̂ : Pi → Pj ,
6 such that

the following diagram commutes:

Ti

��

f
// Tj

��

Pi
f̂

// Pj

(3)

1.1.2 Differential Incidence (Rota) Algebras of Finitary Posets
and their Simplicial Complexes

From [110, 111, 83, 84] we read that with every finitary poset Pi one can
straightforwardly associate a finitary simplicial complex Si, the so-called
Čech-Alexandrov nerve of the underlying finitary open covering, á-la Čech
Homology:

Si : Pi −→ Si (4)

Second encounter with ‘Kinematical’ Functoriality. The mapping S
above is also functorial in the sense that a finitary poset morphism pij :
Pi → Pj as before, induces (:maps functorially to) a simplicial mapping :
ŝij : Si → Sj , so that the following diagram commutes:

Pi

Si

��

pij
// Pj

Sj

��

Si ŝij
// Sj

(5)

Third encounter with ‘Kinematical’ Functoriality: Incidence (Rota)
Algebras. More importantly for our considerations here, we read from
[110, 111, 83, 84] that with every finitary poset Pi (or equivalently, with
every finitary Čech simplicial complex Si) one can naturally associate a so-
called incidence (Rota) algebra Ωi over the complex numbers C, as follows:

Ri : Pi → Ωi (6)

6By definition, a poset morphism is a partial order preserving map.
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Like in the case of the simplicial mapping of finitary posets S, the mapping
R induces an incidence algebra homomorphism r̂ in the following functorial
commutative diagram sense:7

Pi

Ri

��

pij
// Pj

Rj

��

Ωi r̂ij
// Ωj

(7)

1.1.3 Fourth encounter with ‘Kinematical’ Functoriality: Gel’fand
Duality

Without going into detailed technicalities here, we read from [110, 111, 83, 84]
that one can go the other way around and extract from the finitary incidence
algebras a topological space, endowed with a so-called Rota topology, by con-
sidering irreducible representations of the incidence algebras, the kernels of
which correspond to primitive ideals in the algebras. In turn, the set of
primitive ideals, the so-called spectrum of the algebra Spec(Ω), now regarded
as a generalised, ‘blown up point set’, is readily endowed with a Rota topol-
ogy in such a way that the incidence algebra homomorphisms in r̂ij lift to
continuous maps in the respective Rota topologies.

This is another instance of the functoriality of our constructions and it
corresponds to a finitary version of Gel’fand Duality according to which, very
broadly speaking, from an algebraic structure A one can extract a ‘geomet-
rical space’ Spec(A) carrying a ‘natural continuity’ (:a functorially imposed
topology on it).8

7Mutatis mutandis for the finitary Čech simplicial complexes and the incidence Rota
algebras thereof: their correspondence is manifestly functorial [110, 111, 83, 84].

8Furthermore, and again very broadly speaking, there is the Gel’fand Representa-
tion theorem that ensures that the C-algebra of continuous complex valued functions
on Spec(A) is naturally equivalent to the (complex) algebra A that one started with.
This remark will prove crucial in the sequel when we recount the introduction of finitary
spacetime sheaves.
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1.1.4 Finitary Incidence (Rota) Algebras as Finitary Differential
Algebras/Modules

We read again directly from [83, 84, 60] that the finitary incidence algebras
Ωi are Z+-graded discrete differential algebras/modules of finite rank,9 as
follows:

Ω =
⊕

n∈Z+

Ωn = Ω0 ⊕ Ω1 ⊕ . . . = A⊕R (8)

The Ωns above are seen to be the reticular analogues of the usual linear spaces
of n-grade (Grassmann exterior) differential forms [60] on a C∞-smooth man-
ifold. The grade 0 commutative linear subalgebra A = Ω0 is the discrete
analogue of the algebra of (smooth) functions (0-forms) on the continuum,
while R =

⊕
n≥1Ω

n serves as the A-module of discrete differential forms on
it.

Furthermore, we witness in [60, 61] that there is a discrete analogue of
the (flat) Cartan-Kähler (exterior) differential d operator:

d : Ωn −→ Ωn+1 (9)

that is a linear map and it obeys the Leibniz rule.

1.1.5 The Differential Caveat: Finitary Spacetime Sheaves of In-
cidence Algebras and Preliminary Vibes of ADG

As soon as this author realised that the incidence algebras encode not only
topological, but also differential geometric, information in their structure,
the next tenable position would be to somehow make them (dynamically)
variable, thus he envisaged to employ in the longer run the full ADG-theoretic
panoply towards formulating a finitary and quantal version of Gravity and
Gauge Theory.

A first step to that end would be to ‘sheafify ’ them; that is, to consider
sheaves thereof.10 Thus finitary spacetime sheaves [77] Ei of incidence alge-
bras11 over Sorkin’s finitary poset discretisations were born.

9See also [11, 12, 13] for an early study of such differential spaces.
10Along very similar lines of thought, the reader should refer to the Introduction of [67]

to read how the notion of a sheaf comes hand in hand with the notion of variable structure.
11Now the locally finite posets being interpreted as causal and quantal versions of

Sorkin’s causal sets [5, 90, 91, 88], as expounded in [76].
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Fifth encounter with ‘Kinematical’ Functoriality: Sheafification.
That is, this author realised in [77] that the mapping Ri : Pi → Ωi in 6
above is actually a contravariant functor 12 which, when subjected to suitable
compatibility (glueing) conditions, it can be promoted to a local homeomor-
phism (between the corresponding covering topologies Ti generated by the
finitary open covers Ui), the very definition of a sheaf [6].

All in all, when the resulting finitary spacetime sheaves Ei have Ωis in
their stalks, they were recognised as being the reticular analogues of Mallios’s
vector sheaves.13 Hence, the whole enterprise of applying Mallios’s Abstract
Differential Geometry (ADG) to to a finitistic, causal and quantal version of
Lorentzian vacuum Einstein Gravity and free Yang-Mills (gauge) theories of
matter commenced.

In this line of thought, in [59, 60, 61] we defined finitary differential triads,
as the following triplets:

Ti := (Ai, d,Ωi) (10)

which are the ‘discrete’ analogues of the ADG-theoretic differential triads
(A, ∂, E ≃ Ω).14

1.1.6 Sixth encounter with ‘Kinematical’ Functoriality: The Cat-
egory of Differential Triads

In [72, 73], Papatriantafillou observed that the ADG-theoretic differential
triads form a very homologically rich category: the category of differential
triads, whose objects are differential triads and whose arrows are differential
structure preserving sheaf morphisms.

What is very interesting for us here, as observed in [59, 60, 61, 79, 82], is
that there is a contravariant functor between the category of finitary posets
and the category of finitary differential triads of incidence algebras. As a

12Effectively, the definition of a presheaf [6].
13By definition, Mallios’s vector sheaves are locally free (differential) A-modules of finite

rank n [44, 45, 50]. That is, locally for every open set U ∈ Ui in an open covering (:set of
local gauges Ui) of the base topological spaceX of a C-algebraized space (X,A), one has by
definition the followingA|U -isomorphisms: E|U = An|U = (A|U )n and, concomitantly, the
following equalities section-wise: E(U) = An(U) = A(U)n (with An the n-fold Whitney
sum of A with itself).

14Refer to [44, 45, 50, 59, 60, 61] for more detailed definitions, further interpretational
discussion and relevant results.
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result, as the inverse system of Sorkin’s finitary posets was seen to possess
an inverse (or projective) limit space, the corresponding, categorically dual,
inductive system of finitary incidence algebras was seen to form a direct (or
inductive) limit space, consistent and in agreement with Papatriantafillou’s
results in [73].15

1.2 Enter ADG: ‘Dynamical’ Functoriality

(Note:Henceforth in this paper, all our finitary considerations, constructions
and results presented thus far carry onmutatis mutandis to the general ADG-
theoretic constructions. Thus, the finitary case is obtained from the general
ADG-theory [44, 45, 50] simply by adjoining a finitarity index-subscript ‘i’
to all the ADG-symbols and constructions.16)

With the identification of the aforementioned finitary sheaves of quantum
causal sets as reticular versions of vector sheaves in ADG, we swiftly moved
on to mathematically model dynamical variations thereof.

1.2.1 Briefly revisiting A-connections in ADG

To that end, we readily appreciated that the Cartan-Kähler differential op-
erator in (9) is a special example of an ADG-theoretic connection on the
sheaves of ‘differential forms’ that it functorially acts as a sheaf morphism,
albeit a flat connection [44, 45, 50, 59, 60, 61].

In order to dynamically vary the quantum causal sets that dwell as (germs
of) local sections in the stalks of the aforementioned sheaves Ei, we need to
‘gauge’17 the flat d to a more general (:curved) connection D,

d −→ D (11)

15Subsequently, this observation was crucial in our idea of promoting our category of
finitary differential triads into a topos-like structure [43, 79, 82], having (at least finite)
categorical limits (direct/inductive) and colimits (inverse/projective).

16For instance, a general open cover U of the background topological space X in ADG
(:there coined open coordinate gauge of X), becomes Ui in our finitary domain of the
theory. Similarly, as we shall see next, the finitary version of the Cartan-Kähler differential
operator d or the general ADG A-connection operator D, become di and Di respectively in
our finitary realm without any loss of generality whatsoever [59, 60, 61, 78, 79, 80, 81, 82].

17That is, we need to localise and relativise differential changes relative to arbitrary sets
of (covering) open gauges (Ui) [44, 50, 59, 60, 61].



Functoriality in Finitary ADG-Gravity and Yang-Mills Theories 11

which is also defined functorially as an A-linear, Leibnizian sheaf morphism,
acting on the relevant module sheaves as follows:

D : E −→ E ⊗A Ω ∼= Ω⊗A E ≡ Ω(E) (12)

With the introduction of D upon localising or ‘gauging’ the flat differential
d relative to a set of local open gauges Ui, the latter acquires locally an
additional term—the so-called gauge vector field potentials’ term A,18 as
follows:

d −→ D|U∈Ui
= d+A|U (13)

As alluded to in the last footnote, from an ADG-theoretic point of view,
the connection D is viewed as a ‘unitary’, autonomous dynamical entity
[61, 81, 82], regardless of its local gauge split as in (13). Which brings us to
arguably the most important ADG-theoretic definition.

1.2.2 First encounter with ‘Dynamical’ Functoriality: ADG-theoretic
Fields

In ADG, a dynamical field is defined as the following pair:

F := (E ,D) (14)

That is to say:

A dynamical field is a pair consisting of a vector sheaf E , localised
on an in principle arbitrary C-algebraized space (X,A), and a
connection D acting functorially on its (local) sections as a sheaf
morphism.

Four things to highlight here in connection with the fundamental definition
above:

18Traditionally, in the Classical Differential Geometry (CDG) C∞-smooth manifolds M
used by Physics [27], the term connection is normally reserved for the so-called gauge
vector field potentials Ai

µ (with µ an external spacetime index, and i an internal gauge
symmetry index). On the other hand, from an ADG-theoretic perspective, the denomina-
tion connection is a ‘holistic’, ‘unitary’ one, pertaining to D as a whole, and not referring
to its ‘contingent’ local split by a choice of gauge Ui as in (13) above. Read on.
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• An ADG-field consists of both the source and the agent of dynami-
cal variability—the connection D, and the recipient of the agent’s dy-
namical action—the vector sheaf E , as an autonomous and indivisi-
ble/inseparable unit.

• From a geometric (pre)quantization perspective, the local sections of E
correspond to quantum particle states [46, 51, 50, 57, 60, 61, 81, 82]. If
E is a line sheaf L (:a vector sheaf of rank n = 1), its local sections rep-
resent the quantum particle states of a boson like the ‘photon’, hence
the ADG-field FMax = (L,D) is coined the Maxwell field. More gen-
eral Yang-Mills ADG-fields are represented as connections D on vector
sheaves E of rank n > 1. ADG-theoretically, we represent them by the
pair: FYM = (E ,D). Finally, the gravitational connections constitute
ADG-theoretic Einstein fields : FEinst = (E ,D).

• It is important to stress here that, in a very technical and rigorous
sense, the vector sheaves E correspond to the associated or representa-
tion sheaves of the principal group sheaf Aut(E) of the reversible en-
domorphisms (:the automorphisms) of E [44, 99, 100, 101, 102, 50].19

In turn, Aut(E) is the local relativity and gauge invariance structure
group sheaf of the functorial dynamics effectuated by the connection
sheaf morphism D acting dynamically on (the local sections of) E .

• The Maxwell FMax = (L,D), Yang-Mills FYM = (E ,D) and Einstein
FEinst = (E ,D) ADG-fields can be organised, as objects, into respective
categories with categorical sheaf morphisms as arrows between them,
coined: the Maxwell Category TMax, the Yang-Mills Category TYM and
the Einstein Category TEinst categories [50, 55, 57]. In contradistinc-
tion to the ‘flat’, ungauged and ‘static-kinematical’ categories of dif-
ferential triads that we alluded to earlier [72, 73, 50], these three cat-
egories are ‘dynamical’ in character, in the sense that object-fields in
them obey and satisfy certain dynamical laws of motion20 and the A-

19We recall from [44, 61, 50] that for any vector sheaf E , EndE ≡ HomA(E , E) ∼=
E ⊗A E∗ = E∗ ⊗A E , so that Aut(E) ≃ End(E)∗. It follows that, for a choice of local
open gauges U ∈ Ui, Aut(E)U ≡ Aut(E)(U) ≃ End(E)∗(U) = Mn(AU ) ≡ Mn(A(U)), the
non-commutative gauge structure group sheaf of (n× n)-matrices having for entries local
sections in the structure algebra sheaf A: Γ(U,A) = AU ≡ A(U).

20The Maxwell, Yang-Mills and Einstein dynamical (differential) equations, which in
turn derive from Lagrangian variation of corresponding action functionals. Read on.
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functoriality thereof corresponds to the A-invariance and the AutAE
local gauge/generalised coordinates’ invariance of the respective dy-
namical laws of motion [55, 57].21

We close this subsection with an important observation regarding the
three ADG-field categories defined above:

All three aforementioned ADG-field categories, the Maxwell
TMax, the Yang-Mills TYM , and the Einstein category TEinst,
are by definition functor categories [43].22

1.2.3 Second encounter with ‘Dynamical’ Functoriality: A-invariance
is a generalised, functorial form of gauge invariance of the
ADG-field dynamics

The discussion above brings us to the all-important issue of gauge covariance,
local gauge invariance and their intimate relation to the basic ADG-theoretic
notion of A-invariance.23 In this subsection, we will focus only on [?] Einstein
and Yang-Mills ADG-fields on higher rank vector sheaves, leaving the abelian
case of Maxwell fields on line sheaves to their exhaustive treatment in the
monograph references [44, 50].24

21We shall return to discuss further the categorical implications and the deeper physical
interpretation of the generalised ADG-theoretic conception of local gauge invariance as A-
invariance and the ⊗A-functoriality of the ADG-theoretic gauge dynamics in the sequel.

22That is to say, the objects in those categories are sheaf morphisms, while the arrows be-
tween them are themselves functors. It follows, that if there are functorial correspondences
between them and other functor categories, these correspondences will be some kind of
natural transformations, and especially, some kind of geometric morphisms [43]. As we
will see in the sequel, of special interest to us will be a geometric morphism asssociated
with the ⊗A-Hom adjunction, which effectuates a kind of natural transformation between
ADG-field and ADG-curvature space categories. Read on.

23As it has also been observed in past publications [59, 60, 61], in our work we use
the symbol A for the structure sheaf of algebras of generalised ADG-theoretic coordinate
functions, as opposed to A used throughout Mallios’s work [44, 45, 50, 55, 57], as we
have reserved the symbol A for local Einstein gravitational and Yang-Mills local gauge
potentials as in (13).

