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Functional weak convergence of stochastic integrals for

moving averages and continuous-time random walks

Andreas Søjmark∗ and Fabrice Wunderlich†

Abstract

There is by now an extensive theory of weak convergence for moving averages and
continuous-time random walks (CTRWs) with respect to Skorokhod’s M1 and J1 topolo-
gies. Here we address the fundamental question of how this translates into functional limit
theorems, in the M1 or J1 topology, for stochastic integrals driven by these processes. As
an important application, we provide weak approximation results for general SDEs driven
by time-changed Lévy processes. Such SDEs and their associated fractional Fokker–Planck–
Kolmogorov equations are central to models of anomalous diffusion in statistical physics.
Our results yield a rigorous functional characterisation of these as continuum limits of the
underlying models driven by CTRWs. In regard to strictly M1 convergent moving averages
and correlated CTRWs, it turns out that the convergence of stochastic integrals can fail
markedly. Nevertheless, we are able to identify natural classes of integrand processes for
which M1 convergence holds. We show that these results are general enough to yield func-
tional limit theorems, in the M1 topology, for certain stochastic delay differential equations
driven by moving averages.

1. Introduction

In view of the central limit theorem—and its functional extensions—the concept of diffusion is
a remarkably robust modelling paradigm: with the appropriate square-root scaling, it gives the
correct macroscopic description of any random walk whose i.i.d. jumps are of finite variance.
Yet, many phenomena across the natural and social sciences involve heavy-tailed power laws that
lead to different notions of anomalous—or fractional—diffusion for the macroscopic movement
of particles (be they actual particles or some quantities identified as such). This deviation
from classical diffusion lies at the heart of a fast growing field of research known as fractional
calculus, sitting firmly at the interface of mathematical physics, probability theory, and the
theory of partial differential equations.

Befittingly, anomalous diffusion, too, is underpinned by a robust class of limit theorems for
random walks, now with jumps of infinite variance. In fact, not only jumps of infinite variance
are relevant, but also infinite mean waiting times between the jumps, thus leading to the concept
of continuous-time random walks (CTRWs). For details, see Section 3.1. As long as the jumps
and waiting times are, in a certain sense, attracted to given stable laws, the appropriate scaling
limit will be described by a fractional equivalent of the heat equation for classical diffusion. Here
a fractional derivative in time captures an element of sub-diffusion due to infinite-mean power
laws of the waiting times, while fractional derivatives in space capture elements of super-diffusion
due to infinite-variance power laws of the jumps.

For an excellent introduction to anomalous diffusion and the field of fractional calculus from a
probabilistic viewpoint, we refer to the monograph of Meerschaert & Sikorskii [45]. In particular,
[45, Ch. 4] covers the underlying functional limit theory for CTRWs. The main definitions and
results needed for the present paper are recalled in Section 3.1.
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As one might expect, stochastic calculus for CTRWs and their scaling limits play an impor-
tant role in the study of anomalous diffusion; see e.g. the treatment of stochastic calculus for
CTRWs in [19] and of stochastic calculus for time-changed Lévy processes in [36, 51]. Since the
justification for continuum models of anomalous diffusion comes from CTRWs and their func-
tional limit theorems, it is essential to understand the behaviour of stochastic integrals driven by
CTRWs, when these integrators converge to their scaling limit. In this paper, we shall address
this question in the sense of weak convergence on Skorokhod space with respect to Skorokhod’s
J1 and M1 topologies, depending on the structure of the CTRWs.

1.1. Anomalous diffusion and convergence of stochastic integrals

In the physics literature, models of anomalous diffusion are often formulated in terms of frac-
tional Fokker–Planck–Kolmogorov equations. The intuition is similar to that of the fractional
equivalents of the heat equation discussed above, only now the equations take the general form

Dβ
t p(t, x) = Axp(t, x), p(0, x) = p0, (1.1)

where Dβ
t is a fractional Caputo derivative of order β ∈ (0, 1) and Ax = A(x,Dx) is a pseudo-

differential operator with a given symbol Ψ(x, ξ). One can also have a distributed-order fractional

derivative Dµ
t =

∫ 1
0 D

β
t µ(dβ) instead of a standalone Caputo derivative.

In many applications, the Cauchy problem (1.1) is intimately linked to an underlying CTRW
model and may be derived in that way, as in the pioneering work of Metzler, Barkai & Klafter
[46]. See also Metzler & Klafter’s influential survey papers [47, 48]. Recently, there has been
a growing interest in stochastic representations for variants of (1.1), see e.g. [4, 21, 20, 22,
39, 40, 41, 42]. This provides a rigorous connection between the Fokker–Planck–Kolmogorov
formulations and single-particle tracking for anomalous diffusion (as surveyed by Metzler et
al. [49]), and it also open up for Monte Carlo methods in the numerical approximation of (1.1).

The stochastic representations of (1.1) generally involve SDEs driven by time-changed Lévy
processes, where the symbol Ψ(x, ξ) of Ax corresponds to the characteristic exponent of the
parent Lévy process, while β is the index of stability for a stable subordinator whose generalised
inverse yields the time-change. The analysis of such SDEs is of independent interest and there
is a growing literature on both their qualitative properties, see e.g. [36, 51, 50], and numerical
schemes, see e.g. [17, 29, 31]. Likewise, there is an interest in understanding time-changed
Lévy processes on their own, as in, e.g., [38] motivated by the study of CTRWs, [11] related to
applications in ruin theory, and [10] pertaining to applications in finance.

Following on from the above, Hahn, Kobayashi & Umarov set forth a unifying paradigm for
the study of anomalous diffusion in their recent monograph [63]. In short, they treat the driving
process X—here a time-changed Lévy process—as the central object and call for an exhaustive
exploration of the interconnections between the following three pillars surrounding it: (i) the
underlying limit theory for CTRWs, (ii) the analysis of SDEs driven by X, and (iii) the analysis
of the corresponding fractional Fokker–Planck–Kolmogorov equations.

Regarding (i) and (ii), Section 6.5 in [63, Ch. 6] stresses that an important but less stud-
ied question is that of functional weak convergence for stochastic integrals driven by CTRWs.
Moreover, noting that this lies beyond the reach of existing results, Remark 6.4 of [63, Ch. 6]
discusses the interest in applying such machinery to establish functional limit theorems for SDEs
driven by CTRWs, conceivably leading to limiting SDEs driven by time-changed Lévy-processes
in line with the analysis of such SDEs in [63, Chs. 6-7].

In this paper, we provide a systematic treatment of the functional weak convergence of
stochastic integrals driven by CTRWs, both when the innovations are i.i.d. and when they
display a linear correlation structure. The former leads to universal results on J1 convergence
at a level of generality that the approaches of earlier works did not allow for (see [9, 52, 58]
and [63, Sect. 6.5]), while the latter leads to tailored results on M1 convergence which, as far as
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the authors are aware, have not previously been addressed in the literature and which require
entirely new ideas. As an important first application of our results, Section 5.1 derives the
desired functional limit theorems for SDEs driven by CTRWs called for in [63].

A related area of application could be functional limit theorems for stochastic partial dif-
ferential equations subject to Lévy noise, e.g. stochastic generalisations of (1.1) as in [34, 35],
provided the Lévy noise is seen as a scaling limit of CTRWs. Moreover, as discussed in [15, 14],
for many physical models one is directly interested in stochastic integrals of some kernel against
a stable Lévy noise justified by stable limit theorems, thus immediately raising the issue of the
convergence of the corresponding stochastic integrals driven by CTRWs.

1.2. Applications in the social sciences

As already alluded to above, CTRWs and time-changed Lévy processes are important objects
in finance, insurance, and economics. A powerful option pricing theory for time-changed Lévy
processes with tempering has recently been proposed in [26] motivated by the tick-by-tick CTRW
models introduced in [57]. Another recent paper [1] studies the link between tick-by-tick and
continuum asset price models, defining them to be compatible if there is weak M1 convergence.
This naturally entails the question of what can be said about the functional weak convergence of
the financial gains (i.e., the stochastic integrals of trading strategies against price processes), as
the driving CTRWs converge to their scaling limit, noting that the latter takes place in either the
M1 or J1 topology depending on whether the CTRWs have correlated innovations. The classical
case of limiting price processes given by geometric Brownian motion was treated in [12].

In insurance mathematics, certain SDEs driven by Lévy processes are the central objects
in ruin theory with risky investments [54]. Brownian dynamics are justified by suitable scaling
limits of SDEs involving compound Poisson processes [55]. More generally, we can consider J1
or M1 convergent CTRW models for the claims and the risky investments. Our results then give
convergence to the corresponding SDEs driven by time-changed Lévy processes.

Finally, as covered by [52, 53], functional limit theorems for stochastic integrals driven by
random walks and moving averages, converging to stable Lévy processes, play an important role
in statistical inference for cointegrated processes in econometric theory. [52] gives a rigorous
treatment for J1 convergent random walks, while [53] pinpoints some imprecisions in the lit-
erature and highlights the lack of a systematic treatment for M1 convergent moving averages.
Concerning the latter, we note that also [27, Example 2] brought attention to the relevance of
exploring functional limit theorems for stochastic integrals driven by moving averages. As we
shall see, existing results fall short and it turns out to be far from trivial what one can say.

Rather than going into details about the precise applications, for brevity we instead refer the
reader to a companion paper [61]. There, we apply the results of the present paper to handle
concrete problems emerging from the three strands of literature discussed above.

1.3. Key contributions and overview of the paper

The overall aim of this paper is to give a systematic treatment of weak M1 and J1 convergence
for stochastic integrals driven by moving averages or CTRWs. Our starting point will be the
general framework for weak convergence of stochastic integrals presented in [62], building on the
seminal works [27, 28, 37]. Here, however, we present a more tailored analysis, exploiting the
structure of the particular classes of integrators to obtain results where the general theory does
not apply. Section 2 briefly recalls the central concepts from [62], while Section 3.1 covers the
precise definitions of moving averages and CTRWs along with the associated limit theory.

In Section 3.2, our first contribution is a proof that uncorrelated, possibly coupled, CTRWs
have good decompositions in the sense of Definition 2.1 (Theorem 3.3). Armed with these good
decompositions, we then derive a universal result on the weak J1 convergence of stochastic
integrals driven by uncorrelated CTRWs (Theorem 3.6). This provides a positive answer to the
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open question discussed by Hahn, Kobayashi & Umarov in [63, Rem. 6.4]. Furthermore, Section
3.3 derives an analogous result on weak M1 convergence in the case of moving averages and
correlated CTRWs with a finite variation scaling limit (Theorem 3.9).

When the scaling limits display infinite variation, it was shown in [62, Prop. 4.6] that there
can be a severe failure of weak convergence for stochastic integrals driven by strictly M1 con-
vergent moving averages or correlated CTRWs (something which comes down to a lack of good
decompositions). While the work in Section 3 follows closely the framework of [62], we thus
need to develop a more flexible—but less universal—theory in order to handle general moving
averages and correlated CTRWs. This is the topic of Section 4.

Compared to [62], the overarching idea in Section 4 is to allow for a more general class of
integrators that only admit good decompositions after introducing a suitable remainder term,
which has to be well-behaved with respect to the integrands. Section 4.1 presents an approach
based on direct control of the variation of the remainder (Theorem 4.6), while Section 4.2
explores a procedure based on a certain independence condition between the integrands and the
‘future’ of the remainder (Theorem 4.11). We suspect that both approaches should be more
widely applicable, but here our focus is on showing that they work well for moving averages and
correlated CTRWs. In turn, Section 4.3 provides two general results on the M1 convergence of
stochastic integrals driven by such processes (Theorems 4.14 and 4.15).

We end the paper by applying the above analysis to address fundamental convergence ques-
tions for SDEs and stochastic delay differential equations (SDDEs). Section 5.1 completes the
programme outlined in Section 1.1, showing that the solutions to the SDEs of interest, driven
by uncorrelated CTRWs, indeed converge weakly in J1 to the corresponding SDEs driven by
time-changed Lévy processes (Theorem 5.1). Finally, Section 5.2 shows how the independence
framework of Section 4.2 can be used to obtain M1 convergence for certain SDDEs driven by
strictly M1 convergent moving averages (Theorem 5.2).

The proofs of most results are postponed to Section 6. There, we give the proofs in the same
order as they appear in the main body of the paper.

2. Stochastic integral convergence on Skorokhod space

This section recalls key elements of the general framework for stochastic integral convergence
in the M1 and J1 topologies from [62]. Starting with the notation, we shall write DRd [0,∞)
for the Skorokhod space consisting of all càdlàg paths x : [0,∞) → Rd, for a given dimension
d ≥ 1. Moreover, we shall use dJ1 and dM1 to refer to a fixed choice of metrics that induce,
respectively, the J1 and M1 topologies on this space. For details on these topologies, we refer to
[62, Appendix A]. The first key ingredient is a uniform regularity condition on the integrators.

Definition 2.1 (Good decompositions, [62, Def. 3.3]). Let (Xn)n≥1 be a sequence of semimartin-
gales on probability spaces (Ωn,Fn,Fn,Pn). The sequence is said to have good decompositions
(GD) if, for the given filtrations Fn, there exist decompositions

Xn =Mn +An, Mn local martingales, An finite variation processes,

such that, for every t > 0, we have

lim
R→∞

lim sup
n→∞

Pn
(
TV[0,t](A

n) > R
)
= 0 and lim sup

n→∞
En
[
|∆Mn

t∧τnc
|
]
<∞, (GD)

for all c > 0, where τnc := inf{s > 0 : |Mn|∗s ≥ c}. Here TV[0,t](A
n) denotes the total variation

of An on [0, t] and ∆Mn
t :=Mn

t −Mn
t− denotes the jump of Mn at time t.

We note that (GD) plays a role analogous to that of the P-UT and UCV conditions used
in [27, 28, 37] (for details on how these compare with (GD), see [62]). To address the interplay
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between integrands and integrators, we define a function ŵT
δ : DRd [0,∞)×DRd [0,∞) → R+ of

the largest consecutive increment within a δ period of time on [0, T ], namely

ŵT
δ (x, y) := sup

{

|x(i)(s)− x(i)(t)| ∧ |y(i)(t)− y(i)(u)| : s < t < u ≤ (s + δ), 1 ≤ i ≤ d
}

,

where the supremum is restricted to 0 ≤ s, u ≤ T . Here we have used the usual notation
a ∧ b := min{a, b}, and we have denoted by x(i) the i-th coordinate of x. In addition to the
pivotal (GD) property, the second essential ingredient is the following condition.

Definition 2.2 (Asymptotically vanishing consecutive increments, [62, Def. 3.2]). Let (Xn)n≥1

and (Hn)n≥1 be d-dimensional càdlàg processes on given probability spaces (Ωn,Fn,Pn). The
sequence (Hn,Xn)n≥1 is said to satisfy the asymptotically vanishing consecutive increments
condition if, for every γ > 0 and T > 0, it holds that

lim
δ↓0

lim sup
n→∞

Pn
(
ŵT
δ (H

n, Xn) > γ
)

= 0. (AVCI)

Whilst the above formulation is taken from [62, Sect. 3.1], we stress that the idea of enforcing
(AVCI) comes from [27], as discussed in more detail in [62]. Both for intuition and applications,
it is useful to keep in mind the following simple sufficient criteria.

Proposition 2.3 ([62, Prop. 3.8]). In the setting of Theorem 2.4, the condition (AVCI) is
satisfied if one of the following two criteria holds:

1. The pairs (Hn,Xn) converge together to (H,X) weakly in the J1 topology, meaning that
the joint weak convergence (Hn,Xn) ⇒ (H,X) holds on (DR2d [0,∞), dJ1).

2. The limiting processes H and X almost surely have no common discontinuities, that is,

Disc(H) ∩ Disc(X) = ∅ a.s.

We shall also point out that an alternative criterion to (AVCI) is developed in [62, Thm. 4.8]
which we will use for the formulation of Theorem 4.15. However, for the majority of this paper,
we shall rely on (AVCI). Equipped with (GD) and (AVCI), we have the following general result
on the weak continuity properties of stochastic integrals on Skorokhod space.

Theorem 2.4 (Weak continuity of stochastic integrals [62, Thm. 3.6]). For given filtered prob-
ability spaces (Ωn,Fn,Fn,Pn), consider a sequence of semimartingales (Xn)n≥1 with good de-
compositions (GD). Let (Hn)n≥1 be any given sequence of adapted càdlàg processes for the same
filtered probability spaces such that (i) there is joint weak convergence

(Hn,Xn) ⇒ (H,X) on (DRd [0,∞) , ρ̃ )× (DRd [0,∞) , ρ)

with ρ, ρ̃ ∈ {dM1,dJ1}, for some càdlàg limits H and X, and (ii) the pairs (Hn,Xn) satisfy
(AVCI). Then, X is a semimartingale in the filtration generated by the pair (H,X) and

(

Xn,

∫ •

0
Hn

s− dXn
s

)

⇒
(

X,

∫ •

0
Hs− dXs

)

on (DR2d [0,∞), ρ). (2.1)

In (2.1), the integrals are understood to be defined component-wise. This also allows one to
handle matrix valued processes and ‘dot product’ integrals, as per [62, Rem. 3.11]. As per [62,
Rem. 3.9], one can also consider the so-called weak M1 topology in Theorem 2.4.

