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Abstract

Reservoir computing is a versatile paradigm in computational neuroscience and machine learning, that
exploits a recurrent neural network to efficiently process time-dependent information. The power of many
neural network architectures resides in their universality approximation property. As widely known, classes
of reservoir computers serve as universal approximators of functionals with fading memory. The construction
of such universal classes often appears context-specific, but in fact, they follow the same principles. Here we
present a unified theoretical framework and we propose a ready-made setting to secure universality, based
on the minimal sufficient conditions for a class of reservoir computers to be universal, namely the fading
memory and the polynomial algebra structure of the set of their associated functionals. We test the result
in the arising context of quantum reservoir computing. Guided by such a unified theorem we suggest why
spatial multiplexing serves as a computational resource when dealing with quantum registers, as empirically
observed in specific implementations on quantum hardware. The analysis sheds light on a unified view of
classical and quantum reservoir computing.
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1. Introduction

Reservoir computing is a general computational
framework that exploits the nonlinear dynamics of
a recurrent neural network and simple readout func-
tions for the online processing of time-dependent in-
puts (Nakajima et al. (2019); Jaeger et al. (2007)).
The spread of reservoir computing has stemmed
from two primary paradigms, namely echo state
networks (ESN), for time series prediction, (Jaeger
(2001); Jaeger and Haas (2004)) and liquid state
machines (LSM) respectively, the latter inspired by
spiking neuronal activity for modeling online time-
dependent inputs (Maass et al. (2002, 2007)).
A computational architecture based on neural net-
works is said to be universal if for any given tar-
get function there exists an instance of the archi-
tecture realizing a mapping between the input and
the output that approximates the given function
with arbitrary precision. The issue of finding neural
networks that serve as universal approximators has
attracted considerable mathematical research dur-
ing the years (Kolmogorov (1956); Boyd and Chua
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(1985); Sandberg (1991); Matthews (1993); Cucker
and Smale (2002); Cucker and Zhou (2007)), paving
the way for the implementation of versatile machine
learning paradigms. Universal approximation re-
sults have been proven for different neural network
architectures, starting from the classical results for
feed-forward (Hornik et al. (1989); Cybenko (1989);
Hornik (1991, 1993); Sprecher (1996, 1997); Stinch-
combe (1999)) and for recurrent neural networks,
respectively (Hammer (2000); Schäfer and Zimmer-
mann (2006)). More recently, universality has been
proven also for invertible (Jin et al. (2024); Ishikawa
et al. (2024)), for mean-field (Pham and Warin
(2023)), and for deep convolutional neural networks
(Zhou (2020)).
Restricting to reservoir computing, both ESN
(Grigoryeva and Ortega (2018b,a); Gonon and Or-
tega (2020)) and LSM (Maass and Markram (2004)
have yielded classes of reservoir computers that
serve as universal approximators of functionals with
fading memory. Despite the similarity in the strat-
egy exploited in the proofs of these results, ul-
timately based on an application of the Stone-
Weierstrass theorem in the spirit of the seminal
work of Boyd and Chua in 1985 (Boyd and Chua
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(1985)), they appeared as context-specific.
Emerging from these frameworks, as anticipated
by Maass (Maass (2010)), reservoir computing has
proved its efficiency not restricted to a digital
approach. In the last twenty years, numerous
physical implementations of reservoir systems have
been proposed as valid tools for reservoir com-
puting (Lukoševičius and Jaeger (2009); Tanaka
et al. (2019); Marković et al. (2020); Nakajima
(2020); Lee et al. (2023)), exploiting for exam-
ple, optical devices (Larger et al. (2012); Van-
doorne et al. (2014); Brunner et al. (2021); Naka-
jima et al. (2021)), spiking neurons and cortical
networks (Dockendorf et al. (2009); Yada et al.
(2021); Venker et al. (2023); Peng et al. (2024))
and nanoscale oscillators (Torrejon et al. (2017);
Papp et al. (2021)). More recently, the advent of
quantum computation (Prati (2017); De Michielis
et al. (2023)) has also shed light on the develop-
ment of reservoir computers harnessing the high
computational capacity of quantum reservoir sys-
tems. After the first proposal (Fujii and Naka-
jima (2017)), many quantum systems have been
proposed as reliable effective reservoirs (Kutvonen
et al. (2020); Govia et al. (2021); Martínez-Peña
et al. (2021); Mujal et al. (2021); Suzuki et al.
(2022); Martínez-Peña and Ortega (2022); Mujal
et al. (2023); Molteni et al. (2023); Ghosh et al.
(2021b); García-Beni et al. (2023); Domingo et al.
(2023)) and even as examples of universal classes
of reservoir computers (Chen and Nurdin (2019);
Chen et al. (2020); Nokkala et al. (2021)). In partic-
ular, quantum networks have been proven effective
in processing physical quantum information and
predicting quantum dynamics (Ghosh et al. (2019,
2021b,a); Lazzarin et al. (2022)). As new embod-
iments of reservoir computing are emerging after
the advent of quantum computing, a unified frame-
work is needed in order to assign universality. This
work aims to define such a generalized framework
to determine which minimum set of properties is
mandatory to be fulfilled by a family of reservoir
computers to exhibit universality. A unified the-
oretical approach, that includes systems fed with
inputs living in general normed space, may act as
a guideline promoting the development of new im-
plementations of reservoir systems.
Due to the large variety of reliable classes of reser-
voir computers, we propose a unified theoretical
framework - that we call echo reservoir computers
- together with a ready-made setting that guaran-
tees universality. We then show that echo state net-

