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Abstract

The wear-free sliding of layers or flakes of graphene-like 2D materials, important in many experi-

mental systems, may occur either smoothly or through stick-slip, depending on driving conditions,

corrugation, twist angles, as well as edges and defects. No single parameter has been so far iden-

tified to discriminate a priori between the two sliding regimes. Such a parameter, η, does exist

in the ideal (Prandtl-Tomlinson) problem of a point particle sliding across a 1D periodic lattice

potential. In that case η > 1 implies mechanical instability, generally leading to stick-slip, with

η = 2π2U0
Kpa2

, where U0 is the potential magnitude, a the lattice spacing, and Kp the pulling spring

constant. Here we show, supported by a repertoire of graphene flake/graphene sliding simulations,

that a similar stick-slip predictor ηeff can be defined with the same form but suitably defined Ueff ,

aeff and Keff . Remarkably, simulations show that aeff = a of the substrate remains an excellent

approximation, while Keff is an effective stiffness parameter, combining equipment and internal

elasticity. Only the effective energy barrier Ueff needs to be estimated in order to predict whether

stick-slip sliding of a 2D island or extended layer is expected or not. In a misaligned defect-free

circular graphene sliding island of contact area A, we show that Ueff , whose magnitude for a mi-

crometer size diameter is of order 1 eV, scales as A1/4, thus increasing very gently with size. The

PT-like parameter ηeff is therefore proposed as a valuable tool in 2D layer sliding.

I. INTRODUCTION

The contact interface between graphene or graphene-like 2D material layers and flakes or

islands has acquired great importance in the last decade [1–5]. Owing to the great strength

of both slider and substrate, an applied planar force can cause this interface to slide without

damage or wear [6, 7]. Both experiments and simulations have explored the frictional aspects

of the sliding process, as reviewed in [8]. In particular, when a 2D island or layer is forced,

through a tip or a spring, to slide on a substrate, different frictional behaviours are in

principle possible, depending basically on the nature of total free energy E(r), generally

referred to as E(x), as a function of the relative coordinate x of the two centers of mass.

The first possibility, usually known as structural superlubricity, is academic and strictly

applies only to the ideal case where both layers are of infinite size, defect free, incommen-
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surate (and Aubry unpinned [9, 10]), is E(x) = const.. Because there is no energy barrier,

superlubric sliding occurs for an arbitrarily weak applied force, with tiny frictional dissi-

pation – mostly due to moiré out-of-plane motions [11–13] – proportional to velocity. The

second possibility, more realistic even if uncommon in practice, is realized when flake edges,

defects, or weak commensurability cause E(x) to depend on x, but the effective barrier

Ueff = max{∆E(x)} = max{E(x)} − min{E(x)} is weak relative to a hard pulling spring

whose stiffness Kp is large. In this case too one may still have smooth sliding, with the aver-

age value of the washboard oscillating frictional force still growing linearly with velocity [8].

The third and commonest case occurs when the free energy barrier Ueff is strong, and/or the

pulling spring Kp is soft. In this case the sliding motion can only occur through a succession

of mechanical instabitities and, as in the one-dimensional Prandtl-Tomlinson (PT) model

[14] stick-slip will ensue. The average stick-slip friction force in this case remains large even

at low velocities, and its growth with velocity becomes much weaker, typically logarithmic

rather than linear [6, 8, 12, 15–17].

With the last two realistic situations of nonzero barrier in mind, we are concerned here

with understanding and possibly predicting the occurrence of either smooth sliding or stick-

slip ahead of experiments and without recourse to simulations. A concise parameter that

could discriminate between two sliding states is clearly desirable. In the paradigmatic 1D

PT model, where the total potential energy is E(x, t) = U0

2
cos(2πx

a
) + Kp

2
(x− xspring)

2 there

is precisely such a parameter,

η =
2π2U0

Kpa2
(1)

where Kp is the pulling spring stiffness, a the periodic potential spacing, and the energy

barrier U0 is the potential magnitude [10, 18]. In this model, mechanical stability, ∂2E/∂x2 >

0, occurs for η < 1, a situation verified when the barrier is weak and the spring is stiff, the

mechanical evolution is stable and the sliding motion is smooth. For η > 1, the evolution

encounters mechanical instability and the sliding develops discontinuities, which give rise to

stick-slip. Simple as it is this model and η parameter describes well the transition between

smooth sliding and stick-slip of tip-based frictional systems, as also verified by a variety of

experiments [18–23].