3. On moving averages, CTRWs, and their good decompositions

In this section, we first cover the classical results on functional CLTs for moving averages and
CTRWs. We then examine their regularity as integrators, in the sense of good decompositions
or a lack thereof, and, finally, derive our first results on weak convergence of stochastic integrals.
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3.1. Basic definitions and stable scaling limits

We begin by recalling that a moving average (suitably re-scaled) is a continuous-time stochastic
process of the form

Xn
t :=

1

n
1
α

⌊nt⌋
∑

k=1

ζk, t ≥ 0, n ≥ 1, (3.1)

where the innovations are given by

ζi :=

∞∑

j=0

cjθi−j, i ≥ 1, (3.2)

for an i.i.d. sequence {θk : −∞ < k < ∞} of Rd-valued random variables (on a common
probability space (Ω,F ,P)). Here, the θk are asummed to be in the normal domain of attraction
of a non-degenerate α-stable random variable θ̃ with 0 < α < 2, i.e.

n−
1
α (θ1 + . . . + θn) ⇒ θ̃ (3.3)

in R. Recall that θ̃ is said to have a strictly α-stable law on R if there exist i.i.d. copies θ̃1, θ̃2, ...
of θ̃ such that θ̃1 + . . . + θ̃n ∼ n

1
α θ̃ for all n ≥ 1. For α = 2, (3.3) holds instead with θ̃ being

a non-degenerate Gaussian random variable. Throughout, we assume cj ≥ 0 for all j, and we
require that

∑∞
j=0 c

ρ
j <∞, for some 0 < ρ < α. The latter ensures that the series (3.2) converges

in Lρ(Ω,F ,P)—and, in fact, almost surely (see [3, 33]).
For a zero-order moving average (i.e., c0 > 0 and cj = 0 for all j ≥ 1), it is a classical

result of Skorokhod [59] that Xn ⇒ Z in (DRd [0,∞), dJ1), where Z is a Brownian motion if
α = 2 or an α-stable Lévy process (with Z1 ∼ θ̃) if 0 < α < 2. Avram & Taqqu [3] studied
functional convergence in the general case, showing that Xn ⇒ (

∑∞
j=0 cj)Z on (DRd [0,∞), dM1),

if E[θ1] = 0 when 1 < α < 2 or if the law of θ1 is symmetric when α = 1. We shall assume
throughout that, if 1 < α ≤ 2, then either cj = 0 for all but finitely many j ≥ 0 or the
sequence (cj)j≥0 is monotone and

∑∞
j=0 c

ρ
j < ∞ for some ρ < 1. Under these assumptions,

the aforementioned restrictions in the result of Avram & Taqqu can be omitted (see e.g. [64,
Thm. 4.7.1]). Finally, [3] also showed that if not just c0 > 0 but also cj > 0 for at least one
j ≥ 1, then the convergence cannot be strengthened to hold in the J1 topology.

Continuous-time random walks (CTRWs) are generalisations of moving averages (3.1), al-
lowing for random waiting times Ji (with infinite mean) in between jumps. More precisely, let
J1, J2, ... be i.i.d. random variables in the normal domain of attraction of a β-stable random
variable with β ∈ (0, 1), defined on the same probability space as the θk above. A CTRW
(suitable re-scaled), then takes the form

Xn
t :=

1

n
β
α

N(nt)
∑

k=1

ζk, N(nt) := max {m ≥ 0 : L(m) ≤ nt}, (3.4)

with Lm := L(m) := J1 + . . . + Jm and L(0) ≡ 0. Note that N(nt) gives the number of jumps
up until time nt. In the literature two basic types are distinguished: a CTRW is said to be
uncorrelated if cj = 0 for all j ≥ 1 and correlated otherwise. Further, we will also use the term
finitely correlated whenever there exists J ≥ 1 such that cj = 0 for all j > J .

If the sequences (Ji)i≥1 and (ζk)k≥1 are independent, the CTRW (3.4) is typically called
uncoupled. For this (uncoupled) setting, Becker-Kern, Meerschaert & Scheffler [6] as well as
Meerschaert, Nane & Xiao [43] extended the results of [3] for moving averages, showing that
CTRWs exhibit a similar scaling-limit behaviour. That is, for 0 < α ≤ 2, we have

n−βN(n•) ⇒ D−1 (3.5)
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on (DRd [0,∞),dJ1) as well as

Xn ⇒
( ∞∑

j=0

cj

)

ZD−1 (3.6)

on the M1 Skorokhod space (DRd [0,∞),dM1), where Z is either a Brownian motion (α = 2) or
an α-stable Lévy process (0 < α < 2), and the process

D−1
t := inf

{
s ≥ 0 : D(s) > t

}

is the generalised inverse of a β-stable subordinator D with β ∈ (0, 1). Since D is strictly
increasing, D−1 is a continuous process. Moreover, based on the arguments of [3] for moving
averages, it is also shown in [43] how the convergence cannot be strengthened to J1 if there is
j 6= i such that ci, cj > 0. If c0 > 0 is the only non-zero constant, then the M1 convergence (3.6)
was first shown in [6] and it was later improved to hold in the J1 topology by [23].

One can also consider coupled CTRWs. Let (3.4) be uncorrelated with c0 = 1, then the
CTRWs are said to be coupled if the pairs of associated innovations and jump times (ζk, Jk)k≥1

constitute an i.i.d. sequence, while however, we allow for dependence of the components ζk and
Jk of each pair. In this (coupled) framework, the results of [23, 32] yield

Xn ⇒
(
(Z−)D−1

)+
, (3.7)

on (DRd [0,∞),dJ1) for Z and D−1 as above and where we have used the notation x−(t) :=
x(t−) and x+(t) := x(t+). Should the CTRWs be uncoupled, it follows that Z and D arise as
independent Lévy processes. Consequently, they almost surely have no common discontinuities,
and the limit then simplifies to ZD−1 in agreement with (3.6) for uncorrelated CTRWs (for
further details on this, see [23, Lem. 3.9]).

Remark 3.1 (Domain of attraction). The above assumptions—on the jumps and the waiting
times being in the normal domain of attraction of the respective stable laws—simply serve to
ease notation. The convergence results discussed above also hold for random variables belonging
only to the strict domain of attraction. Moreover, in the case of zero-order moving averages,
Skorokhod [59] proved a similar convergence result for increments that are but in the domain of
attraction of an α-stable law, where the limit then is an α-stable Lévy process or a Brownian
motion with drift. Our subsequent results can all be extended to these more general settings in
complete analogy with the procedure described next (in Section 3.2).

Remark 3.2 (Omitting the distant absolute past leaves results unchanged). For moving aver-
ages and CTRWs, the dependence structure can be altered in such a way that there is but a
dependence on finitely many innovations from the absolute past without affecting the conver-
gence results. More precisely, if J ≥ 1 and we redefine

ζi :=

i+J∑

j=0

cjθi−j,

then, if all other assumptions above remain in place, we still have (
∑∞

j=0 cj)
−1Xn ⇒ ZD−1 for

Xn either a moving average or a correlated CTRW as in (3.1) or (3.4). This can be shown in
full analogy to the proofs in [3, 43] with the remainder becoming asymptotically negligible.

Throughout the paper, if not stated otherwise, we will work on a given family of filtered
probability spaces, denoted by (Ω,Fn,Fn,P), for n ≥ 1, with filtrations Fn defined by

Fn
t := σ

(

σ(ζnN(ns), N(ns) : 0 ≤ s ≤ t) ∪ Gn
t

)

, t ≥ 0, n ≥ 1, (3.8)
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where the Gn
s can be any system of measurable sets satisfying that, for Xn as in (3.4) with

cj = 0 for all j ≥ 1, the independent increment property Xn
t −Xn

s ⊥⊥ Gn
s holds for all 0 ≤ s < t.

As we will see below, the latter is essential in order to have good decompositions (GD) for
uncorrelated CTRWs (see in particular Proposition 3.4). We note that each quantity ζnN(ns) in

(3.8) is, naturally, nothing else than
∑∞

k=1 ζ
n
k 1{N(ns)=k}.

3.2. Good decompositions for uncorrelated CTRWs

In earlier works on stochastic integral convergence for uncorrelated CTRWs, only the uncoupled
case is considered and the particular approaches necessitated quite restrictive assumptions, see
[9, 52, 58] and the overview in [63, Ch. 6]. These works are all based on the general J1 theory
developed in [28, 37] and hence rely on verifying the P-UT condition of [28] or the UCV condition
of [37]. Both conditions imply (GD) in the present setting (see [62, Prop. B.3]).

In [58], a sufficient condition for P-UT and UCV is shown to hold for zero-order moving
averages with α ∈ (1, 2] and innovations whose laws are symmetric. Through [44] and the time-
change approach of [36], this is then enough to establish convergence for uncorrelated uncoupled
CTRW integrators, as only a fixed continuous deterministic integrand is considered. Note that
[58, Sect. 4.3] verifies the UCV condition directly for zero-order moving averages with α ∈ (0, 2]
and without the symmetry assumption, but there is an error in the proof. In [9], a sufficient
condition for P-UT and UCV is verified for uncorrelated, uncoupled CTRWs with α ∈ (1, 2],
assuming centered innovations. Similarly, the analysis of zero-order moving averages in [52]
relies on α ∈ (1, 2] and the innovations being centered.

None of the above arguments generalise to handle coupled CTRWs or the interesting critical
case α = 1 even for zero-order moving averages. It is worth briefly recounting the key step in
the verification of the UCV condition in [52], as this is the closest to the approach we implement
here. The setting is α > 1 with deterministic waiting times (i.e., essentially β = 1) and the
innovations θk being centered. Leading up to [52, Prop. 3], a decomposition similar to (3.9)
is introduced. However, the proof of [52, Prop. 3] then exploits the existence of first moments
of the θk to pass over to (in this case equivalently) proving supn≥1 nE[ζ

n
1 1{|ζn1 |>a}] < ∞. In

general, if the innovations are not centered or if e.g. α ≤ 1, such a procedure fails to apply
even for zero-order moving averages. Instead, exploiting the tail regularity of the θk and the
convergence to a suitable time-changed Lévy process, we show that the decompositions (3.9)
are good by virtue of Propositions 3.4 and 3.5 below. The proofs of these two propositions are
provided in Appendix A.

Theorem 3.3 (Good decompositions in the uncorrelated case). Let (Xn)n≥1 be a sequence of
uncorrelated coupled CTRWs or zero-order moving averages, as given by (3.4) or (3.1) with
c0 = 1 and cj = 0 for all j ≥ 1. Then, (Xn)n≥1 has good decompositions (GD).

We stress that the notion of good decompositions is dependent on the underlying filtration
and here we consider the filtration (3.8). In order prove Theorem 3.3 for general coupled but
uncorrelated CTRWs, we fix a ≥ 1 and consider the decompositions

Xn
t =

N(nt)
∑

k=1

ζnk = Mn
t +

N(nt)
∑

k=1

ζnk 1{|ζnk |>a} + N(nt)E[ζn1 1{|ζn1 |≤a}] (3.9)

where, for simplicity, we have introduced ζnk := n−
β
α ζk = n−

β
α θk so that Xn

t =
∑N(nt)

k=1 ζnk , and
where we have defined

Mn
t :=

N(nt)
∑

k=1

ζnk 1{|ζnk |≤a} −N(nt)E[ζn1 1{|ζn1 |≤a}].
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Proposition 3.4. For each n ≥ 1, the process Mn defined above is a martingale with respect to
the filtration (Fn

t )t≥0 given by Fn
t := σ(ζnN(ns), N(ns) : 0 ≤ s ≤ t), where ζnN(ns) is understood

as
∑∞

k=1 ζ
n
k 1{N(ns)=k}. Furthermore, we have |∆Mn| ≤ 2a, for all n ≥ 1.

Given that not only the number and size of large jumps of the uncorrelated CTRW are tight
on compact time intervals but also the sequence nβN(n•) (as a result of their tightness on the
Skorokhod space, namely (3.5) and (3.6)), whether or not the Xn admit good decompositions
ultimately depends on whether or not the supremum supn≥1 n

βE[ζn1 1{|ζn1 |≤a}] is finite.
Define the truncation function h(x) = x1{|x|≤a} + sgn(x) a1{|x|>a}. Then, the condition

supn≥1 n
βE[ζn1 1{|ζn1 |≤a}] < ∞ is equivalent to supn≥1 n

βE[h(ζn1 )] < ∞, since nβP(|ζn1 | > a) →
a−α as n→ ∞ (noting that P(|θ1| > x) = O(x−α) is known to be satisfied for random variables
in the normal domain of attraction of an α-stable law, see e.g. [16],[64, Thm. 4.5.2]). It is
a stronger version of the concept of the so called infinitesimality property described in more
general settings by, e.g., [25, Def. VII.2.33]. We note that similar results to the ones below
also hold under weaker assumptions in this more general framework, in particular without the
assumption of identical distributions.

Proposition 3.5. In the above setting, limn→∞ nβE[h(ζn1 )] = b, for some b ∈ R.

By the above observations, this directly implies Theorem 3.3. Having established (GD) for
zero-order moving averages and uncorrelated CTRWs, we can now state the following result on
weak convergence of stochastic integrals driven by these very processes.

Theorem 3.6 (Weak integral convergence in the uncorrelated case). Let Xn be zero-order
moving averages or uncorrelated CTRWs (3.9) with 0 < α ≤ 2, defined on filtered probability
spaces (3.8). Further, let Hn be càdlàg adapted processes for the same filtered probability spaces.
If (Hn,Xn) ⇒ (H,X) on (DRd [0,∞),dM1) × (DRd [0,∞),dJ1) with X given by Z, ZD−1 or
((Z−)D−1)+, and if the (Hn,Xn) satisfy (AVCI), then X is a semimartingale in the natural
filtration generated by (H,X) and it holds that

(

Xn,

∫ •

0
Hn

s− dXn
s

)

=⇒
(

X,

∫ •

0
Hs− dXs

)

on (DR2d [0,∞),dJ1). (3.10)

Remark 3.7. We note that (AVCI) in Theorem 3.6 can be replaced by the conditions (a) &
(b) set out in [62, Thm. 4.7]. In particular, if we are faced with uncorrelated and uncoupled
CTRWs Xn, then these condition are indeed satisfied provided the integrands Hn, at each time
t, depend only on the trajectory of Xn up to this time (where part (a) can be shown on behalf
of [62, Lem. 4.11]). In specific cases, one might also be able to readily verify (AVCI) directly.
For example, if we consider Hn

t =
∑∞

i=1 gn,i(t
n
i ,X

n
tni
)1(tni ,t

n
i+1]

(t), with equicontinuous gn,i, we

can make use of the alternative J1 tightness criteria given in [8, Thm. 12.4] and the J1 tightness
of the integrators in order to show (AVCI).

3.3. Correlated CTRWs and moving averages do not blend in

As we discuss below, one cannot expect moving averages and correlated CTRWs to have good
decompositions in general. However, there is no such problem when 0 < α < 1. The following
result confirms that, in this case, these processes do indeed possess good decompositions (GD).

Proposition 3.8 (Good decompositions for 0 < α < 1). If 0 < α < 1, moving averages as in
(3.1) and correlated CTRWs as in (3.4) are processes of tight total variation on compact time
intervals and therefore admit good decompositions.

Due to Proposition 3.8, we can extend Theorem 3.6 to cover integrators which are uncoupled
correlated CTRWs or moving averages with 0 < α < 1. The proof of Proposition 3.8 can be
found in Section 6.1 and the next result then follows from Theorem 2.4.
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Theorem 3.9 (M1 integral convergence for 0 < α < 1). Theorem 3.6 also holds if the Xn are
moving averages or uncoupled correlated CTRWs with 0 < α < 1, where either X = (

∑∞
j=0 cj)Z

or X = (
∑∞

j=0 cj)ZD−1 , provided we replace replace dJ1 with dM1.

In the case 1 ≤ α ≤ 2, the situation is very different from that of uncorrelated CTRWs or
zero-order moving averages: even a single-delay correlation structure of the Xn generally does
not translate into admitting good (GD) and the counterexample in [62, Prop. 4.5] demonstrates
that this can result in a severe failure of the desired convergence (3.10), even for integrands Hn

which converge to the zero process almost surely in the uniform norm.
In these circumstances, to preserve integral convergence we can seek to compensate the

lack of (GD) by imposing additional restrictions on the interplay of integrands and integrators.
Here we pursue such an extended framework for weak integral convergence on Skorokhod space,
covering integrators that are—in a certain sense—close to admitting (GD).

4. A generalised framework for good decompositions

Considering the correlated CTRW Xn defined in (3.4) with 1 ≤ α ≤ 2, on a probability space
with filtration (3.8), we can decompose ψ−1Xn = Un + V n with

Un
t := Un,1

t + Un,2
t :=

1

n
β
α

N(nt)
∑

k=1

θk +
ψ−1

n
β
α

∞∑

k=0

(N(nt)+k
∑

j=k+1

cj

)

θ−k, (4.1)

V n
t := − ψ−1

n
β
α

N(nt)
∑

k=1

( ∞∑

j=k

cj

)

θN(nt)−k+1, ψ :=

∞∑

j=0

cj . (4.2)

We recall that the first summand Un,1 of Un is nothing else than an uncorrelated uncoupled
CTRW and so, by Theorem 3.3, possesses good decompositions. If, by suitable assumptions, we
ensure that the second summand of Un is of tight total variation on compact time intervals, then
it will come as no surprise that weak integral convergence can be achieved by simply controlling
the interplay of the integrands Hn and the processes V n. We are going to show that the second
summand of Un,2 of Un is of tight total variation on compact time intervals, if we impose a mild
technical condition on the tail summability of the cj , more precisely







∑∞
i=1

∑∞
j=i cj < ∞, if 1 < α ≤ 2;

∑∞
i=1

(
∑∞

j=i cj

)ρ
< ∞ for some 0 < ρ < 1, if α = 1.

(TC)

Remark 4.1. By Fubini’s theorem,
∑∞

k=1 k ck < ∞ is a simple sufficient criterion for (TC) in
the case 1 < α ≤ 2, and so is

∑∞
k=1 k c

ρ
k <∞ for some 0 < ρ < 1 in the case α = 1.

Lemma 4.2. Under (TC), the processes Un in (4.1) have good decompositions (GD).

