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We study few-magnon excitations in a finite-size spin-S chain with ferromagnetic nearest-neighbor
(NN) interaction J > 0 and antiferromagnetic next-nearest-neighbor (NNN) interaction J ′ < 0, in
the presence of the single-ion (SI) anisotropy D. We first reveal the condition for the emergence of
zero-excitation-energy states. In the isotropic case with ∆ = ∆′ = 1 (∆ and ∆′ are the corresponding
anisotropy parameters), a threshold of J/|J ′| above which the ground state is ferromagnetic is
determined by exact diagonalization for short chains up to 12 sites. Using a set of exact two-magnon
Bloch states, we then map the two-magnon problem to a single-particle one on an effective open
chain with both NN and NNN hoppings. The whole two-magnon excitation spectrum is calculated
for large systems and the commensurate-incommensurate transition in the lowest-lying mode is
found to exhibit different behaviors between S = 1/2 and higher spins due to the interplay of the
SI anisotropy and the NNN interaction. For the commensurate momentum k = −π, the effective
lattice is decoupled into two NN open chains that can be exactly solved via a plane-wave ansatz.
Based on this, we analytically identify in the ∆′−D/|J ′| plane the regions supporting the SI or NNN
exchange two-magnon bound states near the edge of the band. In particular, we prove that there
always exists a lower-lying NN exchange two-magnon bound state near the band edge for arbitrary
S ≥ 1/2. Finally, we numerically calculate the n-magnon spectra for S = 1/2 with n ≤ 5 by using
a spin-operator matrix element method. The corresponding n-magnon commensurate instability
regions are determined for finite chains and consistent results with prior literature are observed.

I. INTRODUCTION

Frustrated quantum spin systems with competing in-
teractions can exhibit rich interesting phenomena due
to the simultaneous existence of frustration and quan-
tum fluctuations. In the past few decades, the spin-1/2
Heisenberg chain with ferromagnetic NN and antiferro-
magnetic NNN interactions has attracted considerable
attention and has been thoroughly studied by using a
variety of methods [1–11]. The model is relevant to var-
ious quasi-one-dimensional magnetic materials such as
Rb2Cu2Mo3O12 [12] and LiCuVO4 [13].

Theoretically, the NN-NNN spin chain (or the J − J ′

chain in our notation) is simple enough and serves as a
prototype for exploring novel quantum phases in more
general frustrated magnetic systems. Besides its ground-
state properties [2, 4, 5, 10, 11], of special interest is few-
magnon excitations upon the fully polarized state [3, 8–
10]. In an early work, Chubukov studied the one- and
two-magnon instability of a spin-1/2 J−J ′ chain by using
the bosonization technique based on the Dyson-Maleev
transformation [3]. Kuzian and Drechsler mapped the
two-magnon problem onto an effective tight-binding one
and obtained the exact two-magnon excitation spectrum
for infinite chains [8]. Kecke, Momoi, and Furusaki con-
structed a set of n-magnon Bloch states and calculated
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the n-magnon excitation spectra for n ≤ 4 in a restricted
Hilbert space [9]. The same method was subsequently
used to calculate excitations up to n = 7 and to identify
the multimagnon bound states [10].

Recently, there has been a resurgence of theoretical
interest in few-excitations and their dynamics in quan-
tum chains [14–20]. This is mainly triggered by re-
cent experimental advances in simulating spin-1/2 [21–
23] and higher-spin [24, 25] quantum magnetic mod-
els in cold-atom systems. We note that a uniaxial SI
anisotropy term in spin-1 models was realized with ul-
tracold atoms [24] and a long-ranged anisotropic Heisen-
berg model was recently realized using Floquet engineer-
ing [23]. Despite these experimental advances, multi-
magnon bound states in higher-spin J − J ′ chains with
SI anisotropy have been scarcely studied theoretically.

In this work, motivated by the above-mentioned ex-
perimental developments, we study theoretically few-
magnon excitations upon the ferromagnetic state in a
spin-S periodic J − J ′ chain with arbitrary S and in the
presence of the SI anisotropy. We first reveal the con-
dition for the existence of zero-excitation-energy states
and relate it to a threshold of J/|J ′| above which the
ground state is ferromagnetic. By performing exact di-
agonalizations of short chains with N ≤ 12 sites, we find
that this threshold is always J/|J ′| = 4 for S = 1/2,
but shows size-dependence for S > 1/2. Using a set
of recently proposed exact two-magnon Bloch states for
the finite-size XXZ chain [17], we then map the two-
magnon problem onto a single-particle one defined on an
inhomogeneous open chain with both NN and NNN hop-
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pings. Numerical solutions of the single-particle problem
recover all the prior results for S = 1/2 [3, 8–10], includ-
ing the identification of the two-magnon commensurate-
incommensurate transition point in the lowest-lying ex-
cited state, the appearance of two-magnon bound states
below the scattering continuum, etc. For S > 1/2, the
evolution of the lowest two-magnon excitation energy and
the associated wave number with varying J/|J ′| behaves
differently from the case of S = 1/2. The SI anisotropy
is found to have a large impact on the low-energy exci-
tations.

To understand the emergence of bound states near the
band edge, we note that for the commensurate momen-
tum k = −π the effective lattice is divided into two
independent NN open chains. We solve the eigenvalue
problem for these two decoupled NN chains by employ-
ing a plane-wave ansatz, from which we identify analyt-
ically the parameter regions supporting the two types of
two-magnon bound states, i.e., the NNN exchange and
SI two-magnon bound states (see Sec. IV). In particular,
we rigorously prove that there always exists a lower-lying
NN exchange two-magnon bound state in the k = −π
sector for arbitrary S ≥ 1/2, regardless of all the param-
eters. These analytical results are expected to faithfully
describe the spectrum structure near the band edge.

We also study n-magnon (n ≥ 3) excitations in a spin-
1/2 chain. Using a basis in which the NN XX interaction
is diagonal, we present numerically exact calculations of
the excitation spectra up to n = 5 in finite-size chains.
The saturated magnetic fields and the associated number
of magnons in the lowest excitation state are consistent
with those obtained in a restricted Hilbert space [10].

The rest of the paper is organized as follows. In Sec. II,
we introduce the spin-S J −J ′ model and study the sim-
plest subspace with only one magnon. We then introduce
the exact two-magnon Bloch states and the plane-wave
ansatz that will be used later. In Sec. III, we discuss
the emergence of zero-excitation-energy states under cer-
tain conditions. In Sec. IV, we present detailed results
about the two-magnon excitation and solve the problem
for mode k = −π semianalytically, with which we de-
termine the emergence of two-magnon bound states near
the band edge. In Sec. V, we focus on n-magnon ex-
citations in the case of S = 1/2. The exact excitation
spectra for n ≤ 5 are numerically calculated for finite
chains. Conclusions are drawn in Sec. VI.

II. MODEL AND METHODOLOGY

A. Hamiltonian

We consider a spin-S homogeneous Heisenberg chain
with both NN and NNN interactions

H = HNN +HNNN +HD +HB,

HNN = −J
N∑
j=1

(Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+1)

HNNN = −J ′
N∑
j=1

(Sx
j S

x
j+2 + Sy

j S
y
j+2 +∆′Sz

j S
z
j+2)

HD = −D
N∑
j=1

(Sz
j )

2, HB = −B
N∑
j=1

Sz
j , (1)

where S⃗j = (Sx
j , S

y
j , S

z
j ) are spin operators on site j with

quantum number S ≥ 1/2, J and J ′ measure the ex-
change interactions between NN and NNN spin pairs re-
spectively with ∆,∆′ > 0 the interaction anisotropies,
D ≥ 0 is the single-ion anisotropy strength and B is
an external magnetic field. Note that for S = 1/2 the
single-ion anisotropy term contributes only a constant
HD = −ND/4. We therefore simply set D = 0 in all the
following discussions concerning S = 1/2. For simplicity,

we impose periodic boundary conditions S⃗j = S⃗N+j and
assume that N is even and divisible by 4 (other cases can
be similarly analyzed). The spin chain is translationally
invariant under shifts by one lattice spacing.

It is easy to see that the total magnetization M =∑
j S

z
j is conserved. We consider the case of J > 0 and

J ′ < 0, where the antiferromagnetic NNN interaction in-
duces a frustration [3, 9]. We take the fully polarized
state |F ⟩ = |S, S, · · · , S⟩ as a reference state, which pos-
sesses an eigenenergy

EF = −NS2(J∆+ J ′∆′ +D)−NSB. (2)

The n-magnon subspace is spanned by all the spin
configurations having n spin deviations (with S−

j =

Sx
j − iSy

j ),

|j1, j2, · · · , jn⟩ = CS−
j1
S−
j2
· · ·S−

jn
|F ⟩,

where C is a suitable normalization constant and 1 ≤
j1 ≤ j2 ≤ · · · ≤ jn ≤ N . The lattice translation operator
T is defined by the relation

T |j1, j2, · · · , jn⟩ = |j1 + 1, j2 + 1, · · · , jn + 1⟩.