24The epithets abelian and non-abelian above pertain, as in the usual theory [27], to the
structure gauge groups being commutative and non-commutative, respectively. Indeed, the
principal group sheaves associated with the line sheaves L of the ADG-theoretic Maxwell
fields FMax above carry abelian unitary (:≡ U1(A)) groups in their stalks, while as we saw
couple of footnotes earlier, the structure group sheaf AutAE of dynamical automorphisms
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The A-Functoriality of the Curvature of an A-Connection: R is
an ⊗A-tensor. To that end, we first recall from [44, 45, 50, 59, 60, 61]
the general functorial ADG-theoretic definition of the curvature R of an
A-connection D as the following A)-morphism of A-modules :25

We first define the 1st prolongation of D to be the following C-linear vector
sheaf morphism:

D1 : Ω1(E) −→ Ω2(E) (15)

satisfying section-wise relative to D:

D1(s⊗ t) := s⊗ dt− t ∧Ds, (s ∈ E(U), t ∈ Ω1(U), U open in X) (16)

We are now in a position to define the curvature R of an A-connection
D by the following triangular commutative diagram:

E

R(D)=D1◦D

��

D
// Ω1(E) ≡ E ⊗A Ω1

D1
uu❥❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥

Ω2(E) ≡ E ⊗A Ω2

(17)

from which we read directly that:

R ≡ R(D) := D1 ◦ D (18)

Therefore, any time we have the C-linear morphism D and its prolongation
D1 at our disposal, we can define the curvature R(D) of the connection D.26

As a matter of fact, it is rather straightforward to see that, for E a vector
sheaf, R(D) is functorially defined as an A-morphism of A-modules, in the
following sense:

of the vector sheaf E of, say, the Einstein field FEinst is locally homomorphic toMn(A(U)),
which is manifestly noncommutative.

25With a vector sheaf E , as explained before, regarded as asheaf of differential A-
modules, with structure sheaf A, that is locally isomorphic to An(U).

26In connection with (18), one can justify our earlier remark that the standard Cartan-
Kähler (exterior) differential operator d ≡ d0 is a flat type of connection, since: R(d) =
d ◦ d ≡ d2 = 0, which is secured by the well known nilpotency of the usual Cartan-Kähler
(exterior) differential operator d [27, 44, 50, 61]). In a (co)homological-algebraic sense, the
curvature of an algebraic connection measures the ‘obstruction’ to or the ‘deviation’ from
the nilpotency of the connection (:differential) [59, 60, 61].
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R ∈ HomA(E ,Ω
2(E)) = HomA(E ,Ω

2(E))(X)
Ω2(EndE)(X) = Z0(U ,Ω2(EndE))

(19)

where, as usual, Ui = {Uα}α∈I is an open cover of the base topological space
X and Z0(U ,Ω2(EndE)) the A(U)-module of 0-cocycles of Ω2(EndE) relative
to the Ui-covering of X .27

1.2.4 The Non-Tensorial and the Tensorial Character of D and R,
respectively, under Local ‘Gauge-Coordinate’ Transforma-
tions

(Note: In the following presentation and discussion, we are not going to
specify what ADG-connections and their curvatures we are talking about.
The reader can assume that the connections are either Einstein-Lorentzian
or Yang-Mills, in the sense that the arguments below apply mutatis mutandis
to both.)

In this subsection, we recall from [44, 61, 50] a very subtle and important
for our arguments in the sequel ADG-theoretic result, which may be distilled
down to the following two statements:

• The ADG-theoretic connection D is only a C-linear sheaf mor-
phism (hence not an ⊗A-tensor);

28 while;
• The ADG-theoretic curvature R is a full A-structure sheaf mor-
phism (hence a pure ⊗A-tensor).

29

Two equivalent statements to the ones above, which the theoretical physi-
cist/mathematician who is familiar with the usual differential geometry of
gauge theory, which employs smooth fiber bundles over a C∞-smooth differ-
ential spacetime manifold M can straightforwardly understand [27], are the
following:

27One may wish to recall again that, for a vector sheaf E like the one involved in (19)
above: EndE ≡ HomA(E , E) ∼= E ⊗A E∗ = E∗ ⊗A E .

28Where C is just the constant sheaf of C-numbers [44, 61, 50].
29With ⊗A the homological algebraic (:categorical) tensor product functor. In the sequel,

we will return to explain and discuss in more detail the paramount importance of ⊗A and
its adjoint functor Hom [41, 42, 43] for the dynamical functoriality of our (finitary) ADG-
perspective on gravity and gauge theories, and its cogent physical interpretation in the
quantum deep.
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• D does transforms inhomogeneously (:non-tensorially or affinely)
under local gauge-coordinate transformations; while;
• R does indeed transform homogeneously (:tensorially) under lo-
cal gauge-coordinate transformations.

To explicate in detail what the above statements mean, let us recall briefly
from [44, 61, 50] how the ADG-connection D and the ADG-curvature R be-
have (:transform) respectively under local general coordinate-gauge changes.

1.2.5 Local Gauge Transformation of D

Let E be a differential A-module (:an ADG-theoretic vector sheaf) of rank n.
Let eU ≡ {U ; ei=1···n} and fV ≡ {V ; fi=1···n} be local gauges30 of E over the
open set gauges U and V of X31 which, in turn, we assume have non-empty
intersection (U∩V 6= ∅). Let us also denote by g ≡ (gij) the following change
of local gauge matrix:

fj =

n∑

i=1

gijei (20)

which, plainly, is a local (i.e., relative to U ∩ V ) section of the ‘natural’
structure group sheaf GL(n,A) of E32—that is to say, gij ∈ GL(n,A(U ∩
V )) = GL(n,A)(U ∩ V ).

Without going into the details of the derivation, which can be found in
[44, 45, 50], we note that under such a local gauge transformation g, the
gauge potential part A of D in (13) transforms as follows:

A
′

= g−1Ag + g−1∂g (21)

a way we are familiar with from the usual differential geometry of the smooth
fiber bundles of gauge theories [27]. For completeness, it must be noted here
that, in (21), A ≡ (Aij) ∈ Mn(Ω

1(U)) = Mn(Ω
1)(U) and A

′

≡ (A
′

ij) ∈
Mn(Ω

1(V )) = Mn(Ω
1)(V ).

30A general gauge-coordinate n-frame (or n-bein).
31U, V ∈ Ui, with Ui an open covering of the underlying topological space X of the

C-algebraized space (X,A), as assumed throughout this paper.
32As noted earlier, one may recognise GL(n,A) above as the local version of the auto-

morphism principal group sheaf AutAE of E . The adjective ‘local’ here pertains to the
fact mentioned earlier that ADG assumes that E is locally isomorphic to An.
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The transformation of A under local gauge changes is called in-
homogeneous, non-tensorial or affine in the usual gauge-theoretic
parlance [27] precisely because of the (additional to the homoge-
neous) term g−1∂g.

1.2.6 Local Gauge Transformation of R

On the other hand, we read directly from [44, 61, 50] that under similar
local gauge-coordinate changes, the curvature R(D) of the ADG-connection
D transforms purely homogeneously or tensorially, as follows:
To that end, let again g ≡ gij ∈ GL(n,A)(U ∩ V ) be the change-of-gauge
matrix we considered in (20) in connection with the transformation law of
gauge potentials Aij. Again, without going into the technical details of the
derivation, we bring forth from [44, 61, 50] the following local transformation
law of gauge field strengths:

for a local frame change : eU
g
−→ eV (U, V ∈ Ui covering X),

the curvature transforms as : R
g
−→ R

′

= g−1Rg
(22)

the form of which we are familiar with from the usual differential geomet-
ric (i.e., smooth fiber bundle-theoretic) treatment of gauge theories [27].
For completeness, we remind ourselves here that, in (21) above, RU∩V ≡
(RU∩V

ij ) ∈Mn(Ω
2(U ∩ V ))—an (n× n)-matrix of sections of local 2-forms in

Ω2.

The transformation of R under local gauge-coordinate changes is
called homogeneous, tensorial or covariant in the usual smooth
fiber bundle gauge-theoretic parlance [27].

As a last important observation before we move on to explicate the A-
invariant and its associated ⊗A-functorial character of the dynamical equa-
tions of motion from Einstein gravity and free Yang-Mills gauge theories, we
note:

1.2.7 ADG-curvature spaces and ADG-curvature field categories

As we increase by a notch the level of abstraction and generality, from
[44, 61, 50] we note the definition of ADG-curvature spaces as the follow-
ing quintuples:
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(A,D,Ω1,D2,Ω2) (23)

consisting of A-modules and C-linear morphisms between them, which, in
turn, by the very definition of the ADG-curvature field in (17), reduce to the
following duet representing the ADG-curvature fields :

R := (A, R(D)) (24)

1.2.8 Third encounter with ‘Dynamical’ Functoriality: three ADG-
curvature field functor categories

In much the same way that we defined earlier the three functor categories
of ADG-connection fields: the Maxwell TMax, the Yang-Mills TYM , and the
Einstein category TEinst earlier, we can similarly define here:

Three ADG-curvature field functor categories: CMax, CYM and
CEinst, whose objects are ADG-curvature fields as in (24), and
whose arrows are natural transformation type of correspondences
between their ⊗A-functorial objects.

33

1.2.9 Lagrangean Action Derivation of Vacuum Einstein Gravity
and Free Yang-Mills Theories

Now that we have recalled the essential characteristics and local gauge trans-
formation behaviour of the affine ADG-connections and their curvature ⊗A-
tensors, we note that the ADG-theoretic versions of the dynamical free Yang-
Mills and vacuum Einstein equations both derive from (the variation of)
respective Yang-Mills (YM) and Einstein-Hilbert (EH) Lagrangean action
functionals, as follows:34

33We are going to return to this important definition shortly, when we explicate the A-
invariant and ⊗A-functorial Einstein and Yang-Mills ADG-theoretic local gauge dynamical
laws of motion. Of special interest and semantic importance will be the pair of adjoint
functors Hom-⊗A, which will be seen to be a geometric morphism/natural transformation
type of correspondence between the corresponding ADG-categories of connection fields D

and their curvatures R(D): for gravity, for instance, the mapping: TEinst
Hom−⊗A

// CEinst

will be seen to be such a geometric morphism of huge physical significance for the cogent
physical semantics of our ADG-theoretic perspective on gravity and gauge theories as
Mallios had originally envisaged.

34For the equations above, see [44, 50] for technical definitions and details.
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EHE(D) =
∫
X
tr(RRic(D))

δA
−→ REinst(E) = 0

YME(D) =
1
2

∫
X
tr(RYM ∧ ⋆RYM)

δA
−→ ∆2

EndE(RYM) = 0

(25)

in which we read from [44, 61, 50] that REinst is the Ricci Scalar35 of the
ADG-theoretic Einstein-Lorentzian metric connection field D, while RYM is
the Yang-Mills gauge field strength of the homonymous ADG-theoretic Yang-
Mills connection field D.

1.3 Miscellaneous Remarks on ‘Dynamical Functorial-

ity’ and A-Invariance-cum-Covariance of the ADG-
Field Autodynamics: A Unified, Pure Gauge, Smooth

Base Spacetime Manifoldless and Finitistic ADG-
Theoretic Quantum Field ‘Solipsism’ of the 3rd
Kind

In this subsection we make eight conceptual and technical remarks on the
ADG-theoretic perspective on the Einstein and Yang-Mills field dynamics in
(25) above. We itemise our remarks as follows:

1.3.1 ADG-Kinematics: The Affine Space of A-Connections

From the vacuum Einstein and the free Yang-Mills dynamical equations à-
la ADG in (25) above, it follows that the sole dynamical variable in our
ADG-theoretic perspective on gravity and gauge theories is the local A-
connection D. That is, as equation (25) depicts above, the dynamical equa-
tions derive from the variation (δA) of the Einstein-Hilbert and Yang-Mills
Lagrangian action functionals with respect to the local gauge potential part

35For expository completeness, we briefly recall from [61] that given a (real) Lorentzian
vector sheaf (E , ρ) of rank n equipped with a non-flat Lorentzian ρ-metric A-connection
D, one can define the following Ricci curvature operator RRic relative to a local gauge
U ∈ Ui of E : RRic( . , s)t ∈ (EndE)(U) = Mn(A(U)), for local sections s and t of E in
E(U) = An(U) = A(U)n. Thus, the Ricci curvature here RRic is an EndE-valued operator,
a curvature endomorphism of E . Moreover, since RRic is matrix-valued, one can take its
trace, thus define the following Ricci scalar curvature operator REinst := tr(RRic( . , s)t),
which, plainly, is A(U)-valued.
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(A) of the gravitational and Yang-Mills A-connections D on their respective
vector sheaves E .

Thus, as emphasised in [61], the sole dynamical variable in our ADG-
theoresis of vacuum Einstein gravity and free Yang-Mills theories is the ADG-
theoretic Einstein connection field pairs FEinst = (E ,D) and FYM = (E ,D)
defined by (14) earlier, within their respective categories TEinst and TYM .

As also highlighted in [61], it follows that the generalised ‘kinematical’
space of the theory is the affine space AA(E) of A-connections A on E . More-
over, since the Lagrangians involved in (25) are invariant under the group
sheaf G(E) = AutAE of local automorphisms (:local gauge transformations)
of E ,

the relevant kinematical space is the moduli space A/G = AA(E)/AutAE
of gauge equivalent A-connections A on E .36

Hence the integration sign in the dynamical action functionals in (25), which
supposedly extends over the base topological space X , in effect extends over
the moduli space A/G = AA(E)/AutAE of gauge equivalent connections.37

1.3.2 A-Invariance and ‘Dynamical’ Functoriality

We noted earlier a fundamental difference in ADG between an A-connection
D and its curvature R(D), namely that,

The curvature R(D) is an ⊗A-tensor, while the connection D
itself is not.

In other words,

The curvature R(D) respects our (algebras) of generalised mea-
surements in A, while the connection D itself does not—it ‘eludes’
them.

36Recall from [61] that G(E)|U = AutAE|U = (AutAE)(U) := Γ(U,AutAE) ≡ Mn
U (A).

Thus, A/G = AA(E)/AutAE is the so-called G-orbit space as the structure gauge group
sheaf AutAE(A) cuts through the affine space AA(E), carving out ‘paths’ or ‘orbits’ of
gauge equivalent connections in the process, which, in turn, leave the corresponding cur-
vature Lagrangians in (25) invariant under (local) gauge transformations.

37From [61, 55, 57, 50] we read that a suitably defined ADG-theoretic Radon-type
of A-linear continuous integration measure dµ on a suitably topologised A/G (dµ :
AA(E)/AutAE −→ A) is expected to render rigorous the dynamical action integrals in
(25).
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In still equivalent parlance,

The curvature R(D) is a ‘geometrical object’, while the connection
D itself is an ‘algebraic object’.38

Yet,

the dynamics on E , generated by the connection field D acting
on E and expressed as a differential equation on it as in (25),
is derived from an action principle involving the curvature of the
connection.

As such,

the dynamical equations of motion on E , which are derived from
an action principle involving the curvature of the connection, is
gauge invariant, hence our free gauge choices of generalised coor-
dinate measurements in A respect the dynamics, and the physical
laws are independent of our measurements in A.

Thus, in toto,

The physical laws are A-invariant.

Which brings us to a fundamental observation, in connection with Utiyama’s
Theorem, that we read directly from [57].

1.3.3 The Algebra-Geometry Duality: The HomA−⊗A Functorial
Adjunction between the ADG-Field and Curvature Cate-
gories

Below, we quote Mallios verbatim from [57]:

38We will make this statement mathematically much more precise and rigorous in the
sequel when we discuss the fundamental ⊗A−Hom-adjunction ‘geometric morphism equiv-
alence’ between the ADG Einstein and/or Yang-Mills connection field and curvature field
functor categories TEinst/Y M and CEinst/YM , respectively.
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“...Utiyama’s theorem, relates/characterizes the ‘A-invariance’ of
what we may call A-connection Lagrangian through that one of
the corresponding curvature Lagrangian. So the aforementioned
two notions (of ‘Lagrangians’) are, in effect (physically) equiva-
lent, through/due to the ‘A-invariance’...”39

which leads us to Mallios’s telling remarks of what he calls The Fundamental
(Physical) Adjunction:40

“...The Fundamental (Physical) Adjunction: Thus, the ba-
sic Homological (:categorical) Hom−⊗ adjunction, corresponds,
within the context of ADG, to the fundamental physical adjunc-
tion, effectuated by the following ‘adjoint pair of functors’:

A−connection (: field, ‘potential′) ⇆ curvature (: ‘field strength′)

The above can actually be perceived, as describing the whole
function of a physical law, hence, in fact, of the Nature her-
self...”41

And Mallios concludes Section 2 of the paper [57] with the following intu-
itively telling paragraph:

“...On the other hand, the connecting function of a given ad-
junction, is in effect a natural transformation of functors. Con-
sequently, the latter should still preserve ‘A-invariance’ of the
adjunction, with respect to any ‘A-invariant function’, referring
to any one of the two associated functors through the adjunction:
One gets at it, just, based on the very definitions42 and on the
‘functorial nature’ of ADG...”43

39Throughout this quotation we have been faithful to the emphasis placed by Mallios
on certain key words in the original paper [57].