Proof. As outlined earlier, it suffices to show that the second summand of Un is of tight total
variation on compact time intervals. If 1 < α ≤ 2, choose ρ = 1 and, in the case α = 1, let
0 < ρ < 1 such that (TC) is satisfied. A simple application of Markov’s inequality, monotone
convergence and the identical distribution of the θk yield

P

(

TV[0,t](U
n,1) > R

)

≤ P

(
ψ−1

n
β
α

∞∑

k=0

(N(nt)
∑

ℓ=1

ck+ℓ

)

|θ−k| > R

)

≤ c̃ ψ−ρ

Rρ n
ρβ
α

E[|θ0|ρ] → 0

as R→ ∞ or n→ ∞, where c̃ :=
∑∞

i=1(
∑∞

j=i cj)
ρ, since the ρ-th moment of θ0 exists as its law

is in the domain of attraction of an α-stable distribution with ρ < α.

10



4.1. Direct control of variation

The most direct approach to controlling integrals against the V n amounts to having the Hn

’tame’ the total variation of the V n. If the Hn are pure jump processes, this becomes particularly
simple, leading to Proposition 4.4 below.

Definition 4.3 (Random countable partition). We will call π := {sk : k = 0, 1, 2, ...} ∪ {T}
a (countable) partition of [0, T ] if

⋃∞
k=0[sk, sk+1) = [0, T ) and [sk, sk+1) ∩ [sℓ, sℓ+1) = ∅ for all

k 6= ℓ. In addition, if the sk are random variables, the partition is said to be random. Further,
we denote the mesh size of such partition by |π| := supk=0,1,... |sk+1 − sk|.

Towards the next proposition, let (Hn)n≥1 be a sequence of adapted pure jump càdlàg
integrands such that, for every T > 0, the set Disc[0,T ](H

n) = {sk : k = 0, 1, 2, ...} ∪ {T} is a
countable partition of [0, T ]. Further assume Xn = Un + V n, V n are semimartingales adapted
to the same filtration as the Hn, where the Un have (GD), Xn ⇒ X on (DRd [0,∞), ρ) with
ρ ∈ {dJ1,dM1} and Un ⇒ X on (DRd [0,∞),dM1) for some X, and

P

( ∞∑

k=0

|V n
sk+1

− V n
sk
| > λ

)

−−−→
n→∞

0, for each T, λ > 0. (4.3)

Proposition 4.4 (Pure jump integrands and control of variation). Let Hn,Xn be as stated
above. If (Hn,Xn) ⇒ (H,X) on (DRd [0,∞),dM1)× (DRd [0,∞),dM1) and the (Hn,Xn) satisfy
(AVCI), then it holds

(

Xn,

∫ •

0
Hn

s− dXn
s

)

=⇒
(

X,

∫ •

0
Hs− dXs

)

on (DR2d [0,∞),dM1).

The approach of controlling directly the activity of the V n is not restricted to pure jump
integrands. Indeed, we can ask for the integrands to be Lipschitz continuous in such a way that
they exhibit enough inertia to not be able to react in a critical way to changes of the V n and
therefore not ’pick up’ too much of the latter’s variation through integration.

Definition 4.5 (GD modulo controllable activity). Let (Xn)n≥1 be a sequence of d-dimensional
semimartingales on filtered probability spaces (Ωn,Fn,Fn,Pn) and letX be defined on (Ω,F ,F,P).
We say the sequence (Xn)n≥1 has good decompositions modulo a weakly asymptotically negligible
process of nγ-controllable activity on an n−λ-fine partition—abbreviated as GDmodCA(γ, λ)—
with γ, λ > 0, if there exist processes (Un)n≥1, (V

n)n≥1 on the same filtered probability spaces
as the Xn such that

(i) the Un are semimartingales having (GD) and Un ⇒ X on (DRd [0,∞),dM1);

(ii) the V n are adapted, càdlàg pure jump processes of finite variation such that, for every
T > 0 there exist random partitions πn := πn(ω) of [0, T ] with |πn| ≤ n−λ as well as
Disc[0,T ](V

n) ⊆ πn almost surely, and it holds

n−γ
∑

s ∈ πn

|V n
s | Pn

−−−→
n→∞

0

(iii) Xn = Un + V n ⇒ X on (DRd [0,∞),dM1).

Theorem 4.6 (Lipschitz integrands and GDmodCA). Let (Xn)n≥1 be a sequence of d-dimensional
semimartingales on filtered probability spaces (Ωn,Fn,Fn,Pn) which are GDmodCA(γ, γ̃) as in
Definition 4.5. Further let (Hn)n≥1 be a sequence of adapted càdlàg processes on the same fil-
tered probability spaces and suppose that, for every n ≥ 1 and T > 0, Hn|[0,T ] is almost surely
Lipschitz continuous with Lipschitz constant CT n

γ̃−γ, i.e.

|Hn
t −Hn

s | ≤ CT n
γ̃−γ |t− s|
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for all 0 ≤ s ≤ t ≤ T , where CT > 0 only depends on T . Suppose further that both (Hn, Un) and
(Hn,Xn) satisfy (AVCI). If (Hn,Xn) ⇒ (H,X) on (DRd [0,∞),dM1) × (DRd [0,∞), ρ), where
ρ ∈ {dJ1,dM1}, then X is a semimartingale in the natural filtration generated by (H,X) and

(

Xn,

∫ •

0
Hn

s− dXn
s

)

=⇒
(

X,

∫ •

0
Hs− dXs

)

on (DR2d [0,∞), ρ).

Remark 4.7. By definition of the consecutive increment function ŵ in (AVCI), we note that,
sinceXn = Un+V n, showing (Hn,Xn) and (Hn, Un) satisfy (AVCI) is equivalent to establishing
(AVCI) for (Hn,Xn) and (Hn, V n) or (Hn, Un) and (Hn, V n).

As one would hope, moving averages and correlated CTRWs constitute a natural class of
processes which enjoy the GDmodCA property.

Proposition 4.8 (CTRWs are GDmodCA). Moving averages (3.1) and correlated CTRWs
(3.4) with 1 ≤ α ≤ 2 and (TC), are GDmodCA(γ, β) for all γ > (β − β/α).

4.2. Control through independence

Instead of restricting the class of admissible integrands to such processes which act as a direct
control to the activity of the V n, as pursued in Section 4.1, there is another more probabilistic
approach that suggests itself: if we impose that the integrands must not anticipate the ‘future’
behaviour of the integrator remainders V n (i.e., adequate independence) and the (conditional)
expectation of the latter is suitably centered around zero, then this should offer enough control
for a weak continuity result of stochastic integrals. In the sequel, we will provide a precise
framework for the implementation of this idea. Throughout, we write |X|∗t := sup0≤s≤t |Xs| for
the running supremum of X over the time interval [0, t].

Definition 4.9 (GD modulo processes controllable by independence). Let (Xn)n≥1 be a se-
quence of d-dim semimartingales on filtered probability spaces (Ωn,Fn,Fn,Pn) and let X be
a process on some filtered probability space (Ω,F ,F,P). We say that the sequence (Xn)n≥1

has good decompositions modulo a weakly asymptotically negligible processes controllable through
suitable independence of the integrands—abbreviated as GDmodCI—if there exist processes
(Un)n≥1, (Ũ

n)n≥1, (V
n,i)n≥1, i ≥ 1, which are defined on the same filtered probability spaces as

the Xn as well as f : N → (0,∞) and λ, µ > 1 such that

(i) the Un, Ũn are semimartingales having (GD) and Un ⇒ X on (DRd [0,∞),dM1);

(ii) the V n,i are pure jump semimartingales, with finitely many jumps on compact time inter-
vals, and let σn,i1 ≤ σn,i2 ≤ ... be stopping times such that Disc(V n,i) ⊆ {σn,ik : k ≥ 1} and

denote Λn,i(t) := sup{k ≥ 1 : t ≤ σn,ik }. Further, it holds:

(ii.i) for every T > 0 and i ≥ 1, the sequence of random variables supi≥1 |Λn,i(•)/f(n)|∗T
is tight in R;

(ii.ii) for every n, k ≥ 1,
∑∞

i=1 |V
n,i

σn,i
k

| is integrable and we have

En

[

V n,i

σn,i
k

| Vn,k−1,Vn,k−2, ...,Vn,1

]

= 0;

for all i ≥ 1, where Vn,k := σ
(

V n,j

σn,j
k

: j ≥ 1
)

;
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(ii.iii) for every n, k ≥ 1 we have

lim sup
n≥1

K f(n)
∑

k=0

En
[

(Ṽ n,>
k )λ

]

< ∞ and

lim sup
n≥1

K f(n)
∑

k=0

En
[

(Ṽ n,≤
k )µ

]

< ∞, for each K > 0,

where Ṽ n,>
k :=

∑∞
i=1 |V

n,i

σn,i
k

|1
{|V n,i

σ
n,i
k

|> 1}
and Ṽ n,≤

k :=
∑∞

i=1 |V
n,i

σn,i
k

|1
{|V n,i

σ
n,i
k

| ≤ 1}
;

(iii) Xn = Un + Ũn +
∑∞

i=1 V
n,i ⇒ X on (DRd [0,∞),dM1).

Moving averages or correlated uncoupled CTRWs with centered innovations and 1 < α ≤ 2
provide a natural vast group of processes which are GDmodCI under (TC).

Proposition 4.10 (CTRWs with 1 < α ≤ 2 are GDmodCI). Let Xn be moving averages as
in (3.1) or a correlated CTRW as in (3.4) with 1 < α ≤ 2. If E[θ0] = 0 and (TC) hold, then the
sequence Xn is GDmodCI with

• if Xn is a CTRW: σn,ik = σnk =
∑k

ℓ=1 Jℓ/n and

V n,i
t = −

(
∑∞

j=0 cj)
−1

n
β
α

( ∞∑

ℓ=i

cℓ

)

θN(nt)−i+1 1{N(nt)≥i}, for all i, k ≥ 1;

• if Xn is a moving average: σn,ik = σnk = k/n and

V n,i
t = −

(
∑∞

j=0 cj)
−1

n
β
α

( ∞∑

ℓ=i

cℓ

)

θ⌊nt⌋−i+1 1{⌊nt⌋≥i}, for all i, k ≥ 1.

Theorem 4.11 (Independent integrands and GDmodCI). Let (Xn)n≥1 be a sequence of d-
dimensional semimartingales on filtered probability spaces (Ωn,Fn,Fn,Pn) which are GDmodCI
and let (Hn)n≥1 be a sequence of adapted càdlàg processes on the same filtered probability spaces.
Suppose that for every n, k, i ≥ 1 it holds

σ

(

Hn
t∧σn,j

ℓ

: t ≥ 0, j ≥ 1, ℓ ≤ k

)

⊥⊥ V n,i

σn,i
k−1

, V n,i

σn,i
k

(4.4)

and that the pairs (Hn,Xn) satisfy (AVCI) or the criteria set out in [62, Thm. 4.7].
If (Hn,Xn) ⇒ (H,X) on (DRd [0,∞),dM1)× (DRd [0,∞), ρ), where ρ ∈ {dJ1,dM1}, then X

is a semimartingale in the natural filtration generated by (H,X) and it holds

(

Xn,

∫ •

0
Hn

s− dXn
s

)

=⇒
(

X,

∫ •

0
Hs− dXs

)

on (DR2d [0,∞), ρ).

Remark 4.12. A close inspection of the proof of Theorem 4.11 reveals that if instead of (ii.ii)
in Definition 4.9, we assume just

En

[

V n,i,≤

σn,i
k

| Vn,k−1,Vn,k−2, ...,Vn,1

]

= 0 (4.5)

for every n, k, i ≥ 1, then, in particular, we gain some degree of freedom towards (ii.iii), where
it suffices to replace the first bound by the direct control

lim
M→∞

lim sup
n→∞

Pn

( Kf(n)
∑

k=1

∞∑

i=1

|V n,i,>

σn,i
k

| ≥ M

)

= 0 (4.6)
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for all K > 0. Under this alternative set of assumptions, Theorem 4.11 is clearly still valid.
Indeed, in this case, (4.6) fully controls the second probability term in (6.21) and we proceed in
full analogy to the proof of Theorem 4.11 for the remaining part.

Corollary 4.13 (CTRWs with α = 1 are GDmodCI). Let Xn be a moving averages as in (3.1)
or a correlated CTRW as described (3.4) with α = 1. If the law of θ0 is symmetric around zero
and

∑∞
i=1

∑∞
k=i ck <∞, then the sequence Xn is GDmodCI.

4.3. Final results for moving averages and correlated CTRWs

From Theorem 4.6 and Propositions 4.8, we immediately obtain the following result on weak
integral convergence of Lipschitz integrands with respect to moving averages and CTRWs with
1 ≤ α ≤ 2.

Theorem 4.14 (Weak integral convergence for CTRWs I). Let Xn be a moving average as in
(3.1) or an uncoupled correlated CTRWs as in (3.4) with 1 ≤ α ≤ 2 and (TC). Furthermore,
let Hn be processes adapted to the filtration (3.8) and let γ ∈ (0, β/α) such that for every T > 0
there exists CT > 0 with

|Hn
s −Hn

t | ≤ CT n
γ |t− s| for all 0 ≤ s, t ≤ T.

If (Hn,Xn) ⇒ (H,X) on (DRd [0,∞),dM1) × (DRd [0,∞),dM1) with X = (
∑∞

j=0 cj)Z or X =

(
∑∞

j=0 cj)Z(D
−1(•)) and the (Hn,Xn) and (Hn, Un) satisfy (AVCI), where Un denotes the

corresponding moving average or (correlated) CTRW, then X is a semimartingale in the natural
filtration generated by (H,X) and it holds

(

Xn,

∫ •

0
Hn

s− dXn
s

)

=⇒
(

X,

∫ •

0
Hs− dXs

)

on (DR2d [0,∞),dM1).

Just as we have used Theorem 4.6 and Propositions 4.8 to deduce Theorem 4.14, we can
similarly obtain a tailored result for moving averages and CTRWs with 1 ≤ α ≤ 2 on behalf of
Theorem 4.11 and Proposition 4.10 (respectively Corollary 4.13). Towards a simplification of
notation for the next theorem, we will comprehend Lk as the quantity defined before (3.4) if we
consider CTRWs and Lk = k if we consider moving averages.

Theorem 4.15 (Weak integral convergence for CTRWs II). Let Xn be a moving averages as
defined in (3.1) or an uncoupled correlated CTRW as in (3.4) with 1 ≤ α ≤ 2, which are adapted
to filtrations Fn and (TC) holds. Moreover, assume that we have E[θ0] = 0 if 1 < α ≤ 2 and
that the law of θ0 is symmetric if α = 1. Furthermore, let Hn be càdlàg processes adapted to the
filtration (3.8) such that for all n, k ≥ 1,

Hn

•∧
Lk
n

⊥⊥ σ
(
θk−ℓ , Jk+i : i ≥ 1, ℓ = 0, 1, 2, ..., k ∧ (J + 1)

)
(4.7)

where J = sup{j ≥ 1 : ci = 0 for i > j}. If (Hn,Xn) ⇒ (H,X) on (DRd [0,∞),dM1) ×
(DRd [0,∞),dM1) with X = (

∑∞
j=0 cj)Z or X = (

∑∞
j=0 cj)Z(D

−1(•)), then X is a semimartin-
gale in the natural filtration generated by (H,X) and it holds

(

Xn,

∫ •

0
Hn

s− dXn
s

)

=⇒
(

X,

∫ •

0
Hs− dXs

)

on (DR2d [0,∞),dM1).

Proof. To prove the theorem, according to Theorem 4.11 and Proposition 4.10, we only need
to verify (4.4) as well as the alternative conditions to (AVCI) given in [62, Thm. 4.7(a)&(b)].
On behalf of (4.7), it is straightforward to show (4.4) under the choice of V n,i and σn,ik given in
(6.16). With regards to the alternative condition to (AVCI) given in [62, Thm. 4.7], choosing
σnk = Lk/n for CTRWs and σnk = k/n for moving averages, (b) follows immediately from the the
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M1 tightness criterion involving the modulus of continuity w′′ in [62, Def. A.7] by noting that
Xn restarted from σnk is in itself a moving average or uncoupled correlated CTRW, which then is
tight on (DRd [0,∞),dM1) according to Section 3.1. Turning to condition (a), it is direct to use
[62, Lem. 4.11] together with (4.7) and the fact that Xn is a moving average or an uncoupled
CTRW, i.e. the waiting times are independent of the innovations.

Remark 4.16 (Weaker assumptions on the integrands). It must be pointed out that the conver-
gence (Hn,Xn) ⇒ (H,X) on (DRd [0,∞),dM1)×(DRd [0,∞),dM1) can be significantly weakened
and the results in Theorems 3.6, 4.14 and 4.15 (as well as the more general results in Proposition
4.4, Theorem 4.6 and Theorem 4.11) still hold true. We refer to [62, Prop. 3.22] for more details.

Remark 4.17 (Sum of admissible integrands). A close inspection of the proofs of Theorem 4.14
and Theorem 4.15 as well as the proofs of [62, Prop. 5.3 & Thm. 3.6] reveals that if we are
given integrands Hn = H1,n +H2,n, where H1,n satisfies the assumption of Theorem 4.14 and
H2,n meets the assumptions of Theorem 4.15 (where we can replace the convergence condition
with the relaxed assumptions described in Remark 4.16), then we obtain the desired integral
convergence result from Theorem 4.14/ 4.15 for Hn.

5. Applications to SDE and SDDE models of anomalous diffusion

In Section 1.1, we discussed the connection between fractional Fokker–Planck–Kolmogorov equa-
tions and SDEs driven by time-changed Lévy processes. As a concrete example, consider a spher-
ically symmetric Lévy process Z (with characteristic exponent Ψ(ξ) = −|ξ|2) time-changed by
the inverse of a β-stable subordinator D. Under suitable assumptions, an SDE of the form

dXt = σ(Xt−) dZD−1
t
, X0 = x,

will then have transition densities p(t, x) governed by

Dβ
t p(t, x) = −κ(α)(−∆)

α
2
(
σ(x)αp(t, x)

)
, p(0, x) = δx,

where −(−∆)
α
2 is a fractional Laplacian and κ(α) is the appropriate diffusivity constant. In

order to connect the continuum formulations with CTRW driven models, a natural approach is
to exploit the results on stochastic integral convergence established earlier in the paper, similarly
to the classical results of [60] and [37, Sect. 5]. Beyond establishing a rigorous theoretical link to
CTRW formulations, this also provides a natural numerical scheme for the simulation of SDEs
driven by time-changed Lévy processes and, consequently, the associated fractional Fokker–
Planck–Kolmogorov equations through a Monte Carlo procedure.