works and liquid state machines fall within our uni-
fied framework and we discuss an example that en-
tails a quantum reservoir (Nakajima et al. (2019)).
It results that the sufficient conditions for a class of
reservoir computers to be universal are respectively
that the set of associated functionals has continuity
with respect to a fading metric and is a polynomial
algebra. The fading metric accounts for the fading
memory property by combining the l∞ norm with a
monotonic increasing function in R−, referred to as
the fading function. In this perspective, as a study
case, we test such a unified framework considering
spatial multiplexing, namely by parallelly process-
ing information with disjoint reservoirs and inter-
depending readout functions. Already empirically
(Nakajima et al. (2019)) and theoretically (Chen
and Nurdin (2019); Chen et al. (2020); Nokkala
et al. (2021) recognized as a relevant booster for
the computational power of quantum reservoir sys-
tems, spatial multiplexing appears as a resource for
building universal quantum reservoir systems also
within our general framework.
The rest of the paper is organized as follows: in
Section 2 we present the theoretical framework,
by defining a general notion of reservoir computer,
stating the main general theorem on universality
and discussing the notion of fading memory. In
Section 3 we retrieve classical results on the univer-
sality of families of echo state networks and liquid
state machines. In Section 3, we discuss the notion
of quantum echo state network. Furthermore, we
discuss an example of a universal class of quantum
reservoir systems.

2. Theoretical framework

A reservoir computer is a computational archi-
tecture for the online processing of temporal data,
either discrete or continuous in time. In both cases,
we refer to them as orbits, using a terminology bor-
rowed from dynamical systems theory. A reservoir
computer produces a mapping between input and
output orbits by the composition of a recurrent net-
work and a readout function. We will refer to any
mapping between orbits as a filter. In reservoir
computing, at each temporal step, the current value
of the input orbit is encoded in the dynamics of
the recurrent network or the physical substrate that
acts as a reservoir. Subsequently, the current state
of the reservoir is processed by a readout function,
usually depending on some nodes in the reservoir
often referred to as the true nodes, that produces
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Figure 1: A schematic representation of a reservoir com-
puter for one-dimensional orbits (n = 1). An input
orbit is encoded in the reservoir that acts as a hidden
layer. The response of the reservoir is used to produce
an output through a trainable readout mapping. Here
T can be either R or Z.

the value of the output orbit at the current time
step. We remark that when a reservoir computer is
used for learning a given task, thus for approximat-
ing a given filter, the sole trained component is the
readout function, minimizing the distance between
the mapping and the value of a given target filter.

2.1. Definitions of the input data and the reservoir
In this section, we introduce the definitions and

some properties of filters and functionals. In partic-
ular, we carry out a notation suitable for both dis-
crete and continuous time evolution of the reservoir
systems. All throughout the paper, T will indicate
both R or Z.

Definition 2.1. Let T = R or T = Z. Given
(N , ∥·∥) a normed space, we call orbit any func-
tion of the form

u : T → N .

We denote with N T the space of orbits in N labeled
in T .

We will consider only sets of uniformly bounded
orbits. Namely, we define the following space.

Definition 2.2. Given a real K > 0 and a normed
space (N , ∥·∥), we denote with

ST,N
K := {u : T → N : ∥ut∥ ≤ K ∀t ∈ T}

the set of uniformly bounded orbits on N .

Usually, classical reservoir computers take inputs
belonging to subsets of ST,Rn

K . Examples of typi-
cal subsets that we will consider later on are given

by continuous and Lipschitz functions, spike trains,
or time series. These subsets are compact metric
spaces if endowed with a proper distance. More-
over, the case of reservoir systems that take pure
quantum states is included in our definition of or-
bits, taking N as a complex Hilbert space.

Definition 2.3. Given τ ∈ T , we denote with uτ

the time-delayed orbit defined by

(uτ )t := ut−τ .

We call filter any map between sets of orbits and
functional any map that sends an orbit in a scalar
value. Precisely, we have the following definitions.

Definition 2.4. We call filter any map of the form
B : N T

1 → N T
2 , for some normed spaces N1,N2.

i. A filter is causal if for any given τ ∈ T , ut =
vt ∀t ≤ τ implies

(Bu)τ = (Bv)τ ;

ii. a filter is time invariant if for any τ ∈ T ,

(Buτ )t = (Bu)t−τ , ∀t ∈ T .

iii. a filter is bounded if there exists K ′ > 0 such
that for any u ∈ ST,N1

K ,

∥(Bu)t∥ < K ′, ∀t ∈ T .

We call BCTI filter a filter that is bounded, causal
and time-invariant.

Definition 2.5. Given two normed spaces N1,N2,
a functional from N1 to N2 is any map of the form
H : N T

1 → N2.

