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We observe strong dynamical suppression of optically induced loss in a weakly interacting Fermi
gas as the s-wave scattering length is increased. The single, cigar-shaped cloud behaves as a large
spin lattice in energy space with a tunable Heisenberg Hamiltonian. The loss suppression occurs
as the lattice transitions into a magnetized state, where the fermionic nature of the atoms inhibits
interactions. The data are quantitatively explained by incorporating spin-dependent loss into a
quasi-classical collective spin vector model, the success of which enables the application of optical
control of effective long-range interactions to this system.

In trapped, ultracold gases, understanding optically in-
duced atom loss is essential for developing optical probes
and control methods for many-body systems [1–5]. Loss
due to optically induced inelastic scattering has been
used to study the BEC-BCS crossover in a Fermi gas via
photoassociation [6] and accompanies optical control of
the s-wave scattering length [7–11]. Modeling optically
induced two-body loss in a coherently prepared, weakly
interacting Fermi gas is nontrivial, as it exhibits a coher-
ent many-body spin evolution [12–20]. Understanding
this loss allows the spin dynamics to be probed and en-
ables optical control of interactions in this system, which
can be used to engineer the Hamiltonian [21].
The Pauli principle plays an essential role in the evolu-

tion of the loss in an ultracold, weakly interacting Fermi
gas, as the atoms cannot undergo inelastic s-wave scat-
tering when the spin state of a colliding atom pair is sym-
metric. This is especially relevant when the gas evolves
into a magnetized state, which occurs at a sufficiently
large scattering length [18, 22]. Fermi gases have re-
cently provided new demonstrations of the Pauli principle
in degenerate samples, where Pauli blocking suppresses
light scattering for atoms in a Fermi sea [23–26]. In con-
trast, the suppression of light scattering reported here
emerges from effective long range spin-spin interactions
and is both dynamical and collective.
In this paper, we examine the collective suppression

of optically induced inelastic scattering in a weakly in-
teracting 6Li Fermi gas. Each atom is prepared in a
pseudospin-state comprising a superposition of the two
lowest hyperfine states |1〉 and |2〉. As the s-wave scat-
tering length is increased, we observe a crossover from
high to low optically induced loss. We develop and test a
model for the spin-dependent loss, which shows that dy-
namical loss suppression arises from the onset of a mag-
netized state.
Tunable two-body scattering with optically induced

loss is accomplished using a collisional (Feshbach) res-
onance, Fig. 1(b). The resonance arises from hyperfine
coupling between the triplet 3Σu continuum |k〉 and a
molecular vibrational state |g1〉 in the singlet 1Σg chan-
nel. At low temperatures, where s-wave scattering dom-
inates, the s-wave scattering length aS is controlled by
a bias magnetic field Bz, which tunes the total Zeeman-
hyperfine energy of an incoming pair of atoms in state

|k〉 near resonance with |g1〉. Inelastic loss is induced by
an optical field ν1 resonant with a transition from |g1〉 to
an excited electronic state |e〉, which spontaneously de-
cays, causing loss of both atoms from the trap [8, 11, 27].
Related level schemes have been used for optical control
of aS via a ν1-induced light-shift of |g1〉 [7, 8, 10, 11]. As
the s-wave relative motion state is symmetric under the
interchange of the atom labels, denoted i, j, scattering in
the Fermi gas requires an antisymmetric two-atom hy-
perfine state, |Ψa(i, j)〉 = 1√

2
(|1〉i|2〉j − |2〉i|1〉j). Hence,

the projection of the two-atom pseudo-spin state onto
|Ψa(i, j)〉 determines the scattering probability.

FIG. 1. (a) Energy-space spin-lattice. Atoms remain fixed at
energy “sites” in a cigar-shaped optical trap (blue). Collec-
tive spin vectors (red arrows) are comprised of pseudospins
in different transverse modes (pink arrows). Site-to-site cou-
plings are determined by the overlap of the spatial probabil-
ity distributions (orange). (b) Molecular states for two-body
scattering near a Feshbach resonance. Loss is induced by an
optical field ν1 that drives a transition between |g1〉 and |e〉.