40Again quoting Mallios verbatim from [57].
41Again,throughout the quotation above we have been faithful to the emphasis placed

by Mallios on certain key words in the original paper [57].
42Given before in the paper [57].
43Once again, throughout the quotation above, we have been faithful to the emphasis

placed by the author on certain key words in the original text [57].
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Now, in view of our presentation and arguments in the present paper, we are
in a position to distill and further mathematically formalise and explicate
Mallios’s remarks above on functoriality, adjunction and natural transforma-
tion of functors.

1.3.4 Fourth Encounter with ‘Dynamical’ Functoriality: Mallios’s
Fundamental (Physical) Adjunction Explicated and Inter-
preted

The categorical adjunction between the connection D and its curvature R(D)

A− connection ⇄ A− curvature (26)

that Mallios emphasises in the excerpt from [57] in connection with Utiyama’s
Theorem displayed above, can now be cast in a mathematically rigorous and
precise functorial form, as a functorial correspondence between the respec-
tive categories of Einstein (or Yang-Mills) connection fields TEinst (or TYM)
and their corresponding categories of Einstein (or Yang-Mills) curvature field
strengths CEinst (or CYM), as follows:

TEinst

⊗A
//

CEinst
HomA

oo

TYM

⊗A
//

CYM
HomA

oo

(27)

with the pair of ‘opposite direction maps’ (⊗A,HomA) above corresponding
to the fundamental homological algebraic adjunction that Mallios alludes to.

More technically speaking, ⊗A is the homological (left-adjoint) tensor
product functor44 and HomA is its right-ajoint functor [43]. When paired
together, the pair:

GMA := (⊗A,HomA) (28)

constitutes an instance of what is commonly known in category theory as a
geometric morphism [43].45

44In the category of A-modules that the vector sheaves E of ADG belong.
45It is instructive here to give the definition of a general geometric morphism directly

from [43], as it originally arose in category theory. With every continuous map f between
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At the same time, the fact that the pair (⊗A,HomA) indeed constitutes
a categorical adjunction, derives directly from the way ⊗A and HomA act
on the corresponding categories. Again, in the general case, we read from
[43] that −⊗X is the left-adjoint (functor) and Hom(X,−) the right-ajoint
(functor), because they act as a pair of maps as follows:

Hom(Y ⊗X,Z) ≃ Hom(Y,Hom(X,Z)) (29)

Thus, in view of the general definition of the action of an adjunction as in
(29) above, we are now in a position to see directly that, indeed:

In ADG, the curvature R(D) of a connection is the ⊗A-morph
(:image) of its connection.

which we can verify directly from the curvature’s definition in terms of the
action of the ⊗A and HomA functors in (17) and (19) earlier:

R : E
HomA−→ Ω2(E) ≡ E ⊗A Ω2

R ∈ HomA(E ,Ω2(E)) = HomA(E ,Ω2(E))(X)
(30)

Recalling again from footnote 26 that, for any ADG-theoretic vector sheaf
E like the one involved in (30) above: EndE ≡ HomA(E , E) ∼= E ⊗A E∗ =
E∗ ⊗A E .

We can distill all the above discussion and express the geometric mor-
phism functorial equivalence between the connection-field and curvature-field
Einstein and/or Yang-Mills functor categories TEinst/Y M and CEinst/YM de-
picted in equations (27) and (28) above, as follows:

TEinst/Y M
GM
←→ CEinst/YM

TEinst/YM

⊗A
//

CEinst/Y M
HomA

oo

DEinst/YM
⊗A−→ REinst/YM

(31)

with the first two lines in (31) above, reading:

two topological spaces X and Y : f : X → Y , there is a pair of adjoint functors (f∗, f∗):

Sh(X)
f∗

//
Sh(Y )

f∗

oo (f∗ is coined the push-out and f∗ is coined the pull-back) between the

categories of sheaves (of structureless sets) Sh(X) and Sh(Y ) over X and Y , respectively.
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The curvature (Einstein and/or Yang-Mills field categories) are
the geometric morphs (:images) of the corresponding connection
(field categories).

while the map in the third line of (31) above can be interpreted as stipulating
that:

The (Einstein and/or Yang-Mills) curvature field is the ⊗A-image
of its connection field.

which in turn vindicates what we established earlier, namely that:

The curvature is a geometrical, A-tensorial object (:an ⊗A-tensor
or an A-invariant morphism), while its connection is not.

This gives a raison d’être and vindicates the epithet geometric in the geo-
metric morphism denomination of the pair of maps GMA := (⊗A,HomA)
above.

1.4 GM-Dynamical Functoriality, Mallios’s A-Invariance

and Gauge Invariance of ADG-GT

Now that we have explicated the subtle and technical sense in which a geomet-
ric morphism adjunction GM links the ADG-theoretic Einstein/Yang-Mills
connection field category TEinst/Y M with its ADG-theoretic Einstein/Yang-
Mills curvature field ‘counterpart-equivalent’ category TEinst/YM , we are in a
position to further support Mallios’s remarks on A-invariance in connection
with gauge invariance in [57].

To this end, we quote verbatim from Section 3 of [57] the displayed para-
graph before Theorem 3.1:

“...Therefore, one thus realizes that, the fundamental adjunc-
tion46, preserves the A-invariance, for any A-invariant func-
tion,47 pertaining to the two basic functors appearing in the afore-
said adjunction...”48

46Our geometric morphism GM in equations (27) and (28) earlier.
47Especially, for the A-invariant Einstein and Yang-Mills action functionals in (25)

above, which, as we saw earlier, are A-valued functionals defined on the moduli space
AA/G = AA(E)/AutAE of gauge equivalent A-connections on E .

48That is, the homological HomA and ⊗A adjoint functors constituting GMA in equa-
tions (27) and (28) earlier.



Functoriality in Finitary ADG-Gravity and Yang-Mills Theories 26

which in turn leads to the following central result (:Theorem 3.1) in [57],
coined Utiyama’s Principle therein:49

“...Theorem 3.1 Any ‘gauge invariance’ of an appropriate ‘La-
grangian’ for (A-)connections is equivalent to a similar invariance
of the corresponding Lagrangian for the associated curvature with
the (A-)connection at issue...”

Thus, we are now in a position to distill and re-express the deep relation
between our notion of ‘Dynamical’ Functoriality, with Mallios’s A-invariance
and the structure group AutAE-gauge invariance (of the dynamical action
functionals) of our ADG-theoresis on Vacuum Einstein Gravity and Free
Yang-Mills Theories in (25), as follows:

Fundamental Theorem of ADG-Gauge Theory. The ‘dy-
namical’ geometric morphism GMA preserves A-invariance and
entails the structure group sheaf G ≡ AutAE-invariance of the
ADG-theoretic dynamical equations of motion for Vacuum Ein-
stein Gravity and Free Yang-Mills Theory.

In view of our physical interpretation of A earlier in this paper and
throughout our work on ADG-GT [59, 60, 61, 50, 78, 79, 80, 81, 82] as the
algebra (sheaf) of our generalised coordinate measurements,50 an important
Corollary to the Fundamental Theorem above goes the other way around, as
follows:

Corollary to the Fundamental Theorem of ADG-Gauge
Theory. The algebra (sheaf) of our generalised coordinate mea-
surements A respects (i.e. it is ‘non-perturbing’ and it leaves
invariant) the functorial ADG-theoretic gauge field dynamics for
Vacuum Einstein Gravity and Free Yang-Mills theories, hence,
in return, it entails and almost ‘mandates’ that the (local) Rel-
ativity Group (sheaf) of the theory is G ≡ AutAE .51 Thus, A-
invariance, via the ‘dynamical’ geometric morphism GMA, which

49Again, quoted exactly as it appears in [57].
50That is, our localised and gauged A-valued measurements based on an open cover
{U} = Ui of local open sets U of the base topological space X employed by the theory.

51That the local relativity group in ADG-GT is ‘naturally’ AutAE (:see subsection next)
has been amply expounded in [59, 60, 61, 50, 55, 56, 78, 79, 80, 81, 82].
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in turn entails the G = AutAE-gauge invariance of the ADG-field
dynamics (expressed via the geometric morph of the connection
field—the field’s curvature), corresponds to a dynamical version
of the Kleinian conception of geometry.52

The discussion above brings us to an important, yet subtle, technical and
interpretational matter of ADG-GT.

1.4.1 Note on the Natural Transformation character of the Geo-
metric Morphism GMA: the ‘Naturality’ of the Functorial
Dynamics of ADG-GT

Since, as we alluded to numerous times throughout this paper, the ADG-
theoretic connection and curvature field categories are functor categories [57,
55, 56, 50], the two adjoint functors constituting the geometric morphism
GMA := (⊗A,HomA) above are examples of natural transformations [43].53

This, too, was prophetically anticipated by Mallios in [57]:54

“...On the other hand, the connecting function of a given ad-
junction, is in effect a natural transformation of functors. Con-
sequently, the latter should still preserve ‘A-invariance’ of the
adjunction, with respect to any ‘A-invariant function’, referring
to any one of the two associated functors through the adjunc-
tion...”

The fitting physico-mathematical ‘pun’ here is that:

TheA-invariant and, in extenso, AutAE-invariant functorial gauge
field dynamical changes in ADG-GT are, categorically-cum-physically
speaking, Natural Transformations of the ‘dynamically equivalent’
gauge connection and curvature fields involved therein, via the
Natural Transformation Geometric Morphism GMA := (⊗A,HomA)
that interlinks them.

52According to Felix Klein, ‘the geometry of an object is all the transformations of it
that leave it invariant’ [38].

53In a nutshell, and quite heuristically, a natural transformation N connects or maps
one particular functor F : A → B to another particular functor G : A → B between two
categories A and B. At the same time, N does not need to apply to every functor in some
category of functors [43].

54Excerpt from quotation earlier.
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2 Intermezzo: Lateral Technical and Philo-

sophical Offshoots and Repercussions of Func-

toriality

In this intermediate section, we give very brief accounts and we express
them in the form of ‘Aphorisms’, borrowed from previous works, of vari-
ous technical, conceptual and interpretational-cum-philosophical corollaries
and didactics that follow, in one way or another, from both the ’kinematical’
and ‘dynamical’ functoriality of our ADG-theoretic perspective on Finitary
Vacuum Einstein-Lorentzian Gravity and Free Yang-Mills Theories, as ex-
pounded above.

2.1 Third Gauge Auto-Gravitodynamics from Back-
ground Spacetime Manifoldlessness: Gauge Field

Solipsism

The quintessential feature of ADG, especially vis-à-vis its novel conceptual
import and potential technical applications to Quantum Gravity research
[44, 45, 50, 46, 51, 48, 52, 54, 53, 58, 57, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66,
67, 76, 77, 78, 79, 80, 81, 82, 83, 84, 108, 109], is arguably the following:

Aphorism 1: Background Spacetime Manifoldlessness. Mallios’s
Abstract Differential Geometry is a purely homological-algebraic
(:sheaf and category-theoretic) way of doing and applying ‘Dif-
ferential Calculus’, with all its technical and conceptual panoply,
to many current research fronts in Theoretical and Mathematical
Physics such as Quantum Gauge Theories of Matter and Quan-
tum Gravity, but in the manifest absence of a background geomet-
rical C∞-smooth base (spacetime) manifold.

The deep and wide spectrum of potential import of such background differ-
ential spacetime manifoldlessness, especially in Quantum Gauge Theory and
Quantum Gravity research, has been expounded in detail over the last two
decades in numerous works [46, 47, 51, 52, 55, 56, 50, 59, 60, 61, 78, 79, 80,
81, 82, 66, 67, 108, 109].

One important feature of such a background spacetime manifold indepen-
dence is that:
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Aphorism 2: Dynamical Connection Gauge Field Solip-
sism. ADG enables us to formulate Vacuum Einstein Gravity
and Free Yang-Mills theories as pure gauge theories of the third
kind,55 in the sense that the sole dynamical variable in the theory
is an entirely homologically-algebraically defined A-connection
acting on (the sections of) a vector sheaf E , without any re-
course to or dependence on an external background geometrical
differential (:C∞-smooth) spacetime manifold [61, 81, 82, 50, 67].
The ADG-theoretic Gauge Theory of the Third Kind, which re-
gards the A connection field (E ,D) as the sole dynamical vari-
able, has been coined Half-Order Formalism[61, 81, 82].56 In
ADG-GT, dynamics concerns and derives solely from the stalks
(of the sheaves involved), not from the base topological space X
itself, which is only used for the sheaf-theoretic localisation (and
continuous variation) of the ‘geometrical objects’ (:the algebraic
connection fields) that live on that surrogate external base space.57

The ADG-field dynamics is purely algebraic, smooth geometrical
base spacetime manifoldless, connection field-solipsistic and au-
tonomous (:dynamical connection field ‘self-governing’ and ‘self-
propagating’).58

55We recall directly from [61, 81, 82] that Gauge Theory of the First Kind is Hermann
Weyl’s original Global (U(1)) Scale Theory of the Electromagnetic Field [103]; Gauge The-
ory of the Second Kind pertains to the usual current abelian and non-abelian Yang-Mills
gauge theories of matter that are localised and gauged based on an externally prescribed
and fixed C∞-smooth base spacetime continuum; while Gauge Theory of the Third Kind
is our ADG-theoresis, which is ‘field monic, solipsistic and autonomous’. Read on.

56To distinguish it from the original Second Order Formalism of Einstein, involving the
smooth spacetime metric gµν on a background differential spacetime manifold [70], as well
as from the more recent First Order Formalism of Ashtekar et al., which, apart from a
Lorentzian spin-connection Aµ, it includes the metric-vierbein eaµ as joint gravitational
dynamical variables in the theory [2, 3].

57To use a Wittgensteinian metaphor here: “Once one climbs up the ladder, one throws
the ladder away” [107]. Similarly in our ADG-theoresis of gauge theory and gravity, once
we have employed the base topological space X as a surrogate scaffolding for the sheaf-
theoretic localisation, gauging and continuous dynamical variation of the (Einstein and
Yang-Mills) gauge connection fields on it, we formulate the gauge invariant dynamics
homologically-algebraically and functorially as equations involving sheaf morphisms as we
showed earlier, and we then completely forget about X, which ‘atrophises’ and ‘dissolves’
in the background (pun intended).