It is well known that every BCTI filter is associ-
ated with a unique functional. Precisely, we have
the following lemma. We recall the proof for the
sake of completeness.

Lemma 2.6. There is a bijection between the set
of functionals and the set of BCTI filters.

Proof. Given a BCTI filter B, the associated func-
tional is given by its value in t = 0, namely
HB(u) := (Bu)0. Conversely, given a functional
H, the associated filter is BH defined via the time-
delayed orbit, (BHu)t := H(u−t). Moreover, it
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is straightforward to verify that B ≡ BHB
and

H ≡ HBH
. In fact, we have the equalities

(BHB
u)t = HB(u

−t) =
(
Bu−t

)
0
= (Bu)t

since B is time-invariant and

HBH
(u) = (BHu)0 = H(u0) = H(u) .

As a consequence of the latter lemma, one is al-
lowed to consider only real functionals, which are
simpler mathematical objects with respect to filters.
In particular, it allows the application of Stone -
Weierstrass theorem for filters and functionals with
target in R.

Remark 2.7. We will refer to filters and function-
als with N = R as target normed space as real filters
and real functionals, respectively.

2.2. Universal echo reservoir computers
Now we turn to the concept of echo reservoir com-

puter, a general machine which unifies echo state
networks and liquid state machines by a single class.
The name reminds that such a system associates a
unique output to any given input orbit. In the con-
text of echo state networks, such property is often
referred to as echo state property. Later on, we
show that, under proper conditions, we can write
both liquid state machines and families of echo state
networks as echo reservoir computers.

Definition 2.8. Let N1,N2 be two normed spaces.
Let E : N T

1 → N T
2 be a given BCTI filter and

H : N2 → R a given real functional. We call echo
reservoir computer the system defined by{

xt = (Eu)t
yt = H(xt), ∀t ∈ T .

We denote this echo reservoir computer as C =
C(E,H).

Usually, one refers to xt ∈ N2 as the reservoir
state at time t and to H as the readout func-
tion. Generally, one defines more general reservoir
computers, without requiring causality and time-
invariance. Here, we are assuming that echo reser-
voir computers are causal and time-invariant by def-
inition since all the universality results pertain to
systems with these properties. Moreover, we re-
mark that, according to the above definition, any

echo reservoir computer associates a unique out-
put to any input. In the literature, such prop-
erty is known as the echo state property. The no-
tion of a echo reservoir computer fulfills a standard
compactness condition since we are assuming E to
be a bounded filter. Namely, if u ∈ ST,N1

K , then
x ∈ ST,N2

K′ for some K ′ > 0.
Any echo reservoir computer naturally defines a
real BCTI filter R(E,H), that we call the reservoir
filter associated with the echo reservoir computer
C(E,H), defined by

y = R(E,H)u ,

yt =
(
R(E,H)u

)
t
= h ((Eu)t) ∀t ∈ G .

Then, recalling that any BCTI filter determines
a unique functional, we can associate to any echo
reservoir computer a real functional, that for
simplicity we still denote R(E,H).

In the following, we prove a general theorem
about the density of real continuous functionals
on compact metric spaces and we deduce from
that the universality of families of echo reservoir
computers. Later on, we will show that fading
memory is the suitable continuity property to
assure compactness and thus universality. Since
we restrict on causal, time-invariant filters, we can
consider orbits restricted to Z− and R−.

Definition 2.9. Denote with T− either Z− or R−.
We call restricted orbit any function of the form
u : T− → Rn. Accordingly to Def. 2.2, we denote
with ST,N

K,− the set of all the bounded orbits and with
I− ⊂ ST,N

K,− any subset.

Remark 2.10. Note that the unique functional as-
sociated with a BCTI filter is uniquely determined
by its action on restricted orbits.

A natural necessary condition for the universality
of a class of functionals is to discriminate different
inputs.

Definition 2.11. A family of functionals H sepa-
rates orbits if for any orbits u, v ∈ I− with u ̸= v
there exists a functional H ∈ H such that Hu ̸=
Hv.

Before stating the main theorem, we need to
specify the polynomial operations between func-
tionals. More explicitly, it consists of defining sums
and products of functionals. For simplicity, we re-
strict on real functionals, although these definitions
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can be generalized to functionals between arbitrary
normed spaces.

Definition 2.12. Given u ∈ ST,N
K , two real func-

tionals H1, H2 and λ ∈ R, we denote

(H1 + λH2) := H1u+ λH2u

(H1 ·H2)u := H1u ·H2u .
(1)

Then, a polynomial function of some functionals
{Hi}i=1,...,l is defined accordingly to Eq.(1). Pre-
cisely, we recall the notion of a polynomial algebra.

Definition 2.13. A family of real functionals H is
a polynomial algebra if for any R1, R2 ∈ H and
any λ ∈ R there exist Rλ

+, R× ∈ H such that

R1 + λR2 = Rλ
+ , R1 ·R2 = R× ,

We are in the position to state and prove our
main theorem, which points out some sufficient con-
ditions that imply the density of a family of real
functionals.

Lemma 2.14. Let I− ⊂ ST,N
K be a subset of re-

stricted orbits and assume that (I−, d) is a compact
metric space. Let H be a family of real functionals
such that

• separates orbits in I−;

• contains the constant functionals;

• any functional R ∈ H is continuous with re-
spect to the metric d.