While Section 5.1 implements the above, Section 5.2 proceeds to consider SDDEs. Specif-
ically, our aim is to illustrate that, for such equations, it is possible to have functional limit
theorems on Skorokhod space even if the driving CTRWs are strictly M1 convergent. This is
achieved by exploiting the framework of Section 4.2. To keep the analysis manageable, we focus
on moving averages rather than more general correlated CTRWs. In turn, the limiting equations
are driven by a standalone Lévy process rather than a time-changed one.

5.1. Functional limit theorems for SDEs driven by CTRWs

A series of papers [29, 31, 39] have investigated weak and strong approximation schemes for
SDEs of the general form







dXt = µ(D−1
t ,Xt)− dD−1

t + σ(D−1
t ,Xt)− dBD−1

t

X0 = x,
(5.1)
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where B is a Brownian motion B andD is a subordinator. Motivated by stable limit theorems, we
focus on stable subordinators for concreteness, but the main thing is simply that the subordinator
is strictly increasing. A recent work [30] extends the results of [31] to allow for a traditional
drift term, but only of the specific form b(D−1

t ) dt. In general, dt terms are problematic because
they break the useful duality with non-time-changed SDEs explored in [36].

As discussed in [63, Ch. 6.6], the inverse subordinator and time-changed driver in (5.1)
are not Markovian and do not enjoy independent or stationary increments, so one cannot rely
directly on the usual tools for classical SDEs such as the Euler method. On the other hand,
CTRW approximations present themselves as a natural alternative (see e.g. [44, Ch. 5] for the
simulation of CTRWs and their use in simulating time-changed Lévy processes).

Section 4 of the aforementioned work [36] studies theoretical properties, such as existence
and uniqueness, for the more general class of SDEs







dXt = b(t,D−1
t ,Xt)− dt + µ(t,D−1

t ,Xt)− dD−1
t + σ(t,D−1

t ,Xt)− dZD−1
t

X0 = x,
(S)

for suitable Z and D. As we have done throughout, here we take Z to be an α-stable Lévy
process and D−1 to be the inverse of a β-stable subordinator, so that our analysis aligns with
the stable limit theory recalled in Section 3.1. We are then interested in connecting (S) with
the approximating SDEs

{

dXn
t = b(t,Dn

t ,X
n
t )− dt + µ(t,Dn

t ,X
n
t )− dDn

t + σ(t,Dn
t ,X

n
t )− dZn

t

X0 = x,
(Sn)

where Dn := n−βN(n•) and where the Zn denote uncorrelated uncoupled CTRWs defined as
in (3.4) with cj = 0 for all j ≥ 1. Of course, one could also consider weakly convergent initial
conditions independent of the other stochastic inputs.

In terms of structural assumptions, we take the functions b, µ, σ : R+ × R2 → R to be
continuous as well as satisfying, for all T,R > 0, a strictly sublinear growth condition

sup
0≤t≤T

sup
|ỹ|≤R

(|b(t, ỹ, y)| ∨ |µ(t, ỹ, y)| ∨ |σ(t, ỹ, y)|) ≤ K |y|p + C, (5.2)

where the constants K,C > 0 and the exponent p ∈ (0, 1) may depend on T,R. Here we
have used the usual notation a ∨ b := max{a, b}. Imposing strict sublinearity for the growth
condition in the space variable serves as a tool to prove suitable tightness of the solutions Xn

on the Skorokhod space. In typical SDE configurations, one would often allow for linear growth
by resorting to Gronwall type arguments. For example, one could aim to rely on the general
stochastic version of Gronwall’s lemma in [18, Thm. 1.2], but the lack in predictability and
integrability of the integrators for classical upper bounds does not permit a direct application.

With the above assumptions, we obtain the following functional central limit theorem for
SDEs driven by CTRWs. It gives existence of a solution to the SDE (S) and shows that the
limits points of (Sn) are supported on the solution set. The proof is given in Section 6.4.

Theorem 5.1 (Convergence of SDEs driven by CTRWs). Any subsequence of the solutions
(Xn)n≥1 to (Sn) has a further subsequence converging weakly on (DR[0,∞), dJ1) to a solution
X of (S). If there is uniqueness in law for (S), then (Xn)n≥1 itself converges weakly to this
unique limit.

5.2. Stochastic delay differential equations driven by moving averages

For a given delay parameter r > 0, consider the stochastic delay differential equation
{

dXt = b(t,Xt−r)− dt+ σ(t,Xt−r)− dZ(t)

Xs = ηs, s ∈ [−r, 0]
(Š)
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whose driver, Z, is a stable Lévy process. Such a model can capture phenomena driven by
anomalous diffusion in the space variable, where the rates of change for the drift and diffusion
depend on the state of the system some time into the past.

When Z is a Brownian motion, discrete approximation schemes for delayed systems such as
(Š) have been examined in [65]. We also note that [24] studies convergence of stochastic integrals
for SDDEs, again in the Brownian setting, but there the focus is on characterising the small
delay limit. Here we are interested instead in the stability of (Š) with respect to the driver Z
when this arises as the weak scaling limit of moving averages in the M1 topology. To this end,
we shall rely on Theorem 4.15. One could also consider the corresponding systems driven by
time-changed Lévy processes, and hence study the weak convergence in terms of general CTRWs.
However, in order to keep the treatment succinct, we prefer to illustrate the procedure with the
simpler moving averages as drivers.

Consider the SDDE from (Š) with initial condition η ∈ DR[−r, 0] and continuous b, σ :

R+ × R → R satisfying for any T > 0 the boundedness condition

sup
0≤ t≤T

sup
x∈R

|b(t, x)| ∨ |σ(t, x)| < ∞. (5.3)

Let (Xn)n≥1 be a sequence of solutions to the SDDEs

{

dXn
t = b(t,Xn

t−r)− dt + c−1 σ(t,Xn
t−r)− dZn

t

Xn
s = η(s), s ∈ [−r, 0]

(Šn)

where c :=
∑J

k=0 ck and the Zn are moving averages as defined in (3.1) with cj = 0 for all j > J
and some J ≥ 1 as well as E[θ0] = 0 if 1 < α ≤ 2 and the law of θ0 being symmetric around
zero if α = 1. Then, we know from Section 3.1, that c−1Zn ⇒ Z on the M1 Skorokhod space.
Notice that the Zn are pure jump processes with finitely many jumps on compact time intervals
and therefore solutions to (Šn) do not only exist but are also explicit. We are interested in the
weak convergence of solutions of (Šn) to a solution of (Š) on on (DR[0,∞),dM1).

To prove this result, we must first show some form of relative compactness for the sequence
(Xn)n≥1 of solutions to (Šn). Unfortunately, the development of general convenient criteria
established on the M1 space fell short of the one on its J1 counterpart (e.g. Aldous’ criteria [8,
Thm. 16.10] or Rebolledo’s criteria [56]). Still, a useful condition for relative compactness on
the M1 space has been given by Avram & Taqqu [2, Thm. 1]. This condition allows it to reduce
the classical criteria involving the modulus of continuity w′′ (see e.g. [62, Def. A.7]) to a version
based on intervals with respect to fixed times if one can ensure a certain uniform bound which
is essentially scaled by the length of the intervals, and we will be able to use this in order to
show the M1 relative compactness of the Xn.

Once this has been shown, it is straightforward to deduce that any subsequence has a further
subsequence which converges to some limit (a priori dependent on the specific subsequence) and
such that the integrands on the right-hand side of (Šn) satisfy the weaker integrand conditions
mentioned in Remark 4.16. Clearly, (AVCI) is trivially satisfied for the drift integral in (Šn)
due to Proposition 2.3, and thus these converge suitably according to [62, Prop. 3.22]. On the
other hand, if the integrators and integrands of the diffusion integral meet assumption (4.7) of
Theorem 4.15, then Remark 4.16 yields additionally the desired convergence of these integrals.
Since the limit of the drift integrals is continuous, we ultimately deduce the desired convergence
of both sides of (Šn) on the M1 space. The proof is given in Section 6.4.

Theorem 5.2 (Convergence of SDDEs driven by moving averages). For any subsequence of the
solutions Xn of (Šn), there is a further subsequence converging weakly on (DR[0,∞), dM1) to
a solution X of (Š). If there is uniqueness in law for (Š), then Xn ⇒ X on (DR[0,∞), dM1),
where X is the unique solution.
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One can easily extend the previous result to SDDEs of the type

{

dXt = b(t,Xt−r)− dt + [σ(t,Xt−r)− + σ̃(t,X[t−r,t])−] dZt

Xu = η(u), u ∈ [−r, 0]
(S̃)

where Z, b, σ and η are defined as before in (Š) andX[t−r,t] denotes the path segment (Xs)t−r≤ s≤ t.
Here σ̃ is of the form

σ̃(t, X[t−r,t]) =

∫ t

t−r
Φ(t, s,Xs) ds

where Φ : [0,∞)× [−r,∞)× R → R is such that for every T > 0

sup
t∈ [0,T ]

sup
s∈ [t−r,t]

sup
x∈R

|Φ(t, s, x)| < ∞.

We let Φ be continuous in the third component (i.e., x 7→ Φ(t, s, x) is continuous for fixed t, s)
and Lipschitz on compacts in the first component: for all T > 0 there is LT > 0 such that

|Φ(t, s, x)− Φ(t̃, s, x)| ≤ LT |t− t̃|

for any 0 ≤ t ≤ t̃ ≤ T , x ∈ R and t̃ − r ≤ s ≤ t. Obviously, the map x 7→ σ̃(•, x[•−r,•])
is continuous from (DR[0,∞),dM1) into (CR[0,∞), | · |∗∞). Indeed, relative compactness fol-
lows from the Arzelà-Ascoli theorem, and pointwise convergence can easily be shown by dom-
inated convergence, the continuity of Φ in the third component and the fact that xn → x in
(DR[0,∞),dM1) implies in particular xn(s) → x(s) for all but countably many s ∈ [0,∞). An
example of such a σ̃ could be the convolution with a Lipschitz kernel ρ : [−r, 0] → R, that is
Φ(t, s,Xs) := ρ(t− s) f(Xs) for t− r ≤ s ≤ t, where f is bounded and continuous.

Corollary 5.3 (Another class of SDDEs). Denote by (S̃n) the approximating SDDEs for (S̃) in
analogy to how (Šn) and (Š) relate. For any subsequence of the solutions Xn of (S̃n), there is a
further subsequence which converges weakly on (DR[0,∞), dM1) to a solution X of (S̃). If (S̃)
is unique in law, then Xn ⇒ X on (DR[0,∞), dM1), where X is the unique solution.

6. Proofs of results from Sections 3, 4, and 5

6.1. Proofs pertaining to Section 3.3

Lemma 6.1. Zero-order moving averages and uncoupled uncorrelated CTRWs (i.e., (3.1) or
(3.4) with cj = 0 for all j ≥ 1) are of tight total variation on compacts.

Proof of Lemma 6.1. We are only going to prove the lemma for CTRWs. The proof for moving
averages can be conducted in a very similar way. Let Xn be defined as in (3.4) with c0 = 1 and
cj = 0 for all j ≥ 1. As a pure jump process, the total variation of Xn is

TV[0,t](X
n) =

N(nt)
∑

k=1

|ζk/n
β
α | .

Fix t > 0 and let ε > 0. Given the tightness from (3.5), there exists Kt,ε > 0 such that

P

(

sup
s∈[0,t]

n−βN(ns) > Kt,ε

)

= P

(

N(nt) > nβKt,ε

)

≤ ε

3
.
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Hence,

P

(

TV[0,t](X
n) > Ct,ε

)

≤ ε

3
+ P

(

n−
β
α

⌊nβKt,ε⌋∑

k=1

|ζk| > Ct,ε

)

≤ ε

3
+ P

( ⌊nβKt,ε⌋∑

k=1

|ζk| > Ct,ε n
β
α , max

k=1,..., ⌊nβKt,ε⌋
|ζk| ≤ Ct,ε n

β
α

)

(6.1)

+ P

(

max
k=1,..., ⌊nβKt,ε⌋

|ζk| > Ct,ε n
β
α

)

(6.2)

and we are going to determine a suitable Ct,ε > 0 such that (6.1) and (6.2) are each bounded
by ε/3, then implying that the sequence Xn has tight total variation on [0, t]. Firstly,

(6.2) ≤ Kt,ε n
β P

(

|ζ1| > Ct,ε n
β
α

)

=
Kt,ε

Cα
t,ε

[

Cα
t,ε n

β P

(

|ζ1| > Ct,ε n
β
α

)]

.

Due to the alternative characterisation of the domain of attraction of an α-stable law (see [7,
(1.1)] or [16, p. 312/313]), the tail probabilities of ζ1 behave with regularity P(|ζ1| > x) ∼ x−α.
Hence, we can choose n0 ≥ 1 such that for all n ≥ n0 it holds

Cα
t,ε n

β P

(

|ζ1| > Ct,ε n
β
α

)

≤ 2

implying that for all n ≥ n0,

(6.2) ≤ 2Kt,ε

Cα
t,ε

. (6.3)

Concerning (6.1), we will make use of the Fuk–Nagaev inequality (see [7, Theorem 5.1(i)] and
take into account the remark in [7, p.12] that the inequality only requires the bound P(|ζ1| >
x) ≤ cx−α) with Xk = ζk and x = y = Ct,εn

β
α to obtain

(6.1) ≤ eλ−1 ⌊nβKt,ε⌋ (Ct,ε n
β
α )−α ≤ eλ−1 Kt,ε

Cα
t,ε

(6.4)

for some constant λ > 0 independent of all other quantities. Therefore, choosing n ≥ n0 and
Ct,ε > 0 large enough, we are able to bound (6.1) and (6.2) by ε/3 on behalf of (6.3) and (6.4).
Since all Xn are of local finite variation, the family {TV[0,t](X

n) : n < n0} is obviously tight
and we deduce the existence of Ct,ε > 0 such that P(TV[0,t](X

n) > Ct,ε) ≤ ε.

Proof of Proposition 3.8. Consider the decompositions (4.1) and (4.2). Note that

TV[0,t](U
n) ≤ TV[0,t](U

n,1) + n−β/α
∞∑

k=0

(N(nt)
∑

ℓ=1

ck+ℓ

)

|θ−k|

and TV[0,t](V
n) ≤ TV[0,t](U

n,1), where Un,1
t = n−β/α

∑N(nt)
k=1 θk denotes the uncorrelated CTRW.

Since TV[0,t](U
n,1) is tight by Lemma 6.1, it only remains to show that n−β/α

∑∞
k=0(

∑N(nt)
ℓ=1 ck+ℓ)|θ−k|

is tight on compact time intervals: the case of only finitely many cj 6= 0 is straightforward. As-
sume now that there are infinitely many cj 6= 0 and for the sake of simplicity that the sequence
(cj)j≥1 is non-increasing. Let t ≥ 0, ε > 0 as well as 0 < ρ < α < 1 such that

∑∞
j=0 c

ρ
j < ∞,
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and note that then θ0 ∈ Lρ(Ω,F ,P). Therefore, since α < 1 and hence β − β/α < 0, we have

P

(

n−β/α
∞∑

k=0

(N(nt)
∑

ℓ=1

ck+ℓ

)

|θ−k| > R

)

≤ ε

2
+ P

(

n−β/α
∞∑

k=0

(Kεnβ
∑

ℓ=1

ck+ℓ

)

|θ−k| > R

)

≤ ε

2
+ P

( ∞∑

k=0

ck |θ−k| > nβ/α−β R

Kε

)

≤ ε

2
+
(Kε

R

)ρ
n(β−β/α)ρ E

[( ∞∑

k=0

ck |θ−k|
)ρ]

≤ ε

2
+
(Kε

R

)ρ
n(β−β/α)ρ E[|θ0|ρ]

∞∑

k=0

cρk −−−→
n→∞

ε

2

by monotone convergence and the identical distribution of the θk, where Kε > 0 is such that
supn≥1 P(n

−βN(nt) > Kε) ≤ ε/2. Thus, we have obtained the desired tightness.