It is obvious that TN = 1.
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B. One-magnon sector

As a warm up, let us first study the single-magnon
subspace. The N one-magnon states are given by [17]

|ξ(k)⟩ = 1√
N

N−1∑
n=0

eiknTn|1⟩, k ∈ K0 (3)

where the wave numbers k’s take values from the set

K0 =

{
−π,−π +

2π

N
, · · · , 0, · · · , π − 2π

N

}
(4)

to guarantee the translational invariance of |ξ(k)⟩, i.e.,
T |ξ(k)⟩ = e−ik|ξ(k)⟩. It is easy to check that |ξ(k)⟩ is an
eigenstate of H with eigenenergy EF + E1(k), where

E1(k) = −2S(2J ′ cos2 k + J cos k) +D(2S − 1) +B

+2S[J∆+ J ′(∆′ + 1)]. (5)

To study the instability of the ferromagnetic state |F ⟩,
we define the spin gap G1 as the energy difference be-
tween the lowest one-magnon state and EF in the absence
of the magnetic field [26]:

G1 = max{E1(k(min)
1 )|B=0, 0}, (6)

where k
(min)
1 is the wave number at which E1(k)|B=0

reaches its minimum.
Since E1(k)|B=0 is a quadratic function of cos k, the

wave number k
(min)
1 is independent of the quantum num-

ber S and the anisotropy parameters ∆ and ∆′ but de-
pends only on the ratio R ≡ J/4|J ′| > 0. As a result, G1

exhibit different behaviors depending on whether R ≥ 1
or R < 1.
i) R ≥ 1.

In this case we have k
(min)
1 = 0 and

E1(0)|B=0 = 2S[J(∆− 1) + J ′(∆′ − 1)] +D(2S − 1).

(7)

The one-magnon spin gap G1 exactly vanishes for a spin-
1/2 isotropic J − J ′ chain with ∆ = ∆′ = 1 [3, 9],
where |F ⟩ is degenerate with the lowest one-magnon
state. However, this degeneracy is removed for higher
spins if the SI anisotropy is present. In any case, G1 is
positive for ∆ > 1 and ∆′ < 1.

ii) 0 < R < 1.

In this case k
(min)
1 takes the value such that

| cos k(min)
1 −R| is the smallest. For finite N , k

(min)
1 = 0

if and only if

R > cos2
π

N
. (8)

For large enough N , we have k
(min)
1 ≈ arccosR, giving

E1(k(min)
1 )|B=0 ≈ 2SJ ′[2(R−∆)2 + (∆′ + 1− 2∆2)]

+D(2S − 1). (9)
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FIG. 1: For N = 6 and S > 1/2, the three parent states
|1, 1⟩, |1, 2⟩, and |1, 3⟩ each generates five new states under
the action of the translation operator T . However, the last
parent state |1, 4⟩ generates only two new states.

The condition for G1 > 0 is(
1− 1

2S

)
D/|J ′| > 2R2 − 4R∆+ (∆′ + 1). (10)

For S = 1/2 and ∆ = ∆′ = 1, the above inequality can
never be satisfied. Thus, it is necessary to introduce an
easy-axis anisotropy or a nonzero magnetic field in order
to search for a region of ferromagnetic phase for 0 < R <
1 [3]. For S > 1/2, Eq. (10) can be fulfilled by choosing
sufficiently large D/|J ′|. The required saturation field
for ∆ = ∆′ = 1 and D = 0 is obviously

Bsat = S(J + 4J ′)2/4|J ′|, (11)

which is proportional to the quantum number S. A finite
positive SI anisotropy D can help lower the saturation
field.

C. Two-magnon Bloch Hamiltonians

The two-magnon excitations of the J −J ′ chain in the
case of S = 1/2 have been well studied by using various
methods [3, 8–10]. Here, we employ a set of recently
proposed exact two-magnon Bloch states to investigate
the two-magnon excitations for general S.
For S > 1/2, the dimension of the two-magnon sub-

space is
(
N
2

)
+N = N(N + 1)/2. There are two types of

normalized two-magnon basis states in the real space,

|i, j⟩ =
1

2S
S−
i S

−
j |F ⟩, 1 ≤ i < j ≤ N,

|i, i⟩ =
1

2
√
S(2S − 1)

(S−
i )2|F ⟩, 1 ≤ i ≤ N. (12)

Note that |i, i⟩ is not defined for S = 1/2. These states
can be generated by successively applying the translation
operator T to the following parent states

|1, 1⟩, |1, 2⟩, · · · , |1, N/2⟩, and |1, N/2 + 1⟩.
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Each of the first N/2 parent states generates N − 1 ad-
ditional states under the action of T , while the last one,
|1, N/2 + 1⟩, generators only N/2 − 1 additional states,
see Fig. 1 for an example with N = 6.
We can linearly combine each parent state with its

translated states to form a Bloch state labeled by the
separation r of the two spin deviations. Explicitly, for
r = 0, 1, · · · , N/2− 1 we define [17]

|ξr(k)⟩ =
ei

rk
2

√
N

N−1∑
n=0

eiknTn|1, 1 + r⟩, (13)

where k ∈ K0. For r = N/2, we construct

|ξN
2
(k)⟩ = ei

Nk
4

√
2

N

N
2 −1∑
n=0

eiknTn|1, 1 + N

2
⟩, (14)

where k ∈ K1 with (for even N/2) [17]

K1 =

{
−π,−π +

4π

N
, · · · , 0, · · · , π − 4π

N

}
. (15)

The such constructed Bloch states are all normalized and
translationally invariant, i.e., T |ξr(k)⟩ = e−ik|ξr(k)⟩, r =
0, 1, 2 · · · , N/2. We would like to mention that these set
of Bloch states have been proposed for S = 1/2 in the dis-
cussion of excitonic bound states in molecular chains [27].
For later use the complement of K1 will be denoted as
K ′

1 such that K0 = K1

⋃
K ′

1.
For each k ∈ K1, it can be shown by straightfor-

ward calculation that the N/2 + 1 ordered Bloch states
{|ξ0(k), · · · , ξN/2(k)} form a close set under the action
of each individual term in the Hamiltonian. The two
terms HD and HB, as well as the Ising-coupling parts
of HNN and HNNN, do not involve spin flips and are
all diagonal in the above basis. The XX-coupling part
of HNN was obtained in Ref. [17] as a tridiagonal ma-
trix. For completeness, here we sketch how to evaluate
the matrix elements of the XX-coupling part of HNNN.

Let H̃XX,NNN =
∑N

j=1(S
+
j S

−
j+2 + S−

j S
+
j+2)/2, we choose

|ξN/2−2(k)⟩ as a representative Bloch state to calculate

H̃XX,NNN|ξN/2−2(k)⟩. We first calculate the action of

H̃XX,NNN on the parent state |1, N/2− 1⟩:

H̃XX,NNN|1,
N

2
− 1⟩

=
1

2
(S−

N−1S
+
1 + S+

1 S
−
3 + S−

N
2 −3

S+
N
2 −1

+ S+
N
2 −1

S−
N
2 +1

)

|1, N
2

− 1⟩

= S|N
2

− 1, N − 1⟩+ S|3, N
2

− 1⟩

+S|1, N
2

− 3⟩+ S|1, N
2

+ 1⟩

= S(1 + T 2)|1, N
2

− 3⟩+ S(1 + T−2)|1, N
2

+ 1⟩.
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FIG. 2: (a) The matrix form of H − EF in the ordered basis
{|ξ0(k), · · · , ξN/2(k)} with k ∈ K1 is represented by an ef-
fective lattice consisting of an open chain with both NN and
NNN hoppings. The on-site energies and hopping strengths
are indicated in respective colors. (b) The effective lattice for
k ∈ K′

1. (c) For N divisible by 4, the special mode k = −π
lies in the set K1, giving two decoupled open NN chains L1

and L2 of lengths N/4 + 1 and N/4, respectively.

By noting that [H̃XX,NNN, T ] = 0 and TN/2|1, N2 + 1⟩ =
|1, N2 + 1⟩, we have

H̃XX,NNN|ξN/2−2(k)⟩

=
ei(

N
2 −2) k

2

√
N

N−1∑
n=0

eiknTnS(1 + T 2)|1, N
2

− 3⟩

+
ei(

N
2 −2) k

2

√
N

N
2 −1∑
n=0

eiknTnS(1 + T−2)|1, N
2

+ 1⟩

+
ei(

N
2 −2) k

2

√
N

N−1∑
n=N

2

eiknTnS(1 + T−2)|1, N
2

+ 1⟩

= S(eik + e−ik)|ξN/2−4(k)⟩+ 2S(eik + e−ik)
|ξN/2(k)⟩√

2

= 2S cos k(|ξN/2−4(k)⟩+
√
2|ξN/2(k)⟩).

We see thatHNNN connects |ξN/2−2(k)⟩ with |ξN/2−4(k)⟩
and |ξN/2(k)⟩. The remaining non-vanishing matrix ele-

ments of H̃XX,NNN can be obtained in a similar way.
By gathering all the terms in H, we find that the ma-

trix representation of H in the basis can be represented
by an effective lattice consisting of an open chain with
both NN and NNN hoppings [Fig. 2(a)]. The action of
H −EF on an arbitrary Bloch state can directly be read
off from the lattice. For example, (H − EF )|ξ1(k)⟩ =
(εb − J∆ − 2J ′S cos k)|ξ1(k)⟩ + t1|ξ0(k)⟩ + t2|ξ2(k)⟩ +
t4|ξ3(k)⟩, where εb = 4S(J∆+J ′∆′)+2D(2S−1)+2B,

t1 = −2J
√
S(2S − 1) cos k

2 , t2 = −2JS cos k
2 , and t4 =
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−2J ′S cos k. Note that the on-site energies on sites
|ξ1(k)⟩ and |ξN/2−1(k)⟩ are k-dependent. For k ∈ K ′

1,
the effective lattice can simply be obtained by removing
the last site of the lattice since |ξN/2(k)⟩ is not properly
defined [Fig. 2(b)]. We thus convert the two-magnon
problem into a single-particle one on an open chain. The
two-magnon excitation energies E2(k) as functions of k
can be obtained by diagonalizing the above matrices,

(H − EF )|ψα(k)⟩ = E2,α(k)|ψα(k)⟩, (16)

where α = 1, 2, · · · , N/2 + 1 for k ∈ K1 and α =
1, 2, · · · , N/2 for k ∈ K ′

1.
In practice, solving the inhomogeneous open chain with

NNN hopping involves the diagonalization of pentadiag-
onal matrices, which in general does not admit analytical
solutions. We thus numerically diagonalize the effective
chains to obtain the two-magnon excitations for systems
of hundreds of spins.