Then any functional H : I− → R continuous with
respect to the metric d is approximated with arbi-
trary precision by a polynomial function of some
functionals in H. Precisely, for any ϵ > 0 there ex-
ist {Ri}i=1,...,l with Ri ∈ H and a polynomial p such
that |p(R1, . . . , Rl)u−Hu| < ϵ for any u ∈ I− .

The proof is a straightforward application of the
Stone-Weierstrass theorem, which states that, given
(W,d) a compact metric space and S a subset of
real continuous functions, S ⊂ C(W,R), if S sepa-
rates points and contains constant functions, then
for any ϵ > 0 and any f ∈ C(W,R), there ex-
ist {si}1,...,l , si ∈ S and a polynomial p such that
|p(s1, . . . , sl)(x)− f(x)| < ϵ for any x ∈ W .

Proof. By hypothesis, H is a subset of the set of the
real continuous functions on (I, dω), which is a com-
pact metric space by hypothesis. Moreover, H sep-
arates points in U and contains constant functions.

Then, we apply the Stone-Weierstrass theorem and
we get the thesis.

The latter lemma does not provide alone the uni-
versality of a family of echo reservoir computers
R, since it may be possible that the functional
p(R1, . . . , Rl) is not associated with any of the ele-
ments in R. If the family of functional associated
with R is a polynomial algebra, then the conditions
in Theorem 2.14 ensure that R is universal.

Theorem 2.15 (Universality). Let R be a family
of echo reservoir computers and let I be a set of in-
put orbits. Assume that (I−, d) is a compact metric
space. Assume that the set of functionals HR asso-
ciated with R is a polynomial algebra that separates
points, contains constant functionals, and such that
each of its elements is continuous with respect to the
metric d.
Then R is a universal class of echo reservoir com-
puters with respect to the inputs I. Namely, for any
ϵ > 0, for any real, bounded functional H : I → R
continuous with respect to d, there exists a echo
reservoir computer C(E, h) ∈ R such that∣∣R(E,h)u−Hu

∣∣ < ϵ, ∀u ∈ I, .

Proof. Let H : I → R be a real bounded functional,
continuous with respect to d. Then, from Lemma
2.14, there exist some functionals R1, . . . , Rl ∈ HR
and a polynomial p such that |p(R1, . . . , Rl)u−H| <
ϵ for any u ∈ I−. Since HR is a polynomial al-
gebra, then p(R1, . . . , Rl) ∈ HR; this means that
there exists an echo reservoir computer C(E, h) such
that the functional associated to it is p(R1, . . . , Rl),
namely R(E,h) = p(R1, . . . , Rl).

Remark 2.16. Recalling the one-to-one correspon-
dence between BCTI filters and functionals, one can
restate the universality property as the universal ap-
proximation of BCTI real filters.

Remark 2.17. In the latter theorem, we ask the
family of functionals associated with a given class
of reservoir computers to be a polynomial algebra.
In many examples, one exploits polynomial read-
outs to ensure this condition is verified, although
is not necessary. See Refs. Grigoryeva and Or-
tega (2018b,a) for examples of universal classes of
reservoir computers with linear readout.

2.3. Continuity and fading memory
In the context of recurrent neural networks, the

concept of fading memory plays a key role (Boyd
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and Chua (1985); Sandberg (2003)). Informally,
a functional, or a filter, has fading memory if its
dependence on older information is reduced over
time. In the former subsection, we considered the
sufficient conditions for the approximation of con-
tinuous functionals defined on inputs belonging to
compact metric space. In this section, we show that
fading memory provides suitable continuity to be
assured by filters and functionals. We specify its
formal definition for two different sets of input or-
bits, namely time series and spike train.

Time series
We consider first time series, thus bounded orbits

labeled in T = Z, namely IK− = SZ,N
K . They lay

in a compact metric space for a proper "fading"
distance.

Definition 2.18. For any given ω : T− → (0, 1] an
increasing function with zero limit at infinity and
ω(0) = 1, that we will call fading function, we de-
fine the fading metric

dω(u, v) := sup
t∈T−

∥ut − vt∥ωt, ∀u, v ∈ IK− .

We have the following lemma.

Lemma 2.19. If the normed space N is finite-
dimensional the space IK− equipped with the distance
dω is a compact metric space.

Proof. By definition dω(u, u) = 0, dω(u, v) > 0 for
any u ̸= v and dω(u, v) = dω(u, v). Triangular in-
equality follows since for any u, v, z

dω(u, z) = sup
t∈T−

∥ut − zt∥ωt =

= sup
t∈T−

∥ut − zt + vt − vt∥ωt ≤

≤ sup
t∈T−

(∥ut − vt∥+ vt − zt)ωt ≤

≤ sup
t∈T−

∥ut − vt∥ωt + sup
t∈T−

∥vt − zt∥ωt =

= dω(u, v) + dω(v, z)

We prove that
(
IK− , dω

)
is compact by proving that

one can extract a convergent subsequence from any
sequence in it. For convenience, for any m ∈ N and
any u = (u−∞, . . . , u−1, u0) ∈ IK− we denote with
um = (u−m, . . . , u−1, u0) the time-restricted orbit
and with IK−,m the space of these time-restricted
orbits. Then, any IK−,m is compact, and thus se-
quentially compact, since it is bounded and closed

in the finite-dimensional normed space Nm.
Given {u(n)}n∈N a sequence in IK− , we extract from
it a subsequence u(nj) such that dω(u(nj), ũ) → 0
for a certain ũ ∈ IK− . For any fixed k ∈ N, uk(n) is
a sequence in IK−,m. Thus, since IK−,m is sequentially
compact, there exists a sequence nk such that

sup
t∈{−m,...,0}

∥∥uk(nk)− ũk
∥∥ → 0, nk → +∞ .