6.2. Proofs pertaining to Section 4.1

Proof of Theorem 4.6. We proceed by mimicing the proof of [62, Thm. 3.6] and refer to the
latter for definitions of the quantities used subsequently. Note that it suffices to show that
X is a semimartingale with respect to the natural filtration generated by the pair (H,X) and
we obtain a convenient bound for the quantity (T4) defined in the proof of the proof of [62,
Thm. 3.6]. Denote Un and V n the decomposition processes of Xn according to Definition 4.5.
Given that (Hn,Xn) ⇒f.d.d. (H,X) on a co-countable set of times due to the convergence on
the Skorokhod space, also (Hn, Un) ⇒f.d.d. (H,X), and (|Un|∗T )n≥1 is tight as a result of the
tightness of the Un on the Skorokhod space (Definition 4.5(i)), hence [62, Prop. 3.5] yields that
X is a semimartingale with respect to the natural filtration generated by (H,X) since the Un

have (GD). Now, in order to derive the desired bound on (T4) from the proof of [62, Thm. 3.6],
note that it is enough to show

lim
ε→0

lim
m→∞

lim sup
n→∞

En

[ ∣
∣
∣

∫ •

0
(Hn

s− −H
n |m,ε
s− ) dXn

s

∣
∣
∣

∗

T
∧ 1

]

= 0

for each T > 0. Since Xn = Un + V n and the Un have (GD), it only remains to bound

lim
ε→0

lim
m→∞

lim sup
n→∞

En

[ ∣
∣
∣

∫ •

0
(Hn

s− −H
n |m,ε
s− ) dV n

s

∣
∣
∣

∗

T
∧ 1

]

= 0 (6.5)

as for En[ |
∫ •
0 (H

n
s− −H

n |m,ε
s− ) dUn

s |∗T ∧ 1] we can proceed as in the proof of [62, Thm. 3.6] (and
just replace Xn by Un in this proof). Fix T > 0 and let πn = {snk : k = 0, 1, ...} be the respective
partitions of [0, T ] from Definition 4.5(ii). For simplicity of notation, we will denote sk := snk .
First note that for every n ∈ N and any càdlàg process G of finite variation, integration by parts
for Lebesgue-Stieltjes integration yields

∫ t

0
Gs− dV n

s = V n
t Gt − V n

0 G0 −
∞∑

k=0

V n
s2k

[Gs2k+1∧t −Gs2k∧t]

for all t ≥ 0. Now, choosing G := Hn − Hn |m,ε, where we recall that by definition |Hn −
Hn |m,ε|∗T ≤ ε, we obtain
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An :=

∣
∣
∣
∣

∫ •

0
(Hn

s− −H
n |m,ε
s− ) dV n

s

∣
∣
∣
∣

∗

T

≤ 2ε |V n|∗T −
∞∑

k=0

|V n
sk
| |(Hn

sk
−Hn |m,ε

sk
) − (Hn

sk+1
−Hn |m,ε

sk+1
)|.

Since Hn |m,ε by definition is constant between the partition points of ρm,ε(Hn), we have

An ≤ 2ε |V n|∗T +
∑

k≥0
6∃ p∈ ρm,ε(Hn) : sk <p≤ sk+1

|V n
sk
| |(Hn

sk
−Hn |m,ε

sk
) − (Hn

sk+1
−Hn |m,ε

sk+1
)|

+
∑

k≥0
∃ p∈ ρm,ε(Hn) : sk <p≤ sk+1

|V n
sk
| |(Hn

sk
−Hn |m,ε

sk
) − (Hn

sk+1
−Hn |m,ε

sk+1
)|

≤ 2ε |V n|∗T +
∑

k≥0
6∃ p∈ ρm,ε(Hn) : sk <p≤ sk+1

|V n
sk
| |Hn

sk
− Hn

sk+1
|

+
∑

k≥0
∃ p∈ ρm,ε(Hn) : sk <p≤ sk+1

|V n
sk
| |(Hn

sk
−Hn |m,ε

sk
) − (Hn

sk+1
−Hn |m,ε

sk+1
)|

≤ 2ε |V n|∗T + 2CT n
−γ

∑

t ∈ ζn

|V n
t | +

∑

k≥0
∃ p∈ ρm,ε(Hn) : sk <p≤ sk+1

|V n
sk
| |Hn

sk
−Hn |m,ε

sk
| (6.6)

where we have made use of the Lipschitz continuity of the Hn and sk+1 − sk ≤ |ζn| ≤ n−γ̃ .
Since V n = Xn −Un, (|V n|∗T )n≥1 is tight in R as a result of (|Un|∗T )n≥1, (|Xn|∗T )n≥1 being tight
in R (due to the tightness of Un,Xn on the Skorokhod space), and by Definition 4.5(ii), for the
first two terms of (6.6) it holds

lim
ε→0

lim sup
n→∞

Pn
(

ε |V n|∗T + 2CT n
−γ

∑

t ∈ πn

|V n
t | > γ

)

= 0 (6.7)

for all γ > 0. Considering the last term of (6.6), we continue bounding it by

∑

k≥0
∃ p∈ ρm,ε(Hn) : sk <p≤ sk+1

|V n
sk
| |Hn

sk
−Hn |m,ε

sk+1
|

≤
∑

k≥0
∃ p∈ ρm,ε(Hn)Kρm : sk <p≤ sk+1

|V n
sk
| |Hn

sk
−Hn |m,ε

sk
| +

∑

k≥0
∃ p∈ ρm : sk <p≤ sk+1

|V n
sk
| |Hn

sk
−Hn |m,ε

sk
|

≤
∑

k≥0
∃ p∈ ρm,ε(Hn)Kρm : sk <p≤ sk+1

(|V n
sk

− V n
min {t∈ ρm : t≥ sk}

|+ |V n
min {t∈ ρm : t≥ sk}

|) |Hn
sk

−Hn |m,ε
sk

|

+ ε
∑

k≥0
∃ p∈ ρm : sk <p≤ sk+1

|V n
sk
| . (6.8)

Since V n = Xn − Un and both Xn, Un converge weakly in M1 to X (and therefore their finite-
dimensional distributions converge to those of X along a co-countable subset), there exists a
dense subset D ⊆ [0, T ] such that the finite-dimensional distributions of V n converge to 0 along
D. Let πJ , J ≥ 2 be such that πJ = {rJ,i : 0 = rJ,1 < rJ,2 < ... < rJ,J = T, rJ,i ∈ D} such
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that |πJ | := max2≤i≤J |rJ,i+1 − rJ,i| → 0 as J → ∞. Recall that the number of partition points
of the deterministic partition ρm is bounded by some constant km only depending on m and T .
Then, we continue by estimating

∑

k≥0
∃ p∈ ρm : sk <p≤ sk+1

|V n
sk
| ≤

∑

k≥0
∃ p∈ ρm : sk <p≤ sk+1

(

( |V n
sk

− V n
max {t∈πJ : t≤ sk}

| ∨ |V n
sk

− V n
min {t∈πJ : t≥ sk}

| )

+ ( |V n
max {t∈πJ : t≤ sk}

| ∨ |V n
min {t∈πJ : t≥ sk}

| )
)

≤ km

(

w′′(V n, |πJ |) + 3 max
t∈πJ

|V n
t |
)

≤ km

(

w′′(Un, |πJ |) + w′′(Xn, |πJ |) + 3 max
t∈πJ

|V n
t |
)

(6.9)

for all J ∈ N. In particular, we have used for the second inequality that, by the triangle
inequality, |Vr2−Vr1 |∨|Vr2−Vr3 | ≤ |Vr3−Vr2 |+w′′(V n|[0,T ], θ) for 0 ≤ r1 < r2 < r3 ≤ T , |r3−r1| ≤
θ, where w′′ denotes the modulus of continuity (as e.g. defined in [62, Def. A7]). Moreover, for
the third inequality, we have employed that V n = Xn −Un and the property w′′(Xn −Un, θ) ≤
w′′(Xn, θ)+w′′(Un, θ). Further, the number of partition points of ρm,ε(Hn) \ ρm is bounded by
NT

ε (H
n), where NT

ε is the maximal number of ε-increments of Hn on [0, T ] as defined in [62,
Eq. (3.9)]. On behalf of the bound (6.9), (6.8) can be further estimated by

∑

k≥0
∃ p∈ ρm,ε(Hn) : sk <p≤ sk+1

|V n
sk
| |Hn

sk
−Hn |m,ε

sk
|

≤ NT
ε (H

n) sup
0≤ s≤u≤ r≤T
|s−r|≤ 2|ρm|

|Hn
s −Hn

u | |V n
u − V n

r | + 2ε NT
ε (H

n)

km∑

p=1

|V n
tmp
|

+ ε km max
t∈πJ

|V n
t | + ε km

(

w′′(Xn|[0,T ], |πJ |) + w′′(Un|[0,T ], |πJ |)
)

≤ 2NT
ε (Hn) (|Hn|∗T + |V n|∗T ) ŵT

2|ρm|(H
n, V n)

+ ε NT
ε (H

n)

km∑

p=1

|V n
tmp
| + ε km max

t∈πJ
|V n

t |

+ ε km

(

w′′(Xn|[0,T ], |πJ |) + w′′(Un|[0,T ], |πJ |)
)

(6.10)

where the tmp denote the partition points of the partition ρm (which without loss of generality
can be assumed to be in the dense set D). Furthermore, ŵ is the consecutive increment function
from Definition 2.2. The last inequality is based on the fact that |xy| ≤ (|x| ∨ |y|)(|x| ∧ |y|).
Combining (6.6) with (6.10), for all J ≥ 1 we obtain

∣
∣
∣
∣

∫ •

0
(Hn

r− −H
n |m,ε
r− ) dV n

r

∣
∣
∣
∣

∗

T

≤ 2ε |V n|∗T + 2C n−γ
∑

t ∈ ζn

|V n
t |

+ 2NT
ε (H

n) (|Hn|∗T + |V n|∗T ) ŵT
|ρm|(H

n, V n)

+ 2ε NT
ε (H

n)

km∑

p=1

|V n
tmp
| + ε km max

t∈πJ
|V n

t |

+ ε km

(

w′′(Xn|[0,T ], |πJ |) + w′′(Un|[0,T ], |πJ |)
)

. (6.11)

We know that |Hn|∗T is tight since the Hn are tight in M1. The same holds for |V n|∗T as
V n = Xn − Un and both Xn and Un are tight in M1. In addition, for fixed ε > 0, it is known
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that NT
ε (H

n) is tight (see e.g. [62] Cor. A.9). In addition, we have assumed (AVCI) for the
sequence (Hn, V n) which is nothing else than

lim
m→∞

lim sup
n→∞

Pn
(

ŵT
|ρm|(H

n, V n) > γ
)

= 0 (6.12)

for all γ > 0 and T ≥ 1. Furthermore, for fixed m ≥ 1, J ≥ 1, due to the convergence of the
finite-dimensional distributions of V n to 0 along D, it holds that

km∑

p=1

|V n
tmp
| Pn

−−−→
n→∞

0 and max
t∈πJ

|V n
t | Pn

−−−→
n→∞

0. (6.13)

Finally it is well-known that the tightness of the Xn and Un on the M1 Skorokhod space implies
in particular

lim
J→∞

lim sup
n→∞

Pn
(

w′′(Xn|[0,T ], |πJ |) + w′′(Un|[0,T ], |πJ |) > γ
)

= 0. (6.14)

With regards to (6.11), we now employ (6.7), (6.12), (6.13) and (6.14) to deduce

lim
ε→0

lim
m→∞

lim sup
n→∞

Pn

( ∣
∣
∣
∣

∫ •

0
(Hn

r− −H
n |m,ε
r− ) dV n

∣
∣
∣
∣

∗

T

> γ

)

= 0

for all γ > 0, which immediately yields (6.5).

Proof of Proposition 4.4. Proceeding analogously to the proof of Theorem 4.6 above, it suffices
to note that for every ε > 0, it almost surely holds

∣
∣
∣
∣

∫ •

0
(Hn

s− −H
n |m,ε
s− ) dV n

s

∣
∣
∣
∣

∗

T

≤
∞∑

k=0

|Hn
sk

−Hn |m,ε
sk

| |V n
sk+1

− V n
sk
| ≤ ε

∞∑

k=0

|V n
sk+1

− V n
sk
|

since, given that the Hn are pure jump, so are the Hn −Hn |m,ε with Disc[0,T ](H
n −Hn |m,ε) ⊆

Disc[0,T ](H
n). Thus,

Pn

( ∣
∣
∣
∣

∫

(Hn
s− −H

n |m,ε
s− ) dV n

∣
∣
∣
∣

∗

T

≥ λ

)

≤ Pn

( ∞∑

k=0

|V n
sk+1

− V n
sk
| ≥ λ

ε

)

−−−→
n→∞

0

by (4.3) for each λ, ε > 0.

Proof of Proposition 4.8. By Lemma 4.2 and the convergence results for uncorrelated or corre-
lated uncoupled CTRWs in (3.6), it remains to show (ii) of Definition 4.5. To this end, fix T > 0,
γ > β − β/α and let ρ = 1 if 1 < α ≤ 2 and 0 < ρ < 1 such that (TC) and ρ(γ + β/α) > β hold
if α = 1. First note that for every random variable s : Ω → [0, T ], by monotone convergence
and identical distribution of the θk, we obtain

E
[
|V n

s |ρ
]
≤ c̃ ψ−ρ

n
ρβ
α

E[ |θ0|ρ ] (6.15)

where c̃ :=
∑∞

i=1(
∑∞

j=i cj)
ρ < ∞. Recall in particular that the ρ-th moment of θ0 exists as its

law is in the domain of attraction of an α-stable random variable where 1 ≤ α ≤ 2. For every
n ≥ 1 define (random) partitions ζn by

πn :=
{ k

nβ
T : k = 0, 1, ..., nβ

}

︸ ︷︷ ︸

=:πn,1

∪
{
0 < s ≤ T : ∆N(ns) 6= 0

}

︸ ︷︷ ︸

=:πn,2
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and the second set πn,2 contains precisely the jumping times of V n on [0, T ]. Moreover, the
mesh size of the partitions satisfy |πn| ≤ n−β and each of the elements of πn is independent of
the Zk. In addition, since t 7→ N(nt) is a counting process,we have

card(πn,2) = card
({

0 < s ≤ T : ∆N(ns) 6= 0
})

= N(nT ).

Now, let ε > 0. Then, by tightness of n−βN(n•), there exists Kε > 0 such that P(N(nT ) >
Kεn

β) ≤ ε. Hence, we have

P

(

n−γ
∑

s∈πn

|V n
s | > λ

)

≤ P

( ∑

s∈πn,1

|V n
s | > λnγ

2

)

+ P

( ∑

s∈πn,2

|V n
s | > λnγ

2
, N(nT ) ≤ Kεn

β
)

+ P

(

N(nT ) > Kεn
β
)

≤ P





nβ
∑

k=0

|V n
k

nβ T
| > λnγ

2



 + P





Kεnβ
∑

k=1

|V n
Lk∧T

| > λnγ

2



 + ε

where Lk :=
∑k

i=1 Ji is defined before (3.4). Then, by Markov’s inequality and (6.15)—since
the times kn−βT and Lk ∧ T , k = 0, 1, 2, ..., are independent of the θℓ—this implies

P

(

n−γ
∑

s∈ ζn

|V n
s | > λ

)

≤
( 2

λnγ

)ρ
( nβ
∑

k=1

E[ |V n
k

nβ T
|ρ ] +

Kεnβ
∑

k=1

E[ |V n
Lk∧T

|ρ ]
)

+ ε

≤ 2ρc̃ ψ−ρ(Kε + 1)nβ

λρnρ(γ+
β
α
)

E[ |θ0|ρ ] + ε

for all n ≥ 1. Since γ > β − β/α by assumption, and ρ is such that ρ(γ + β/α) > β, we get

P

(

n−γ
∑

s∈ ζn

|V n
s | > λ

)

≤ 2ρc̃ ψ−ρ(Kε + 1)nβ

λρnρ(γ+
β
α
)

E[ |θ0|ρ ] + ε −−−→
n→∞

ε

and, as ε > 0 was arbitrary, this yields (ii) of Definition 4.5 for GDmodCA(γ, β).

6.3. Proofs pertaining to Section 4.2

Proof of Propositon 4.10. We will only prove the claim for correlated uncoupled CTRWs, the
proof for moving averages can be conducted in full analogy. Set Ũn ≡ 0 and note that ψ−1Xn =
Un + Ũn +

∑∞
i=1 V

n,i, where Un is defined as in (4.1). Due to Lemma 4.2 and the convergence
results for uncorrelated and correlated uncoupled CTRWs in (3.6), only (ii) of Definition 4.9 is
still to be shown.

With stopping times σn,ik = σnk =
∑k

ℓ=1 Jℓ/n, k ≥ 1, we obtain by definition of N(nt),

V n,i

σn,i
k

= − 1

ψn
β
α

( ∞∑

ℓ=i

cℓ

)

θk−i+1 (6.16)

if k ≥ i and it is equal to zero otherwise. Hence (ii.ii) of Definition 4.9 follows from the
independence of the θk and the fact that they are centered as well as the integrability of the θk.
Since Λn,i(t) = N(nt), by definition of the σn,ik and given that |N(n•)/nβ |∗T is tight in R for every
T > 0, we obtain (ii.i) of Definition 4.9 with f(n) = nβ. Thus, it only remains to verify (ii.iii).
To this end, let k ≥ 1 and γ > 0 such that α−γ > 1. Denote c̃i := ψ−1

∑∞
ℓ=i cℓ ≤ 1, c̃ :=

∑∞
i=1 c̃i.
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Then, using Jensen’s inequality, monotone convergence and the identical distribution of the θk,
we obtain

E

[

(Ṽ n,>
k )α−γ

]

≤ c̃α−γ n−
β(α−γ)

α E

[

|θ0 |α−γ
1
{|θ0|>n

β
α }

]

(6.17)

where we recall that Ṽ n,>
k =

∑∞
i=1 |V

n,i

σn,i
k

|1
{|V n,i

σ
n,i
k

|>1}
. Further, we continue by

E
[

|θ0 |α−γ
1
{|θ0|>n

β
α }

]

=

∫

(n
β
α ,∞)

xα−γ dΦ(x) +

∫

(−∞,−n
β
α )

(−x)α−γ dΦ(x)

= −
∫

(n
β
α ,∞)

xα−γ d(1− Φ)(x) −
∫

(−∞,−n
β
α )

(−x)α−γ d(1− Φ)(x) (6.18)

where we have denoted the cdf of θ0 by Φ. Integration by parts now yields

∫ ∞

n
β
α

xα−γ d(1− Φ)(x) =
[

xα−γ(1− Φ)(x)
]∞

n
β
α

− (α− γ)

∫ ∞

n
β
α

xα−γ−1 (1− Φ)(x) dx

≥ −n
β(α−γ)

α n−β(1 + O(1)) − (α− γ)

∫ ∞

n
β
α

xα−γ−1 x−α(1 + O(1)) dx

≥ −3

2
n−

βγ
α +

3(α− γ)

2γ
n−

βγ
α = −3α

2γ
n−

βγ
α

for n large enough, where we have used that (1 − Φ)(x) ≤ P(|θ0| > x) ∼ x−α and O(1) is the
Landau notation for an asymptotically vanishing function in n or x respectively. Analogously,
we achieve the same lower bound for the second integral of (6.18). Hence, this implies

E

[

|θ0 |α−γ
1
{|θ0|>n

β
α }

]

≤ 3α

γ
n−

βγ
α

for n large enough, and combining this with (6.17), we deduce

K nβ
∑

k=0

E

[

(Ṽ n,>
k )α−γ

]

≤ 3α

γ
(Knβ + 1) n−β c̃α−γ ≤ 6αKc̃α−γ

γ
< ∞

for n large enough, which yields the first bound in (ii.iii) in Definition 4.9 with λ = α− γ. For
the second quantity in (ii.iii), we obtain a similar bound with µ = α+γ, by proceeding similarly
to the first uniform bound, using that E[|θ0|α+γ−1] <∞ and c̃i ≤ 1.