However, for the special mode k = −π the
problem becomes, at least semianalytically, tractable.
Actually, for k = −π the NN hopping propor-
tional to cos k/2 vanishes and the effective open
chain is separated into two decoupled NN chains L1

and L2 formed by {|ξ0(−π)⟩, |ξ2(−π)⟩, · · · , |ξN/2(−π)⟩}
and {|ξ1(−π)⟩, |ξ3(−π)⟩, · · · , |ξN/2−1(−π)⟩}, respectively
[Fig. 2(c)]. For even N/2 with k = −π ∈ K1, the effec-
tive Hamiltonians for L1 and L2 can both be incorporated
into an inhomogeneous tridiagonal matrix

(h)(n+1)×(n+1) =



a1 b1
b1 a2 b

b 0 b
b 0

. . .

0 b
b 0 b2
b2 a3


. (17)

For example,
i) L1 with S > 1/2:

n =
N

4
, a1 = −2D, a2 = −J ′∆′, a3 = 0,

b1 = t3, b = t4, b2 =
√
2t4. (18)

ii) L1 with S = 1/2:

n =
N

4
− 1, a1 = −J ′∆′, a2 = a3 = 0,

b1 = b = t4, b2 =
√
2t4. (19)

iii) L1 with S ≥ 1/2:

n =
N

4
− 1, a1 = −J∆+ 2J ′S, a2 = 0, a3 = 2J ′S,

b1 = b = b2 = t4. (20)

D. The plane-wave ansatz

We now provide a plane-wave ansatz solution [30–32]
to the eigenvalue problem of the matrix (h)(n+1)×(n+1)

given by Eq. (17). Let

(h)(n+1)×(n+1)v⃗ = λv⃗, (21)

where λ and v⃗ = (v1, · · · , vn+1)
T are, respectively, the

eigenvalue and eigenvector to be solved. Explicitly, we
have four boundary equations

a1v1 + b1v2 = λv1,

b1v1 + a2v2 + bv3 = λv2,

bvn−1 + b2vn+1 = λvn,

b2vn + a3vn+1 = λvn+1, (22)

and n− 3 bulk equations

bvj−1 + bvj+1 = λvj , j = 3, 4, · · · , n− 1. (23)

The plane-wave ansatz assumes that

vj = Xeipj + Y e−ipj , j = 2, 3, · · · , n (24)

where X and Y are j-independent coefficients to be de-
termined. The end components of v⃗, v1 and vn+1, can be
obtained from the first and the last boundary equations:

v1 =
b1

λ− a1
v2, vn+1 =

b2
λ− a3

vn. (25)

The bulk equations simple give

λ = 2b cos p. (26)

To determine the allowed values of the wave number p, we
apply the ansatz in the four boundary equations. After
eliminating v1 and vn+1 [28], we get(

c
(1)
p c

(1)
−p

c
(2)
p c

(2)
−p

)(
X
Y

)
= 0, (27)

where

c(1)p = b2 − (a1 + a2)be
ip + (b2 + a1a2 − b21)e

i2p − a2be
i3p,

c(2)p = einp[(1 + ei2p)b2 − b22 − a3be
ip]. (28)

To obtain nontrivial solutions of (X,Y ), the determinant
of the 2×2 matrix appearing in the above equation must

vanish, i.e., c
(1)
p c

(2)
−p − c

(2)
p c

(1)
−p = 0, which after some ma-

nipulation becomes
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tannp

sin p
=

(a1a2 − b21 − 2a2b cos p)[a3b+ (b22 − 2b2) cos p]− b22[a1b+ 2a2b cos
2 p− (a1a2 + 2b2 − b21) cos p]

[a3b+ (b22 − 2b2) cos p][(a1a2 + 2b2 − b21) cos p− a1b− 2a2b cos2 p] + b22(b
2
1 + 2a2b cos p− a1a2) sin

2 p
. (29)

It is apparent that if p is a solution of the above equa-
tion, so is 2π − p. We thus need only to solve the above
equation on the interval p ∈ [0, π]. However, it is possible
that the number of real solutions of Eq. (29) is less than
n+ 1. In this case, one has to pursue complex solutions
of Eq. (29).

For each allowed p, Eqs. (27) and (28) lead to
the following (unnormalized) wave functions (for j =
2, 3, · · · , n)

vj = eip(j−n−1)[eip(b2 − b22) + e−ipb2 − a3b]

−e−ip(j−n−1)[e−ip(b2 − b22) + eipb2 − a3b].

(30)

The method and results presented in this subsection will
used to solve the open chains L1 and L2 for k = −π.

III. EXACT ZERO-EXCITATION-ENERGY
STATES WHEN D = 0

Before discussing the two-magnon excitations in detail,
let us first study a related problem, i.e., the existence of
zero-excitation-energy states (ZEESs) (with respect to
the ferromagnetic state |F ⟩) under certain conditions. It
is shown in Ref. [17] that for the spin-S XXZ chain in the
absence of the SI term and the magnetic field (J ′ = D =
B = 0), if the condition ∆ = cos k, k ∈ K0 is satisfied,
there then exists a series of ZEESs,

(H − EF )|J′=D=B=0(Lk)
n|F ⟩ = 0, n ≤ 2NS, (31)

where Lk =
∑N

j=1 e
ikjS−

j is a collective spin lowering op-

erator. The (unnormalized) ZEES (Lk)
n|F ⟩ carries mo-

mentum nk (mod 2π) since T (Lk)
n|F ⟩ = e−ink(Lk)

n|F ⟩.
In this section, we explore the condition for the existence
of ZEESs for the J −J ′ chain H|D=B=0 = HNN+HNNN.

A. Condition for the existence of
zero-excitation-energy states

We first look at the simplest case of n = 1. It is easy
to check that

[H|D=B=0, Lk]

= J

N∑
n=1

eikn[(∆eik − 1)S−
n+1S

z
n + (∆− eik)S−

n S
z
n+1]

+ J ′
N∑

n=1

eikn[(∆′ei2k − 1)S−
n+2S

z
n + (∆′ − ei2k)S−

n S
z
n+2],

(32)

which gives

(H − EF )|D=B=0Lk|F ⟩
= 2S[J(∆− cos k) + J ′(∆′ − cos 2k)]Lk|F ⟩. (33)

The one-magnon state Lk|F ⟩ is thus a ZEES when

J(∆− cos k) + J ′(∆′ − cos 2k) = 0, k ∈ K0 (34)

is fulfilled. This is reasonable since the left-hand side
of the above equation is proportional to the one-magnon
excitation energy E1(k)|D=B=0 given by Eq. (5). To see
whether L2

k|F ⟩ is a two-magnon ZEES under the above
condition, we further calculate

[Lk, [H|D=B=0, Lk]]

= 2J

N∑
n=1

ei(2n+1)(∆− cos k)S−
n S

−
n+1

+ 2J ′
N∑

n=1

ei2(n+1)k(∆′ − cos 2k)S−
n S

−
n+2. (35)

By applying both sides of the above equation to |F ⟩, we
see that Eq. (34) is not a sufficient condition for L2

k|F ⟩
being a ZEES. We must impose a stronger condition

∆− cos k and ∆′ − cos 2k, k ∈ K0 (36)

to guarantee [Lk, [H|D=B=0, Lk]] = 0, and hence (H −
EF )|D=B=0L

2
k|F ⟩ = 0.

Note now that [Lk, [Lk, [H|D=B=0, Lk]]] = 0,
[Lk, [Lk, [Lk, [H|D=B=0, Lk]]]] = 0, · · · are always true
if [Lk, [H|D=B=0, Lk]] = 0, we immediately get

(H − EF )|D=B=0(Lk)
n|F ⟩ = 0, n ≤ 2NS, (37)

under the condition (36).
A direct consequence of the above analysis is that, un-

der the condition given by (36), the lowest n-magnon

excitation energy, E(min)
n (k), must be nonpositive.

We now explicitly show that, for any k ∈ K0 and
|k| ≤ π/2 (such that 2k lies in the first Brillouin zone),
the following two-magnon state (in the ordered basis
{|ξ0(2k)⟩, |ξ1(2k)⟩, · · · , |ξN/2(2k)⟩}) [17]

|ΨZEES⟩ =
(
S̃/2S, 1, · · · , 1, 1/

√
2
)T

(38)

where S̃ ≡
√
S(2S − 1), is a ZEES under the condition

given by Eq. (36). Actually, for ∆ = cos k and ∆′ =
cos 2k the matrix form of the effective lattice representing
H − EF reads
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4S(Jk + J ′
k)−



0 2S̃Jk 2S̃J ′
k

2S̃Jk Jk + 2SJ ′
k 2SJk 2SJ ′

k

2S̃J ′
k 2SJk J ′

k 2SJk 2SJ ′
k

2SJ ′
k 2SJk 0 2SJk

. . .

2SJ ′
k 2SJk 0

. . .

. . .
. . .