58In this respect, it has been noted and emphasised elsewhere [61, 62, 79, 81, 82] that
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We close this subsection by recalling from Brian Hatfield’s prologue to Feyn-
man’s Lectures of Gravitation [19] where he discusses Feynman’s prophetic
intuition, vis-à-vis Quantum Gravity, that, in a strong sense, it was quite ac-
cidental that gravity was originally formulated in terms of a metric tensor—so
that Quantum Gravity would have to involve some kind of ‘quantising space-
time geometry’—but rather that gravity fundamentally reflects some kind of
deep gauge invariance. In other words, that gravity should be regarded as a
gauge theory like the other three fundamental forces of Nature:

“...Thus it is no surprise that Feynman would recreate general

relativity from a non-geometrical viewpoint. The practical side

of this approach is that one does not have to learn some ‘fancy-

schmanzy’ (as he liked to call it) differential geometry in order to

study gravitational physics. (Instead, one would just have to learn

some quantum field theory.) However, when the ultimate goal is

to quantize gravity, Feynman felt that the geometrical interpre-

tation just stood in the way. From the field theoretic viewpoint,

one could avoid actually defining—up front—the physical mean-

ing of quantum geometry, fluctuating topology, space-time foam,

etc., and instead look for the geometrical meaning after quantiza-

tion...Feynman certainly felt that the geometrical interpretation

is marvellous, ‘but the fact that a massless spin-2 field can be in-

terpreted as a metric was simply a coincidence that might be un-

derstood as representing some kind of gauge invariance’a...”

aOur emphasis of Feynman’s words as quoted by Hatfield.

the ‘unitary’ ADG-theoretic field-pairs F = (E ,D) recall and conceptually resemble Leib-
niz’s Monads [40], in the sense that they are autonomous (:self-governing), dynamically
self-propagating and self-sustaining entities in no need of an external geometrical space-
time continuum for their dynamical support and substenance. Moreover, in close analogy
to Leibniz’s purely algebraic (:relational) conception of the notion of derivative in Differ-
ential Calculus [15, 7], the ADG-theoretic connection fields are the sources of differentia-
tion, hence the ‘causes’ of dynamical variability in Mallios’s theory. Read below for more
detailed discussion of the close resemblance between Mallios’s homological-algebraic con-
ception of Differential Geometry in the guise of ADG and Leibniz’s relational conception
of derivative and, in extenso, of Differential Calculus.
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2.1.1 The Functoriality of 3rd Quantization in ADG-GT

In ADG, the functoriality that pervades both the kinematical structures and
the the purely gauge theoretic dynamical Einstein and Yang-Mills field equa-
tions as we expounded above, also extends naturally to include geometric
(pre)quantization and second (field) quantization, processes which have also
been developed entirely homologically-algebraically by ADG-theoretic means
[46, 51, 50, 54, 57, 56, 81, 82]. The upshot of that homological-algebraic quan-
tisation ‘procedure’ is that:

Aphorism 3: The ADG-Theoretic Functorial Quantum
Field-Particle Duality. The ADG-theoretic field pair (E ,D)
also embodies the fundamental ‘Quantum Field-Particle Duality’
in the sense that from a geometric (pre)quantization and second
quantisation vantage, the (local) sections of the vector sheaves E
embodied in the ADG-theoretic connection fields represent quan-
tum states of bosonic or fermionic field-quanta, as follows:59

(E ,D)⇐⇒ (‘dynamics′, ‘kinematics′)
(D,Γ(U, E))⇐⇒ (field, local particle states)

(D,Γ(U,Ln=1)⇐⇒ (Boson field, local bosonic particle states)
(D,Γ(U, En>1)⇐⇒ (Fermion field, local fermionic particle states)

(32)

Moreover, the correspondences above have been seen to be purely functorial
[46, 51, 50, 81, 82].60

2.2 Demistifying and Circumventing Singularities and
Field-Theoretic Unphysical Infinities.

The A-functorial and A-invariant bottom-up aufbau of ADG has been used
to totally circumvent, ‘deconstruct’ and ‘demistify’ singularities and other as-
sociated (non-renormalisable) unphysical infinities that have hitherto seemed
to mar and assail the CDG-based Einsteinian gravity and the quantum gauge

59The correspondences below are borrowed almost verbatim from [46, 51, 50, 81, 82].
60Additionally, the reader should note that the fermionic sheaves En>1 in the last line

above may be conventionally regarded as ‘Odd-Grassmannian’ Sheaves [22, 27].



Functoriality in Finitary ADG-Gravity and Yang-Mills Theories 32

field theories of matter both of which are based on an underlying smooth ge-
ometrical spacetime manifold.

The usual physicists’ consensus is that the singularities of General Rela-
tivity (GR) and the unphysical infinities of the spacetime continuum based
quantum field theories of matter are indications that:

The Laws of Physics break down, thus Nature becomes nonsensical
and unpredictable, at those sites [30, 31, 32, 33, 25, 26, 105].

With Professor Mallios we had time and again scrutinised the statement
above and invariably it seemed fundamentally incomprehensible to him:

How come the Field Laws of Physics, which we normally model
after differential equations, break down at ‘geometrical sites’ we
call singularities?

It was Mallios’s original and fundamental idea that:

If we could somehow abstract, genaralise and detach the ‘innate
differential geometric mechanism’ of Calculus from its apparent
inextricable dependence on a fixed C∞-smooth background geo-
metrical (spacetime) manifold, we could still do most (if not all!)
of Differential Geometry without getting stuck on or breaking
down at singularities or other unphysical continuous field infini-
ties. Moreover, we could even integrate, encompass or even ‘ab-
sorb’ singularities into the structure sheaf A of ADG and still
the whole differential geometric mechanism would hold in their
very presence. That is, the A-connection fields would still de-
fine and obey differential equations (laws) in the very presence
of singularities, no matter how numerous, robust or pathologi-
cal those singularities might be, especially when viewed from the
vantage of the Classical Differential Calculus (CDG), which is
based on a background smooth geometrical spacetime manifold
[47, 48, 52, 53, 62, 78, 63, 64].

In other words,61

61And this was by far Tasos’s favourite motto.
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Don’t ‘blame’ Nature for the singularities and the related unphys-
ical infinities of the CDG-based field theories we have. Blame our
Mathematics: pit it on CDG itself !62

Thus, by showing ADG-theoretic means that the differential geometric mech-
anism of Calculus is inherently or innately homological algebraic (:sheaf and
category-theoretic)63 and not at all dependent on an external (to the fields)
background geometrical spacetime continuum, Mallios abstracts and gener-
alises the usual CDG to ADG and manifestly shows that:

We can actual do/use Differential Calculus in the very presence of
singularities and other ‘CDG/differential manifold based anoma-
lies’, thus, a fortiori, the Laws of Physics (:the differential equa-
tions between the dynamical connection fields) do not ‘break down’
in any sense at their presence. They still hold intact, and we can
still calculate and ‘predict’ things based on them!

We close this subsection by borrowing three quotes from [62]—all three
all-time favourites of Tasos—that in a sense foreshadow the development of
ADG and its physical applications to gravity and gauge theories of matter
and, in view of our arguments in this paper, they ‘post-anticipate’ how our
purely algebraic (:ADG-theoretic) finitary, causal and quantal theoresis of
vacuum Einstein Gravity and free Yang-Mills theory has come to ‘vindicate’
them:
• The first two quotes by Albert Einstein are taken from the very last Ap-
pendix D of The Meaning of Relativity [16]:

62Here, Tasos liked to use the following analogy: in much the same way as the real
number line R comes short or ‘breaks down’ when we try to solve the algebraic equation
x2 + 1 = 0, the CDG-formulated differential equations modelling the Laws of Physics
appear to break down at singularities and the latter (misleadingly) appear to be short-
comings and blemishes of the Physical Laws (:differential equations) themselves. However,
all we had to do is to extend R to C, and the ‘seemingly problematic’ x2 + 1 = 0 is
solved(!) Mutatis mutandis then for the extension, abstraction and generalisation of CDG
to ADG: from an ADG-theoretic perspective, the Field Laws of Physics do not break down
at singularities (see displayed statement below).

63More in line with Leibniz’s (rather than Newton’s) conception of the basic deriva-
tive operator (viz. connection) of Differential Calculus, Mallios preferred to call ADG
a relational theory [15, 7], where the differential geometric mechanism derives from the
algebraically modelled (dynamical) relations between the dynamical fields (connections)
themselves, not from an external background geometrical spacetime continuum. Read on.
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“...One can give good reasons why reality cannot at all be rep-

resented by a continuous field. From the quantum phenomena it

appears to follow with certainty that a finite system of finite en-

ergy can be completely described by a finite set of numbers.a This

does not seem to be in accordance with a continuum theory, and

must lead to an attempt to find a purely algebraic theory for the

description of realityb...

and:

...Is it conceivable that a field theory permits one to understand

the atomistic and quantum structure of reality? Almost everybody

will answer this question with ‘no’. But I believe that at the

present time nobody knows anything reliable about it. This is

so because we cannot judge in what manner and how strongly the

exclusion of singularities reduces the manifold of solutions. We

do not possess any method at all to derive systematically solutions

that are free of singularitiesc...”

aOur emphasis.
bOur emphasis.
cOur emphasis.

• The third quote by David Finkelstein is taken from the introduction of his
Theory of Vacuum [21]:

“...The locality principle seems to catch something fundamental about
nature... Having learned that the world need not be Euclidean in the
large, the next tenable position is that it must at least be Euclidean in
the small, a manifold.64 The idea of infinitesimal locality presupposes
that the world is a manifold.65 But the infinities of the manifold (the
number of events per unit volume, for example) give rise to the terrible
infinities of classical field theory and to the weaker but still pestilential
ones of quantum field theory.66 The manifold postulate freezes local
topological degrees of freedom which are numerous enough to account
for all the degrees of freedom we actually observe.

64Recall that, by definition, a manifold is a locally Euclidean space—that is to say, a
space that is locally isomorphic to Rn.

65Here, the notion of infinitesimal locality mandates that the Laws of Physics be modelled
after differential equations.

66Our emphasis.
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The next bridgehead is a dynamical topology, in which even the

local topological structure is not constant but variable.67 The problem

of enumerating all topologies of infinitely many points is so absurdly

unmanageable and unphysical that dynamical topology virtually forces

us to a more atomistic conception of causality and space-time than the

continuous manifold68...”

2.3 ADG-Field Realism, Solipsism and Monism, and
Mallios’s Novel Conception of Bohr’s Correspon-

dence Principle: ADG-Field ‘Unitarity’ from 3rd
Quantisation

In the previous section, we witnessed and we argued how the close interplay
between fuctoriality and A-invariance of the ADG-field dynamics is tanta-
mount to gauge invariance. That is to say, our attempts to localise and coor-
dinatise (:‘measure’) the Einstein or the Yang-Mills gauge field by employing
the algebra structure sheaf A of generalised coordinates—or ‘arithmetics’,
as Mallios preferred to call it—relative to, and localised over, a system of
local gauges (:covers) Ui (of the in principle arbitrary base topological space
X), does not affect the dynamical law that (the curvature of) the field—the
GM-geometric morph of the field—obeys.69

In turn, this means that that the field ‘sees through’ and remains undis-
turbed by our ‘perturbing’ generalised acts of measurement (:gauge localisa-
tions), hence the issue arises of what would Bohr’s Correspondence Principle
of the usual Quantum Theory be in our ADG-GT. Mallios had quite a fasci-
nating, unconventional conception of, and unorthodox ideas about, that, as
follows:

Traditionally, from the very advent of QuantumMechanics, Bohr’s
Correspondence Principle can be expressed as follows: observable
quantum actions are represented by noncommutative ‘numbers’

67Our emphasis.
68Again, our emphasis.
69That is to say, the action functional density and the law—the differential equation

derived from it by ‘variation’ with respect to the local gauge connection potentials A—
remains invariant under A-coordinate changes and AutAE|(U∈U) local gauge transforma-
tions.
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(:so-called q-numbers70), while our measurements thereof should
correspond to (:should yield) commutative numbers (:so-called
c-numbers—presumably, these are real numbers in R, which are
embedded in the complex numbers C that the usual Quantum
Theory employs71).

Now, Mallios contended that Bohr’s c/q, commutative/noncommutative, clas-
sical/quantum dichotomy–the ‘classical/quantum divide’, so to speak—is al-
ready embodied and structurally encoded in the ADG-conception of a field
as the pair (E ,D), in the following sense:

Our generalised local measurements (:local ‘arithmetics’ relative
to a local gauge U ∈ Ui) of the ADG-fields are represented by the
local sections of the abelian algebra structure sheaf A (i.e., AU =
A(U) = Γ(U,A)).72 On the other hand, the noncommutativity—
the q-number Heisenberg type of indeterminacy, the quantum
fuzziness and the ‘quantum foam’ aspect of the ADG-fields, so
to speak—is already encoded in the principal group sheaf AutAE
of local (gauge) automorphisms of the field, which is locally iso-
morphic to: AutAE(U) ≃ M•

n(A(U)), the structure group sheaf
of invertible (n× n)-matrices, having for entries local sections of
A in A|U∈U = A(U) ≡ Γ(U,A). Thus, M•

n(A(U) is the ADG-
field theoretic version of the ‘local Heisenberg group’ of the the-
ory, which is manifestly non-abelian—elements (:local sections)
of which correspond to the ADG-version of q-numbers.

Below, we are going to give briefly a ‘heuristic analogy’ of Mallios’s seem-
ingly unorthodox and unconventional intuition above, which has been previ-
ously noted in [61, 81, 82, 62], while in the next subsection we are going to tie

70Think, for instance, of Heisenberg’s matrices.
71In that sense, real numbers are ‘real’ (pun intended), but over the years, the use of

the real number continuum has been questioned and challenged in both Quantum Theory
and Quantum Gravity (see for example [34] for a thoughtful exposition).

72The reader should note here a key difference between the usual conception of c-numbers
(:results of measurements) in conventional Quantum Theory and the generalised c-numbers
of ADG-GT. The former are sections of the constant sheaf C ≡ R ⊂ C, while the latter are
sections of the ‘dynamically variable’ sheaf A, which in turn includes anyway the constant
sheaves of complex numbers (C) and real (R) numbers as proper subsheaves. Mallios and
Zafiris in [67] give a very novel operational interpretation and physical explanation of this
generalisation!
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our heuristics below to the canonical, sheaf cohomological 3rd quantisation
of ADG-GT first proposed in [81].

Similar to how Bohr’s Correspondence is almost tautosemous with the
formal ‘inverse’ of the original First Quantization Correspondence:

Classical Position c − number : x −→ x̂ : QuantumPosition q − number

ClassicalMomentum c − number : p −→ p̂ : QuantumMomentumq − number
(33)

also by imposing the following Heisenberg Uncertainty commutation relations
between the x̂ and p̂ operators (:matrices), which in turn generate the usual
Heisenberg Algebra of traditional Quantum (Matrix) Mechanics:

[x̂, p̂] = −ı~ (34)

the analogous ‘position-momentum correspondence’ within the ADG-fields is,
following [61, 81, 82, 62]:

Local Particle ‘Position′ States −→ Local Sections of E

Local Field ‘Momentum′ Operator −→ D = d+A
(35)

the rationale for the heuristic semantic correspondences above being that:

Much in the same way that in conventional particle (Newtonian)
mechanics velocity (speed) or momentum is (or measures) the
(rate of) change of the position (state) of a particle,73 in ADG-
field theory, the A-connection D in the ADG-field (E ,D) is a
generalised differential, acting as a sheaf morphism on the ‘lo-
cal particle states’ of the ADG-field (which are in turn repre-
sented by the local sections of E within the ADG-field) as it were
to change them.

Then, the formal ‘quantum deformation’ (‘Heisenberg uncertainty relation’)
of the usual Poisson Brackets Algebra of Classical Mechanics to the Heisen-
berg Algebra of Quantum Mechanics by the imposition of the following
canonical commutation relations:

73Which momentum is, in turn, the differential (:derivative) of that position determina-
tion: p : x −→ dx.
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{x, p} = 0 −→ [x̂, p̂] = −ı~ (36)

can heuristically be cast within the ADG-field as follows:

[E ,D] = AutAE
locally
−→ [s ∈ E(U), d+A] = Mn(AU)s = Mn(A(U))s (37)

where s ∈ EA(U) (with EA(U) ≡ Γ(U, EA) ≃ An(U)) a ‘local quantum
particle state’ within the ADG-field (E ,D) and Mn(A(U)) a local section of
the structure group sheaf G = AutAE of the ADG-field relative to the local
open gauge U .

The ‘canonical’ commutator ‘auto-uncertainty’ relation within the ADG-
field (E ,D) in equation (37) above can then be heuristically interpreted as
follows:

The ‘canonical’ commutator quantum uncertain relation between
the generalised local position quantum particle states in E and
its dua; generalised momentum field operator (:sheaf morphism)
D generates and induces a dynamical local gauge transformation
in AutAE|U = Mn(A(U)), which then acts on the local quan-
tum particle states to change them and, as it were, to ‘blur’
them (:‘quantum fuzziness’ or ‘quantum foam’). In this heuris-
tic sense, E is ‘complementary’ to D, thus the ADG-field may be
thought of as being ‘self-complementary’ and ‘self-quantum’. In
this sense we argued in [61, 81, 82, 62] that the ADG-field is an
already self-quantum, auto-dynamical entity.