Reasoning as above for any k ∈ N and observing
that one can choose any sequence nk such that nk2

is contained in nk1
for any k2 > k1, we note that

ũk2 is the extension of ũk1 . Thus ũ is a unique,
well-defined element in IK− , such that there exists a
sequence (nj)j∈N for which, for any k0 ∈ N

sup
t∈{−k0,...,0}

∥ũt − ut(nj)∥ → 0, j → +∞ . (2)

We come to prove that dω (u(nj), ũ) → 0 as j →
+∞. Fix ϵ > 0. By definition of fading function ω,
there exists T such that for any t ≥ T

sup
t≤−T

∥ut(nj)− ũt∥ω−t ≤ 2KωT ≤ ϵ (3)

for any j ∈ N. Moreover, from (2), we have that
there exists J ∈ N such that for any j ≥ J

sup
t∈{−T0,...,0}

∥ut(nj)− ũt∥ω−t ≤

sup
t∈{−T0,...,0}

∥ut(nj)− ũt∥ ≤ ϵ .
(4)

Thus, combining (3) and (4), we have proven that
dω (u(nj), ũ) → 0 as j → +∞.

The fading memory condition is the continuity in
the topology of this compact metric space.

Definition 2.20. A functional H taking inputs in
IK fulfills the fading memory condition if it is con-
tinuous in the topology of the metric space

(
IK− , dω

)
.

Definition 2.21. A BCTI B fulfills the fading
memory condition if the unique associated func-
tional HB has fading memory.

Remark 2.22. Fading memory is a continuity
property, thus it is preserved by any continuous op-
eration. In particular, fading memory is preserved
by sums and products in a polynomial algebra.

Spike train inputs
A spike train is modeled by a sequence of spiking

activities in time, that is a discrete subset u ⊂ R.

6



In particular, denoting the neural refractory period
with ∆ > 0, one can assume that each couple of ele-
ments in u have a distance at least ∆. Equivalently,
one may describe a spike train u by a function, that
we still denote with u : R → {0, 1}, defined by

ut =

{
0 t ̸∈ u

1 t ∈ u .

Precisely, we consider the following set of spike train
inputs

I∆ = {u : R → {0, 1} : ut + us < 2,

∀ |t− s| ≤ ∆} .

and the related set of restricted orbits I∆− .
Given any fading function ω, one can construct
a distance dcω for which fading memory function-
als defined on (I∆, dcω) are continuous (Maass and
Markram (2004)). To do this, we approximate any
u ∈ I∆ with a continuous function fu. Explicitly,
one can define such a function by

fu :=
∑
s∈u

T s

with T s a positive continuous function such that
(T s)s = 1 and (T s)t if |t − s| ≥ 1. Then one can
define a distance dcω so that

(
I∆− , dcω

)
is a compact

metric space.

Definition 2.23. For any u, v ∈ I∆− and any given
fading function ω, we define

dcω(u, v) :=

∫ 0

−∞
|(fu)t − (fv)t|ωt dt .

The following result is proved in Ref. Maass and
Markram (2004).

Lemma 2.24. The space I∆− equipped with the dis-
tance dcω is a compact metric space.

Again, the fading memory is the continuity in
this topology.

Definition 2.25. A functional H taking inputs in
I∆ fulfills the fading memory condition if it is con-
tinuous in the topology of the metric space

(
IK− , dcω

)
.

3. Universality of classical reservoir comput-
ers

The definitions and the theorem above are ex-
ploited in the following, as they provide the mini-

mal key ingredients for constructing classes of uni-
versal reservoir computers. First, the two classi-
cal paradigms of reservoir computing, namely liquid
state machine and echo state networks (Maass and
Markram (2004); Grigoryeva and Ortega (2018b))
are considered, and next the unified paradigm is ap-
plied to an example of a quantum reservoir (Naka-
jima et al. (2019)).

3.1. Universality of classical echo state networks

Fix T = Z and denote with IK = SZ,N1

K the set of
uniformly bounded orbits on the normed space N1.
An echo state network (ESN) is a system described
by the following equations{

xt+1 = F (xn, ut+1)

yt+1 = h(xt+1), ∀t ∈ Z
(5)

with F : N2 ×N1 → N2 and h : N → R, where N2

denotes the normed space of the reservoir states.

Definition 3.1. An echo state network has the
echo state property if, for any u ∈ IK , there
exists a unique x ∈ (N2)

Z that solves the equations
(5).