We are interested here in extending this kind of parameter to 2D structurally lubric (SL)

systems, such as mesoscale size islands sliding on crystalline substrates in incommensurate
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contact [12, 24–26]. A sliding flake or island is in principle a much more complex system, en-

compassing a larger number of degrees of freedom as opposed to just one as in the PT model

(Fig. 1b). The strength of bonds in a 2D material however enslaves all atomic coordinates

of the island, at least during adiabatic, quasi-static sliding, to just macroscopic coordinates,

namely the center-of-mass (COM) coordinate R⃗, plus the island-substrate “twist” angle θ.

In many practical cases, moreover, the island is forced to slide by drivers that cannot rotate.

With this situation in mind, it seems natural to try to identify an η parameter also for

extended 2D SL contacts.

Unsurprisingly, this kind of extension requires great caution, with many issues and com-

plications with respect to the PT model. Even without rotations, the potential field of the

2D surface-to-surface contact is generally vastly different from sinusoidal. It will depend

on small internal elastic distortions, both in-plane and out-of-plane, that accompany the

COM motion. Other features, including island size, twist angle θ, sliding direction Φ, slider

shape, etc., will act to deform the potential field. With these caveats in mind, we may still

tentatively submit to test a trial ηeff with the same PT form but where all relevant param-

eters U,K, a can take effective magnitudes that differ case by case. The eventual quality of

this trial remains to be determined and judged by discovering what values these constituent

parameters take in practice – a task we propose to pursue here by realistic simulations. We

thus propose to try

ηeff =
2π2Ueff

Keffa2eff
(2)

As said above the effective free energy barrier (inclusive of temperature effects if present)

is Ueff = max{∆E(x)} along the chosen sliding direction. More delicate and crucial is the

definition of effective substrate periodicity aeff . We propose using

aeff = 4xinst (3)

where xinst is the COM coordinate where mechanical instability will occur upon sliding.

When the island is displaced from its equilibrium at x = 0 to xinst, mechanical instability

occurs when the second derivative of E(x) changes sign for at least one value of xspring.

That is also the point of maximum lateral force, dE/dx|x=xinst
= max{dE/dx}. Finally, the

effective stiffness Keff is generally affected by the internal elastic stiffness Kslider of the slider,

typically in the spring chain form

K−1
eff = K−1

p +K−1
slider. (4)
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The key problem to be answered at this stage is therefore, how predictable or unpredictable

these three effective parameters might be in practice. That is, how large is their difference

from those that could be just guessed, e.g., by treating the whole island as a point slider.

In the rest of this work, by using mainly twisted graphene islands as our demonstration

workhorse, we employ molecular dynamics simulations to study systematically the sliding

energy landscape for cases with different contact areas, twist angles, sliding directions, edge

shapes, lattice mismatches, pinning defects. Devoid of conceptual pretense, the work aims at

providing a practical tool that could predict the quasi-static sliding behaviour of structurally

lubric sliders. Parameters Ueff and aeff are estimated from case to case to discover if/how

they may reasonably represent the sliding of a generic SL island. The influence of contact

elasticity, absent in the PT model (and still negligible as we shall see for most nanoscale

islands), should not in general be forgotten. Elasticity must play an important a role in

contacts exceeding the micron size, in which case the effective stiffness will diminish relative

to the bare external pulling stiffness, as suggested by Eq. (4) above. Further, we will discuss

the impact of common defects existing in real systems, beyond the island perimetral edges

that provide the omnipresent sliding energy barrier. In conclusion, we will show how to

make use of ηeff in order to seek experimental conditions that will minimize or maximize

friction .

II. SIMULATIONS: MODEL AND METHODS

In simulations we focus on statics of the slider-substrate interface, as appropriate to

ascertain the nature of static friction (smooth versus mechanically unstable). Kinetic friction

simulations of similar models can be found e.g., in ref. [8]. Our main MD simulation model

consists of a rigid graphene substrate (also a rigid Au(111) substrate in Section VI) with

a finite-sized graphene slider, initially rigid (in Section III to VI), then fully flexible in

subsequent Sections VII to IX, portrayed in Fig. 1(a, b). We focus on a circular slider shape

with diameter D. The effects of different shapes will be discussed in Section V. The edge of

the slider is passivated by H-atoms. The slider is generally rotated by a twist angle θ with