Proof of Theorem 4.11. As in the proof of Theorem 4.6, it suffices to show that

lim
ε↓0

lim sup
m→∞

lim sup
n→∞

Pn

( ∣
∣
∣

∫ •

0
(Hn

s− −H
n |m,ε
s− ) dV n

s

∣
∣
∣

∗

T
> η

)

= 0 (6.19)

for every T, η > 0 with V n =
∑

i≥1 V
n,i. For this we exploit the main ideas of the proof of [3,

Lem. 2(b)] and adapt it to our setting. Fix T > 0, η > 0 and denote H̃n |m,ε := Hn −Hn |m,ε.
For all ε > 0 and n,m ≥ 1 it holds that

∫ t

0
H̃

n |m,ε
s− dV n

s =
∞∑

i=1

Λn,i(t)
∑

k=1

H̃
n |m,ε

σn,i
k −

∆V n,i

σn,i
k

=

∞∑

i=1

Λn,i(t)
∑

k=1

H̃
n |m,ε

σn,i
k −

V n,i

σn,i
k

−
∞∑

i=1

Λn,i(t)
∑

k=1

H̃
n |m,ε

σn,i
k −

V n,i

σn,i
k−1

.
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Let δ > 0. By (ii.i) of Definition 4.9 there exists Kδ > 0 such that

Pn

(∣
∣
∣
∣

∫ •

0
H̃

n |m,ε
s− dV n

s

∣
∣
∣
∣

∗

T

> η

)

≤ δ + Pn

(

sup
j=1,...,f(n)Kδ

∣
∣
∣
∣

j
∑

k=1

∞∑

i=1

H̃
n |m,ε

σn,i
k −

V n,i

σn,i
k

∣
∣
∣
∣
>

η

2

)

+ Pn

(

sup
j=1,...,f(n)Kδ

∣
∣
∣
∣

j
∑

k=1

∞∑

i=1

H̃
n |m,ε

σn,i
k −

V n,i

σn,i
k−1

∣
∣
∣
∣
>

η

2

)

. (6.20)

We begin by bounding the first probability summand in (6.20) and the bound for the second
probability term can then be obtained in full analogy. To this end, we define

Zn,≤
k :=

∞∑

i=1

H̃
n |m,ε

σn,i
k −

(

V n,i,≤

σn,i
k

− En
[

V n,i,≤

σn,i
k

| Vn,k−1, ..., Vn,1

])

Zn,>
k :=

∞∑

i=1

H̃
n |m,ε

σn,i
k −

(

V n,i,>

σn,i
k

+ En
[

V n,i,≤

σn,i
k

| Vn,k−1, ..., Vn,1

])

where we have denoted V n,i,≤

σn,i
k

:= V n,i

σn,i
k

1
{|V n,i

σ
n,i
k

|≤1}
as well as V n,i,>

σn,i
k

:= V n,i

σn,i
k

1
{|V n,i

σ
n,i
k

|>1}
, and Vn,ℓ

is defined as in (ii.ii) of Definition 4.9. Let us remark that Zn,≤
k + Zn,>

k =
∑

i≥1 H̃
n |m,ε

σn,i
k −

V n,i

σn,i
k

.

The discrete-time processes j 7→ ∑j
k=1 Z

n,≤
k and j 7→ ∑j

k=1 Z
n,>
k are both martingales with

respect to the filtration {σ(Vn,ℓ,Hn,ℓ : ℓ ≤ j)}j≥1, where Hn,ℓ := σ(Hn
t∧σn,i

ℓ

: t ≥ 0, i ≥ 1). To

see this, it suffices to note that for k > j we have

En
[
Zn,≤
k | Vn,ℓ,Hn,ℓ : ℓ ≤ j

]
= En

[

En
[
Zn,≤
k | Vn,ℓ,Hn,ℓ,Hn,k : ℓ ≤ j

]
| Vn,ℓ,Hn,ℓ : ℓ ≤ j

]

and, by dominated convergence, since the Ṽ n,≤
k —as defined in (ii.iii) of Definition 4.9—are

integrable due to (ii.iii), it is enough to show

En

[

H̃
n |m,ε

σn,i
k −

(

V n,i,≤

σn,i
k

− En
[

V n,i,≤

σn,i
k

| Vn,k−1, ..., Vn,1

])

| Vn,ℓ , Hn,ℓ, Hn,k : ℓ ≤ j

]

= 0

for all i ≥ 1. Based on the measurability of H̃
n |m,ε

σn,i
k −

with respect to Hn,k as well as assumption

(4.4), that is the independence of V n,i

σn,i
k

and Hn,ℓ for all ℓ ≤ k, we obtain

En

[

H̃
n |m,ε

σn,i
k −

(

V n,i,≤

σn,i
k

− En
[

V n,i,≤

σn,i
k

| Vn,k−1, ..., Vn,1

])

| Vn,ℓ , Hn,ℓ, Hn,k : ℓ ≤ j

]

= H̃
n |m,ε

σn,i
k −

(

En

[

V n,i,≤

σn,i
k

| Vn,ℓ , Hn,ℓ, Hn,k : ℓ ≤ j

]

− En

[

V n,i,≤

σn,i
k

| Vn,ℓ : ℓ ≤ j

])

= H̃
n |m,ε

σn,i
k −

(

En

[

V n,i,≤

σn,i
k

| Vn,ℓ : ℓ ≤ j

]

− En

[

V n,i,≤

σn,i
k

| Vn,ℓ : ℓ ≤ j

])

= 0.

We proceed similarly for the process j 7→ ∑j
k=1 Z

n,>
k by using V n,i,>

σn,i
k

= V n,i

σn,i
k

− V n,i,≤

σn,i
k

and

(ii.ii) from Definition 4.9. Since both j 7→ ∑j
k=1 Z

n,≤
k and j 7→ ∑j

k=1 Z
n,>
k are discrete-time
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martingales, we can apply Doob’s maximal inequality to obtain

Pn

(

sup
j=1,...,f(n)Kδ

∣
∣
∣
∣

j
∑

k=1

∞∑

i=1

H̃
n |m,ε

σn,i
k −

V n,i

σn,i
k

∣
∣
∣
∣
>

η

2

)

≤ Pn

(

sup
j=1,...,f(n)Kδ

∣
∣
∣
∣

j
∑

k=1

Zn,≤
k

∣
∣
∣
∣
>

η

4

)

+ Pn

(

sup
j=1,...,f(n)Kδ

∣
∣
∣
∣
∣
∣

j
∑

k=1

Zn,>
k

∣
∣
∣
∣
∣
∣

>
η

4

)

(6.21)

≤
(4

η

)µ
En

[ ∣
∣
∣
∣
∣

f(n)Kδ∑

k=1

Zn,≤
k

∣
∣
∣
∣
∣

µ ]

+

(
4

η

)λ

En

[ ∣
∣
∣
∣
∣

f(n)Kδ∑

k=1

Zn,>
k

∣
∣
∣
∣
∣

λ ]

and by Bahr-Esseen’s martingale-differences inequality (cf. [5, Theorem 2]), this can be further
estimated by

≤
(2

1
µ 4

η

)µ
f(n)Kδ∑

k=1

En
[ ∣
∣
∣Z

n,≤
k

∣
∣
∣

µ ]

+
(2

1
λ 4

η

)λ
f(n)Kδ∑

k=1

En
[ ∣
∣
∣Z

n,>
k

∣
∣
∣

λ ]

. (6.22)

Finally, with Ṽ n,≤
k defined as in (ii.iii) Definition 4.9, by a simple applications of Jensen’s in-

equality we deduce

En
[ ∣
∣
∣Z

n,≤
k

∣
∣
∣

µ ]

≤ (2ε)µ En[ (Ṽ n,≤
k )µ ] for all n, k ≥ 1,

since |H̃n |m,ε| ≤ ε by its definition. Analogously we obtain the estimate En[|Zn,>
k |λ] ≤

2λελ En[(Ṽ n,>
k )λ]. Hence, based on (6.22), this yields

lim sup
n→∞

Pn

(

sup
j=1,...,f(n)Kδ

∣
∣
∣
∣

j
∑

k=1

∞∑

i=1

H̃
n |m,ε

σn,i
k −

V n,i

σn,i
k

∣
∣
∣
∣
>

η

2

)

≤ max {ελ, εµ} Cλ,µ,η lim sup
n→∞

f(n)Kδ∑

k=1

(

En[ (Ṽ n,≤
k )µ ] + En[ (Ṽ n,>

k )λ ]
)

(6.23)

where Cλ,µ,η := 2(8/η)λ + 2(8/η)µ. Then, the limit superior part of (6.23) is finite by (ii.iii) of
Definition 4.9 and (6.23) tends to 0 as ε → 0 . Analogously to the above procedure, one can
achieve the same bound for the second probability term of (6.20) and hence deduce (6.19).

Proof of Corollary 4.13. We only need to verify the conditions (4.5) and (4.6) from Remark
4.12, as the remaining properties of Definition 4.9 follow in the exact same way as outlined in
the proof of Proposition 4.10 (we recall, with f(n) = nβ). Due to the symmetry of the law
of the θk, (4.5) is obtained immediately with the V n,i and σn,ik as in (6.16). Moreover, since

t 7→∑⌊nβt⌋
k=1 n−β/αθk is a subsequence of the zero-order moving averages (3.1) converging weakly

in the J1 Skorokhod space, to every δ > 0 there exists Γδ > 0 such that

sup
n≥1

P

(
Knβ
∑

k=1

1{|θk|>nβ/α} > Γδ , n
−β/α|θk| > Γδ

)

≤ δ

as the maximal number of large oscillations as well as the absolute size of jumps is tight see e.g.
[62, Thm. A.8 & Cor. A.9] However, this yields

P

(
Knβ
∑

k=1

∞∑

i=1

|V n,i,>

σn,i
k

| ≥ M

)

≤ P

(

c̃

Knβ
∑

k=1

n−β/α|θk|1{|θk|>nβ/α} ≥ M

)

≤ δ + P
(
c̃Γ2

δ ≥ M
)

= δ

for M large enough, where c̃ = ψ−1
∑∞

i=1

∑∞
ℓ=i ci. A δ was arbitrary, we deduce (4.6).
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6.4. Proofs pertaining to Sections 5.1 and 5.2

Lemma 6.2. The solutions Xn to (Sn) are stochastically bounded uniformly in n, that is
limη→∞ supn≥1 P(|Xn|∗T > η) = 0 for all T ≥ 0.

Proof. To alleviate notation, we will only provide a proof for the case C ≡ 0. On behalf of
the decomposition (3.9), we can write Zn = Mn + An, where the Mn are local martingales
with |∆Mn| ≤ 1 and the An are of tight total variation. Thus, with σ̃ := |b| ∨ |µ| ∨ |σ| and
Ãn := Id+Dn +An, and the elementary inequality ac ≤ (a2 + c2)/2, we obtain

(Xn
t )

2 ≤ 3

2

[(∫ t

0
σ(s,Dn

s ,X
n
s )− dMn

)2
+

∫ t

0
σ̃(s,Dn

s ,X
n
s )

2
− dTV[0,s](Ã

n)
]

, (6.24)

for t ≥ 0. Let T, ε, η > 0 and define stopping times τn := inf{t > 0 : |Xn
t | > η} ∧ T and

ρn := inf{t > 0 : |Dn
t | > R} ∧ T with R > 0 such that supn≥1 P(ρn ≤ T ) ≤ ε (this is indeed

possible since, according to (3.5), the Dn converge in the Skorokhod space and are therefore
stochastically bounded). Then, we may continue by

P(|Xn|∗T > η) ≤ P(|Xn
τn∧ρn |2 >η2) + ε ≤ P

(( ∫ τn∧ρn

0
σ(s,Dn

s ,X
n
s )− dMn

)2
>

η2

3

)

+ P

(

K2

∫ τn∧ρn

0
|Xn

s−|2p dTV[0,s](Ã
n) >

η2

3

)

+ ε

≤ P

(( ∫ τn∧ρn

0
σ(s,Dn

s ,X
n
s )− dMn

)2
>

η2

3

)

+ P

(

TV[0,T ](Ã
n) >

η2−2p

3K2

)

+ ε (6.25)

using (6.24), the strict sublinear growth bound (5.2) as well as that |Xn
s | ≤ η for all s < τn.

An application of Lenglart’s inequality [25, Lem. I.3.30b] to the first term of (6.25) (with the
quadratic variation as L-domination process; applicable since the integral with respect to Mn

is a local martingale) yields

P(|Xn|∗T > η) ≤ 3γ + 3

η2
+ P

(

[Mn]T >
γ

η2pK2

)

+ P

(

TV[0,T ](Ã
n) >

η2−2p

3K2

)

+ ε (6.26)

for all γ > 0, where we made use of the strict sublinear growth bound (5.2). Clearly, the Ãn are
of tight total variation on [0, T ] and the tightness of the [Mn]T follows from another application
of Lenglart’s inequality [62, Lem. 5.4], the good decompositions of the Zn and their tightness in
the Skorokhod space. Choosing γ ∈ (2p, 2) yields γ/η2 → 0 and γ/η2p → ∞ as η → ∞, so we
deduce the claim from (6.26) and the fact that ε > 0 was arbitrary.

Proof of Theorem 5.1. As for Lemma 6.2, purely for simplicity of notation, we assume C ≡ 0 in
(5.2). To avoid repetition, we note that we can proceed similarly to the proof of Theorem 5.2
below, and so it suffices to jump directly to the verification of the following properties:

1. the Xn are tight on the space (DR[0,∞),dJ1);

2. as well as there being convergence

∫ •

0
µ(s,Dn

s ,X
n
s )− dDn

s ⇒
∫ •

0
µ(s,D−1

s , Ys)− dD−1
s and

∫ •

0
σ(s,Dn

s ,X
n
s )− dZn

s ⇒
∫ •

0
σ(s,D−1

s , Ys)− dZD−1
s

whenever (Xn,Dn) ⇒ (Y,D−1) and (Xn,Dn, Zn) ⇒ (Y,Z) for a càdlàg process Y .
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For the second convergence of the second claim, as in the proof of Theorem 5.2, it is straight-
forward to show that the (σ(•,Dn

• ,X
n
• ), Z

n) satisfy the assumptions of [62, Prop. 3.22]. The
good decompositions of the integrators follow from Theorem 3.3. According to the brief remark
after [62, Thm. 4.8], we can replace (AVCI) by the conditions (a)&(b) set out in [62, Thm. 4.8].
Taking σnk := Lk/n the jump times of Zn, condition (b) follows as detailed in the remark after
[62, Ex. 4.11]. In terms of (a), we note that Hn := σ(•,Dn,Xn

• ) is adapted to the filtration
generated by {θN(ns), N(ns) : 0 ≤ s ≤ t}, t ≥ 0. Thus, we deduce

(Hn
t1 , ...,H

n
tℓ
)−1(A1 × ...×Aℓ) ∩ {q2 < σnk+1} ∩ {σnk ≤ q1} ∈ σ

(
θ1, ..., θk, J1, ..., Jk+1

)

for all A1, ..., Aℓ ∈ B(R), n, k ≥ 1, q1, q2 ∈ Q and t1, ..., tℓ ≤ q2, while Zn
σn
k+1+ • − Zn

σn
k

is

σ(θk+i, Jk+1+i : i ≥ 1)–measurable. Applying [62, Lem. 4.12] yields condition (a) and hence the
second convergence. The convergence of the first integrals follows directly from [62, Prop. 3.22]
and the fact that (AVCI) is satisfied by Proposition 2.3 due to continuity of D−1.