. . .

. . .

0 2SJk 2
√
2SJ ′

k

2SJk 2SJ ′
k 2

√
2SJk

2
√
2SJ ′

k 2
√
2SJk 0



, (39)

where Jk ≡ J cos k and J ′
k ≡ J ′ cos 2k. It is easy to

check that |ΨZEES⟩ is an eigenvector of the above matrix
with zero eigenvalue.

B. The isotropic case: ∆ = ∆′ = 1

In the isotropic case of ∆ = ∆′ = 1, the total angular

momentum S⃗tot =
∑

j S⃗j is conserved. It is obvious that

the condition (36) is satisfied if and only if k = 0. Thus,

the lowest n-magnon excitation energy E(min)
n (k) is non-

positive. In particular, if the ferromagnetic state |F ⟩ is
a ground state, we must have

E(min)
n (k) = En(0) = 0, n = 1, · · · , 2NS (40)

Thus, all the 2NS states (L0)
n|F ⟩, n = 1, · · · , 2NS are

degenerate with |F ⟩ and possess energy EF |D=B=0 =
−NS2(J + J ′), indicating that the ground state is at
least (2NS + 1)-fold degenerate. These 2NS + 1 states
all have total angular momentum NS.
Equation (40) gives the necessary conditions for the

ferromagnetic ground state. We define (J/|J ′|)(n)th (N) as
the threshold above which Eq. (40) is satisfied for n. We
see from Eq. (8) that

(J/|J ′|)(1)th = 4 cos2
π

N
, (41)

which is just the necessary condition obtained in Ref. [1]
by considering one-magnon excitations. However, for

n > 1 the threshold (J/|J ′|)(n)th can only be determined
numerically. The sufficient condition for the ferromag-

netic ground state is obviously J/|J ′| ≥ (J/|J ′|)(FM)
th ,

where

(J/|J ′|)(FM)
th = max{(J/|J ′|)(n)th |n = 1, 2, · · · , NS}. (42)

Figure 3 shows (J/|J ′|)(FM)
th for different S and N

obtained by exact diagonalization. For S = 1/2,

4 6 8 10 12
N

2.5

3

3.5

4

(J
/|
J
′ |
)(
F
M
)

th S = 1/2
S = 1
S = 3/2
S = 2

FIG. 3: The threshold (J/|J ′|)(FM)
th above which the ground

state of the isotropic J − J ′ chain with ∆ = ∆′ = 1 is ferro-
magnetic. Other parameters: B = D = 0.

(J/|J ′|)(FM)
th is independent of N and is always 4. Ac-

tually, Hamada, Kane, Nakagawa, and Natsume showed
that at the point J/|J ′| = 4 the ground state for S = 1/2
is (N + 2)-fold degenerate: besides the above-mentioned
N + 1 ferromagnetic states with total angular momen-
tum N/2, there exists an additional state with zero to-
tal angular momentum that can be expressed as a linear
combination of singlet bonds uniformly distributed on all
sites [29].

We see from Fig. 3 that (J/|J ′|)(FM)
th shows size depen-

dence for S > 1/2. For N = 4, the threshold is shown

to be (J/|J ′|)(FM)
th (4) = 2 + 1/S [1]. As N increases,

(J/|J ′|)(FM)
th increases monotonically and we expect that

lim
N→∞

(J/|J ′|)(FM)
th = 4, (S > 1/2) (43)

Actually, Bader and Schilling showed that for J/|J ′| ≥ 4
the ground state of H|D=B=0,∆=∆′=1 is ferromagnetic for

arbitrary S [1]. By noting that limN→∞(J/|J ′|)(1)th = 4,
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E
2
(k
)/
|J

′ |
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-0.6

-0.4

-0.2

0

0.2

0.4

-3 -2 -1 0
k

-0.2

0

0.2

0.4

E
2
(k
)/
|J

′ |

-3 -2 -1 0
k

0

0.2

0.4

0.6
J/J ′ = −3.8

J/J ′ = −1.0 J/J ′ = −2.7

J/J ′ = −3.0

E
(min)
2 /|J ′| = −0.570868

E
(min)
2 /|J ′| = −2.5

E
(min)
2 /|J ′| = −0.312632 = −0.010467

E
(min)
2 /|J ′|

k
(min)
2 /π = −0.212

k
(min)
2 /π = −1.0

k
(min)
2 /π = −0.882

k
(min)
2 /π = −0.612

FIG. 4: The lowest 20 two-magnon excitation levels E2(k)/|J ′|
for a spin-1/2 chain with J/J ′ = −1.0,−2.7,−3.0, and −3.8.
The red curves indicate the lowest levels contributed by the
two-magnon bound states. Other parameters: N = 1000,
∆ = ∆′ = 1, and B = D = 0.

we also expect that

lim
N→∞

(J/|J ′|)(n)th = 4, n = 1, · · · , 2NS. (44)

The results obtained in this section will be found useful
in the discussion of the two-magnon excitations below.

IV. TWO-MAGNON EXCITATIONS

In this section, we will study the two-magnon excita-
tions in the J − J ′ chain in detail by using the Bloch
Hamiltonians we constructed in Sec. II.

A. S = 1/2

To verify the validity of our formalism, let us first study
the case of S = 1/2, which has been extensively studied
using various methods [3, 8–10]. It has been observed
in previous works that there is always a region in the
momentum space (usually near the band edge k = −π)
supporting multimagnon bound states [9]. We will ana-
lytically demonstrate this fact in the two-magnon sector.
As mentioned earlier, we set D = 0 for S = 1/2.
Since (S−

j )2 = 0 for S = 1/2, the leftmost site in
Fig. 2 is absent and t1 = t3 = 0. Figure 4 shows the
lowest twenty two-magnon excitation levels E2(k)/|J ′| on
k ∈ [−π, 0]. We choose N = 1000, ∆ = ∆′ = 1, B = 0,
and J/J ′ = −1.0,−2.7,−3.0,−3.8, in accordance with
Ref. [9]. We see that our exact results for a finite-size

1 1.5 2 2.5 3 3.5 4 4.5 5
J/|J ′|

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

200 600 1000
N

2.669

2.6692

2.6694

2.6696

(J
/|
J
′ |
) C

−
N
C

N = 1000, S = 1/2

k
(min)
2

k
(min)
1

E
(min)
2 /|J ′|

2.66908354

E
(min)
1 /|J ′|

FIG. 5: Evolution of the lowest two-magnon excitation en-

ergy E(min)
2 /|J ′| = E2(k

(min)
2 )/|J ′| (blue dashed) and the cor-

responding wave number k
(min)
2 (red solid) with increasing

J/|J ′| for N = 1000 and S = 1/2. Also shown is the minimal

one-magnon excitation energy E(min)
1 (green dash-dotted) and

the corresponding k
(min)
1 (pink dotted). The inset shows the

value of (J/|J ′|)C−NC with increasing number of sites N (100
to 1300). Other parameters: ∆ = ∆′ = 1 and B = D = 0.

system agree well with that obtained in Ref. [9] for infi-
nite systems (note that certain truncations of the Hilbert
space were adopted there): for −4 < J/J ′ < 0 (so that
the ground state is not ferromagnetic) there always exists
a region in the momentum space where the two-magnon
bound states are the lowest ones with negative excitation
energies.

Figure 5 shows the lowest two-magnon excitation en-

ergy E(min)
2 /|J ′| = E2(k(min)

2 )/|J ′| (blue dashed curve)

as a function of J/|J ′|, where k
(min)
2 (red solid curve)

is the mode corresponding to this minimum excita-
tion. For J/|J ′| ≥ 4, the ground state is ferromag-
netic and highly degenerate [1, 29]. According to the
analysis in Sec. III, the lowest two-magnon eigenstate
is the ZEES (L0)

2|F ⟩ ∼ (1, 1, · · · , 1/
√
2)T (in the basis

{|ξ1(0)⟩, |ξ2(0)⟩, · · · , |ξN/2(0)⟩}), which explains k
(min)
2 =

0 and E(min)
2 /|J ′| = 0 in this regime.

For 0 < J/|J ′| < 4, E(min)
2 /|J ′| is negative but in-

creases with increasing J/|J ′|. Meanwhile, k
(min)
2 is no

longer zero and there exists a so-called commensurate-
incommensurate (C-NC) transition below which one

has k
(min)
2 = −π. Our numerical result fixes the C-

NC transition to be (J/J ′)C−NC = −2.66908354 for
N = 1000, which is very close to the result obtained
from Green’s function analysis for an infinite chain (i.e.,
1/0.37466105983527 ≈ −2.66907909) [8]. The inset of
Fig. 5 shows the size dependence (up to N = 1300) of
the C-NC transition point, showing that (J/J ′)C−NC de-
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creases asymptotically with N and approaches the value
in the thermodynamic limit as N → ∞. For complete-
ness, we also plot the lowest one-magnon excitation en-

ergy E(min)
1 /|J ′| and the corresponding k

(min)
1 . It can be

seen that E(min)
1 > E(min)

2 for 0 ≤ J/|J ′| < 4 [3, 5–8].
Below (J/J ′)C−NC the lowest two-magnon excitation

has a commensurate momentum k
(min)
2 = −π, which de-

serves further investigation. As mentioned in Sec. II,
both the two decoupled chains L1 and L2 can be solved
through the plane-wave ansatz [30–32].