respect to the substrate. In order to keep this exploration at the simplest level, temperature

was set throughout at T =0. Because we wish to address large sliders, all that can change
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FIG. 1. Models and protocols. (a) Schematic sketch of the simulation model. The slider (blue)

has a diameter D and rotated by θ degree with respect to the rigid substrate (pink). The x-axis

is paralleled to the zigzag direction of the substrate. (b) Side view of the model and simulation

protocol. (c) The sliding energy landscape and (d) the lateral force trace. The slider used here has

a diameter D = 14 nm and twist angle θ = 5◦. The lattice constant of the graphene substrate is

a =
√
3lCC, where lCC = 1.42 Å is the equilibrium C-C bond length.

at T > 0 is a possible thermolubric reduction of edge- or defect-related free energy barriers

, purely quantitative and of decreasing relevance as the island size increases.

All simulations are performed with the LAMMPS code [27, 28]. The interlayer and

intralayer interaction are described by REBO and by registry-dependent ILP force fields

respectively [29–31]. Without attempting to mimic the actual experimental forcing, the

center-of-mass of the slider is dragged by a moving spring of stiffness Kp. For simulations

with rigid flakes (Section III to VI), the total potential energy E(x) is scanned by rigidly

displaced the slider. For convenience, here we focus on ∆E(x) = E(x) − min{E} (shown

in Fig. 1c). The lateral (driving) force is calculated by F = dE/dx (Fig. 1d). Effective

sliding free energy barrier and static friction are defined by Ueff = max{∆E(x)} and Fs =
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max{F (x)} respectively. For simulations with flexible islands (Section VII to IX), a quasi-

static sliding protocol is adopted (Fig. 1b). Starting from an energy minimum, the slider is

displaced by a pulling spring with spring constantKp, a parameter controlled by the external

driving system [20, 32]. In AFM-based experiments, its magnitude is typically within the

range of 1 ∼ 100 N/m [12, 26, 33, 34]. During the quasi-static sliding, one end of the pulling

spring is tethered to the COM of the slider, the other end is displaced by δx = 0.02 Å in

each step, followed by a full structural optimization with the CG+FIRE algorithm. The

energy and force tolerance used in optimizations are 10−15 and 10−4 eV/Å respectively. To

restrict the global rotation of the slider, planar springs perpendicular to the sliding direction

(with spring constant ki = 1 N/m) are tethered to each slider atom – a virtual constraint to

counteract the global torque [8].

III. SLIDER SIZE AND TWIST ANGLE

With the simulation protocol introduced above, we are set to discuss the influence to Ueff

and aeff from various factors. We begin in this section with the size and twist angles. Simula-

tions results for the size and twist angle dependence of Ueff and aeff are shown in Fig. 2 (a-b).

Size dependence. The values of aeff are found to be uniformly close to a, independent

of size, and as we shall see later, approximately independent of driving details such as side

or central pulling. The energy barrier of the island Ueff , due to the edges which even in

the absence of other defects break full translational symmetry, logically increases with size,

as does the perimeter. Physically the barrier is due to the uncompensated moiré nodes

entering/exiting the edge. Its size scaling for a SL system is Ueff ∼ Ui(D/asli)
γ, where Ui

represents the per-atom sliding energy barrier, asli is the lattice constant of the slider and γ

is a scaling exponent. For a defect-free graphene/graphene interface, the basic parameter Ui

determining the edge-induced energy barrier is estimated with the present force field to be

about 0.1 eV. By fitting the upper envelope of simulation results (Fig. 2a), we get γ ∼ 1/2,

i.e., the barrier is approximately proportional to the slider perimeter’s square root. This

scaling, Ueff ∝ A1/4 ∝ D1/2 (A is the contact area), agrees with previous studies of circular

islands [8, 35–38]. Its meaning is that among all perimetral atoms, only the front and rear

ones dominate the friction, a fact also well established for nanoribbons [8, 39, 40]. That
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implies as we will show in Sect V that γ is shape dependent, and can generally rise from 0

to 1.

Twist dependence. The values of aeff remain close to a, for all twist angles θ we studied

here, from 2◦ to 30◦. The effective barrier Ueff has a more interesting dependence on twist

angle. The largest value Ui ∼ 0.1 eV is obtained for systems with small twist angles.