We can formalise the generalised ADG-theoretic quantum uncertainty/complementarity
relation above as a homological A-tensor product morphism type of map:

Q : EA ⊗A D −→ AutAEA (38)

thus finally arrive at the definition of the ‘unitary’ quantal ADG-gauge field74

as being the following tetrad:

74The reader should note that, issuing from the 3rd Quantisation scheme for ADG-field
theory originally presented in [81], the epithets unitary quantum carry standard meaning in
the usual Quantum Theory, hence we use inverted single quotes around the word unitary,
while instead of quantum we use quantal throughout our work, in order to avoid confusion
of semantic reference.
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U := (E ,D,AutAE ,Q) (39)

which encodes the following four pieces of important information:

1. The vector sheaf E of generalised quantum particle ‘position’ states;

2. The connection field D, which effectuates dynamical ‘momentum’ field-
like changes of the said states by acting as a sheaf morphism on E ’s
local sections;

3. The structure gauge group sheaf AutAE of local gauge transformations,
also effectively acting on E as its principal structure group sheaf75; and
finally,

4. The quantum uncertainty operator (:morphism) Q, which stands for
an AutAE-valued quantum act of perturbation on the dynamical ac-
tion of the connection field on the local quantum particle states (:local
sections) of E .

The epithet ‘unitary’ for U in (39) above indicates that it is a holistic entity,
an inseparable whole, encoding state (E), dynamical changes of state (D),
gauge symmetries and invariances of dynamical changes of state (AutAE),
and quantum uncertainty of ‘determination’ (Q), all-4-in-1.

All there is in ADG-field theory are the Leibnizian Monad type
of entities U = (E ,D,AutAE ,Q), nothing else. This is what was
referred to in [61, 81, 82, 62] as ‘ADG-field solipsism and monism’.

Thus, perhaps more importantly, the adjective ‘unitary’ given to the tetrad
U = (E ,D,AutAE ,Q) above pertains to the fact that in ADG-field the-
ory, there is no reference and recourse to, no dependence whatsoever on,
an external (to the ADG-fields themselves) background geometrical spacetime
manifold. It follows that the usual distinction and schism internal/external
that is normally reserved for the symmetries of the usual gauge field theories

75And conversely, E can be viewed as the associated sheaf to the principal group sheaf
AutAE .
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of matter—whether classical or quantum—loses its meaning in our ADG-
theoresis of Vacuum Einstein Gravity and Free Yang-Mills theories.76 This
has also been succinctly pointed out more recently in [67].

2.3.1 Interregnum: Drawing Formal Links with 3rd Quantisation

In the discussion below, we briefly draw links between the formal ‘canoni-
cal’ quantisation heuristics above and the functorial sheaf cohomological 3rd
Quantisation of ADG-GT scenario presented in [81].

To that end, we recall that in [81] we intuited that since the ADG-fields
F = (E ,D) are dynamically self-supporting, autonomous monadic entities as
we emphasised earlier, and moreover, since they are ‘self-dual’77

a possible quantization scenario for them should involve solely
their two constitutive parts, namely, E and D, without recourse
to/dependence on extraneous structures (e.g., a base spacetime
manifold) for its mathematical support and its self-consistent (phys-
ical) interpretation.

Thus, in what formally looked like a canonical quantization-type of sce-
nario,

in [81] we envisaged abstract non-trivial local commutation re-
lations between the abstract position (:E) and momentum (:D)
aspects of the ADG-fields.

To that end, we recalled that

there are certain local (:differential) forms that uniquely charac-
terize sheaf cohomologically the vector sheaf E and the connection
D parts of the ADG-fields F = (E ,D)

Thus, the basic heuristic-intuitive idea in [81] was to identify the relevant
forms and then posit non-trivial commutation relations between them. More-
over, for the sake of the aforementioned ‘dynamical ADG-field autonomy’, we
would like to require that

76Traditionally, we reserve the epithet ‘external’ for ‘the external (to the fields) spacetime
symmetries’, while ‘internal’ is normally reserved for gauge degrees of freedom and their
symmetries [4, 27].

77In the sense that the connection momentum-like field D is quantum dual to the ‘po-
sition quantum particle states’ (represented by the local sections of) E .
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the envisaged commutation relations should not only involve just
the two components (i.e., E and D) of the total ADG-fields
F = (E ,D), but they should also somehow ‘algebraically close’
within the fields themselves—i.e., the result of their commutation
relations should not take us ‘outside’ the total ADG-field struc-
ture (and its ‘dynamical auto-transmutations’), which anyway is
the only dynamical structure involved in our theory.78

Keeping the theoretical requirements above in mind, we recall from [44,
45, 46, 60, 50] two important sheaf cohomological results:

1. That, sheaf cohomologically, the vector sheaves E are completely char-
acterized by a so-called coordinate 1-cocycle φαβ ∈ Z1(U ,GL(n,A)) as-
sociated with any system U of local gauges of E . Intuitively, this can be
interpreted in the following ‘Kleinian symmetry-geometry’ way: since
any (vector) sheaf is completely determined by its (local) sections,79 one
way of knowing the latter is to know how they transform—in passing,
for example, from one local gauge (Uα ∈ U) to another (Uβ ∈ U), with
Uα ∩Uβ 6= ∅ and U a chosen system of local open gauges covering X .80

To know something (e.g., a ‘space’) is to know how it transforms, the
fundamental idea underlying Klein’s general conception of ‘geometry’
[38].

Thus, the bottom-line here is that the characteristic cohomology classes
of vector sheaves E are completely determined by φαβ; write:

78This loosely reminds one of the theoretical requirement for algebraic closure of the
algebra of quantum observables in canonical QG, with the important difference however
that the Diff(M) group of the external (to the gravitational field) spacetime manifold
must also be considered in the constraints, something that makes the desired closure of
the observables’ algebra quite a hard problem to overcome [95]. In [61, 81, 82] we discuss
certain difficult problems that Diff(M) creates in various QG approaches, as well as how its
manifest absence in ADG-gravity can help us bypass them totally. For, recall that from the
ADG-perspective gravity is an external (:background) spacetime manifold unconstrained
(because it is a background spacetime manifoldless) pure gauge theory (:of the 3rd kind).

79A basic motto (:fact) in sheaf theory is that “a sheaf is its sections” [6, 44]. If we
know the local data (:sections), we can produce the whole sheaf space by restricting and
collating them relative to an open cover U of the base topological space X . This is the
very process of ‘sheafification’ (of a preasheaf) [6, 44].

80In particular, φαβ can be locally expressed as the A|Uαβ
-isomorphism: φα ◦ φ

−1
β ∈

AutAαβ
(An|Uαβ

) = GL(n,A(Uαβ)) = GL(n,A)(Uαβ), in which expression the familiar
local coordinate transition (:structure) functions appear. Hence, also the ‘natural’ structure
(:gauge) group sheaf AutAE = GL(n,A) of E arises.
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[φαβ ] ∈ H1(X,GL(n,A)) = lim
−−→
U

H1(U ,GL(n,A)) (40)

where the Us, normally assumed to be locally finite open coverings of
X [44, 45, 59, 60, 61], constitute a cofinal subset of the set of all proper
open covers of X .81 In toto, we assume that φαβ encodes all the (local)
information we need to determine the local quantum-particle states of
the field in focus (i.e., the local sections of E).

2. On the other hand, it was observed in [81] that locally D is uniquely
determined by the so-called ‘gauge potential’ A, which is normally (i.e.,
in CDG) defined as a Lie algebra (:vector) valued 1-form [27]. Cor-
respondingly, in ADG A is seen to be an element of Mn(Ω(U)) =
Mn(Ω)(U) = Ω(EndE),82 thus it is called the local A-connection matrix
(Aij) of D, with entries local sections of E∗ = Ω. In turn, this means
that locally D splits in the familiar way, as follows:

D = d+A (41)

where ∂ is the usual ‘inertial’ (:flat) differential83 and A the said gauge
potential. In ADG-gravity, the total field D as a whole (:‘globally’)

81An assumption that has proven to be very fruitful in applying ADG to the formula-
tion of a locally finite, causal and quantal Vacuum Einstein Gravity and Free Yang-Mills
theories, as we argued in the first part of this paper and throughout our past works
[59, 60, 61, 78, 79, 80, 81, 82]. En passant, we also note that in [81] the direct (:inductive)
limit depicted in (40) above is secured by the ‘cofinality’ of the set of finitary (:locally
finite) open coverings of X that we choose to employ [89, 83, 84, 76, 77, 59, 60, 61, 78, 79]
and it was emloyed K-theoretically to link the 3rd Quantisation of ADG-fields scenario
with Mallios’s K-theoretic musings on topological algebra structure sheaves A and the
2nd Quantisation classification of the local quantum particle states (:local sections) of
the vector sheaves involved in the ADG-fields into Bosons (:E is a line sheaf Ln=1) and
Fermions (:E is a vector sheaf of rank n > 1) [51].

82Note that, as also mentioned earlier, in ADG by definition one has: Ω := E∗ :=
HomA(E ,A). That is, the A-module sheaf Ω of abstract differential 1-forms is dual to the
vector sheaf E , much like in the classical theory (:CDG of C∞-smooth manifolds) where
differential forms (:cotangent vectors) are dual to tangent vectors [27], although as it has
been empasised throughout our works, in ADG the epithet ‘(co)tangent’ is meaningless
due to the manifest absence of an operative background space(time) of any kind (and
especially of a base manifold).

83As noted in the previous section, in ADG, the Cartan-Kähler differential d, like D, is
defined as a linear, Leibnizian C-sheaf morphism d : A→ Ω, thus it is an instance of on
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represents the gravito-inertial field, but locally it can be separated into
its inertial (:d) and gravitational (:A) parts.84

Thence, the envisaged sheaf cohomological canonical quantization-type of
scenario for the total ADG-fields F = (E ,D) rests essentially on positing the
following non-trivial abstract Heisenberg-type local commutation relations
between (the characteristic forms that completely characterize) E (:abstract
‘position’ particle states) andD (:abstract ‘momentum’ field operator). Thus,
heuristically we posited in [81] the following ‘canonical’ commutation rela-
tions:

[φ,D]
loc.
= [φαβ , d+Aij]Uαβ

= [φαβ, d]Uαβ
+ [φαβ ,Aij]Uαβ

(42)

stressing also that, as highlighted in [81],

the local commutation relations in (42) above are well defined,
since they effectively close within the noncommutative (n × n)-
matrix Klein-Heisenberg algebra EndE(Uαβ) = Mn(A(Uαβ)) =
Mn(A)(Uαβ) of the field’s endomorphisms—the field’s ‘noncom-
mutative Kleinian geometry’ we mentioned earlier representing
what Mallios intuited as some kind of ‘quantum field foam’—the
intrinsically noncommutative aspect of the ADG-fields.

This ‘algebraic closure’ is in accord with the theoretical requirement we im-
posed earlier, namely that,

the abstract, Heisenberg-like, canonical quantum commutation
relations between the two components E and D of the ADG-
fields should not take us outside the fields, but should rather
close within them.85

A-connection; albeit, a flat one (:R(d) = d2 = 0), which is secured by the very definition
of curvature in (17) and the niloptency of the exterior differential d.

84In the classical theory of gravity (:General Relativity; abbr. GR), the physical meaning
of this local separation of the total field D into ∂ and A reflects the local principle of
equivalence; namely, that locally, the spacetime manifold M of GR is flat Minkowski space,
or equivalently, that locally, GR reduces to Special Relativity, or perhaps more importantly,
that gravity can always be ‘gauged away’ locally by a suitable choice of ‘gauge’ (:local
inertial frame). This is simply Einstein’s elevator gedanken experiment [70].

85Here, one could envisage an abstract Heisenberg-type of algebra freely generated (lo-
cally) by φ (:abstract position) and A (:abstract momentum), modulo the (local) com-
mutation relations (41). Plainly, it is a subalgebra of EndE(U), but deeper structural
investigations on it must await a more complete and formal treatment.
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Indeed, EndE is precisely the algebra sheaf of internal/intrinsic (dynamical)
self-transmutations of the (quantum particle states of the) field—by defini-
tion, the E-endomorphisms in HomA(E , E) (:quantum field foam).

This is another aspect of the quantum dynamical autonomy of ADG-fields:

the E (:abstract point-particle/position) part of the ADG-field is
‘complementary’, in the quantum sense of ‘complementarity’, to
D (:abstract field-wave/momentum). Thus, the total ADG-fields
F = (E .D) are ‘quantum self-dual’ entities [61, 62, 78, 81].86

Furthermore, by choosing φab = φin
ab

87 so that A is ‘gauged away’—
i.e., by setting A = 0,88 reduces (41) to (omitting the local open gauge
indices/subscripts ‘α, β’):

[φin, d] = φin ◦ d− d ◦ φin (43)

Moreover, since we are sheaf cohomologically guaranteed that d ◦ φ = 0
globally, which is tantamount to the very existence of an A-connection D
(globally) on E [44, 45, 50],89 (42) further reduces to:

86From our abstract and background spacetime manifoldless perspective, the de
Broglie-Schrödinger wave-particle duality is almost tautosemous with the Bohr-Heisenberg
momentum-position complementarity.

87The superscript ‘in’ stands for ‘inertial’, and it represents a choice (:our choice!) of
a local change-of-gauge φin

αβ ∈ GL(n,A)αβ ≡ Γ(Uαβ ,GL(n,A) that would take us to a
locally inertial frame of E over Uαβ ⊂ X .

88As noted earlier, this is an analogue of the Equivalence Principle (EP) of GR in ADG-
gravity, corresponding to the local passage to an ‘inertial frame’ (:one ‘covarying’ with
the gravitational field; e.g., recall Einstein’s free falling elevator gedanken experiment)
in which the curved gravito-inertial D reduces to its flat ‘inertial’ A-connection part d
[44, 45, 59, 60, 61]. As noted above, this just reflects the well known fact that GR is
locally SR, or conversely, that when SR is localized (ie, ‘gauged’ over the base spacetime
manifold) it produces GR (equivalently, the curved Lorentzian spacetime manifold of GR
is locally the flat Minkowski space of SR). In summa, gravity (:A) has been locally gauged
away, and what we are left with is the inertial action d of the ADG-gravitational field
D. It must be also stressed here that the choice of a locally inertial frame, like all gauge
choices, is an externally imposed constraint in the theory—‘externally’, meaning that it
is we, the external (to the field) experimenters/theoreticians (‘observers’) that we impose
such constraints on the field (i.e., we make choices about what aspects of the field we
would like to single out and, ultimately, observe/study).

89This essentially corresponds to the fact that the coordinate 1-cocycle φαβ ∈ Z1(U ,Ω)
is actually a coboundary (:a closed form), belonging to the zero cohomology class [dφαβ ] =
0 ∈ H1(X,Mn(Ω)), which in turn guarantees the existence of an A-connection on E as
the so-called Atiyah class A of E vanishes (:A(E) := [dφαβ ] = 0) [44, 45, 50].
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[φin, d] = φin ◦ d (44)

Now, a heuristic physical interpretation can be given to (43) if we consider
its effect (:action) on a local section s ∈ Eαβ := E(Uαβ) ≡ E|Uαβ

:

[φin, d](s) = (φin ◦ d)(s) = φin(ds) (45)

(44) designates the inertial dynamical action of D (i.e., the action of its
locally flat, inertial part d) on (an arbitrary) s, followed by the gauge trans-

formation of ds to an inertial frame e
Uαβ

in ⊂ Eαβ ‘covarying’ with the inertio-
gravitational field.

It may be interpreted as expressing what happens to a ‘vacuum graviton
state’ s when it is first acted upon90 by the inertial part of the total ADG-
gravitational field D and then91 to an inertial frame that in a sense ‘covaries’
with the said inertial change d of s.

Heuristically, we further intuited in [81] that one can perhaps get a more
adventurous (meta)physical insight into (44) by defining the uncertainty op-
erator U as

U := φin ◦ ∂ ∈ EndE (46)

and by delimiting all the quantum-particle (:abstract position) states of the
field (:local sections of E) that are annihilated by it. Intuitively, these are
formally the local ‘classical-inertial’ states

E clU := spanC{s ∈ E(U) : U(s) = 0} =: ker(U) (47)

for which the abstract sheaf cohomological Heisenberg uncertainty relations
(42) vanish. Plainly, E cl(U) is a C-linear subspace of E(U)—the kernel of U .