Let the eigevectors for Lα (α = 1, 2, note that the site
|ξ0(−π)⟩ in L1 is absent when S = 1/2) be

V (α) = (V
(α)
1 , · · · , V (α)

N/4)
T , (45)

with

V
(α)
j = Xαe

ipαj + Yαe
−ipαj , j = 2, · · · , N

4
− 1 (46)

where Xα and Yα are two j-independent coefficients and
pα is a wave number to be determined. From Eq. (26),
the excitation energies (eigenenergies of H − EF ) are
given by

E(α)(pα) = 2(J∆+B) + 2J ′(∆′ + cos pα). (47)

According to the correspondence in Eq. (19), the wave
number p1 satisfies the transcendental equation

tan

(
N

4
− 1

)
p1 = f1(∆

′, p1),

f1(∆
′, p1) ≡ cos p1 +∆′

sin p1
. (48)

Since the correspondence given by Eq. (20) is valid for
S ≥ 1/2, we have, for both S = 1/2 and S > 1/2,

tan
(
N
4 − 1

)
p2

sin p2
= f2(j̃, p2),

f2(j̃, p2) ≡ j̃ − 4S(1− cos p2)

(1− cos p2)(4S cos p2 + j̃)
, (49)

where we defined j̃ ≡ J∆/J ′ < 0.
Equations (48) and (49) have to be solved on the in-

terval pα ∈ [0, π], α = 1, 2. In general, these equations
do not admit analytical solutions. However, they can be
solved graphically by plotting both sides of the equation
as functions of pα.

i) Solution of L1 [for S = 1/2, Eq. (48)].
Note that the function tan

(
N
4 − 1

)
p1 diverges at p1 =

2π
N−4 ,

6π
N−4 , · · · ,

(N−6)π
N−4 , dividing the interval [0, π] into

N/4 ones [see Fig. 6(a)]:[
0,

2π

N − 4

]
,

[
2π

N − 4
,

6π

N − 4

]
, · · · ,

[
(N − 6)π

N − 4
, π

]
.

The first and last intervals will be respectively denoted

as IL =
[
0, 2π

N−4

]
and IR =

[
(N−6)π
N−4 , π

]
. Note that

tan
(
N
4 − 1

)
p1 ≥ 0 (≤ 0) on IL (IR).

0 0.5 1 1.5 2 2.5 3
p1

-20

0

20

40 tan(N
4
− 1)p1

f1(0.5, p1)

f1(1, p1)

f1(2, p1)

0 0.5 1 1.5 2 2.5 3
p2

-200

0

200

400
tan(N

4
− 1)p2/ sin p2

f2(−3, p2)

f2(−2, p2)

f2(−1, p2)

(b)

(a)

FIG. 6: (a) The functions tan
(
N
4
− 1

)
p1 (gray) and

f1(∆
′, p1) appearing in Eq. (48) for ∆′ = 0.5 (red), 1 (blue),

and 2 (green). (b) The functions tan
(
N
4
− 1

)
p2/ sin p2 (gray)

and f2(j̃, p1) (with j̃ = J∆/J ′) appearing in Eq. (49) for
S = 1/2 and j̃ = −3 (red), −2 (blue), −1 (green). Here, we
choose N = 80.

It is obvious that the solutions of Eq. (48) are indepen-
dent of J/|J ′| and determined only by the value of ∆′.
Below we consider three different cases.
i-a) 0 < ∆′ < 1.
We have

lim
p1→0+

f1(∆
′, p1) = +∞, lim

p1→π−
f1(∆

′, p1) = −∞, (50)

giving exactly N/4 real solutions, each of which lies in
one of the above N/4 intervals [Fig. 6(a), red curve].
i-b) ∆′ = 1.
There are still N/4 real solution, including an obvi-

ous one, p1 = π [Fig. 6(a), blue curve], which gives the
highest excitation energy

E(1)(π)|∆′=1 = 2(J∆+B). (51)

For this special solution, the plane-wave ansatz does not

work since the c
(1)
π and c

(2)
π given by Eq. (28) are both

zero. However, it is easy to check that the vector

V (1)(π)|∆′=1 =
2√
N − 2

(1,−1, · · · , 1,−1, 1,−1/
√
2)T

solves the eigenvalue problem, indicating that the highest
excited state is indeed an extended state.
i-c) ∆′ > 1.
We have

lim
p1→π−

f1(∆
′, p1) = +∞, (52)
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which gives N/4− 1 real solutions since no intersections
exist on IR [Fig. 6(a), green curve].
Actually, there exists a complex solution

p1 = mπ + ip̃1 (53)

for ∆′ > 1, where m is an integer (to ensure the reality
of the eigenvalue) and p̃1 is real [31, 32]. Accordingly,
equation (48) becomes

tanh

(
N

4
− 1

)
p̃1 = −cosh p̃1 + (−1)m∆′

sinh p̃1
. (54)

The above equation has to be solved on p̃1 ∈ (0,∞). It is
easy to see that it has no solutions unless m is odd (the
right-hand side of the above equation is always negative
for even m). In addition, there is no solution near p̃1 = 0
since the right-hand side diverges as p̃1 → 0+. As a
result, we have tanh

(
N
4 − 1

)
p̃1 ≈ 1 for large enough N ,

giving

p̃1 ≈ ln∆′ > 0. (55)

The corresponding eigenenergy

E
(1)
NNN−Ex = 2(J∆+B) + 2J ′(∆′ − cosh p̃1)

≈ 2(J∆+B) + J ′(∆′ − 1/∆′) (56)

is the highest level for J ′ < 0. To see the nature of this
highest state, we obtain from Eqs. (19) and (30) the bulk
components of the wave function,

V
(1)
NNN−Ex,j = (−1)j cosh[(N/4− j)p̃1], (57)

with j = 2, · · · , N/4 − 1. The two end components can
be obtained from Eq. (25) as

V
(1)
NNN−Ex,1 = −∆′V

(1)
NNN−Ex,2,

V
(1)
NNN−Ex,N/4 = −

√
2

∆′ + 1/∆′V
(1)
NNN−Ex,N/4−1. (58)

It is apparent that (for ∆′ > 1)

|V (1)
NNN−Ex,1| > |V (1)

NNN−Ex,2| > · · · > |V (1)
NNN−Ex,N/4|,(59)

indicating that the state is localized around the left end
of the L1 chain (i.e., the site |ξ2(−π)⟩) and corresponds to
a two-magnon bound state with the two spin deviations
being mainly located on two NNN sites in real space.
This state will be referred to as a next-nearest-neighbor
exchange (NNN-Ex) two-magnon bound state below.

ii) Solution of L2 [for S ≥ 1/2, Eq. (49)].
The solutions of Eq. (49) depend only on the value of

j̃ = J∆/J ′. We will prove the following
Proposition. For any S ≥ 1/2 and for all J/J ′ < 0 and

∆ > 0, there always exists a two-magnon bound state
below the scattering continuum in the k = −π sector.
For S = 1/2, this state is just the lowest two-magnon
excited state.

Proof. We first show that, for all J/J ′ < 0 and
∆ > 0, Eq. (49) has exactly N/4 − 1 real solutions on
p2 ∈ (0, π). The function tan(N4 − 1)p2/ sin p2 has the

same set of singularities as tan(N4 − 1)p2 on p2 ∈ (0, π)
and is positive (negative) on on IL (IR). Note that the
numerator of f2(j̃, p2) is always negative, we have [here,
sgn(x) ≡ x/|x|]

lim
p2→0+

f2(j̃, p2) = −sgn(4S cos p2 + j̃)∞,

lim
p2→π−

f2(j̃, p2) =
1

2
+

2S

4S − j̃
> 0. (60)

We also need to know the behavior the derivative of
f2(j̃, p2). Let c̃ ≡ cos p2 ∈ [−1, 1), we get

∂c̃f2(j̃, c̃) =
16S2c̃2 + 8S(j̃ − 4S)c̃+ j̃2 − 4Sj̃ + 16S2

(c̃− 1)2(j̃ + 4Sc̃)2
.

(61)

We consider two different cases.
i) j̃ ≤ −4S.
In this case, f2(j̃, p2) is a positive regular function on

p2 ∈ (0, π) and limp2→0+ f2(j̃, p2) = +∞. As a quadratic

function of c̃, the numerator in Eq. (61) is j̃(j̃ + 4S) ≥ 0
at c̃ = 1 and is (j̃ − 6S)2 + 28S2 > 0 at c̃ = −1, and the
axis of symmetry is c̃ = 1− j̃/4S > 1, which means that
the numerator is always positive on c̃ ∈ [−1, 1). Thus,
f2(j̃, p2) decreases monotonically on p2 ∈ (0, π) and ap-
proaches a positive value as p2 → π−, and hence there is
no solution on IR [Fig. 6(b), red and blue curves].
ii) −4S < j̃ < 0.
In this case, f2(j̃, p2) is singular at p∗2 =

arccos(−j̃/4S). It is easy to see that f2(j̃, p2) is nega-
tive on p2 ∈ (0, p∗2) and positive on p2 ∈ (p∗2, π], so there
is still no real solutions on IR. Note also that

lim
p2→p∗±

2

f2(j̃, p2) = ±∞,

lim
p2→0+

f2(j̃, p2) = −∞. (62)

It can be further shown that f2(j̃, p2) is a monotonically
decreasing function on p2 ∈ (p∗2, π]. Actually, at c̃∗ =
−j̃/4S, the numerator in Eq. (61) is 4S(j̃ + 4S) > 0, so
∂c̃f2(j̃, c̃) is always positive on c̃ ∈ (−1, c̃∗).