The barrier drops as θ increases (Fig. 2b), scaling as Ueff ∝ θγ−2, a decrease due to the

decreasing contribution from the moiré edge [35]. For a system with θ = 30◦ – closest to the

ideal “superlubric” state, its Ui value is even smaller, approximately 10−2 eV.

FIG. 2. Effective energy barrier Ueff (upper panels) and periodicity aeff (lower panels) as a function

of (a) diameter D, (b) twist angle θ, and (c) sliding direction Φ. The power function fits and the

scaling exponents are shown in (a) and (b).

IV. SLIDING DIRECTION

The next point that distinguishes the real-world SL system from the 1D PT model is the

sliding direction – the potential energy evolves differently as the COM of the slider moves

along different directions (characterized by the angle Φ with x-axis). By symmetry, both

Ueff and aeff possess 60◦ symmetry with respect to Φ.

Simulation results of a D = 14 nm and θ = 5◦ model are shown in Fig. 2 (c). For sliding

directions from Φ = 0◦ to 60◦, both Ueff and aeff do not differ much. Once again, for all

the graphene islands which we considered, with diameter D ranging from 4 to 20 nm and

θ from 2◦ to 30◦, the effective periodicity aeff was found to remain remarkably close to the
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substrate (also graphene) lattice constant a. The overall shape of E(x) being very strongly

dependent upon the sliding direction Φ, this result seems quite surprising. It is explained

as follows.

Assuming a weak interaction between slider and substrate [11, 36, 37, 41], the general

E(r) can be represented by

E(r) = −2Uslider

9

[
3∑

i=1

cos(ki · r) +
3

2

]
(5)

where Uslider is the barrier of the whole slider and ki is the reciprocal vector of the triangular

lattice, with magnitude |ki| = 4π/
√
3a, and a is the lattice constant of the substrate.

Starting from the energy minimum, i.e., r = 0, one can get the slope along an arbitrary

direction Φ,

S = ∇E · t⃗ (6)

where t⃗ = (cosΦ, sinΦ). The steepest slope along direction Φ satisfies

dS

dr
= 0 (7)

In polar coordinates where x = r cosΦ and y = r sinΦ, one gets

dS

dr
=

8π2Uslider

27a2
{
cos[

2πr

3a
(
√
3 cosΦ− 3 sinΦ)](cosΦ−

√
3 sinΦ)2

+ cos[
2πr

3a
(
√

(3) cosΦ + 3 sinΦ)](cosΦ +
√
3 sinΦ)2

+ 4 cos(
4πr√
3a

cosΦ) cos2Φ
} (8)

With a variable substitution:

m = cosΦ−
√
3 sinΦ

n = cosΦ +
√
3 sinΦ

(9)

the above formula simplifies to

dS

dr
=

8π2Uslider

27a2
{
cos(

2πmr√
3a

)m2 + cos(
2πnr√
3a

)n2 + cos[
2πr√
3a

(m+ n)](m+ n)2
}

(10)

Considering the 60-degree symmetry of Φ and the fact that the largest slope position must be

inside the potential well, the cosine terms can be approximated as cosx ≈ 1−x2/2+x4/24.

The above equation further simplifies to

dS

dr
=

8π2Uslider

27a2
{
[m2 + n2 + (m+ n)2]− 2π2r2

3a2
[m4 + n4 + (m+ n)4]

+
2π4r4

27a4
[m6 + n6 + (m+ n)6] +O[(

r

a
)
6

]
} (11)

9



Noting that

m2 + n2 + (m+ n)2 = 6

m4 + n4 + (m+ n)4 = 18

m6 + n6 + (m+ n)6 = 60 + 6 cos(6Φ)

(12)

Substituting Eqs. (12) into Eq. (11), we finally conclude that

1. dS/dr is weakly Φ-dependent (when r < a);

2. dS/dr = 0 occurs at r ≈ a/4.

In simple words, even though the overall E(r) is strongly direction dependent, its

quadratic growth near r = 0 is approximately independent of direction, and so is the

instability point of maximum slope. That implies that case-by-case corrections to aeff are

unnecessary, this parameter being well approximated by the bare substrate lattice constant.

Given this weak directional dependence, simulations in the subsequent sections are all along

the zigzag (x) direction.

The effective barrier does, unlike aeff , depend upon the sliding direction, although only

weakly. The sixfold symmetry is confirmed in Ueff(Φ), and the relative difference of Ueff

between zigzag (Φ = 0) and armchair (Φ = 30◦) sliding direction is only ≈ 10%, a difference

which also agrees with experimental sliding of SL graphite/hBN interfaces [42].