On top of the above, intuitively it makes sense to assume that U is a
‘projector’—a primitive idempotent (:projection operator) locally in EndE
(i.e., in Mn(A(U)))—since the ‘gedanken’ operation of ‘inertially covarying
with a chosen local inertial frame’ must arguably be idempotent.92 This

90Recall that we are considering only vacuum gravity, in which the non-linear gravita-
tional field ‘couples’ solely to itself(!)

91The sequential language used here should not be interpreted in an temporal-
operational sense—as it were, as ‘operations carried out sequentially in time’.

92After all, ‘inertially covarying the inertial state leaves it inertially covariant’. Or, to
use a famous Einstein ‘gedanken metaphor’: ‘jumping on a light-ray (in order to ride it)
twice, simply leaves you riding it’(!)
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means that U2 = U , so that U separates (chooses or projects out) the ‘clas-
sical’ (eigen0(U) ≡ ker(U)) from the quantum (eigen1(U)) local quantum
gravito-inertial states.93.

Finally, in line with [81], we would like to ask en passant here the following
highly speculative question:

Could the generation/emergence of (inertio-gravitational) mass
be somehow accounted for by a (spontaneous) symmetry breaking-
type of mechanism, whereby, the dynamical automorphism group
AutAE of the ADG-gravitational field (E ,D) reduces to its sub-
roup that leaves ker(U) invariant? Alternatively intuited, could
the emergence of inertio-gravitational mass be thought of as the
result of some kind of ‘quantum anomaly’ of 3rd-quantized Vac-
uum Einstein Gravity?94

• Identifying 3rd Quantisation within our ‘Unitary’ Quantal ADG-
Gauge Field Tetrads. The alert reader must have already noticed that the
‘canonical’ commutation relations (42) are the sheaf cohomological versions of
our ‘heuristic’ canonical commutation relations (37). Also, by comparing the
commutator expressions (37) and (43) and the associated definitions of the
operators (:morphisms) Q in (38) and U in (46), the astute reader must have
realised that Ran(Q) ⊂ Ran(U), as M•

n(A(U)) ⊂ EndE|U = Mn(A(U)).
Overall, and without loss of generality of mathematical structures or phys-

ical interpretation thereof, in the light of 3rd Quantisation our ‘Unitary’
Quantal ADG-Gauge Field Tetrads in (39) can now be identified with the
tetrad:

93In [81], a formal mathematical reason why we chose U to be a projection operator was
to apply it and relate our 3rd Quantisation scenario to Mallios’s K-theoretic perspective
on 2nd (Field) Quantisation in [51].

94The epithet ‘quantum’ adjoined to ‘anomaly’ is intended to distinguish the effect
intuited above from the usual anomalies. A ‘quantum anomaly’ is the ‘converse’ of an
anomaly in the usual sense, in that what was a symmetry of the quantum theory (:an
element of AutAE in our case) ceases to be a symmetry of the ‘classical domain’ of our
theory (:ker(U)). Let it be stressed that the emergence of gravito-inertial ‘mass’ in the
sense intuited here has a truly relational (:algebraic) and ‘global’ flavour reminiscent of
Mach’s ideas: ‘global’ gravitational field symmetries in AutAE are locally reduced to
inertial ones, and sheaf theory’s ability to interplay between local and global comes in
handy in this respect [67]. (In [67], Mallios and Zafiris do a great job in highlighting
exactly how sheaf theory allows one to transit from ‘local’ to ‘global’, and vice versa.)
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U := (E ,D,AutAE ,Q) ≡ (E ,D, EndE ,U) (48)

which carries the same denomination as before ‘Unitary’ Quantal ADG-
Gauge Field and is again symbolised by U.

Now, by recalling the meaning we ascribed to U as an inseparable (:‘uni-
tary’), self-dual, 3rd-quantised, auto-dynamical, background spacetime mani-
foldless gauge field of the 3rd kind, we can, mutatis mutandis address the
traditional distinction and schism in the usual quantum theory between
‘observer’ (classical exosystem) and ‘observed’ (quantum endosystem) [106,
21].95 We are not going to elaborate in detail on this subtle and important
point here,96 but it is noteworthy to mention that significant work has been
done on defining by the homological algebraic (:category and topos-theoretic)
means of ADG internally consistent quantum observables in the theory, with-
out recourse to any external spacetime manifold, as befits the ‘unitary’ and
quantal ADG-gauge field theory [108, 109, 67, 67].

In the light of the physical interpretation of the U ADG-field tetrads
above, we conclude this subsection by quoting David Finkelstein from [21],
making some protphetic remarks about the future of physical laws vis-à-vis
his Quantum Relativity Theory approach to Quantum Gravity, based on
‘abolishing’ this external/internal field distinction and schism of the usual
theory:97

“...What are we after as physicists? Once I would have said, the laws

of nature; then, the law of nature. Now I wonder.98

A law, or to speak more comprehensively, a theory, in the ordinary
sense of the word, even a quantum theory of the kind studied today

95This pertains to the (in)famous Heisenberg scnitt (:Heisenberg cut): the schism that
divides and separates the classical from the quantum phenomena and it delimits the bound-
ary across which the wave function supposedly collapses upon measurement. It is when
q-numbers become c-numbers, and probability amplitudes become probability distribu-
tions. See [106] for a plethora of classic articles on the Heisenberg Schnitt and the Quan-
tum Theory of Measurement. It’s where John Wheeler noted that “No phenomenon is a
phenomenon unless it is an observed phenomenon” [106].

96We are going to tackle it further in [62].
97This quote was one of Tasos’s all-time favourites, and I recall fondly him urging me to

include it in the opening talk of the first Glafka 2004: Iconoclastic Approaches to Quantum
Gravity international theoretical physics conference that we jointly organised in Athens,
Greece—setting thus ‘The Spirit of the Meeting’ [80].

98Our emphasis.
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by almost all quantum physicists, is itself not a quantum object. We
are supposed to be able to know the theory completely, even if it is a
theory about quanta. Its symbols and rules of inference are supposed
to be essentially non-quantum. For example, ordinary quantum the-
ory assumes that we can know the form of the equations obeyed by by
quantum variables exactly, even though we cannot know all the vari-
ables exactly. This is considered consistent with the indeterminacies
of quantum theory, because the theory itself is assumed to sum up
conclusions from arbitrarily many experiments.

Nevertheless, since we expect that all is quantum, we cannot con-
sistently expect such a theory to exist except as an approximation
to a more quantum conception of a theory. At present we have non-
quantum theories of quantum entities. Ultimately the theory too must
reveal its variable nature. For example, the notion that an experiment
can be repeated infinitely often is as implausible as the notion that it
can be done infinitely quickly (c =∞), or infinitely gently (~ = 0).

It is common to include in the Hamiltonian of (say) an electron a
magnetic field that is treated as a non-quantum constant, expressing
the action of electric currents in a coil that is not part of the endosys-
tem but the exosystem. Such fields are called external fields. Upon
closer inspection, it is understood, the external field resolves into a
host of couplings between the original electron and those in the coil
system, now part of the endosystem.

It seems likely that the entire Hamiltonian ultimately has the same
status that we already give the external field. No element of it can re-
sist resolution into further quantum variables. In pre-quantum physics
the ideal of a final theory is closely connected with that of a final ob-
server, who sees everything and does nothing. The ideal of a final
theory seems absurd in a theory that has no final observer. When we
renounce the ideal of a theory as a non-quantum object, what remains
is a theory that is itself a quantum object. Indeed, from an experi-
mental point of view, the usual equations that define a theory have no
meaning by themselves, but only as information-storing elements of a
larger system of users, as much part of the human race as our chro-
mosomes, but responding more quickly to the environment. The fully
quantum theory lies somewhere within the theorizing activity of the hu-
man race itself, or the subspecies of physicists, regarded as a quantum
system. If this is indeed a quantum entity, then the goal of knowing
it completely is a Cartesian fantasy, and at a certain stage in our
development we will cease to be law-seekers and become law-makers.
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It is not clear what happens to the concept of a correct theory

when we abandon the notion that it is a faithful picture of nature.

Presumably, just as the theory is an aspect of our collective life, its

truth is an aspect of the quality of our life99...”

3 Brief Philosophical Epilegomena: Anasta-

sios Mallios’s Original Vision and Posthu-

mous Future Legacy

This author’s earliest recollections of exchanges with Professor Anastasios
Mallios in the late 1990s/early 2000s during multiple dinner evenings at a
little known, quaint and cosy little tavern, fittingly called Algebra, situated
in the northern Athens suburb of Paleo Psychiko, about the potential import
of Abstract Differential Geometry in current persistently un(re)solved tech-
nical (:mathematical), conceptual-cum-semantic and philosophical issues in
Quantum Gravity and Quantum Gauge Theory research, focused mainly on
two fronts:

1. The algebraic essence and origin of ‘physical space’ and its ‘physical
geometry’ and, as a ‘result’:

2. The non-existence of an a priori ‘geometrical space(time)’, but quite
on the contrary, the emergence of ‘geometrical space(time)’ as an out-
come of an algebraic (:relational) dynamics (:dynamical interactions)
between the ‘physical geometrical objects’ (:the physical fields) that
live on a surrogate and virtual ‘space’.

Focusing on the two items above, below I will try to recall and ‘reconstruct’
the origins and motivations of ADG.

3.1 The Original Vision: ‘Geometrical Space(-Time)’
comes from ‘Algebraic Dynamics’

From numerous exchanges, close collaboration and warm friendship with the
creator of ADG over more than one and a half decades, this author maintains

99Again, our emphasis throughout.
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and is willing to argue that Professor Mallios’s inspired magnum opus (ADG)
was originally motivated by two main aspects—one technical-mathematical,
the other intuitive-heuristic-conceptual and physical—that synergistically
feed each other, grow holistically together, and almost perfectly dovetail
with each other in the aufbau of ADG..

3.1.1 Tracing the Mathematical ‘Origins’ of ADG: the Categorical
Duality between Algebra and Geometry

Very early on in my crossing worldlines with Professor Mallios, he kept on
bringing up one of his all-time favourite quotes by Sophie Germain [24] as
being a motto at the very heart of ADG:

“Géometrie est une Algèbre bien figuré, mais Algèbre est une
Géometrie bien écrite”100

The quote above perfectly encapsulates, in a beautifully poetic way, the fun-
damental mathematical (:categorical) duality between Algebra and Geometry,
which, in modern mathematical (:category-theoretic) parlance may be boiled
down and reduced to two cornerstone results, both of which we have played
a central role in Mallios’s developing his theory:101

1. Gel’fand Duality and the Gel’fand-Stone Theorem:Generally and
loosely speaking, Gel’fand duality is a general duality between spaces
and algebras of functions defined on them. In particular, for the case
of compact topological spaces and abelian C∗-algebras, Gel’fand duality
roughly pertains to the result that every commutative C∗-algebra A is
equivalent to the abelian C∗-algebra of continuous functions on a suit-
ably and ‘naturally topologised’ (:using the algebraic structure itself)102

space called its Gel’fand Spectrum Spec(A) [23, 35, 39].103

100English translation: “Geometry is a well figured (or designed) Algebra, while Algebra
is a well written Geometry”.
101Tasos Mallios in numerous private communications.
102The set of the algebra’s idecomposable, irreducible atomic elements so to speak—its

(primitive or prime) ideals.
103Earlier in the present paper, we witnessed an instance of ‘discrete’ Gel’fand Duality,

when we discussed Sorkin’s finitary poset discretisations of locally compact continuous
manifolds and their Gel’fand-dual incidence Rota algebras (cf. Section 1). It must be
emphasised here that the adjective ‘equivalent’ in the statement of Gel’fand Duality above
pertains to the categorical equivalence (:functorial correspondence) between the category of
abelian C∗-algebras and that of (compact) topological spaces.
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For Tasos, the main technical and conceptual essence of the mathemat-
ical result above is that ‘Space (Geometry/Topology) can be somehow
‘derived’ or extracted from Algebraic Structure’.104 In [49], for example,
Tasos goes at great lengths, by using Gel’fand Duality and the so-called
Gel’fand Transform of an algebra, in delimiting the sort of (topologi-
cal) algebra sheaves that could be used as ‘good’ structures sheaves A
in ADG. As Gel’fand Duality mandates, these are algebra sheaves over
the suitably topologised spectrum of the original algebra.

At the same time, at the back of Tasos’s mind, back in the day of the
mid-90s when he was feverishly searching for solid founding pillars to
erect ADG, must have surely been his beloved Differential Geometry
[49]: that is to say, consciously or unconsciously (and here this author
only speculates in retrospect), Tasos must have asked himself:

• How can one extract differential geometric structure (not just topo-
logical) from Algebra (:algebraic structure), thus in a sense emulate
Gel’fand duality, but in a differential geometric setting?

To that end, motivating inspiration must have come to Tasos from
another celebrated mathematical result, which also elegantly depicts
the categorical duality between Algebra and Geometry: the Serre-Swan
Theorem [86, 94], to which we briefly turn next.

2. The Serre-Swan Theorem: Jean-Pierre Serre’s version of the theo-
rem, which to this author is more pertinent to Tasos’s original differ-
ential geometric endeavours and quests, roughly posits that for every
commmutative unital (Noetherian) ring R, then the category of finitely
generated projective R-modules (Algebra) is equivalent to the category
of algebraic vector bundles V (i.e., locally free sheaves of structure sheaf
R-modules of constant finite rank n) on the Spectrum Spec(R) of R.

The alert and astute reader, who is also familiar with the basic rudi-
ments of ADG, must surely speculate that for Tasos, the result above
must have come as an ‘epiphany moment’ in his quest for algebraic
structures to model ADG, if one substitutes:

• ‘finitely generated differential A-modules’105 for ‘finitely generated pro-
jective R-modules’ in the Serre-Swan Theorem; and also,

104Again, Tasos Mallios in numerous private communications.
105Where A here is not just a ring, but is an algebra A over a field (C).
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• ‘vector sheaves E (i.e., locally free sheaves of structure sheaf A-
differential modules of constant finite rank n) ’ instead of ‘algebraic
vector bundles V (i.e., locally free sheaves of structure sheaf R-modules
of constant finite rank n)’.

In toto, the usual C∞-smooth vector bundles V on which the whole edifice of
Classical Differential Geometry (CDG)—the so-called Classical Differential
Calculus on Smooth (Differential) Manifolds—and its manifold applications
to Modern Physics rest106 is abstracted and generalised in ADG by vector
sheaves E (i.e., locally free A-modules of finite rank n) over an in principle
arbitrary topological space X [44, 45, 50].107

As an additional bonus at this point, the ADG-theoretic extension and
generalisation of the Serre-Swan Theorem was the principal move of Tasos in
[46, 51, 50] towards arriving at a manifestly functorial geometric (pre)quantisation
and second (:field) quantisation scheme for his ADG-theoretic field theory,
with concomitant classification of the fields’ elementary particle quanta into
bosons and fermions, as (32) above depicts.

3.1.2 Tracing the Physical ‘Origins’ of ADG: Breaking Algebra-
Geometry Duality in Favour of an Algebraic Physical Dy-
namics

The two celebrated mathematical results mentioned above—Gel’fand Duality
and the Serre-Swan Theorem—were seen to express a fundamental categor-
ical duality (:functorial equivalence) between Algebra and Geometry and,
arguably, they were speculated to be centers of inspiration and motivation
for Professor Mallios in developing ADG as a mathematical abstraction, ex-
pansion, generalisation and enrichment108 of the usual CDG on smooth man-
ifolds.

106We have empasised throughout our joint work with Tasos [59, 60, 61, 62] that CDG is
a special case of, and can be recovered from, ADG when one assumes A ≡ C∞(M)—that
is, when one simply assumes copies of the algebra C∞(M) of C∞-smooth functions on a
differential (spacetime) manifold M as occupying the stalks of the structure sheaf A in
the theory. Equivalently, it has been recently shown that the category M of C∞-smooth
manifolds is a full subcategory of the category DT of ADG-theoretic differential triads [10].
107Recall from Section 1 that in our finitary case, the base space on which our finitary

sheaves of differential incidence Rota algebras Ωi are soldered is the very (primitive) spec-
trum Spec(Ωi) of those algebras—a ‘discrete’ instance of ‘Gel’fand Duality meets Serre-
Swan’.
108As Tasos originally preferred to call it cumulatively: an axiomatisation [44, 45].
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In this subsection, we turn our attention to Tasos’s fundamental Physical
intuitions and motivations in applying ADG to what he used to call ‘Physical
Space(Time)’ and ‘Physical Geometry’.