If p∗2 ∈ IL, then there is a single solution on
(
p∗2,

2π
N−4

)
but no solution on IR. If p∗2 ∈ IR, then there is a single

solution on
(

(N−6)π
N−4 , p∗2

)
but no solution on IL. If p

∗
2 lies

in any interval other than IL and IR, then there will be
two solutions in this interval. However, in this case no
solutions exist in both IL and IR [Fig. 6(b), green curve].
Therefore, in any case there are N/4− 1 real solutions of
Eq. (49) when −4S < j̃ < 0.
By combining the results in i) and ii), we reach the

conclusion that for any j̃ < 0 Eq. (49) has exactly N/4−
1 real solutions. As a result, there is a single complex
solution p2 = mπ + ip̃2 for all J/J ′ < 0 and ∆ > 0.
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We next show that this complex solution corresponds to
the other type of two-magnon bound state with a lower
excitation energy. Inserting p2 = mπ + ip̃2 into Eq. (49)
gives

tanh(N4 − 1)p̃2

sinh p̃2
=

−j̃ + 4S(1 + cosh p̃2)

(1 + cosh p̃2)(j̃ − 4S cosh p̃2)
,

(63)

for odd m, and

tanh(N4 − 1)p̃2

sinh p̃2
=

j̃ − 4S(1− cosh p̃2)

(1− cosh p̃2)(4S cosh p̃2 + j̃)
,

(64)

for even m. It is obvious that Eq. (63) has no solution
on p̃2 ∈ (0,∞) since the right-hand side is always nega-
tive. Thus, m must be an even integer, which leads to
the wavenumber-dependent part of the excitation energy
4SJ ′ cosh p̃2 < 4SJ ′ cos p2. For large N , the real solu-
tions {p2} tend to be quasi-continuous and form the scat-
tering continuum. We therefore proved that the bound
state lies below the scattering continuum. For S = 1/2,
this bound state is the lowest one in the k = −π sector
since both the continuum and the high-lying NNN-Ex
bound state have higher excitation energies. Q.E.D.

We now discuss the solution of Eq. (64) and the related
two-magnon bound state. First note that Eq. (64) has no
solution near p̃2 = 0 since the right-hand side diverges as
p̃2 → 0+. For large N , we thus have tanh

(
N
4 − 1

)
p̃2 → 1

and Eq. (64) is reduced to a quadratic equation of cosh p̃2,

(cosh p̃2 − 1)[4S(j̃ − 2S)(cosh p̃2 − 1) + j̃2] = 0,(65)

giving (discarding the unphysical solution cosh p̃2 = 1)

cosh p̃2 = 1 +
j̃2

4S(2S − j̃)
. (66)

Thus, for large N the excitation energy of this bound
state is

E
(2)
NN−Ex = 4SJ∆+ 4SJ ′(1 + ∆′) + 2D(2S − 1) + 2B

+
(J∆)2

2SJ ′ − J∆
, (67)

where we have restored finiteD for S > 1/2. For S = 1/2
the above equation becomes

E
(2)
NN−Ex = 2(J∆+B) + 2J ′(1 + ∆′) +

(J∆)2

J ′ − J∆
, (68)

which is consistent with previous literature [3, 8].
From Eqs. (20) and (30), we get the corresponding

eigenvector,

V
(2)
NN−Ex,j = cosh[(N/4 + 1/2− j)p̃2], (69)
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FIG. 7: Evolution of the lowest two-magnon excitation energy

E(min)
2 /|J ′| = E2(k

(min)
2 )/|J ′| (blue) and the corresponding

wave number k
(min)
2 (red) with increasing J/|J ′| for N = 500

and S = 1. (a) D/|J ′| = 0, (b) D/|J ′| = 0.5, (c) D/|J ′| = 1.5,

(d) D/|J ′| = 2. The inset in (a) shows k
(min)
2 around the

C-NC transition point J/|J ′| ≈ 0.04896. Other parameters:
∆ = ∆′ = 1 and B = 0.

with j = 2, · · · , N/4− 1, and

V
(2)
NN−Ex,1 = [1− j̃/(2S)]V

(2)
NN−Ex,1,

V
(2)
NN−Ex,N/4 =

2S(2S − j̃)

j̃2 − 2Sj̃ + 4S2
V

(2)
NN−Ex,N/4−1. (70)

Note that 1− j̃/2S > 1 and 0 < 2S(2S − j̃)/(j̃2 − 2Sj̃ +
4S2) < 1, we have

|V (2)
NN−Ex,1| > |V (2)

NN−Ex,2| > · · · > |V (2)
NN−Ex,N/4|, (71)

indicating that the state is localized around the left end
of the L2 chain (i.e., the site |ξ1(−π)⟩) and corresponds to
a two-magnon bound state with the two spin deviations
being mainly located on two NN sites in real space. This
bound state is the usual nearest-neighbor exchange (NN-
Ex) bound state with the two spin derivations mainly
located on two nearest-neighboring sites [17, 33].
In summary, we proved for S = 1/2 that in the k = −π

sector the NNN-Ex two-magnon bound state emerges as
the highest excited state when ∆′ > 1. For any S ≥ 1/2,
the NN-Ex two-magnon bound state always survives be-
low the scattering continuum. From continuous consid-
erations, these properties will persist near the band edge,
explaining the presence of the lowest-lying level shown in
Fig. 4.

B. S > 1/2

Let us now turn to study the case of higher spins. We
allow for finite values of the SI anisotropy D. We first
focus on the isotropic case with ∆ = ∆′ = 1. We plot
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FIG. 8: The lowest 20 excitation levels E2(k)/|J ′| for N = 500 and S = 1 with varying D/|J ′| and J/|J ′|. (a) D/|J ′| = 0, (b)
D/|J ′| = 0.5, (c) D/|J ′| = 1.5, (d) D/|J ′| = 2. In each panel the results for J/|J ′| = 0.03, 1, and 3 are shown. The bottom of
each lowest level |ψLL(k)⟩ is highlighted by a cyan star. The insets show the weight of the two Bloch states |ξ0(k)⟩ and |ξ1(k)⟩
in the lowest level, i.e., Pξi(k) = |⟨ξi(k)|ψLL(k)⟩|2, i = 0, 1. Other parameters: ∆ = ∆′ = 1 and B = 0.

in Fig. 7 the evolution of E(min)
2 /|J ′| and k(min)

2 with in-
creasing J/|J ′| for N = 500, S = 1, ∆ = ∆′ = 1, and
B = 0.

For D = 0, according to Eq. (44), the minimal
two-magnon excitation energy exactly vanishes when

J/|J ′| > (J/|J ′|)(2)th (500) ≈ 3.999526. For 0 < J/|J ′| <
(J/|J ′|)(2)th (500), the behaviors of E(min)

2 /|J ′| and k
(min)
2

are in sharp contrast with those in the case of S = 1/2
(compared with Fig. 5). The C-NC transition point is
found to be ≈ 0.04896 [inset of Fig. 7(a)], after which

k
(min)
2 increases gradually till J/|J ′| = 0.229 where k

(min)
2

jumps to 0. Interestingly, the value of k
(min)
2 fluctuates

between zero and finite incommensurate values in the
middle region J/|J ′| ∈ (0.229, 2.039), though the mini-

mal excitation energy E(min)
2 /|J ′| is always smooth. The

sudden jump and fluctuation of k
(min)
2 are related to the

degeneracy of the lowest two excitation levels E(min)
2 /|J ′|

and E(2nd−min)
2 /|J ′| for certain values of J/|J ′|. The

corresponding two local minima are located near the
band edge and at k = 0 [see Fig. 8(a)]. As J/|J ′| is
varying in the middle region, one of the two local min-
ima alternately becomes the global minimum, causing

the observed fluctuation of k
(min)
2 . However, numeri-

cal tests show that the difference between the two lev-
els [E(2nd−min)

2 − E(min)
2 ]/(N |J ′|) tends to be vanishingly

small as N → ∞. We thus believe that this phenomenon

is a finite-size effect and will disappear in the thermody-
namic limit.

To see the nature of the lowest excitation, we plot in
Fig. 8(a) the lowest 20 excitation levels for J/|J ′| = 0.03,
1, and 3. The bottom of the lowest-lying level |ψLL(k)⟩ is
indicated by a cyan star. These bottom states all corre-
spond to two-magnon scattering states for D/|J ′| = 0,
as can be seen from the evolution of the weights of
the Bloch states |ξi(k)⟩ (i = 0, 1) with increasing k,
Pξi(k) = |⟨ξi(k)|ψLL(k)⟩|2. Note that for larger J/|J ′|
the NN-Ex bound states will emerge as a lower separated
level near the band edge k = −π [inset of Fig. 8(a)].

Figure 7(b) shows E(min)
2 /|J ′| and k(min)

2 for D/|J ′| =
0.5. It can be seen that as J/|J ′| increases, k(min)

2 no
longer shows fluctuations but increases gradually from

−π to −1.1058 at J/|J ′| = 3.375, where k
(min)
2 suddenly

jumps to k
(min)
2 = 0. The bottom states are still scat-

tering states for small J/|J ′| [inset of Fig. 8(b)]. How-
ever, besides the NN-Ex bound state near the edges of
the band for larger J/|J ′|, the so-called single-ion (SI)
bound states [17, 33] with the two spin deviations lo-
cated on a single site also appear in the middle of the
band for smaller J/|J ′|.

For D/|J ′| = 1.5, k
(min)
2 never reaches −π and is

nonzero in the interval J/|J ′| ∈ (0.685, 2.23) [Fig. 7(c)].