V. SLIDER SHAPE

Besides circular sliders [25, 35, 42], instructive if not particularly realistic, there are many

other candidate shapes that may help anticipate the often irregular forms encountered in 2D

material-based SL experiments [26, 43, 44]. In this section, we examine results for triangular,

hexagonal, and mixed-shape sliders – to explore the variety of cases (Fig. 3a). In view of

different shapes, we use the number of carbon atoms in the slider Nsli to characterize the

size of the model. A circular slider with Nsli = 6688 has diameter D = 15 nm. The edges

of triangular and hexagonal sliders used in our simulations are along zigzag directions, a

choice based on the fact that zigzag direction has a slightly lower fracture toughness [45].

Nonetheless, the orientation of edges in experiments could still scatter. This means that

even for the same shape, the orientation of the edges can further affect the result [37].
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FIG. 3. Results for different slider shapes. (a) Simulation model with circular, hexagonal, trian-

gular, and an irregular shape slider. This shape is built based on the shape of flake reported in

experiments (inset) [26]. Number of slider atom Nsli is shown in the figure. Twist angle θ = 5◦

for all shapes in the simulation. (b, c) Effective energy barrier Ueff and periodicity aeff as a func-

tion of the contact size N
1/2
sli . For clarity, (b) and (c) show the results for triangular (yellow) and

irregular-shaped (red) islands and hexagonal islands (green) respectively. Circular shape results

(blue) are shown in background to facilitate direct comparison. The fitting and the corresponding

scaling exponents γ are shown in the upper panels of (b) and (c). The exponent for the hexagonal

shaped case scatters, from 0 to ≈ 0.7.

Similar to previous observations, simulation results in Fig. 3(b) show that aeff remains

close to a for all shapes and size we studied, even for the irregular shape case (marked by red

squares). The effective energy barriers are smaller for triangular and hexagonal systems than

for circular shapes, at least for the chosen θ = 5◦ and Φ = 0. A larger barrier occurs when

more moiré nodes simultaneously cross the island edge, and coincident crossings happen to

be less abundant in the chosen shapes compared to circular. The barrier growth with size is

also sublinear. Even if data are insufficient to extract an accurate scaling exponent γ from

Ueff ∼ N
γ/2
sli , the data are compatible with 0 < γ < 1 as anticipated. We note that certain

shapes show a surprising γ < 1/2, such as the triangular shape of Fig. 3(b), where γ ≈ 0. As

also seen in some previous simulations [37, 38], this surprising lack of growth of the sliding

barrier with size is possible when polygonal islands slide along or close to a wedge direction.

This reinforces the concept that a choice of shapes and orientation might be crucial when

seeking structurally lubric sliding of large size sliders.
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VI. HETEROSTRUCTURES

The above results and discussion was focused on graphene homo-structures. Although

graphene and its interfaces are still most popular in SL research, hetero-structures are at-

tracting increasing interest. That is because of their rich electronic properties [1–3] but also

of their robust “superlubric” behavior – the sliding energy barrier remains low under arbi-

trary twist angles [12, 40, 43, 46]. In this section, we consider the aligned graphene/Au(111)

hetero-structure (Fig. 4a, b) as a representative hetero-interface. We simulate this system

to extract the size dependence of Ueff and aeff , giving a direct comparison to the results in

Section III.

FIG. 4. Models and results for graphene/Au(111) heterostructure. (a, b) Top view and side view

of the simulation model. (c) Effective energy barrier Ueff and periodicity aeff as a function of the

diameter of the slider. Twist angle θ = 0◦ (aligned) for all heterostructures used here. The lattice

spacing of the Au(111) substrate is aAu(111) ≈ 2.885 Å.