In order to show 1, we employ Aldous’ J1 tightness criterion given in [8, Thm. 16.10],
requiring us to verify that for every T > 0 and γ > 0 it holds

lim
R→∞

supn≥1 P(|Xn|∗T > R) = 0 and lim
δ↓0

lim sup
n→∞

supτ P(|Xn
τ+δ −Xn

τ | > η) = 0 (6.27)

where the inner supremum on the right-hand side runs over all Fn–stopping times τ which
are bounded by T . The first part of (6.27) follows immediately from Lemma 6.2. Towards
the second part of (6.27), let ε > 0 and fix η, T > 0. Choose R > 0 large enough such
that supn≥1 P(|Xn|∗T+1 ∨ |Dn|∗T+1 > R) ≤ ε/4 and define stopping times ρn := inf{t > 0 :

|Xn
t | ∨ |Dn

t | > R}. Then, for any Fn-stopping time τ bounded by T and δ ≤ 1, we have

P(|Xn
τ+δ −Xn

τ | > η) ≤ ε

4
+ P(|Xn

(τ+δ)∧ρn
−Xn

τ∧ρn | > η). (6.28)

By (Sn), the definition of ρn and the strict sublinear growth condition (5.2), the second term on
the right side of (6.28) can be further estimated by

P(|Xn
(τ+δ)∧ρn

−Xn
τ∧ρn | > η) ≤ 1δ > η

3KRp
+ P

(

Dn
(τ+δ)∧ρn

−Dn
τ∧ρn >

η

3KRp

)

+ P

(∣
∣
∣

∫ (τ+δ)∧ρn

τ∧ρn

σ(s,Dn
s ,X

n
s )− dZn

s

∣
∣
∣ >

η

3

)

(6.29)

where we recall that Dn = n−βN(n•). While the first term on the right side of (6.29) disappears
uniformly in n when δ → 0, this is also true for the second term. Indeed, recall that since
Dn ⇒ D−1 on the J1 space and D−1 is continuous, it holds in particular that

lim
δ↓0

lim sup
n→∞

P

(

sup
0≤ s≤ t≤T+1

t−s≤ δ

(Dn
t −Dn

s ) > λ
)

= 0 (6.30)

for all λ > 0. Thus, it suffices to investigate the convergence of the third term on the right-hand
side of (6.29). Choose a > 0 such that (3aKRp/η)2 ≤ ε/4, set C̃a := supn≥1 n

βE[ζn1 1{|ζn1 |>a}] <
∞ (cf. Proposition 3.5), and let Zn = Mn,a + An,a be good decompositions (3.9) so that
|∆Mn,a| ≤ a. Making use of the concrete form of the good decompositions as well as again the
definition of ρn and the strict sublinear growth condition (5.2), we obtain

P
(∣
∣
∣

∫ (τ+δ)∧ρn

τ∧ρn

σ(s,Dn
s ,X

n
s )− dZn

s

∣
∣
∣ >

η

3

)

≤ P
(∣
∣
∣

∫ (τ+δ)∧ρn

τ∧ρn

σ(s,Dn
s ,X

n
s )− dMn,a

s

∣
∣
∣

2
>

η2

9

)

+ P

(

|∆Zn|∗T+δ

N(n(τ+δ))
∑

k=N(nτ)

1{|ζnk |>a} >
η

3KRp

)

+ P

(

Dn
τ+δ −Dn

τ >
η

3KRpC̃α

)

. (6.31)
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For the first probability term of (6.31), similarly to the proof of Lemma 6.2 we apply Lenglart’s
inequality [25, Lem. I.3.30b] in order to obtain

P

(∣
∣
∣

∫ (τ+δ)∧ρn

τ∧ρn

σ(s,Dn
s ,X

n
s )− dMn,a

s

∣
∣
∣

2
>

η2

9

)

≤ 9(γ + (aKRp)2)

η2

+ P

(

[Mn,a]τ+δ − [Mn,a]τ >
γ

K2R2p

)

for all γ > 0. Choose γ > 0 such that 9γ/η2 ≤ ε/4. Hence, we can further bound (6.31) by

P

(∣
∣
∣

∫ (τ+δ)∧ρn

τ∧ρn

σ(s,Dn
s ,X

n
s )− dZn

s

∣
∣
∣ >

η

3

)

≤ ε

2
+ P

(

[Mn,a]τ+δ − [Mn,a]τ >
γ

K2R2p

)

+ P

(

|Zn|∗T+δ

N(n(τ+δ))
∑

k=N(nτ)

1{|ζnk |>a} >
η

3KRp

)

+ P

(

Dn
τ+δ −Dn

τ >
η

3KRpC̃α

)

≤ ε

2
+ P

(N(n(τ+δ))
∑

k=N(nτ)

(ζnk )
2
1{|ζnk |≤a} >

γ

3(aKRp)2

)

+ P

(

n−βDn
T+δ >

γ2

12aC̃aK2R2p

)

+ P

(

n−βDn
T+δ >

γ

6C̃2
aK

2R2p

)

+ P

(

|Zn|∗T+δ

N(n(τ+δ))
∑

k=N(nτ)

1{|ζnk |>a} >
η

3KRp

)

+ P

(

Dn
τ+δ −Dn

τ >
η

3KRpC̃α

)

, (6.32)

where we have made use of the specific form of Mn,a given after (3.9). Since the Zn are J1 tight,
we can choose Cε > 0 such that P(|Zn|∗T+δ > Cε) ≤ ε/4. We will examine each term of (6.32)
individually. Clearly, since Dn

T+δ are tight, we directly deduce

lim sup
n→∞

[

P

(

n−βDn
T+δ >

γ2

12aC̃aK2R2p

)

+ P

(

n−βDn
T+δ >

γ

6C̃2
aK

2R2p

)]

= 0.

As limδ↓0 lim supn→∞ P(Dn
τ+δ−Dn

τ > η/3KRpC̃a) = 0 due to (6.30), it only remains to consider
the second and fifth terms of (6.32). For the latter, by independence of N(n•) and the ζnk (recall
the CTRW is uncoupled) as well as the identical distribution of the ζnk ,

P

(

|Zn|∗T+δ

N(n(τ+δ))
∑

k=N(nτ)

1{|ζnk |>a} >
η

3KRp

)

≤ ε

4
+ P

(N(n(τ+δ))
∑

k=N(nτ)

1{|ζnk |>a} >
η

3KRpCε

)

≤ ε

4
+ P

(

Dn
τ+δ −Dn

τ > λ
)

+ P

( ⌊nβλ⌋
∑

k=0

1{|ζnk |>a} >
η

3KRpCε

)

≤ ε

4
+ P

(

Dn
τ+δ −Dn

τ > λ
)

+ P
(

Ñλ
a (Z̃

nβ
) >

η

3KRpCε

)

for any λ < 1, where Z̃n :=
∑⌊n•⌋

k=0 ζ
n
k is tight in J1 as a zero-order moving average and ÑT

a (Z̃
n)

the maximal number of a-increments of Z̃n on [0, T ] (see e.g. [62, (3.9)]). According to the
classical tightness criterion based on the J1 modulus of continuity (see e.g. [62, Def. A.7]), we

deduce that limλ↓0 lim supn→∞ P(Ñλ
a (Z̃

nβ
) > η/(3KRpCε)) = 0. Further, again due to (6.30),

limδ↓0 lim supn→∞ P(Dn
τ+δ −Dn

τ > λ) = 0, and thus

lim
δ↓0

lim sup
n→∞

P

(

|Zn|∗T+δ

N(n(τ+δ))
∑

k=N(nτ)

1{ζnk >a} >
η

3KRp

)

=
ε

4
.
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Finally, for the second term of (6.32) we can proceed similarly to how we did for the previous

(fifth) term, noting that [Z̃n] =
∑⌊n•⌋

k=0 (ζ
n
k )

2 is tight on the J1 space as a consequence of the
short comment after [62, Cor. 3.13].

Proof of Theorem 5.2. Suppose we have weak relative compactness of the pairs ((Xn, c−1Zn))n≥1

on (DR[0,∞),dM1)
2, as we will establish later in the proof. Then we know that, to every subse-

quence ((Xnk , c−1Znk))k≥1, there is a further subsubsequence ((Xnkℓ , c−1Znkℓ ))ℓ≥1 which con-
verges weakly in (DR[0,∞),dM1)

2 to some a càdlàg limit (Y,Z). Of course, Y may depend on
the choice of the subsubsequence, while the scaling limit Z is given in Section 3.1. To simplify
the notation, we denote the subsequence by (Xn, c−1Zn). Due to the continuity of b and σ, we
can then deduce that

1. for all ℓ ≥ 1 and t1, ..., tℓ ∈ Λ, where Λ is a co-countable subset of [0,∞), it holds

(c−1Zn, σ(t1,X
n
t1−r), σ(t2,X

n
t2−r), ..., σ(tℓ,X

n
tℓ−r))

⇒ (Z, σ(t1, Yt1−r), σ(t2, Yt2−r), ..., σ(tℓ, Ytℓ−r))

on (DR[0,∞),dM1)× (Rℓ, | · | );

2. for any T > 0, the sequence (|σ(•,Xn
•−r)|∗T )n≥1 is tight;

3. for any δ > 0, the number of δ-increments of the (σ(•,Xn
•−r))n≥1 over any interval [0, T ]

is tight (see [62, (3.9)] for a precise definition);

and analogously for the sequence b(•,Xn
•−r). Now, for n ≥ 1 such that (J + 2)/n < r, we have

that, for each k ≥ 1 the random variable Xn
(k/n)−r is σ(θ1, ..., θk−J−2, J1, ..., Jk−J−2)-measurable

and therefore σ(•,Xn
•−r) satisfies (4.7). Then, according to [62, Prop. 3.22] and Remark 4.16,

we obtain that
∫ •

0
b(s,Xn

s−r)− ds ⇒
∫ •

0
b(s, Ys−r)− ds and

c−1

∫ •

0
σ(s,Xn

s−r)− dZn
s ⇒

∫ •

0
σ(s, Ys−r)− dZs,

as n→ ∞ on (DR[0,∞),dM1). Since t 7→
∫ t
0 b(s, Ys−r)− ds is continuous, we obtain that

Xn = Xn
0 +

∫ •

0
b(s,Xn

s−r)− ds + c−1

∫ •

0
σ(s,Xn

s−r)− dZn
s

⇒ Y0 +

∫ •

0
b(s, Ys−r)− ds +

∫ •

0
σ(s, Ys−r)− dZ(s)

as n→ ∞ in (DR[0,∞),dM1). Uniqueness of weak limits implies that Y satisfies

Yt = Y0 +

∫ t

0
b(s, Ys−r)− ds +

∫ t

0
σ(s, Ys−r)− dZ(s),

so it realises a solution to (Š). If there is uniqueness in law for (Š), then Y is the unique solution.
Since any subsequence has a further subsequence converging to this same limit, we then obtain
the weak convergence Xn ⇒ X on (DR[0,∞),dM1).

At this point, it only remains to show that ((Xn, c−1Zn))n≥1 is relatively compact in the
weak topology on (DR[0,∞),dM1)

2, which—due to Prokhorov’s Theorem—equates to proving
the tightness of these pairs on the given space. However, as the tightness of the c−1Zn has
already been established as a consequence of (3.6), it is enough to treat the tightness of the Xn
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separately (see e.g. the discussion after [62, Rem. 3.10]). Clearly, for this it suffices to show the
M1 tightness of the processes

Ξn
• := c−1

∫ •

0
σ(s,Xn

s−r)− dZn
s = c−1

⌊nt⌋
∑

j=1

σ
( j

n
, Xn

j
n
−r

)

−
∆Zn

Lj
n

=
1

cn
β
α

⌊nt⌋
∑

j=1

(

σ
( j

n
, Xn

j
n
−r

)

−

J∑

i=0

ci θj−i

)

as the the tightness of the drift term follows directly on behalf of (5.3). We will now show that
for fixed T > 0 and for any η > 0 it holds

lim
λց 0

lim sup
n→∞

P
(
w′′(Ξn, λ) > η

)
= 0

where w′′ is the M1 modulus of continuity defined as in [62, Def. A.7]. However, according to
[2, Corollary 1], for this it is enough to prove that for any fixed 0 ≤ t1 < t < t2, η > 0 and n
large enough it holds

P
(
ν(Ξn, t1, t, t2) > η

)
≤ C(γ, β) η−γ (t2 − t1)

1+β (6.33)

for some constants γ > 0, β ≥ 0 and C(γ, β) > 0, and ν(Ξn, t1, t, t2) :=
∥
∥Ξn

t − [Ξn
t1 ,Ξ

n
t2 ]
∥
∥ :=

inf{|Ξn
t − αΞn

t1 − (1− α)Ξn
t2 | : α ∈ [0, 1]} as well as

lim
λց 0

lim sup
n→∞

P

(

sup
0≤ s,t≤λ

|Ξn
t − Ξn

s | > η

)

= 0. (6.34)

Similar to the proof of Proposition 4.10 and Theorem 4.11, we can now establish that for any
m,k ≥ 0 and large enough n ≥ 1 there is a bound of the type

P

(

sup
1≤ i≤ k

∣
∣
∣
∣
Ξn

m+i
n

− Ξn
m
n

∣
∣
∣
∣
> η

)

≤ C ηγ
k

n
(6.35)

with C, γ > 0 constants which do not depend on n or k. From this, we can easily deduce
(6.34). In addition, it will also be the key ingredient for establishing (6.33). To this end, fix
0 ≤ t1 < t < t2 ≤ T as well as η > 0 and n ≥ 1 large enough. Without loss of generality
assume that t1 ∈ [ℓ/n, (ℓ + 1)/n), t ∈ [r/n, (r + 1)/n) and t2 ∈ [p/n, (p + 1)/n) for some
ℓ, r, p ≥ 1 with ℓ < r < p. If Ξn

t lies in the interval with endpoints Ξn
t1 and Ξn

t2 , then we have
‖Ξn

t − [Ξn
t1 , Ξ

n
t2 ]‖ = 0. Therefore,

P
(
ν(Ξn, t1, t, t2) > η

)
= P

(
Ξn
t1 − Ξn

t > η , Ξn
t2 ≥ Ξn

t1

)
+ P

(
Ξn
t − Ξn

t1 > η , Ξn
t2 ≤ Ξn

t1

)

+ P
(
Ξn
t2 − Ξn

t > η , Ξn
t2 < Ξn

t1

)
+ P

(
Ξn
t − Ξn

t2 > η , Ξn
t2 > Ξn

t1

)

≤ 2P
(
|Ξn

t1 − Ξn
t | > η

)
+ 2P

(
|Ξn

t2 − Ξn
t | > η

)

≤ 2P
(
∣
∣
∣
∣
Ξn

r
n
− Ξn

ℓ
n

∣
∣
∣
∣
> η

)

+ 2P
(
∣
∣
∣
∣
Ξn

p
n
− Ξn

ℓ
n

∣
∣
∣
∣
> η

)

≤ 2P

(

sup
1≤ i≤ r−ℓ

∣
∣
∣
∣
Ξn

ℓ+i
n

− Ξn
ℓ
n

∣
∣
∣
∣
> η

)

+ 2P

(

sup
1≤ i≤ p−r

∣
∣
∣
∣
Ξn

r+i
n

− Ξn
r
n

∣
∣
∣
∣
> η

)

≤ 2C ηγ
(r − ℓ) + (p − r)

n
≤ 4C ηγ

p− (ℓ+ 1)

n
≤ 4C ηγ(t2 − t1)

where we have used (6.35). Finally, the tightness of the running supremum of Ξn on compacts
follows immediately from (6.35), so we obtain the tightness of the sequence Ξn.
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We shall point out that the weak relative compactness of the Xn was only needed to deduce
the conditions 1-3 in the above proof. Therefore, for different sequences of drivers or different
classes of differential equations it may indeed be more tractable to directly attempt to show
these conditions. In particular, it is worth noting that, if these conditions are satisfied, then
the limiting integrand (with respect to convergence of finite-dimensional distributions) admits
a càdlàg modification and therefore, without loss of generality, we can assume it to be càdlàg.
We comment on this in the following remark.

Remark 6.3 (Càdlàg limits). Let (Xn)n≥1 be a sequence of stochastic processes taking values
in DRd [0, T ] and let Λ ⊂ [0, T ] (which includes T ) be a dense subset of [0, T ]. Suppose that
all finite-dimensional distributions along Λ of the Xn converge to those of some limit Y . Then,
in all generality, Y obviously does not possess a càdlàg modification. However, if we assume
that for every δ > 0 the maximal number of δ-increments (NT

δ (X
n))n≥1 is tight (where NT

δ

is defined in [62, (3.9)]), this becomes true. To see this, it suffices to consider a deterministic
counterexample: let

xn := 1[1 , 1+ 1
n
) +

n−1∑

k=1

(−1)k 1[1+ 1
k+1

, 1+ 1
k
) and x :=

∞∑

k=1

(−1)k 1[1+ 1
k+1

, 1+ 1
k
)

and note that xn converges pointwise on [0, 2] K {1} to x, yet x cannot be made càdlàg at 1
without loosing pointwise convergence on a dense subset of [0, 2]. Clearly, in this example we see
that it is the exploding number of large oscillations of the sequence (xn)n≥1 which causes this
problem. If we assume that for every δ > 0, the maximal number of δ-increments (NT

δ (X
n))n≥1

is tight, then this is no longer an issue. Let Q ⊆ Λ be countable and dense in [0, T ]. Obviously,
the inclusion

{

∃ t ∈ [0, T ) such that lim
q ↓↓ t
q∈Q

Yq or lim
q ↑↑ t
q∈Q

Yq do not exist

}

⊆
∞⋃

k=1

{

N̄Q
1
k

(Y ) = ∞
}

(6.36)

holds true, where N̄Q
δ (Y ) is the maximal number of δ-increments of Y on Q ⊆ [0, T ]. If we can

show that each of the sets on the right of (6.36) has probability zero, we can define

Ỹt :=

{

Yt, t ∈ Q
limq↓↓ t, q∈Q Yq, t ∈ [0, T ] KQ.

(6.37)

Y has left and right limits and Ỹ is càdlàg (where the latter follows from the fact that Y is
right-continuous in probability restricted to Q, which can be proven similarly to the subsequent
part). In order to do so, fix δ > 0 and let {qm : m ≥ 1} be an enumeration of the set Q. Note
that {N̄Q

δ (Y ) = ∞} is a subset of

⋂

K≥1

∞⋃

m=K+1

⋃

qi1 ≤ qi2 ≤ ...≤ qiK
{i1,...,iK}⊆ {1,...,m}

{

|Yqij+1
− Yqij | > δ , ∀j = 1, ...,K − 1

}

where the last union on the right-hand side can be written as {(Yq1 , ..., Yqm) ∈ Am,K} for open
subsets Am,K ⊆ Rn. Thus, by continuity and monotonicity of the probability measure, it suffices
for our purposes to find, for every ε > 0, a Kε ≥ 1 such that

P
(
(Yq1 , ..., Yqm) ∈ Am,Kε

)
≤ ε, for all m ≥ Kε.