To that end, we quote directly from [54] the following ‘definition’ á-la
Mallios of what he perceived as, and, in extenso, what ought to qualify as
being, ‘Physical Geometry’:

“...Physical Geometry is the ‘outcome’ of the physical laws...”

For which he then displayed the following ‘causal nexus’ for producing Phys-
ical Geometry from Dynamical Laws:109

“...Now, by looking at the technical correspondence/association,

physical law ←→ A− connection,

one realizes that [the displayed expression above] might also be
construed, as an equivalent analogue of the implication;

A− connection(: physical law) =⇒ curvature (: ‘geometry ′, alias, ‘shaping ′)

Consequently, still to repeat the above, but state it otherwise,
one concludes that:

It is actually the physical laws, that make, what we might call (physical) ‘geometry’....”

All of Mallios’s prophetic musings above may be subsumed under the follow-
ing distilled Fundamental Aphorism:

Fundamental Aphorism: Physical Space(Time)’ and ‘Physical
Geometry’ is the result or the product of Field Dynamics, in much
the same way that, as we saw earlier in the paper, the Curvature
Field is a Geometric Morphism image of the Connection Field.

109Again, the quotation is borrowed verbatim from [49].
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In this line of thought, we conclude the present paper by quoting verbatim
below the very opening paragraph of the wonderful Exordium in Mallios and
Zafiris’s last joint research monograph [67]:110

“The major aim of the application of Analysis and Differential
Geometry in Physics is the setting up of a mechanism providing
a precise description of the emergence of geometric spectrums111

due to dynamical interactions, which can be further used for mak-
ing predictions. In this manner, the notion of a geometric spec-
trum is considered as the outcome of a physical law or more gen-
erally of a dynamical interaction of a particular form. This raises
immediately the question if there exists an approach to physical
geometric spectrums that is independent of any coordinate point
manifold background, in the sense that it refers directly to the
physical relations causing the appearance of these spectrums with-
out the intervention of any ad hoc coordinate choices. The answer
provided to this question in this book is that the theory of differ-
ential vector sheaves, that is geometric vector sheaves equipped
with a connectivity structure and obeying appropriate cohomo-
logical conditions, provides the sought after functorial tool for a
universal and natural approach to physical geometric spectrums.
The major difference of the proposed approach in comparison to
the traditional ones based on classical differential calculus and
differential geometry of smooth manifolds consists in the realiza-
tion that a classical analytic technique is susceptible to a natu-
ral background-independent generalization if it is localizable by
sheaf-theoretic means. In this case the technique can be expressed
functorially, that is by means of natural transformations of sheaf
functors via the machinery of homological algebra. This is of
crucial significance for setting up a mechanism describing the
emergence of physical geometric spectrums where the notion of
background smoothness is inapplicable...”

110Some emphasised parts in the quote above are our emphasis.
111That is to say, ‘geometric spaces’.
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3.2 A Wish for the Future

The whole time that I have known him, Tasos was always with the under-
dog, “always supporting and taking sides with the hunted, not the hunter”,112

which he kept reminding me on a day-to-day basis. He also constantly urged
me to take risks and be unconventional, unorthodox and iconoclastic in my
research quests and endeavours in Quantum Gravity [80].

Thus, in paying tribute and homage to my wonderful teacher, mentor,
friend and immortal companion in our joint Unending Quest, here’s one of
Tasos’s favourite Feynman Quotes:113

“...It is important that we don’t all follow the same fashion. We
must increase the amount of variety and the only way to do this
is to implore you few guys, to take a risk with your own lives so
that you will never be heard of again, and go off into the wild
blue yonder to see if you can figure it out...”

May his far reaching vision, the breadth of his conceptual perception, the
imagination of his mathematical and physical intuition, the depth of his philo-
sophical enquiry, the originality and the unorthodoxy of his approach, as well
as the risk and the adventurousness of his research endeavours—all coupled to
the priceless legacy that Professor Anastasios Mallios leaves behind—nurture,
enrich, motivate and inspire future researchers in Quantum Gravity for years
to come!

Addendum I: An Anecdotal Exchange with Pro-

fessor Mallios and a Conclusion Drawn from It

I would like to share with this forum a private two-part exchange that we
enjoyed with Tasos way back in May 1998, actually on the day of my 30th
birthday, more than two years before his first 2-volume pitch of Abstract
Differential Geometry: The Geometry of Vector Sheaves was published by

112One of his own ‘proverbs of wisdom’: “We are always with the hunted, not the hunter”.
113Taken from Richard Feynman’s intro to his [19], where he talks about researchers

taking the risk and ‘going off into the wild blue yonder’ realm, seemingly strange and
largely unexplored yet landscape, of Quantum Gravity.
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Kluwer Academic Publishers [44]. That exchange on the one hand dovetails
perfectly with the two main mathematical results mentioned in the last sec-
tion114 that, as I argued, must have played a pivotal role, consciously and/or
unconsciously, in motivating and inspiring Tasos to develop ADG in the first
place, and on the other, it casts light on Tasos’s character as a pure and
young-at-heart, decent human being.

I had just obtained my Ph.D. [75], with Professor Mallios as one of the ex-
ternal examiners of my thesis, and, very interested in the early developments
of Topos Theory (TT) [43], I was naturally attracted by the core mathemat-
ical ideas and the working philosophy of one of TT’s main early architects:
Alexandre Grothendieck [28]. I had also just finished reading the first part
(:Fatuity and Renewal) of Grothendieck’s ‘autobiographical’ manuscript ti-
tled Reaping and Sowing [29] and we were discussing the wide range and far
reaching depth of Alexandre Grothendieck’s contributions to Modern Math-
ematics, especially to the field of Algebraic Geometry, via the introduction
and application of novel Homological Algebra (:Category-theoretic) ideas,
concepts and technical constructions.

Part 1 of the Exchange: Grothendieck’s ‘Working Philosophy’
I remember I initiated the exchange by telling Tasos that I had just fin-
ished reading the first part of the Récoltes and made the remark that the
gist of Grothendieck’s working philosophy in Mathematics was to attain an
epoptic—as broad, as general and as abstract—viewpoint of the entire land-
scape of Mathematics. Tasos agreed and added two crucial ingredients:

1. That Grothendieck, willingly or not, explicitly or not, formally or in-
formally (:intuitively), essentially axiomatised Mathematics; and,

2. That Grothendieck used to encounter and stare at the (only apparently)
complex and esoteric Mathematics’ landscape with the innocence and
the ignorance of a child.

•He backed the first point by saying that, much in the same vain as Grothendieck,
he was planning to call (as he actually did!) his forthcoming work on ‘Ab-
stract Differential Geometry: The Geometry of Vector Sheaves’ an Axiomatic
Approach to Differential Geometry [44]. I asked him why did he think that
the most epoptic, bird’s eyeview of Mathematics could be attained by Ax-
iomatisation, and he quoted me Aristotle from Nicomachean Ethics: “He who

114Gel’fand Duality and the Serre-Swan theorem.
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can properly define, divide and distinguish is to be considered God” [1]. He
said that in Mathematics one can attain the broadest and most-encompassing
viewpoint only when one has properly clarified and laid down the fundamen-
tal concepts and base axioms.
• He backed his second point by quoting back to me Bertrand Russell:115

“Men are born ignorant, not stupid. Education makes them stupid.”. He
said that Grothendieck had the gift and ability to look at the World of Math-
ematics in innocent and ignorant awe and amazement, with fresh eyes, not
at all conditioned or biased by prior Knowledge or Education, but perhaps
more importantly, by not being afraid of making mistakes.

I indeed recall reading, a couple of days earlier, from the first part of
Grothendieck’s Récoltes the following telling excerpt:

“...Discovery is the privilege of the child. It’s the little child that I
want to talk about, the child who is not afraid to be wrong, to look
silly, to not be serious, to not be like everyone else. He is neither
afraid that the things he looks at will have a bad taste, different
from what he expects, from what they appear to be, or rather:
from what he has already understood them to be. He ignores the
unspoken and unwavering consensus that form part of the air we
breathe - which all the grown-ups are supposed to know and they
do know. God knows (I suppose the grown-ups know well) if there
have been any such child, since the dawn of ages!...

...The little child discovers the world as he breathes - the ebb
and flow of his breath make him welcome the world in its delicate
being, and makes him project himself into the world that also
welcomes him. The adult can also discover, in those rare moments
when he has forgotten his fears and his knowledge, when he looks
at things or himself with eyes wide open, eager to know, new eyes
- the eyes of a child...”

Part 2 of the Exchange: Grothendieck’s Work With regard to
Grothendieck’s main contribution to Mathematics, especially in Algebraic
Geometry, Tasos maintained that Grothendieck essentially abstracted and
purely algebraicised Algebraic Geometry, and effectively substituted Hard Anal-
ysis on ‘Rigid’ Geometrical (:Arithmetic) Spaces by the more malleable and
flexible inherently algebraic concepts and methods of Sheaf Cohomology.

115This is one of Tasos’s Top-3 quotes.
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With the advent, blossoming and effective manifold applications of ADG
to fundamental Mathematics and Physics, I can now draw confidently the
following parallel in posthumous honour of Tasos:

What Grothendieck did for Algebraic Geometry, Mallios did for Differential Geometry.

Addendum II: Bohr’s Poetic and Lexiplastic

Imperative in Current and Future Quantum

Gravity Research

Preparing ‘psychologically’ and ‘emotionally’ the reader for the heuristic,
yet technical and rigorous, Glossary that follows in the Appendix next, we
recall and borrow almost verbatim from [82],116 nearly two decades later(!),
some still significant in our opinion remarks on the importance of using ‘(ono-
mato)poetic language’, as well as novel conceptual (:theoretical/philosophical)
and new technical jargon, having manifest practical (:‘calculational’) impli-
cations and import, in our quest for a conceptually sound, philosophically
cogent and technically creative and artful Quantum Theory of Gravity (QG).

Descending to the quantum deep: the ‘experience-to-theoretical
physics-to-mathematics-to-philosophy-to-poetry’ ascension. In QG
research, because of the glaring absence of experimental data (in fact, of any
prepared and controlled laboratory experiments!)117 to verify—or more im-
portantly, to falsify(!)—our theories, the theoretical/mathematical physicist
finds herself in the fortuitous position of being free to roam in unconstrained,
uninhibited theory making, with sole guiding tools ‘aesthetic’ elements such
as conceptual simplicity, economy, symmetry and beauty, backed by mathe-
matical abstraction, generality, rigor and logical consistency. This has been
appreciated as early as Dirac [14], who, in trying to reason and evade singu-
larities and unphysical infinities upon trying to quantise the electromagnetic
field, implored theoretical physicists to explore and use all the mathematical

116From the very last section, titled Poetry in Motion and in Action: the Future of
Quantum Gravity Research.
117Although at the same time, we are passive receptors of cosmological data from the

early universe.
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resources at their disposal, and temporarily divesting experiments of their
theory checking and guiding role.

Ludwig Faddeev, for example, maintained fairly recently [18] that we
should finally break away from the classical theory-making route followed
so far by theoretical physics, which can be schematically represented by the
cycle:

experiments −→ predictions −→ mathematical formulations −→ further experiments

and instead employ all our mathematical resources to plough deeper into the
foundations of ‘physical reality’, leaving experiments (and experimentalists!)
to ‘catch up’ with the new mathematics (and with theoreticians!), not the
other way around. In this regard, we would like to borrow from [18] some
telling remarks made by Dirac from the aforementioned paper [14]:118

Part I. “...The steady progress of physics requires for its theoretical
foundation a mathematics that gets continually more advanced. This
is only natural and to be expected. What, however, was not expected
by the scientific workers of the last century was the particular form
that the line of advancement of the mathematics would take, namely,
it was expected that the mathematics would get more complicated,
but would rest on a permanent basis of axioms and definitions, while
actually the modern physical developments have required a mathemat-
ics that continually shifts its foundation and gets more abstract...It
seems likely that this process of increasing abstraction will continue
in the future and that advance in physics is to be associated with a
continual modification and generalization of the axioms at the base of
mathematics rather than with logical development of any one mathe-
matical scheme on a fixed foundation.119

Part II. There are at present fundamental problems in theoretical

physics awaiting solution [...]120 the solution of which problems will

presumably require a more drastic revision of our fundamental con-

cepts than any that have gone before. Quite likely these changes will

be so great that it will be beyond the power of human intelligence

118The quotation below is split into two paragraphs (I and II), on which we comment
separately after it.
119Our emphasis.
120Dirac here mentions a couple of outstanding mathematical physics problems of his

times. We have omitted them.
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to get the necessary new ideas by direct attempt to formulate the

experimental data in mathematical terms. The theoretical worker in

the future will therefore have to proceed in a more indirect way. The

most powerful method of advance that can be suggested at present is

to employ all the resources of pure mathematics in attempts to perfect

and generalise the mathematical formalism that forms the existing ba-

sis of theoretical physics, and after121 each success in this direction,

to try to interpret the new mathematical features in terms of physical

entities122...”

• Part I. The words from this paragraph to be highlighted with ADG-GT
in mind here are: ‘a mathematics that gets more abstract’ and ‘advance
in physics is to be associated with a continual process of abstraction
[leading to a] modification and generalization of the axioms at the base
of mathematics’. Indeed, the axiomatic ADG essentially involves an
abstraction of the fundamental notions of modern differential geometry
(e.g., connection), resulting in an entirely algebraic (:sheaf-theoretic)
modification and generalization of the latter’s basic axioms [44, 45, 50].
And it is precisely this abstract and generalized character of ADG
that makes us hope that its application could advance significantly
(theoretical) physics, and in particular, QG research.

For, to quote again Einstein from earlier, in the quantum deep we must
look for “a purely algebraic method for the description of reality” [16].
123

• Part II. In this paragraph, apart from breaking from the traditional cy-
cle ‘experiment-theory-more experiment’ mentioned above (i.e., Dirac’s
anticipation that ‘new ideas [won’t come] by direct attempts to for-
mulate the experimental data in mathematical terms’), what should
be highlighted is on the one hand Dirac’s prompting us ‘to generalize
the mathematical formalism that forms the existing basis of theoretical
physics’, and on the other, ‘to try to interpret the new mathematical
features in terms of physical entities’. Again, ADG goes a long way to

121Dirac’s own emphasis.
122Again, our emphasis throughout.
123Alas, for Einstein, the continuum spacetime and in extenso CDG-based field theory

was simply incompatible with the finitistic-algebraic quantum theory [92], a divide that
ADG has come a long way to finally bridge [59, 60, 61, 62, 78, 79, 80, 81, 82].
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fulfill Dirac’s vision, since the (or at least the bigger part of the) math-
ematics that lies at the heart of current theoretical physics—namely,
(the formalism of) differential geometry (i.e., the CDG on C∞-smooth
manifolds)—is abstracted and generalized, while after this generalisa-
tion has been achieved, the physical application and interpretation (of
ADG’s novel concepts and features) has been carried out, especially
in the theoretical physics’ field of quantum gauge theories and gravity
research. We believe that this is ‘a powerful method of advance’ indeed.

However, this too is not enough in our opinion. Existing mathematical con-
cepts, structures and techniques also come hand in hand with implicit as-
sumptions, hidden preconceptions and prejudices associated with their his-
torical development, i.e., with past problems other than QG(!) that they
were invented in order to formulate, tackle and (re)solve. Such preconcep-
tions are very hard to forget at the primary stages of theory making, let
alone to shed them altogether, especially when they have proved to be ex-
perimentally successful in the past. Again Einstein, for example, has given us
a warning call regarding our almost religious abiding by old, tried-and-tested
concepts [17]:

“...Concepts which have proved useful for ordering things easily as-

sume so great an authority over us, that we forget their terrestrial

origin and accept them as unalterable facts. They then become la-

belled as ‘conceptual necessities’, ‘a priori situations’, etc.124The road

of scientific progress is frequently blocked for long periods by such

errors. It is therefore not just an idle game to exercise our ability to

analyze familiar concepts, and to demonstrate the conditions on which

their justification and usefulness depend, and the way in which these

developed, little by little...”