Simulation results in Fig. 4(c) show that the main conclusions in previous sections still

hold for hetero-structures. Specifically, Ueff scales sublinearly with diameter (γ = 1/2), and

aeff is very close to the lattice constant of the substrate aAu(111) = aAu/
√
2 ≈ 2.885 Å, where

aAu = 4.08 Å is the lattice constant of gold. In addition, the magnitude of the sliding

energy barrier of graphene/Au(111) hetero-junction is tiny – comparable to the graphene

homo-structure with large twists (Fig. 2), which shows that the system has exceptionally

good superlubric properties [31, 39, 47].
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VII. ELASTICITY

The simulations in the previous four Sections are based on rigid island sliders. The

rationale for this choice is that 2D materials such as graphene are very stiff. However,

as size increases, or when the driving method changes, the influence of elasticity may no

longer be ignored. In this section, the simulated graphene island sliding on a rigid graphene

substrate is flexible with D = 28 nm and θ = 5◦. To compare with the rigid island case,

three simulation protocols are introduced, namely, uniform drag, edge-drag and edge-push,

corresponding to three typical driving methods in experiments [12, 26, 39, 48, 49]. For the

edge drag and push cases, the pulling spring is tethered to the narrow edge region (green

color in Fig. 5a) instead of the COM as in the uniform case.

FIG. 5. Models and results for different driving methods. (a) Schematic sketch of the simulation

model. In edge-drag and edge-push simulation, the slider moves by dragging/pushing the rightmost

edge (highlighted green). (b) Potential energy evolution as a function of displacement. Parameters

used in simulations are D = 28 nm (Nsli = 23437) and θ = 5◦.

Results are shown in Fig. 5(b). The flexibility of the island, both in-plane and out-

of-plane, causes the potential energy E(x) to decrease compared to the rigid case at all

positions, and to further deviate from sinusoidal. Due to that, the relaxed aeff grows slightly

larger than a. For both edge-driven cases, we find aeff = 2.72 Å, compared to a = 2.46 Å

of the rigid case. This increase is connected with the entry and exit of the moiré pattern

AA nodes – higher energy regions [8, 35, 50] – at the edge of the slider. For a rigid slider,

the AA node is forced to enter/exit smoothly from the edge; while for a flexible slider,
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deformability causes the entry and exit of local AA to delay the overall COM movement

of the slider – the AA node remains pinned at the edge for a while. This pinning cannot

last long, especially for 2D materials with very high in-plane stiffness – and when the next

moiré is about to approach the edge, the previous pinned moiré is forced to leave. As a

result, although elasticity causes aeff > a, that increase is always modest, well below its

sinusoidal upper limit 2a. The potential energies obtained by two edge-driven methods in

our simulations overlap almost completely (Fig. 5b). This is due to the symmetry of the

graphene homo-structures. That is different from the hetero-structure used in previous work

[51], where push and drag (implying respectively compression and elongation) have different

effects on incommensurability.

The influence of elasticity is also reflected in the effective stiffness, as suggested by Eq. (4).

In nanoscale simulations, the effect of elasticity remains negligible due to the large in-plane

stiffness of 2D materials. For a nanoscale monolayer graphene slider, in fact, the internal

stiffness is Kslider ∼ Y d ≈ 300 N/m (Y is the Young’s modulus and d is the thickness of

graphene, which is approximated by the interlayer distance of graphite), much larger than the

external stiffness Kp – typically on the order of 10 N/m in experiments. At the microscale,

however, a thousand times larger linear size, Kslider can decrease and become important. For

an edge-dragged island, the internal stiffness decreases as the size L increases, Kslider ∝ L−1,

and the internal stiffness may become comparable to the external one [52]. In addition to

the in-plane size, the thickness of the slider and the stacking will also affect the internal

stiffness [53] – this is another aspect that may deserve investigation in the future.

VIII. PINNING BY DEFECTS

In the previous Sections we focused on defect-free SL islands whose interface was intact

and atomically smooth. Real systems are generally more complex than this ideal case,

and defects will inevitably be introduced during the synthesis and preparation of samples.

To address that kind of situation, in this chapter we discuss the influence of two common

defects, vacancies and surface steps, on Ueff and aeff .

Our simulation models containing steps and vacancies are shown in Fig. 6(a,b). One

external monolayer step (green) is obtained by cutting the upper graphene layer of an AB

stacked bilayer substrate along its armchair direction. A single vacancy (shown in inset)
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is introduced to the substrate within the contact region. Structures for both cases are

well-optimized before the sliding simulation.

In the results of Fig. 6(c), we see that the difference between aeff and a for systems with

and without step or vacancies is negligible, which again suggests using aeff ∼ a in general

SL contacts. On the other hand, while the energy barrier Ueff for the system with a single

vacancy is only slightly higher than the one with perfect interface, that for the system with

external step is evidently higher, an increase which will obviously enhance friction. This is

consistent with the experimental observation that the SL graphite contacts with external

steps have higher friction than that of the perfect and buried step cases [54].