An ESN with echo state property is included in
the definition of an echo reservoir computer.

Lemma 3.2. An ESN with echo state property is
an echo reservoir computer. Namely, there exists
a causal, time-invariant filter E such that Eq. (5)
can be written as{

xt+1 = (Eu)t+1

yt+1 = h(xt+1)

In particular, it follows that any ESN with echo
state property defines a unique functional R(E,h).

Proof. The existence and uniqueness of E are a
straightforward consequence of the echo state prop-
erty. Moreover, E is causal by construction. Even-
tually, the uniqueness of reservoir induces time-
invariance, namely (Ez)t+τ = (Ezτ )n for any t ∈ Z
and fixed τ . Formally, let x̃ = Ezτ the reservoir
state associated with the time-delayed orbit zτ . By
definition, it solves the equation

x̃t+1 = F (x̃t, u
τ
t+1) = F (x̃t, ut+1−τ )

Since by definition xt+1−τ = F (xt−τ , ut+1−τ ) then,
by uniqueness of the solution of Eq. (5), one has
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x̃t = xt−τ for any t ∈ Z. This implies (Ez)t+τ =
(Ezτ )t.

In Ref. Grigoryeva and Ortega (2018a) it is iden-
tified a ready-to-use condition that assures the echo
state property of an ESN and the fading memory
of the associated functional. We report this lemma
for completeness since we use it later on in our de-
velopments.

Lemma 3.3. If the reservoir function F is a con-
traction, namely

∥F (x, u)− F (y, u)∥ ≤ r∥x− y∥

for some r ∈ (0, 1), then the associated ESN has the
echo state property. Moreover, there exists a unique
functional with fading memory associated with it.

We consider now a specific echo state network ar-
chitecture and we show that the class of functionals
associated with this class is a polynomial algebra,
thus we show that this class is universal. We con-
sider echo state networks of the form{

xt+1 = σ (Axt +But+1 + ξ)

yt+1 = p(xt+1)
(6)

with σ defined by the component-wise application
of any squashing function (i.e the hyperbolic tan-
gent), A a N × N matrix for some N ∈ N - the
dimension of the reservoir -, B a N × n matrix
and ξ ∈ RN . Here n and N are respectively the
dimension of the input orbit and the dimension of
the reservoir. We denote with HA,B

p the reservoir
functional associated with an instance of the sys-
tems described by Eq. (6). The echo state property
and the fading memory of the associated functional
follows depending on the spectral properties of A.
Namely, it holds the following.

Lemma 3.4. Let σmax(A) the maximum singular
value of A and L the Lipschitz constant of σ. If
|L ·σmax(A)| < 1, then the ESN in (6) has the echo
state property and the associated functional has fad-
ing memory.

Proof. Following Lemma 3.3, it suffices to prove
that σ(Ax+Bu+ξ) is a contraction with respect to
x. It follows from the hypothesis |L · σmax(A)| < 1
since

∥σ(Ax+Bu+ ξ)− σ(Ay +Bu+ ξ)∥ ≤
≤ |L · σmax(A)|∥x− y∥ .

Following Corollary 2.15, the class of reservoir
computers of the form (6) is universal as long as the
associated functionals lay in a polynomial algebra.
Given two functionals HA1,B1

p and HA2,B2
q , associ-

ated to two given instances of the system in Eq.
(6), their sum and product are respectively given
by HA12,B12

p+q and HA12,B12
p·q with1A12 = A1 ⊕ A2

and B12 = B1 ⊕ B2. It remains to verify that
the system with reservoir connections A1 ⊕A2 has
the echo state property, which follows immediately
since σmax(A1 ⊕A2) = max (σmax(A1), σmax(A2)).
Thus, recalling that (IK , dω) is a compact metric
space and that functionals with fading memory are
continuous with respect to dω we have proved the
following, applying Theorem 2.15.

Theorem 3.5. The class of echo state networks of
the form (6) with reservoir connections such that
σ(A) < 1 is universal, thus it can approximate any
fading memory functional defined on IK .

3.2. Recasting universality of liquid state machines
in the unified framework

Liquid state machines are echo reservoir comput-
ers described by{

xt = (Bu)t

yt = h(xt), ∀t ∈ R
(7)

with xt ∈ Rn and B = (B1, . . . , BN ) a N-
dimensional causal and time-invariant filter. If
the input functions u are continuous, uniformly
bounded, and uniformly Lipschitz functions of
time, many implementations of the family of filters
B and readout h are possible, so that separation
of points, constants representation and fading
memory are ensured. Then, the correspond-
ing class of liquid state machines is universal,
as a consequence of Theorem 2.15. We refer to
Maass and Markram (2004) for a precise statement.