The bottom mode for J/|J ′| = 0.03 is k
(min)
2 = 0 and the

corresponding state is an SI bound state. However, for
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larger J/|J ′| the bottom state is a mixture of the NN-Ex
and SI bound states [inset of Fig. 8(c)].

As D/|J ′| increases to 2, we observe that k
(min)
2 is al-

ways zero [Fig. 7(d)] and the corresponding bottom states
are SI bound states for not too large J/J ′. For J/J ′ = 3,
the lowest state evolves from the NN-Ex bound state to
the mixture of the two as k increases. In addition, we ob-
serve that for J/|J ′| = 1 (J/|J ′| = 3) a second separated
level near k = −π emerges as an NN-Ex (an SI) bound
state [inset of Fig. 8(d)].

To see more clearly how the three types of bound states
emerge at the left edge of the band, it is instructive to
study the special mode k = −π for which the problem
can also be solved via the plane-wave ansatz. Since the
L2 chain has been solved in Sec. IVA for arbitrary S ≥
1/2, here we focus on the solution of the L1 chain. For
S > 1/2, let the eigenvectors be

V (1) = (V
(1)
1 , · · · , V (1)

N/4+1)
T ,

V
(1)
j = X1e

ip1j + Y1e
−ip1j , j = 2, · · · , N

4
. (72)

The eigenenergies are given by

E(1)(p1) = 4S(J∆+ J ′∆′) + 2D(2S − 1) + 2B

+4SJ ′ cos p1. (73)

According to Eq. (29), the wave number p1 satisfies the
following equation

tan
Np1
4

= g1(∆
′, d, p1),

g1(∆
′, d, p1) =

w(+)(cos p1)

(A− cos p1) sin p1
, (74)

where d ≡ D/|J ′| > 0, A ≡ (2S − 1)/∆′ + d/(2S) > 0,
and

w(±)(x) ≡ x2 ± (2S/∆′ −A)x− d/∆′. (75)

The SI and NNN-Ex bound states, if exist, will show up
in L1 and depend on both d and ∆′. We now discuss the
solutions of Eq. (74).

i) A > 1, or

d > 2S[1− (2S − 1)/∆′]. (76)

In this case, g1(∆
′, d, p1) has no singularity as a function

of p1. The behavior of g1(∆
′, d, p1) near p1 = 0 or π

depends on the sign of w(+)(1) or w(+)(−1).
i-a) w(+)(1) > 0 and w(+)(−1) > 0, or

d <
∆′ + 1

1 +∆′/(2S)
, (77)

and

d <
∆′ − 1

1−∆′/(2S)
(with ∆′ < 2S) or ∆′ > 2S (78)
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FIG. 9: The first quadrant of the ∆′ − d (where d ≡ D/|J ′|)
plane is divided into five regions I, II, III, IV, and V by the
three functions 2S[1 − (2S − 1)/∆′], (∆′ + 1)/(1 + ∆′/2S),
and (∆′ − 1)/(1 − ∆′/2S). The solutions of Eq. (74) have
different structures in district regions. (a) Intersections of
the graphs of tan N

4
p1 and g1(∆

′, d, p1) give the real solutions
of Eq. (74) in each region. (b) Intersections of the graphs

of tanh N
4
p̃1 and µ(±)(cosh p̃1) give the complex solutions of

Eq. (74) [or the real solutions of Eqs. (80) and (81)] in each
region. Accordingly, different types of two-magnon bound
states emerge in different regions.

The above two inequalities defines the region IV in the
first quadrant of the ∆′ − d plane, as shown in Fig. 9(a).
In this region we have

lim
p1→0+

g1(∆
′, d, p1) = +∞, lim

p1→π−
g1(∆

′, d, p1) = +∞,

see the insets of Fig. 9(a) where we plotted the graphs
of the two functions tan N

4 p1 and g1(∆
′, d, p1) in each

region. In turn, there are N/4 real solutions and a single
complex solution in region IV.
i-b) w(+)(1) > 0 and w(+)(−1) < 0.
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Similar analysis shows that these conditions define the
region I in Fig. 9(a), where we have

lim
p1→0+

g1(∆
′, d, p1) = +∞, lim

p1→π−
g1(∆

′, d, p1) = −∞.

There are thus N/4 + 1 real solutions and no complex
solution in region I.

i-c) w(+)(1) < 0 and w(+)(−1) > 0.
These conditions define the region III in Fig. 9(a) with

lim
p1→0+

g1(∆
′, d, p1) = −∞, lim

p1→π−
g1(∆

′, d, p1) = +∞.

There are thus N/4 − 1 real solutions and two complex
solutions in region III.

i-d) w(+)(1) < 0 and w(+)(−1) < 0.
These conditions define the region II in Fig. 9(a) with

lim
p1→0+

g1(∆
′, d, p1) = −∞, lim

p1→π−
g1(∆

′, d, p1) = −∞.

There are thus N/4 real solutions and a single complex
solutions in region II.

ii) 0 < A < 1.
This inequality defines the region V in Fig. 9(a). The

function g1(∆
′, d, p1) is singular at p∗1 = arccosA. It is

obvious that w(+)(1) > 0 and w(+)(−1) > 0 in region
V. However, we also have limp1→0+(A− cos p1) < 0 and
limp1→π−(A− cos p1) > 0, giving

lim
p1→0+

g1(∆
′, d, p1) = −∞, lim

p1→π−
g1(∆

′, d, p1) = +∞.

Note now that w(+)(A) = 4S2(2S − 1)/∆′ > 0, we have

lim
p1→p∗±

1

g1(∆
′, d, p1) = ±∞.

Therefore, there are always N/4 real solutions and a sin-
gle complex solution in region V.

Let us now pursue complex solutions of Eq. (74) in
regions II, III, IV, and V. We again write the complex
solution as p1 = mπ + ip̃1 with m an integer and p̃1 > 0
real. By defining the functions

µ(±)(x) ≡ ∓ w(±)(x)

(A∓ x)
√
x2 − 1

(x > 1), (79)

equation (74) becomes

tanh
Np̃1
4

= µ(−)(cosh p̃1) (80)

for odd m and

tanh
Np̃1
4

= µ(+)(cosh p̃1) (81)

for even m. There is no solution near p̃1 = 0, so for large
N we have tanhNp̃1/4 ≈ 1 and the above two equations
are approximated to cubic equations of cosh p̃1.

The functions µ(±)(x) have several useful properties.
It is obvious that

lim
x→+∞

µ(±)(x) = 1±. (82)

From the signs of w(±)(1) in each region, we get

lim
x→1+

µ(+)(x) =

{
+∞, (∆′, d) ∈ II, III,V

−∞, (∆′, d) ∈ IV,
(83)

and

lim
x→1+

µ(−)(x) =

{
+∞, (∆′, d) ∈ III, IV,V

−∞, (∆′, d) ∈ II.
(84)

In regions II, III, and IV where A > 1, the function
µ(+)(x) is singular at p̃∗1 with cosh p̃∗1 = A. From the
relation w(+)(cosh p̃∗1) = 4S2(2S − 1)/∆′ > 0, we have

lim
x→A±

µ(+)(x) = ±∞, (∆′, d) ∈ II, III, IV. (85)

The behaviors of µ(±)(cosh p̃1) described by Eqs. (82)-
(85) are illustrated in the insets of Fig. 9(b). The so-
lutions of Eqs. (80) and (81) can be determined by in-
vestigating the graphs of the related functions shown in
Fig. 9(b).
In region II, there exists a single intersection of

tanhNp̃1/4 and µ(+)(cosh p̃1) (with even m) on p̃1 ∈
(0, A). We thus get a single two-magnon bound state
with excitation energy

E
(1)
SI = 4S(J∆+ J ′∆′) + 2D(2S − 1) + 2B

+4SJ ′ cosh p̃1, (86)

which lies below the continuum since cosh p̃1 > cos p1.
From Eq. (18) and (30), we get the eigenvector

V
(1)
SI,j = cosh[(N/4 + 1− j)p̃1], (87)

with j = 2, · · · , N/4, and

V
(1)
SI,1 =

√
S(2S − 1)

2S cosh p̃1 − d
V

(2)
SI,2,

V
(1)
SI,N/4+1 =

1√
2 cos p̃1

V
(2)
SI,N/4. (88)

Although we have |V (1)
SI,N/4| < |V (2)

SI,N/4+1|, it is not

straightforward to see |
√
S(2S − 1)/(2S cosh p̃1−d)| > 1.

However, based on both physical considerations and nu-
merical tests, we find that this is the case, indicating that
the state is indeed an SI two-magnon bound state.
In region III, the function tanhNp̃1/4 intersects with

both µ(+)(cosh p̃1) (with evenm) and µ(−)(cosh p̃1) (with
odd m) on p̃1 ∈ (0, A). The former still corresponds to
an SI bound state, while the latter leads to an NNN-Ex
two-magnon bound state with excitation energy

E
(1)
NNN−Ex = 4S(J∆+ J ′∆′) + 2D(2S − 1) + 2B

−4SJ ′ cosh p̃1, (89)
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which lies above the continuum. The corresponding
eigenvector reads (for j = 2, · · · , N/4)

V
(1)
NNN−Ex,j = (−1)j cosh[(N/4 + 1− j)p̃1], (90)

and

V
(1)
NNN−Ex,1 = −

√
S(2S − 1)

2S cosh p̃1 + d
V

(2)
NNN−Ex,2,

V
(1)
NNN−Ex,N/4+1 = − 1√

2 cos p̃1
V

(2)
NNN−Ex,N/4. (91)

It can be numerically checked that −1 <
−
√
S(2S − 1)/(2S cosh p̃1 + d) < 0, confirming that this

bound is actually an NNN-Ex bound state.
Similar analysis shows that regions IV and V both sup-

port NNN-Ex two-magnon bound states. The phase di-
agram in the ∆′ − d plane is summarizes in Fig. 9(b).
Recall that we have proved in Sec. IVA that the NN-
Ex bound state shows up as a lower-lying level in all the
regions of the phase diagram, the lowest excited state

could be determined by comparing the E
(2)
NN−Ex given by

Eq. (67) and E
(1)
SI given by Eq. (86). The above results

for k = −π are believed to faithfully reflect the nature

of two-magnon excitations near the edge of the Brillouin
zone.