FIG. 6. Simulation model with (a) external step and (b) vacancy. The step is AB stacked with

substrate and colored in green. The vacancy is shown in the inset. (c) Simulation results for Ueff

and aeff for systems without defects (perfect), with one external step, and with a single vacancy.

Other parameters used are D = 7.5 nm and θ = 5◦.

IX. DISCUSSION AND CONCLUSIONS

With full-atom quasi-static simulations, the dependence of effective sliding energy bar-

rier Ueff and periodicity aeff on size D, twist angle θ, and island sliding direction Φ have

been examined for structurally lubric graphene interfaces. Based on these two parameters,

combined with the lateral stiffness Kp as appropriate in a given experiment or simulation,

one should be able to estimate ηeff and predict whether the sliding state will be smooth or
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stick-slip.

Our prediction tool is thus ready to be tested. Of course it ought to be tested in (future)

experiments. But it can also be tested right away by a direct “realistic” kinetic friction sim-

ulation, inclusive of temperature, sliding velocities, as well as energy dissipation. A room

temperature simulation with D = 7.5 nm, θ = 5◦ and low velocity (v0 = 1 m/s) provides a

good example. The kinetic simulation model and set-ups (Fig. 7a) are similar to previous

work [8, 11]. To account for energy dissipation, a Langevin thermostat is applied to the

bottom layer with temperature T = 300 K and (realistically underdamped) damping coeffi-

cient of 0.1 ps−1 [11]. The time step and total simulation time used in kinetic simulations

are dt = 1 fs and 5 ns.

Before the actual kinetic sliding simulation, in order to have a sense of the difference

between the fully flexible tri-layer system (Fig. 7a) and the fully rigid bi-layer system in

Sect III, we firstly perform a quasi-static simulation. Compared to the results of the rigid

model aeff = 2.44 Å and Ueff = 0.298 eV in Fig. 2(a), here we have Ueff = 0.301 eV and

aeff = 2.43 Å and Ueff = 0.301 eV – the difference is negligible. In particular, elasticity

slightly lowers the barrier, as discussed in Sect VII, but the additional bottom graphene

layer (required by the kinetic simulations) compensates that.

Shown in Fig. 7(b-d) are the results of kinetic friction simulations with different spring

stiffnesses Kp. As shown in Fig. 7(b), there is a clear stick-slip when Kp = 10 and 3 N/m

(corresponding to ηeff = 1.57 and 5.22 respectively), as opposed to smooth sliding with

Kp = 100 N/m (corresponding to ηeff = 0.16). The simulation results very well meet the

theoretical predictions – for the underdamped low-temperature system (here kBT/Ueff ≈

0.086), when ηeff < 1, there is smooth sliding; when 1 < ηeff < 4.6, there is single stick-slip;

and when 4.6 < ηeff < 7.8, there is double-slip [19, 21].

The difference between smooth sliding and stick-slip further leads to significant differences

in the mechanical power dissipated during sliding. We show in Fig. 7(c) the accumulated

dissipated energy Wdiss as a function of time: for systems with Kp = 10 and 3 N/m, Wdiss

increases significantly with time, while the increase of Wdiss for the Kp = 100 N/m system

is imperceptible. This confirms that for ηeff < 1 the sliding of an island is, despite a nonzero

barrier, still structurally lubric.

For completeness, we also extracted for display the kinetic friction force of the system by

Fk =
∆Wdiss

v0∆t
(the result has been verified to be equal to the time averaged lateral force ⟨F ⟩).
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FIG. 7. Kinetic friction simulations. (a) Simulation model. Parameters used are D = 7.5 nm,

θ = 5◦, T = 300 K and v0 = 1 m/s. (b) Force traces of different Kp cases. Results for Kp = 100,

10 and 3 N/m correspond to smooth sliding (black), single stick-slip (red) and double-slip (green)

respectively. (c) Dissipated energy as a function of time for the three cases. Note the exceedingly

small friction for ηeff < 1. (d) Kinetic friction as a function of Kp (lower x-axis) and ηeff (upper

x-axis). The average value and error bar are estimated from three independent simulations. The

theoretically predicted transition stiffness Kc is marked by the shaded region. Note the good

agreement between the ηeff prediction and the actual drop of friction.