For this, a few people have suggested to go even a bit further, past math-
ematics, and into the realm of Philosophy to look for novel QG research
resources. ’t Hooft, for example [96], insists that:

“...The problems of quantum gravity are much more than purely tech-

nical ones. They touch upon very essential philosophical issues...”

124Think for instance of the apparently fundamental notion of the ‘spacetime continuum’:
“time and space are modes by which we think, not conditions in which we live” (as quoted
by Manin in [68]).
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For us, this will not suffice either. Philosophy too comes burdened with a
host of a priori concepts and assumptions.125

Paraphrasing Finkelstein in [21], “in the quantum deep one must travel
light”. Alas, perhaps because of a deep psychological tendency towards secu-
rity (and an instinctive, biological one, for survival [104]), we tend to abide
by what we already know and (think) we understand (or believe to have a
firm hold of backed by numerous practical applications), and we take few
‘conservative risks’ (pun intended) towards standing bare, ignorant (but, ex-
actly thanks to this ignorance, uninhibited and unbiased!) before Nature.
This primordial fear of the unknown must be overcome—at least it should
be soothed by the Socratic stance that, anyway, the only thing that we know
for sure is that we know almost nothing—and a way of achieving this is by
engaging into imaginative, creative poetic activity where there is plenty of
leeway for ‘trial-and-error’ and a lot of room for iconoclastic, unorthodox,
unconventional and adventurous ideas that are unburdened by ancestral the-
oretical demands or traditional beaten track conventions.

Indeed, granted that QG pushes us back to theorizing about the archeg-
onal acts of the World, what better means other than poetry (with its analo-
gies, metaphors and allegories) do we possess for exploring, conceptually
afresh and without a priori commitments—ultimately, to deconstruct and
reconstruct anew [74]—the strange,126 uncharted QG landscape?

Kandinsky’s words echo ecophantically here [36]:

“Poetry brings us closer to the Creator.”

Especially regarding the unfamiliar realm of the quantum, we read from
[69] (reading from [97]):

“...In the first forty years of the twentieth century, our vision of the

physical world changed radically and irretrievably. Atoms could be-

have like solid matter or like waves, they were made of particles with

strange top-like properties, with nuclei which could disintegrate spon-

taneously, and, perhaps, set up chains of disintegration themselves.

For many, the most interesting implication of all this new knowledge

125Especially the nowadays academic ‘Philosophy of Science’ [87, 9], which appears to
be heavily (almost paracytically!) dependent on the concepts, techniques, results and
current developments in science (and in particular, in theoretical physics and applied
mathematics).
126‘Strange’, of course, relative to what we already (think we) know!
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was, and still is, philosophical. We have understood that our intuitive

ideas of what is possible and what is not—our common sense—are

a result of the conditioning of our minds by sense-experiences. We

have had to change our ideas of what understanding consists in.127 As

Bohr said, ‘When it comes to atoms, language can only be used as in

poetry. The poet, too, is not nearly so concerned with describing facts

as with creating images.’128 The same is true of cosmological models,

curved spaces and exploding universe. Images and analogies are the

keys.129 Not you, not I, not Einstein could interpret the universe in

terms wholly related to our senses. Not that it is incomprehensible,

no. But we must learn to ignore our preconceptions concerning space,

time and matter, abandon the use of everyday language and resort to

metaphor. We must try to think like poets...”130

What we have in mind here is that, in order to see and tackle the problem of
QG afresh, we must foremost be able to sort of ‘(re)create it from scratch’,
forgetting for a while the voluminous body of work—the various theoretical
‘evidence’ that different approaches to QG provide us with—that has been
gathered over the last 70+ years of research on it. The spirit of Feynman
comes to mind:

“What I cannot create, I do not understand.” [19]131

Of course, by ‘poetry’ above all we mean creation of new conceptual ter-
minology within a novel theoretical and technical framework’.

In this respect, it is perhaps more important to stress that ADG is not
so much a new theory of DG—the main ‘mathematical formalism that forms
the existing basis of theoretical physics’, following Dirac’s expression earlier—
but a theoretical framework that abstracts, generalises, revises and recasts
the existing CDG on differential manifolds by isolating and capitalising on
its fundamental, essentially algebraic (:‘relational’, in a Leibnizian sense)
features, which are not dependent at all on a background locally Euclidean
geometrical ‘space(time)’ (:manifold). In a way, from the novel viewpoint of
ADG, we see ‘old’ and ‘stale’ problems (e.g., the C∞-smooth singularities of

127Midgley’s emphasis.
128Our emphasis.
129Midgley’s emphasis, and mine.
130Emphasis (and underlining) is all ours.
131In the ‘Quantum Gravity’ prologue by Brian Hatfield.
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the manifold and CDG based GR) with ‘new’ and ‘fresh’ eyes [78].
Schopenhauer’s words from [85] immediately spring to mind:

“...Thus, the task is not so much to see what no one has yet seen,

but to think what nobody yet has thought about that which everybody

sees132...”

On the ‘idiosyncratic’ terminology side. As we will witness in the
Glossary section following next, the novel perspective on gravity that ADG
enables us to entertain is inevitably accompanied by new terminology. We
have thus not refrained from engaging into vigorous poetic, ‘lexiplastic’ activ-
ity, so that our work in this paper abounds with new, ‘idiosyncratic’ terms for
novel concepts hitherto not encountered in the standard theoretical physics’
jargon and literature, such as ‘gauge theory of the third kind’, ‘third quanti-
sation’, ‘synvariance’ and ‘autodynamics’, to name a few.

In this respect, we align ourselves with Wallace Stevens’s words in [93]:

“...Progress in any aspect is a movement through changes in terminology...”133

with the ‘changes in terminology’ in our case being not just superficial (:for-
mal) ‘nominal’ ones introduced as it were for ‘flash, effect and decor’, but
necessary ones coming from a significant change in basic theoretical frame-
work for viewing and actually doing DG in QG: from the usual geometrical
manifold based one (CDG), to the background manifoldless and purely alge-
braic (:sheaf-theoretic) one of ADG.

The bottom line is a verse: a Word for the World. According to the
Biblical Genesis, ‘In the beginning was the Word’, thus the ultimate task for
future QG (re)search is to find the right ‘words’ to begin our theory making
about the very beginning of the World. For, to quote Bohr (as quoted in [4]):

“...It is wrong to think that the task of physics is to point out how

nature is. Physics concerns what we can say about nature...”134

132All emphasis is ours.
133Another one of Mallios’s favourite quotes.
134Our emphasis. What could baffle the reader here is the following apparent oxymoron:

while on the one hand we seem to advocate the aforesaid principle of ADG-field realism
(maintaining that the connection field D exists ‘out there’ independently of us experi-
menters, measurers/geometers and theoreticians), on the other we endorse Bohr’s dictum
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As Finkelstein notes,135

“...The fully quantum theory lies somewhere within the theorizing
activity of the human race itself, or the subspecies of physicists, re-
garded as a quantum system. If this is indeed a quantum entity, then
the goal of knowing it completely is a Cartesian fantasy, and at a
certain stage in our development we will cease to be law-seekers and
become law-makers.136

It is not clear what happens to the concept of a correct theory

when we abandon the notion that it is a faithful picture of nature.

Presumably, just as the theory is an aspect of our collective life, its

truth is an aspect of the quality of our life...”

And what better means other than our Logos—or better, than our imag-
inative and creative Logos: our poetic and bardic Mythos—do we possess
for approximating the archegonal Truth about Nature? Moreover, what a
humbling thought this is: that in the end we may find out that this truth is
the quintessential quality of our ellogous lives. Then, in a Nietzscheic sense
[71], we will have become what we already are: Poets true to our Nature!

Appendix: Glossary of New Terminology and

Heuristic ADG-GT Jargon

In this concluding Appendix to the paper, we outline a Glossary of the novel
ADG-theoretic terminology and conceptual heuristics that abound through-
out this paper, plus of some that have made recurring appearances through-
out our publications in the last two and a half decades [59, 60, 61, 62, 76,
77, 78, 79, 80, 81, 82].

above. Again, there’s no paradox here: what we can say about Nature (ie, in this case,
about the field D) is all encoded in the generalised arithmetics A that we choose to rep-
resent it (on E). However, the A-functoriality of the dynamics secures the independence
of the (dynamics of the) field from our generalized measurements (and hence from our
geometrical representations, eg, ‘spacetime’) in A (and in extenso E , which is locally a
power of A).
135In an early draft of [21] given to this author back in 1993.
136For more discussion on this theme, see the section in [80], titled ‘The Saviors of

Physical Law’, emulating Kazantzakis’ “The Saviors of God” [37]. Our emphasis.
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The Glossary below is listed lexicographically, not in order of importance
or frequency of appearance in past papers, and all the items are pre-fixed by
‘ADG-’.

1. ADG-A-Invariance. The functorial imperative of ADG that the dy-
namical laws of physics (:here, Einstein’s differential equations and
Yang-Mills differential equations) should be respected by (:be ‘invari-
ant’ under) any of our (choices of) generalised coordinates or measure-
ments (:arithmetics) employed in the structure sheaf A. As we saw in
this paper, A-invariance entails local gauge invariance (see below).

2. ADG-Autodynamics. The idea that the ADG-fields F = (E ,D),
whether Maxwell, Yang-Mills or Einstein, are dynamically autonomous,
‘self-governing’, ‘unitary’, ‘holistic’, ‘self-contained’ entities, with no
need for externally imposed spacetime parameters or ‘degrees of free-
dom’ for their dynamical sustainance.

3. ADG-C-Algebraized Space. An in principle arbitrary topological
space X endowed with a structure sheaf A of generalised arithmetics
or ‘coordinates’ localised on it: (X,A).

4. ADG-Connection and Curvature Field Categories. As we have
the Maxwell TMax = {(L,DMax)}, the Yang-Mills TYM = {(E ,DYM)},
and the Einstein category TEinst = {(E ,DEinst)} of ADG-fields (E ,D),
we also define three corresponding ADG-curvature field functor cate-
gories: CMax, CYM and CEinst, whose objects are ADG-curvature fields
as in (24), and whose arrows are natural transformation type of corre-
spondences between their ⊗A-functorial objects.

5. ADG-Connection/Curvature Geometric Morphism. The pair
of adjoint functors GMA := (⊗A,HomA) effectuating functorial, nat-
ural transformation type of correspondences between the category of
ADG-fields and the corresponding category of ADG-curvature fields.

6. ADG-Curvature Space. This is defined as the following quintet:
(A, d,Ω1, d,Ω2) ≡ (A,D,Ω1,D2,Ω2), consisting of a differential triad
and a d/D-extension of the sheaf Ω1 of differential 1-forms to a sheaf
Ω2 of differential 2-forms so as to be able to define the curvature of a
connection according to (17).
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7. ADG-Curvature Field. A pair consisting of a structure sheaf AX on
a C-algebraized space X and the curvature R(D) of an A-connection
D (on a vector sheaf E) acting as an A-morphism: R = (A, R(D)).

8. ADG-Differential Triad. A triplet consisting of a structure sheaf
AX on some C-algebraized space X , and a flat C-linear Leibnizian
connection d acting as a C-linear sheaf morphism that maps AX to a
sheaf Ω of differential A-modules on X : T = (AX , d,Ω(X))

9. ADG-Field. A pair consisting of a vector sheaf E and anA-connection
D on it acting as a C-linear Leibnizian sheaf morphism: F = (E ,D).

10. ADG-Field Quantal Self-Duality. The basic intuitive-heuristic ob-
servation that for any ADG-field F = (E ,D), (the local sections of)
E represent(s) some abstract kind of local quantum particle ‘position’
states, while the action of the connection field D on them represents
some kind of generalised ‘momentum’ type of action. The two struc-
tures are said to be ‘quantum complementary’ aspects of the ‘unitary’
and ‘coherent’ ADG-field in the sense that they obey some abstract
(sheaf cohomological) commutation Heisenberg uncertainty relations
which define 3rd Quantisation in our scheme.

11. ADG-Field Solipsism/Monadology. The idea that the ADG-fields
F = (E ,D) are the sole dynamical entities (:variables) in our theory—
the sole physical entities in our ADG-GT—without any ‘spacetime
realm and reality’ external to and separate from them. In this sense, the
ADG-Field Solipsism is tantamount to the ADG-Field Pure Realism,137

namely, that the auto-dynamical, self-governing and self-transforming
physical laws that the ADG-fields define and obey in-themselves are in-
variant no matter what, independently of what, structure group sheafA
of generalised arithmetics—however reticular, pathological or singular—
we employ to localise, coordinatise or ‘measure’ them. In this sense,the
ADG-fields are ‘physically real’ entities [61, 62, 79, 81, 82]. This is
another manifestation of Mallios’s Principle of A-Invariance.

12. ADG-Gauge Theory of the 3rd Kind. The idea that the ADG-
field dynamics remains invariant under the ‘gauge’ group of dynamical

137We borrow the Tractarean idea of Ludwig Wittgenstein from [107], that: “Solipsism
coincides with Pure Realism”.
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self-transmutations AutAE of the ADG-fields F = (E ,D). It follows
that all symmetries and invariances of the ADG-field dynamics are in-
ternal to (i.e., happen within) the fields themselves, without recourse
or reference to an external (:background) spacetime manifold. There is
no external (:spacetime) versus internal (:gauge) symmetries’ distinc-
tion in our theory. All transformations are pure gauge transformations,
in the sense that they are changes in the generalised coordinate gauges
(:arithmetics) in A, without reference to an external spacetime.

13. ADG-Gel’fand Duality. The general idea that ‘differentiable space’
comes from the structure sheaf A of our generalised arithmetics.

14. ADG-Geometric Space. The general idea that ‘the geometry of
physical space’ comes from ‘algebraic (:relational) dynamics’ obeyed
by, the dynamical relations between, the ADG-fields.

15. ADG-Natural Transformation. This pertains to the Natural Trans-
formation character of the fundamental Geometric Morphism GMA :=
(⊗A,HomA) between the corresponding functor categories of ADG-
Connection Fields and ADG-Curvature Fields (or the ADG-Curvature
Spaces that the latter define). This is another expression of Mallios’s
Principle of A-Invariance.

16. ADG-Principle of A-Algebraic Relativity of Differentiability.
Since all differentiability in ADG derives from the structure sheaf A of
algebras of arithmetics or ‘generalised coordinates’, different choices of
A entail different ‘differential geometric mechanisms’ (:‘Calculus’), but
the dynamical laws of Nature—the very differential equations that can
be formulated via that differential geometric mechanism that these As
define—remain invariant under them. This is yet another expression
of Mallios’s Principle of A-Invariance.

17. ADG-Synvariance. The ADG-theoretic analogue of (General) Co-
variance in accord with ADG-Autodynamics above; namely, that in
much the same way that Diff(M)—the group of active diffeomorphisms
of the ‘external’ base spacetime manifold of GR—represents the Prin-
ciple of General Covariance (PGC) of GR, AutAE—the group of A-
automorphisms of the vector sheaf E—represents the invariance group
of dynamical self-transmutations of the Einstein ADG-field FEinst =
(E ,DEinst). Mutatits mutandis then for FMax and FYM .
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18. ADG-‘Unitary’ Quantal Gauge Field. This pertains to a tetrad of
functorially and dynamically closely entwined structuresU := (E ,D,AutAE ,Q),
and it subsumes under a single coherent and inseparable ‘unitary whole’
all the four most important functorial structural traits of ADG-GT,
namely: ‘local quantum particle states’ represented by local sections of
a vector sheaf E , their ‘dual-complementary’ functorial ADG-gauge field
dynamics generated by an algebraic A-connection D, the latter’s local
gauge invariance of the 3rd kind encoded in the principal structure sheaf
AutAE of E ’s automorphisms, and the dual particle-field canonical-type
of 3rd quantisation, represented by the functorial morphism Q between
the relevant sheaf categories involved.
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