Here we discuss an implementation of an LSM
in the spirit of neural microcircuit networks,
considering a reservoir composed of a network of
N connected integrate-and-fire spiking neurons
(Maass et al. (2002)). The current liquid state

1we denote A⊕B =

(
A 0
0 B

)
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xt is an N-dimensional vector that represents the
contribution of each neuron to the membrane
potential at time t. Formally, we can describe
the associated filters as linear operators with
exponential decay (see Maass et al. (2002) for more
details) taking spike train inputs u ∈ I∆

Biut :=

∫ t

−∞
bi(s)e

s−tδu ds

where we are denoting with δu the delta function
δu(t) :=

∑
s∈u δ(t − s), and with bi(s) a continu-

ous, bounded, real function. Such a filter has fad-
ing memory with ωt = et. Moreover, it is causal
and time-invariant by construction. The readout
function h is implemented through a subset of fir-
ing neurons that receive connections from any neu-
ron in the reservoir, but that are not mutually con-
nected. Concretely, the current firing activity of
this subset of neurons is interpreted as the analog-
ical output of the readout function. It is known
that such functions h are universal approximators,
namely, they approximate with arbitrary precision
any given real function (Maass (2000)).

Theorem 3.6. The class of liquid state machines{
xt = (Bu)t = (B1, . . . , BN )(u)t

yt = h(xt), ∀t ∈ R,
(8)

for some N ∈ N, with Bi linear, exponential decay
filter and h any analogical function described above,
is universal.

Proof. Fading memory of Bi implies that the func-
tional associated with the LSM in Eq. (8) has fad-
ing memory, thus by Def. 2.24, it is continuous with
respect to the metric dcω. The separation property
is guaranteed by the definition of the filters since
it is enough to choose any function b such that∑

s∈u e
sb(s) ̸=

∑
s∈v e

sb(s). Then, Lemma 2.14 en-
sures that, for any given causal, time-invariant, real
functional H : IK → R with fading memory, for any
ϵ > 0 there exists a N-dimensional reservoir filter
B, for some N ∈ N, and a polynomial p such that
the functional R(B,p) related to the LSM{

xt = (Bu)t = (B1, . . . , BN )(u)t

yt = p(xt)

satisfies |R(B,p)u−Hu| < ϵ for any u ∈ I∆− . Even-
tually, one can replace p with an analog readout

function h of the type discussed above, since they
are universal approximators of real functions.

4. Quantum echo state networks and univer-
sality

The last Section applies the concept of univer-
sality to quantum reservoirs based on qubit regis-
ters (Fujii and Nakajima (2017); Nakajima et al.
(2019)). Such extension exploits the density ma-
trix representation of a quantum state and involves
spatial multiplexing. An effective implementation
of provably universal quantum reservoir systems,
exploiting dissipative quantum systems, was pro-
posed in Refs. Chen and Nurdin (2019); Chen et al.
(2020).

4.1. Quantum echo state networks

Let H be a Hilbert space, that we assume to
be finite-dimensional for the sake of simplicity, and
let B(H) be the space of bounded operators on H,
equipped with the Schatten norm ∥T∥ = Tr(A†).
Any pure or mixed state in H may be represented
by a density operator ρ ∈ B(H), namely, by an ele-
ment in the compact convex subspace

S(H) =
{
ρ ∈ B(H) : Tr(ρ) = 1, ρ ≥ 0, ρ = ρ†

}
.

At each time step, the reservoir state is represented
by a density operator defined on a suitable Hilbert
space. The quantum dynamics of the reservoir is
described by a quantum channel (see Weedbrook
et al. (2012) for a detailed introduction of this con-
cept).

Definition 4.1. A quantum channel is any lin-
ear map

C : B(H) → B(H)

which is completely positive and trace-preserving
(CPTC map).

Remark 4.2. It is straightforward to notice that
S(H) is closed with respect to the action of any
quantum channel. Namely, the action of any quan-
tum channel C restricts to

C : S(H) → S(H) .

9



A quantum echo state network (qESN) is thus
generally described by the following equation{

ρt+1 = C(ρt, ut+1)

yt+1 = h(ρt+1), ∀t ∈ Z
(9)

with, using the terminology introduced in Section
2, (ut)t∈Z and (yt)t∈Z discrete time orbits in some
normed spaces and (ρt)t∈Z an orbit in the normed
space S(H) .

The notions of echo state property and fad-
ing memory essentially replicate those for classical
echo state networks (see Definitions 2.18 and 3.1)
since ESN and qESN ultimately share the same
mathematical description. In particular, these
properties are ensured by the strict contractivity
of the CPTP map C that appears in (9), namely

∥C(ρ1, u)− C(ρ2, u)∥ ≤ r∥ρ1 − ρ2∥ (10)

for some r < 1, as a consequence of Lemma 3.3. In
this regard, we recall that any CPTP map is non-
expansive, meaning that Eq. 10 holds with r ≤ 1
(see Theorem 9.2 in Nielsen and Chuang (2010)).
With the same argument developed in Lemma 3.2,
one concludes that a qESN with echo state property
falls in our definition of echo reservoir computer.

4.2. A class of quantum reservoir computers

In these last two subsections, we present an em-
bodiment of a qESN exploiting a N -qubit register
proposed in Nakajima et al. (2019). Let H2 be
the two dimensional complex Hilbert space asso-
ciated with a single qubit and HN =

⊗N
j=1 H2 the

2N -dimensional Hilbert space of the whole register.
Denoting with I = σ00, X = σ01, Y = σ10, Z =
σ11 the Pauli operators, the products {Pi} ={⊗N

l=1 σi2k−1i2k

}
form a basis of the normed space

B(HN ). Then, the density operator ρ that describes
the state of the reservoir is represented as a 4N -
dimensional vector r =

(
r00...00, r01...00, . . . , r11...11

)
with

ri =
1

2N
Tr [Piρ] .