V. n-MAGNON EXCITATIONS FOR S = 1/2

In this section we proceed to n-mangon excitations
with n ≥ 3. The exact three-magnon Bloch states and
the associated Bloch Hamiltonians for a finite-size spin-S
XXZ chain (with J ′ = ∆′ = 0) have been constructed in
Ref. [17]. The derivation of the Bloch Hamiltonians for
the NNN interaction is straightforward though cumber-
some and will be presented in a future work.

In this section, we focus on the case of S = 1/2
for which the nearest-neighboring XX chain HXX =∑N

j=1(S
x
j S

x
j+1 + Sy

j S
y
j+1) is analytically soluble by con-

verting the Pauli operators into spinless fermions. The
matrix elements of each term in H can be expressed in
terms of the so-called spin-operator matrix elements in
the diagonal basis of HXX [34]. Explicitly, let |η⃗n⟩ be an
eigenstate of HXX having n fermions upon the vacuum
state | ↓ · · · ↓⟩, where η⃗n = (η1, · · · , ηn) is a tuple with
1 ≤ η1 < · · · < ηn ≤ N , then

⟨χ⃗n|
∑
j

(Sx
j S

x
j+r + Sy

j S
y
j+r)|χ⃗

′
n⟩

=

(
2

N

)2(n−1)

δ(∆χ⃗n,χ⃗′
n
, 0)

∑
ξ⃗n−1

A∗
χ⃗n
e
ir

∑
j Q(σn)

χj C∗
χ⃗n,ξ⃗n−1

|Aξ⃗n−1
|2e−ir

∑
j Q

(σn−1)

ξj Aχ⃗′
n
Cχ⃗′

n,ξ⃗n−1
+ c.c., (92)

⟨χ⃗n|
∑
j

Sz
j S

z
j+r|χ⃗′

n⟩ =
(
N

4
− n

)
δχ⃗n,χ⃗′

n
+
δ(∆χ⃗n,χ⃗′

n
, 0)

N

(
2

N

)4(n−1) ∑
η⃗n,ξ⃗n−1,ξ⃗′n−1(

A∗
χ⃗n
e
ir

∑
j Q(σn)

χj C∗
χ⃗n,ξ⃗n−1

|Aξ⃗n−1
|2
)(

Cη⃗n,ξ⃗n−1
e
−ir

∑
j Q(σn)

ηj |Aη⃗n
|2C∗

η⃗n,ξ⃗′n−1

)(
|Aξ⃗′n−1

|2Cχ⃗′
n,ξ⃗

′
n−1

Aχ⃗′
n

)
. (93)

In the above equations, δ(x, y) = 1 if x = y (mod 2π),

∆χ⃗n,χ⃗′
n
=
∑

j [Q
(σn)
χj −Q(σn)

χ′
j

], where Q
(σn)
χj = −π+2[χj+

(σn − 3)/2]π/N with σn = 1 (even n) or σn = −1 (odd
n). The explicit expressions for the A’s and C’s read

Aχ⃗n
=
∏
j>j′

(
e
iQ(σn)

χj − e
iQ(σn)

χ
j′

)
,

Cχ⃗n,ξ⃗n−1
=

(
i

2

)(n−1)n∏
ij

csc
Q

(σn)
χj −Q

(σn−1)
ξi

2

×e
i
2

[
(n−1)

∑
j Q(σn)

χj
−n

∑
i Q

(σn−1)

ξi

]
. (94)

In practice, the evaluation of the C-functions given by
Eq. (94) is the most time-consuming step in the numerics.
Due to memory limitations, we choose to numerically cal-
culate the three-, four-, and five-magnon excitation spec-
tra up to N = 102, N = 40, and N = 30, with the dimen-
sions of the Hilbert space being

(
102
3

)
= 171, 700,

(
40
4

)
=

91, 390, and
(
30
5

)
= 142, 506, respectively. However, no-

tice the translational invariance of the system reflected
in the δ-functions, the whole Hilbert space is split into

smaller blocks with fixed k =
∑

j Q
(σn)
χj (mod 2π), which

can be handled on a personal computer. Below we focus
on the isotropic case with ∆ = ∆′ = 1.

Figure 10(a) shows the calculated lowest excitation en-
ergies in the three magnetization sectors when the mag-
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FIG. 10: (a) The zero-field lowest n-magnon excitation energy

E(min)
n for S = 1/2. Results for n = 3 (N = 102, black dot-

dashed), n = 4 (N = 40, red solid), and n = 5 (N = 30,
blue dashed) are shown. (b) The corresponding wave number

k
(min)
n at which E(min)

n is reached. Parameters: ∆ = ∆′ = 1
and B = 0.
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t
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2 > −π
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2 = −π

J/|J ′| > 3.76 :

k
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k
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N = 30

J/|J ′| ∈ [3.513, 3.76] :

k
(min)
4 = −π

FIG. 11: The number of magnons nsat in the lowest excited
state when the magnetic field is tuned to the saturated value
Bsat. For N = 30, the nsat = 2 → nsat = 3, nsat = 3 → nsat =
4, and nsat = 4 → nsat = 5 transition points with varying
J/|J ′| are determined to be J/|J ′| = 2.719, 3.513, and 3.76,
respectively. The transition nsat = 5 → nsat = 6 is expected
to take place in the uncertain region 3.76 < J/|J ′| (due to the
limitation of the numerics). Parameters: ∆ = ∆′ = 1.

netic field B is absent. As expected, for fixed J/|J ′| < 4,

we have E(min)
5 < E(min)

4 < E(min)
3 < E(min)

2 < E(min)
1 < 0.

The corresponding wave number k
(min)
n is plotted in

Fig. 10(b). A detailed numerical analysis reveals that

k
(min)
n = −π is achieved for 2.544 ≤ J/|J ′| ≤ 3.644

(n = 3, N = 102), 3.404 ≤ J/|J ′| ≤ 3.849 (n = 4,
N = 40), and 3.666 ≤ J/|J ′| ≤ 3.918 (n = 5, N = 30).

We now consider the case of finite magnetic fields. We
define the saturation field Bsat as the magnetic field that
makes the lowest excited state gapless [9]. Suppose this
lowest state lies in the nsat-magnon sector, we focus on
excitations up to n = 5 magnons in a chain with N =
30 sites. Figure 11 shows nsat as a function of J/|J ′|.
We find that (for N = 30) the nsat = 2 → nsat = 3,
nsat = 3 → nsat = 4, and nsat = 4 → nsat = 5 transitions
occur at J/|J ′| = 2.719, 3.513, and 3.76, respectively.
These numerically exact results are very close to those
obtained in a restricted Hilbert space [10]. Note that we
were not able to determine the nsat = 5 → nsat = 6
transition point since n = 6 is beyond our numerics.

VI. CONCLUSIONS AND DISCUSSIONS

The spin-1/2 J − J ′ chain with ferromagnetic nearest-
neighbor and antiferromagnetic next-nearest-neigbhor
couplings has attracted much attention in previous works
due to its relevance to real magnetic materials. However,
its higher-spin counterpart with the single-ion anisotropy
included is less studied. Motivated by recent experi-
mental advances in simulations of higher-spin magnetic
models, we study theoretically exact few-magnon excita-
tions in a finite-size spin-S J − J ′ chain with single-ion
anisotropy.
As a related problem, we first study the emergence of

zero-excitation-energy states in the absence of the single-
ion anisotropy and identify the corresponding condition
to achieve them. In the isotropic case, we determine
the threshold of J/|J ′| above which ferromagnetic ground
states survive. This threshold is found to be exactly 4 for
S = 1/2 but show size-dependence for S > 1/2, which
are numerically obtained through exact diagonalization
on small systems.
We then thoroughly investigate the two-magnon exci-

tations by using a set of exact two-magnon Bloch states
proposed for a spin-S XXZ ring [17]. We recover prior
results for the case of S = 1/2 [3, 8–10]. For higher spins,
owing to the interplay of the single-ion anisotropy and the
NNN exchange coupling, the evolution of the lowest ex-
citation energy and the corresponding wave number with
varying J/|J ′| exhibit different behaviors from that for
S = 1/2. In particular, we solve the eigenvalue problem
of the commensurate mode k = −π using a plane-wave
ansatz, from which we identify the parameters regions
that support the three different types of two-magnon
bound states near the band edge. We prove that there al-
ways exists lower-energy nearest-neighbor exchange two-
magnon bound states near k = −π.
We finally calculate the n-magnon spectra for S = 1/2

using a spin-operator matrix element method. Under the
saturation field, the number of magnons in the lowest
state takes transitions as J/|J ′| is varied. Our numeri-
cally exact results for a chain of N = 30 sites are consis-
tent with those obtained in a restricted Hilbert space [10].
Considering the possible experimental realization of
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the present model in cold-atom systems, it is intriguing
to study multimagnon quantum walks and related
nonequilibrium dynamics in future works.
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