This follows by Portmanteau’s Theorem, due to the convergence of the finite-dimensional distri-
butions and the tightness condition imposed on (NT

δ (Xn))n≥1. Finally, we note that enlarging
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the set to Q by any countable subset of Λ does not change the process t 7→ limq↓↓ t, q∈Q Yq (up
to a set of probability zero). Therefore, once we establish that {t : P(Ỹt 6= Yt) > 0} is countable,
(6.37) yields a càdlàg modification of Y . Indeed, this holds true as for each m ≥ 1, the set
{t : P(|Yt − Ỹt| > 1/m) > 1/m} must be finite, otherwise there existed a sequence tk, k ≥ 1
with this property and enlarging Q by this sequence would produce a contradiction to Y being
almost surely right-continuous at all points of this enlarged Q.

Proof of Corollary 5.3. Define the processes

Λn
t := c−1

∫ t

0
σ̃(s,Xn

[s−r,s])− dZn
s ,

where t 7→ σ̃(t,X[t−r,t]) is Lipschitz continuous on compacts (a.s.). Rewriting cΛn
t as

⌊nt⌋
∑

k=1

Γn
k
n
−

(

Zn
k
n

− Zn
k−1
n

)

=

⌊nt⌋
∑

k=1

(

Γn
k
n

Zn
k
n

− Γn
k−1
n

Zn
k−1
n

)

+

⌊nt⌋
∑

k=1

(

Γn
k−1
n

− Γn
k
n

)

Zn
k−1
n

= Γn
⌊nt⌋
n

Zn
⌊nt⌋
n

+

⌊nt⌋
∑

k=1

(

Γn
k−1
n

− Γn
k
n

)

Zn
k−1
n

with Γn
t := σ̃(t,Xn

[t−r,t]), it is straightforward to obtain the tightness of (|Λn|∗T )n≥1, (|Γn|∗T )n≥1

and (NT
δ (Λn))n≥1, (N

T
δ (Γ

n))n≥1 for any T, δ > 0 (where NT
δ is again defined as in [62, (3.9)]) by

using the tightness of the Zn as well as the boundedness condition and the Lipschitz continuity of
the Γn. Proceeding as in the second part of the proof of Theorem 5.2, we obtain the tightness of
the Ξn on (DR[0,∞),dM1) and thus, in particular, the tightness of (|Ξn|∗T )n≥1 and (NT

δ (Ξ
n))n≥1

for any T, δ > 0. Hence, we deduce the tightness of (|Xn|∗T )n≥1 and, since NT
δ (x+y) ≤ NT

δ/2(x)+

NT
δ/2(y), also the tightness of (NT

δ (X
n))n≥1. On behalf of a diagonal sequence argument, we

can identify càdlàg processes Y, Ỹ and a subsequence (c−1Zn,Xn,Γn)n≥1 such that

(c−1Zn,Xn
t1 , ...,X

n
tℓ
,Γn

t1 , ...,Γ
n
tℓ
) ⇒ (Z, Yt1 , ..., Ytℓ , Ỹt1 , ..., Ỹtℓ)

on (DR[0,∞),dM1) × (R2ℓ, | · |) for all ℓ ≥ 1 and t1, ..., tℓ in some countable dense subset of
[0,∞), where the càdlàg property of Y , Ỹ is due to Remark 6.3. Since the Γn are Lipschitz
continuous with a constant independent of n, they are equicontinuous and converge weakly in
(CR[0,∞), | · |∗∞) on the basis of the Arzèla-Ascoli Theorem, which even implies that Ỹ can be
chosen almost surely continuous. Thus, Xn and Γn satisfy the conditions of [62, Prop. 3.22]
and so does σ(•,Xn

•−r). As shown in the proof of Theorem 5.2, (σ(•,Xn
•−r), c

−1Zn) meet the
conditions of 4.16 with respect to Theorem 4.15 while (Γn, c−1Zn) satisfy the assumptions of
4.16 with respect to Theorem 4.14 (where the required (AVCI) conditions are immediate from
the continuity of Ỹ and Proposition 1). Thus, we deduce

Xn =

∫ •

0
b(s,Xn

s−r) ds + c−1

∫ •

0
σ(s,Xn

s−r) + Γn
s dZn

s

⇒
∫ •

0
b(s, Ys−r) ds +

∫ •

0
σ(s, Ys−r) + Ỹs dZs (6.38)

and hence Xn ⇒ Y on (DR[0,∞),dM1). The map x 7→ σ̃(•, x[•−r,•]) from (DR[0,∞),dM1) into
(CR[0,∞), | · |∗∞) is continuous and thus the continuous mapping theorem yields σ̃(•,Xn

[•−r,•]) ⇒
σ̃(•, Y[•−r,•]) on (CRd [0,∞), | · |∗∞). Since weak limits are unique, we obtain Ỹ = σ(•, Y[•−r,•]).
Therefore, (6.38) becomes

Xn ⇒
∫ •

0
b(s, Ys−r) ds +

∫ •

0
σ(s, Ys−r) + σ(s, Y[s−r,s]) dZs.

where the right-hand side is a solution of (S̃). Again by uniqueness of weak limits, Y thus
realises a solution of (S̃). If (S̃) is unique in law, then Y is the unique solution.

34



A. Appendix: Proofs of auxiliary results from Section 3.2

In this appendix, we give the proofs of Propositions 3.4 and 3.5 which went into the proof of
Theorem 3.3 on the good decompositions (GD) of uncorrelated CTRWs.

Proof of Proposition 3.4. Let n ≥ 1 and 0 ≤ s ≤ t. To show integrability of Xn
t , we shall apply

Wald’s identity [13, Thm. 4.1.5] (where the required discrete filtration will be {σ((ζnk , Jk) : 1 ≤
k ≤ m)}m≥1, N(nt) the stopping time, and the summands are the ζnk 1{|ζnk |≤a}). First, we
establish the integrability of N(nt). Note that

0 ≤ N(nt) ≤ Ñb(nt) := max
{

m ≥ 0 :
m∑

k=1

b1{Jk>b} ≤ nt
}

=
∞∑

m=1

1{∑m
k=1 1{Jk>b}≤

nt
b

}

for any b ≥ 0. Choose b > nt and note that then

E[Ñb(nt)] ≤
∞∑

m=1

P

( m∑

k=1

1{Jk>b} < 1

)

=

∞∑

m=1

P

( m⋂

k=1

{Jk ≤ b}
)

=

∞∑

m=1

P(J1 ≤ b)m <∞

since P(J1 ≤ b) < 1 as otherwise E[J1] 6= ∞. Hence, 0 ≤ E[N(nt)] ≤ E[Ñb(nt)] <∞. Therefore,
we can apply Wald’s theorem to obtain

E[|Mn
t |] ≤ E

[N(nt)
∑

k=1

|ζnk |1{|ζnk |≤a}

]

+ E[N(nt)] E[ζn1 1{|ζn1 |≤a}] ≤ 2aE[N(nt)] <∞

Clearly, Mn is adapted to the filtration (Fn
t )t≥0 and E[Mn

t −Mn
s | Fn

s ] equals

E

[ N(nt)
∑

k=N(ns)+1

ζnk 1{|ζnk |≤a}

∣
∣
∣ Fn

s

]

− E[N(nt)−N(ns) | Fn
s ]E[ζ

n
1 1{|ζn1 |≤a}]

= E

[ N(nt)
∑

k=N(ns)+1

ζnk 1{|ζnk |≤a}

]

− E[N(nt)−N(ns)] E[ζn1 1{|ζn1 |≤a}],

as
∑N(nt)

k=N(ns)+1 ζ
n
k 1{|ζnk |≤a} =

∑N(nt)−N(ns)
k=1 ζnN(ns)+k 1{|ζ

n
N(ns)+k

|≤a} and N(nt)−N(ns) are both

independent of Fn
s by definition of the filtration and the pairwise independence of the pairs

(ζnk , Jk). Applying again Wald’s identity yields the claim. The bound on the jumps of the Mn

follows from |∆N(nt)| ≤ 1 and the boundedness of the ζnk 1{|ζnk |≤a}.

Towards the proof of Proposition 3.5, we first need some preliminary results.

Theorem A.1 (A partial version of [25, Thm. VII.2.9]). Let (µn)n≥0 be infinitely divisible
probability measures on R with characteristics (bn, cn, νn) – i.e. the characteristic function of µn
is of the form ϕµn(u) = exp(ψbn,cn,νn(u)) with

ψbn,cn,νn(u) = iubn − 1

2
cnu

2 +

∫

RK{0}
eiux − 1− iuh(x) νn(dx) (A.1)

where bn ∈ R, cn ≥ 0 and νn a measure on R such that νn({0}) = 0 and
∫
x2 ∧ 1 νn(dx) < ∞.

If µn ⇒ µ0, then bn → b0, cn → c0 and 〈g, νn〉 → 〈g, ν0〉 for all continuous, bounded functions g
satisfying f(x) = O(x2) for x→ 0.
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Proof. The proof is conducted as in [25, Thm. VII.2.9], but we give it for completeness, noting
that less work is required for our version. We definine a convenient transformation of ψbn,cn,νn

in such a way that the summands in bn and h(x) vanish. More precisely, let

ϕ̃n(u) := ψbn,cn,νn(u) − 1

2

∫ 1

−1
ψbn,cn,νn(u+ s) ds

A short calculation with a simple application of Fubini’s theorem gives us

ϕ̃n(u) =
1

6
cn +

∫

RK{0}
eiux(1− x−1 sin(x)) νn(dx)

and therefore ϕ̃n is the characteristic function of the non-negative finite1 measure µ̃n(dx) :=
(cn/6) δ{0}(dx) + (1 − sin(x)/x) νn(dx) with total mass µ̃n(R) = ϕ̃n(0). Since µn ⇒ µ0, it
holds ϕ̃n(u) → ϕ̃0(u) for all u ∈ R due to its definition and the uniform convergence of the
ψbn,cn,νn on compacts. This, in turn, implies µ̃n ⇒ µ̃0 as without loss of generality we may
assume µ̃n(R) 6= 0 and then the ϕ̃n(0)

−1µ̃n(dx) are probability measures with characteristic
function ϕ̃n(0)

−1ϕ̃n. Finally, for each continuous, bounded g(x) = O(x2) for x → 0, we have
that x 7→ g(x)/(1 − x−1 sin(x))1{x 6=0} =: h(x) is continuous and bounded, and hence

∫

g(x) νn(dx) =

∫

h(x) µ̃n(dx) −−−→
n→∞

∫

h(x) µ̃0(dx) =

∫

g(x) ν0(dx)

which yields the last part of the claim. Then, since the real and imaginary part of f(x) :=
eiux − 1− iuh(x) are both O(x2) as x→ 0, we get 〈f, νn〉 → 〈f, ν0〉 and so, from (A.1),

iubn − 1

2
cnu

2 −−−→
n→∞

iub0 − 1

2
c0u

2

for all u ∈ R, thus bn → b0 and cn → c0.

The next lemma formalises the fact that the random variables Zn := ζn1 − E[h(ζn1 )] asymp-
totically possess very beneficial properties.

Lemma A.2. Let Zn = ζn1 −E[h(ζn1 )] and denote ϕZn(u) = E[eiuZ
n
] the characteristic function

of Zn. Then, it holds that

(a) supn≥1 n
βP(|Zn| > c) <∞ for all c > 0;

(b) nβE[h(Zn)] → 0 as n→ ∞.

(c) for all γ > 0, sup|u|<γ n
β|ϕZn(u)− 1| → 0 as n→ ∞ and

Proof. Recall that P(|ζn1 | > x) = P(|θ1| > xnβ/α) = O(n−βx−α) for x → +∞. Now, for
every 0 < ε < a, we have E[h(|ζn1 |)] ≤ ε + aP(|ζn1 | > ε) → ε as n → ∞ and since ε > 0 was
chosen arbitrary, we obtain E[h(|ζn1 |)] → 0 as n→ ∞. Therefore, we deduce the first claim since
nβP(|Zn| > c) ≤ nβP(|ζn1 | > c/2) + nβP(E[h(ζn1 )] > c/2) for all θ > 0 and the second summand
equals zero for large enough n. Hence, we even obtain lim supn→∞ nβP(|Zn| > c) ≤ (2/c)α.

For (b), let ε > 0 and note that h satisfies |h(x)− h(y)| ≤ |x− y| for all x, y ∈ R. Choose n
large enough such that E[h(|ζn1 |)] ≤ (a/2)∧ε. We have E[h(Zn)] = E[h(Zn)−h(Zn+E[h(ζn1 )])+
E[h(ζn1 )]] and the quantity inside the outer expectation is equal to zero if |Zn| ≤ a/2. Therefore,
by the Lipschitz continuity of h,

|nβE[h(Zn)]| ≤ nβE[(ε+ E[|h(ζn1 |)])1{|Zn|>a/2}] ≤ 2εnβP(|Zn| > a/2)

1The finiteness comes from the fact that 1 − sin(x)/x = O(x2) as x → 0 and the property of the νn that∫
x2

∧ 1 νn(dx) < ∞.
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and the result follows from (a) above and the fact that ε > 0 was chosen arbitrary.
Finally, we are going to prove (c). Let γ > 0. Set Cγ := max{√2γ, 2} and note that

|eiux − 1| ≤ Cγ(|x| ∧ 1) for all x ∈ R and |u| ≤ γ (which we obtain by Euler’s identity and a
simple application of the mean value theorem). Therefore,

sup|u|<γ |ϕZn(u)− 1| ≤ sup|u|<γ E[ |eiuZ
n − 1| ] ≤ CγE[|Zn| ∧ 1] ≤ CγE[|Zn| ∧ a]

Let χ be such that P(χ = 1) = P(χ = −1) = 1/2 and χ ⊥⊥ ζn1 . Then, by multiplying Zn with χ
we symmetrise Zn without affecting the inequality, i.e.

sup|u|<γ |ϕZn(u)− 1| ≤ CγE[|χZn| ∧ a]
≤ Cγ

(
E[h(χZn)1{χZn≥0}]− E[h(χZn)1{χZn<0}]

)

Note E[h(χZn)1{χZn≥0}] = E[{h(χZn)−h(χZn+χE[h(ζn1 )])+χE[h(ζ
n
1 )]}1{χZn≥0}] since a sim-

ple calculation gives {χZn ≥ 0} ⊥⊥ σ(ζn1 ) and thus E[h(χζn1 )1{χZn≥0}] = E[χE[h(ζn1 )]1{χZn≥0}].
Now, proceeding similarly to (b), we find

|E[h(χZn)1{χZn≥0}]| ≤ 2εP(|χZn| > a/2) = 2εP(|Zn| > a/2)

for n large enough such that |E[h(ζn1 )])| ≤ (a/2) ∧ ε. Analogously, we obtain the same bound
for |E[−h(χZn)1{χZn≥0}]|. Hence, this gives us

sup|u|<γ n
β|ϕZn(u)− 1| ≤ 4εCγn

βP(|Zn| > a/2).

Due to (a) and since ε > 0 was chosen arbitrarily this yields (c).

Let Y n :=
∑nβ

k=1 ζ
n
k and recall L(Y n) → µ, where µ is the law of an α-stable Lévy process

at time t = 1. Dnote the characteristics of µ by (b, c, ν). We can now prove Proposition 3.5.

Proof of Proposition 3.5. The proof follows very closely that of [25, Lem. VII.2.43], but has
been simplified and adapted to our particular setting. Let u ∈ R. Note that we can rewrite the
characteristic function ϕXn

1
by

ϕY n(u) = E[exp(iuY n)] = E[exp(iu ζn1 )]
nβ

= E[exp(iuZn)]n
β
exp{iu nβE[h(ζn1 )]}

The idea is now to hope that the first factor tends to 1 and since we know that ϕY n → ϕµ

pointwise we can conclude that the second factor then has to converge to ϕµ. Finally, an
application of Theorem A.1 with respect to the characteristics in the second factor should then
yield the claim. However, at this point we do not have any knowledge on whether ϕnβ

Zn converges
to 1 as n → ∞. Yet, according to Lemma A.2 we do know about the asymptotic behaviour of
nβ|ϕZn − 1|. Thus, we continue by adding a convenient factor,

ϕY n(u) = Λn(u) exp

{

iu nβE[h(ζn1 )] + nβ
∫

eiuZ
n − 1− iu h(Zn) dP

}

where Λn is defined as

Λn(u) = E[exp(iuZn)]n
β
exp

{

−nβE
[

eiuZ
n − 1− iu h(Zn)

]}

=
(
E[exp(iuZn)− 1] + 1

)nβ

e−nβE[exp(iu Zn)−1] exp
{

−iu nβE
[
h(Zn)

]}

= (λn + 1)n
β
e−nβλn exp

{

−iu nβE
[
h(Zn)

]}

andλn := E[exp(iuZn)−1]. By Lemma A.2(b), exp{−iu nβE[h(Zn)]} → 1 as n→ ∞. Hence, it

only remains to show (λn+1)n
β
e−nβλn → 1: by Lemma A.2(c), nβ|λn| → 0 as n→ ∞. Without
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loss of generality, let n ≥ 1 large enough such that |λn| ≤ 1/2. Note that the principal branch

log of the complex logarithm has Taylor expansion log(1 + x) =
∑∞

k=1
(−1)k+1

k xk for all |x| < 1
and it is elementary to show that this gives ground to the inequality | log(1+x)−x| ≤ 2|x|2 for
all |x| ≤ 1/2. Thus,

|nβ(log(1 + λn)− λn)| ≤ 2nβ|λn|2 −−−→
n→∞

0

Finally, observe that therefore

(λn + 1)n
β
e−nβλn = exp{nβ log(1 + λn)− nβλn} → 1

Thus, we obtain that Λn(u) → 1 and eventually as ϕY n(u) → ϕµ(u), this gives us

exp{ψnβ E[h(ζn1 )] , 0 , n
β P◦(Zn)−1(u)} = exp

{

iu nβE[h(ζn1 )] + nβ
∫

eiuZ
n− 1− iu h(Zn) dP

}

−−−→
n→∞

ϕµ(u) = exp{ψb,c,ν(u)}

which, by Theorem A.1, implies in particular nβE[h(ζn1 )] → b.
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