We consider bounded time series {ut}t∈Z with ut ∈
[0, 1] as inputs of the reservoir system. The inputs
are encoded in the dynamics of the reservoir via a
quantum channel described at each time step t, in

the Pauli basis, by a matrix Sut , written as 2

(Sut
)ij = Tr

[
Pj

(
I + (1− 2ut)Z

2
⊗ Tr1 (Pi)

)]
.

The evolution of the reservoir state r is described
by the quantum channel rt+1 = SUτ

Hrt, where Uτ
H

is the quantum dynamics induced by some Hamil-
tonian H3. Then, the readout is a linear combina-
tion of a subset of some nodes in the reservoir. For
example, one can use the N values corresponding
to the Z Pauli operators as true nodes. Formally,
denoting z1 = r0100...00, z2 = r0001...00, . . . , zN =
r0000...01, the related qESN is described by{

rt+1 = Sut
Uτ
Hrt

yt+1 =
∑N

i=1 wiz
i
t+1

(11)

for some coefficients wi ∈ R. We denote each in-
stance of this system as Q(H,w). We assume, more-
over, that the unitary evolution Uτ

H is such that the
system in Eq. (11) is contractive. Thus, the func-
tional associated is well-defined and it has the echo
state property and fading memory.

4.3. Universality by spatial multiplexing

Following the result in Theorem 2.15, we show
how spatial multiplexity ensures the universality of
a class of qESN generated from the systems de-
scribed in Subsection 4.2, as it allows to represent
sums and products of functionals. Spatial multi-
plexing consists of preparing uncoupled instances
of a reservoir system with different internal param-
eters and running them in parallel with the same
input. More formally, let Q(H1,w),Q(H2,v) be two
independent qESN systems with respectively N1

and N2 qubit registers. Denote with R1 and R2

the respective associated functionals, and with r1

and r2 the respective reservoir states represented
in the Pauli basis. Spatial multiplexity provides the
construction of the system whose associated func-
tional is the product of R1 and R2. The reser-
voir state r of the spatial multiplexed system is
the joint reservoir state of each isolated register,
namely r = (r1, r2). Consequently, we denote the
true nodes, corresponding to the Z operators of
the two registers, respectively as z1, . . . , zN1 and

2here Tr1 is the partial trace with respect to the first
qubit

3formally, one can write(Uτ
H)ij = Tr

[
Pje

−iHτPie
iHτ

]
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Table 1: Comparison between the three paradigms of reservoir computers discussed in the main text and the generalized notion
of echo reservoir computer (ERC) defined in this work

Type Input Reservoir Time evo-
lution Readout Reference

ESN Time series in Rn Artificial neural
network T = Z

Linear or polyno-
mial function of ev-
ery node in the
reservoir

Jaeger (2001);
Grigoryeva and
Ortega (2018b,a),

LSM Spike trains Spiking neural
network T = R

Analogical function
of a subset of neu-
rons

Maass et al.
(2002)

qESN Time series in Rn Qubit register T = Z
Linear function of
the Z Pauli opera-
tors

Nakajima et al.
(2019); Chen et al.
(2020)

ERC Orbits in any
normed space

Any system de-
scribed by a
normed space

T = Z or
T = R

Generic functional
applied to the reser-
voir state

This work

zN1+1, . . . , zN1+N2 . Then, the functional associated
with the qESN{

rt+1 =
(
SutUH1 r

1
t , SutUH2 r

2
t

)
yt+1 =

(∑N1

i=1 wiz
i
t+1

)
·
(∑N2

i=N1+1 viz
i
t+1

)
is the product functional R1 ·R2. Namely, recalling
the notation in Eq. (1), for any time series input
{ut}t∈Z, one has

R1(u) ·R2(u) = (R1 ·R2)(u) .

The sum is built identically by exploiting∑N1

i=1 wiz
i
t+1+

∑N2

i=N1+1 viz
i
t+1 as readout. As long

as the unitary dynamics induces fading memory and
is able to separate different inputs, we can con-
clude that the family of quantum reservoir comput-
ers that are spatial multiplexed instances of systems
described in Eq.(11) is universal.

5. Conclusions

A unified theoretical framework of reservoir com-
puting is defined and the minimal set of sufficient
conditions to ensure that a class of reservoir com-
puters serves as a universal approximator for func-
tionals is demonstrated. Such conditions turn out
to be the polynomial algebra structure of the set
of associated functionals and their fading memory,
respectively. We have shown that such a unified

framework not only recovers the two major classical
paradigms of reservoir computers, namely the echo
state networks and the liquid state machines but
also extends to the construction of universal reser-
voir computers in the arising context of quantum
reservoir computing. Guided by our general theo-
rem, we have shown that spatial multiplexing is a
computational resource when dealing with quantum
reservoirs since it assures universality. To conclude,
echo state computers behave as a single class of uni-
versal computing machines including both classical
and quantum systems, providing a solid context to
develop quantum reservoir computing.
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