Fig. 7(d) shows clearly that for stick-slip cases, i.e., ηeff > 1 (or Kp < 15.7 N/m), the kinetic

friction is significant; while for smooth sliding cases, the friction is much smaller. For this

nanoscale simulation system, the transition stiffness dividing the two regimes is on the order

of 10 N/m, as marked by the shaded region.

Coincidentally, in many AFM-based experiments [12, 26, 33, 34], the lateral stiffness

of the system is also on the order of 10 N/m. This naturally requires us to estimate Ueff
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in experiments – typically on microscale and with large twist angles (small twist islands

or flakes rotate easily back to 0◦). Using size scaling Ueff ∼ Ui(D/a)1/2 and substituting

Ui = 10−2 eV from Section III, it can be estimate that Ueff of a microscale system is on the

order of 1 eV. Assuming Kp = 10 N/m, we can qualitatively estimate that ηeff ∼ 5 > 1.

In experimental reality, the energy barrier will be generally larger due to the presence of

more defects and/or contaminants. This implies that SL systems driven by AFM probes

are likely to exhibit stick-slip motion unless the lateral stiffness is very much strengthened.

An observation that may be made here is that many SL friction experiments do not

directly show stick-slip advancement of the slider, so much that superlubricity is claimed

in some cases. Strictly speaking that claim seems improper, because the measured velocity

dependence, when available, is always much weaker than linear, in fact logarithmic – and

that is the hallmark of stick-slip. The two elements, the absence of visible stick-slip and a

very sublinear velocity dependence, appear contradictory at first sight. One likely expla-

nation might be a simple lack of experimental resolution, atomic size steps being as small

as they are. For very large sliders, other possibilities may involve a coexistence of many

distributed pinning points, interfering with one another and transforming the advancement

from stick-slip to apparently continuous. A common feature of these seemingly contradictory

cases should be a large noise. Noise is actually an observable of great importance, generally

not reported and unduly neglected. The multi-pinned stick-slip should precisely differ from

smooth sliding by a large increase of frictional noise. Nevertheless, the logarithmic velocity

dependence of friction [8] remains a safe diagnostic and an incontrovertible proof of stick-slip

in SL sliding, which we argue will experimentally occur once our criterion ηeff > 1 is verified.

In summary, we proposed here a single PT-like parameter ηeff = 2π2Ueff/Keffa
2
eff to de-

scribe the transition between smooth and stick-slip sliding of structurally lubric islands and

large size interfaces. MD simulations show systematically how the parameters vary with size,

twist angle, sliding direction, lattice mismatch, elasticity, and pinning defects – all variables

that characterize real experiments. Firstly, the sliding energy barrier Ueff of an island has a

sublinear size scaling and is accompanied by moiré-sized fluctuations. For a circular island

Ueff decreases like θ−3/2 as the twist angle θ grows, and depends weakly on sliding direc-

tion. Interfacial pinning defects widely seen in experiments, especially external steps, can
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significantly increase the barrier. On the other hand, the effective periodicity aeff is for the

cases we studied, and assuming a rigid substrate, always close to the lattice constant of the

substrate a. This result is attributed to the large in-plane stiffness of 2D materials leading to

a relatively direction independent energy profile close to the x = 0 minimum. Our nanoscale

simulations suggest that the island’s elasticity should not be ignored, specifically at micron

or larger sizes. Elasticity reduces the intra-slider stiffness Kslider, and that in turn reduces

the overall driving stiffness from Kp to Keff . A smaller Keff can yield ηeff > 1, leading to

stick-slip.

Real kinetic simulations offer a preliminary verification of the accuracy of our proposed

ηeff . Lastly, based on the analysis and extrapolation of simulation results, we believe that

most existing SL experiments widely satisfy ηeff > 1. Although stick-slip may be generally

difficult to see directly in force traces, the logarithmic friction velocity dependence provides

a safe diagnostic of its presence. We believe that the analysis of noise might in the future

be crucial in order to further uncover the stick-slip nature of friction, when present. On

the other hand, our proposed ηeff parametrization shows that it is not impossible, even for

not so small islands (from nano to microscales), to achieve ηeff < 1 and therefore smooth

sliding and negligible absolute friction (not just differential friction coefficient [8]), despite

the inevitable edge-related energy barriers. For that goal, it will be instrumental to employ

stiff drivers, sliding in directions where the slider shape has sharp wedges as opposed to

flat edges. The engineering community interested in achieving virtually frictionless smooth

sliding should concentrate efforts towards reaching these conditions.
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