A “weakly interacting” Fermi gas is created by tuning
aS to be small enough that the energy-changing collision
rate ∝ a2S is negligible during each measurement period.
In the absence of optically induced loss, atoms remain
fixed in their respective energy states, allowing the sys-
tem to be described as a lattice in a “synthetic dimen-
sion” [28] formed by the energy eigenstates of the trap-
ping potential, Fig. 1(a). Forward scattering between
atoms at different energy “sites” causes rotations of the
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pseudospins, resulting in effective long-range couplings.
The lattice picture simplifies the description in compar-
ison to a real space treatment, as the motional states
of the atoms are fixed and the system evolves via pure
spin dynamics, simulating a collective Heisenberg Hamil-
tonian [12–20].
In our experiments, the atoms are confined in a cigar-

shaped optical trap. The curvature of a bias magnetic
field ∂2

xBz along the cigar axis x produces a precession
rate Ω′

xE for pseudospins of axial energy E. Due to the
tight transverse confinement, Ω′

y and Ω′
z are 900 times

smaller than Ω′
x and negligible. This allows a 1D approx-

imation for the lattice, where the spin-spin couplings be-
tween different transverse modes are replaced by a trans-
verse mode-averaged coupling. Then, all pseudospins in
a group with nearly the same axial energy E evolve in
the same way, as described by a collective spin vector
S(E, t) for each site. We find that this model is in very
good agreement with our observations [14, 21, 22, 29].
Without loss, the evolution of S(E, t) is described by

the spin Hamiltonian H(E) = ω(E) · S(E), where

ω(E) = Ω′
xE êz +

∑

E′ 6=E

g(E,E′)S(E′) . (1)

Here, g(E,E′) ∝ aS is the coupling between spins at
axial energy sites E and E′ 6= E. In our experiments,
the average coupling ḡ ≃ 1.6 Hz× 2π for aS = 5.0 a0 and
the rms spread in Ω′

xE, denoted Ω′
xσE , is ≃ 1.4 Hz× 2π.

Defining S(E, t) = S(E, t) Ŝ(E, t), where Ŝ(E, t) is a unit
vector,

Ṡ(E) = S(E)
˙̂
S(E) + Ṡ(E) Ŝ(E). (2)

Here S(E, t) = NE(t)/2 with NE(t) the number of atoms

with axial energy E. Neglecting loss, where Ṡ(E) = 0,
the rotation of S(E), given by first term in Eq. 2, is
determined by the Heisenberg equations,

˙̂
S(E, t) = ω(E, t)× Ŝ(E, t). (3)

We solve Eq. S1 for the unit vectors Ŝ(E, t) in a quasi-
classical approximation, treating S(E, t) and S(E′, t) as
classical vectors.
The evolution of the collective spin vectors is deter-

mined by the competition between ωB(E) ≡ Ω′
xE êz and

ωMF (E, t) ≡ ∑

E′ 6=E g(E,E′)S(E′, t) in Eq. 1. As the
lattice is not in thermal equilibrium, this competition re-
sults in two dynamical phases: a spin-unlocked phase,
where ωB(E) dominates and a spin-locked phase, where
ωMF (E, t) ∝ aS dominates, independent of the sign of
aS . With increasing |aS |, the lattice exhibits a crossover
between these two dynamical phases [18, 22]. As the
pseudo-spins are initially spin-polarized, they cannot in-
teract until ωB(E) causes the collective spin vectors to
fan out with E-dependent angles in the transverse plane.
The crossover is characterized by the interaction strength
ζ ≡ ḡ/(Ω′σE

√
2). For small aS, ζ is small and ωB(E)

dominates, which is reflected in a low magnitude of the
total spin vector S(t) = |∑E S(E, t)|, Fig. 2. We find
that when aS is large enough that ζ & 1.5, ωMF (E, t)
dominates over ωB(E) and the spins lock together. How-
ever, spin-locking suppresses scattering, enabling ωB(E)
to again fan out the spin vectors, which then re-enables
scattering and subsequent spin locking, resulting in an
oscillation of S(t), Fig. 2. With increasing ζ ∝ |aS |, the
average S(t) (magnetization) increases and the oscilla-
tion amplitude decreases.
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FIG. 2. Predicted magnitude of the total spin vector as a
function of time for loss-free evolution with different s-wave
scattering lengths. In the model, we use the experimental pa-
rameters given in the text. For aS/a0 = 0, 5, 10, 15, 24, the
respective interaction strengths are ζ = 0, 0.8, 1.6, 2.4, 3.9.

Inelastic scattering is optically induced as described
above, Fig. 1(b). Spontaneous emission from |e〉 causes
loss of both atoms, without heating or pumping into
higher- or lower-energy trap modes, allowing use of the
energy-space spin-lattice picture. With loss, the collec-
tive spin vectors rotate and change length, Eq. 2 with
Ṡ(E, t) = ṄE(t)/2 6= 0. To incorporate loss into the
model, we determine NE(t) as follows.

Loss due to two-body inelastic collisions between two
species A and B with 3D densities nA(r, t) and nB(r, t)
is generally modeled as

ṅA(r, t) = ṅB(r, t) = −KAB
2 nA(r, t)nB(r, t) . (4)

Here KAB
2 ≡ 〈vrσAB

inel〉 with σAB
inel the AB inelastic cross

section and 〈...〉 denotes an average over relative speed vr.
In the energy-space spin-lattice, each energy corresponds
to a definite spin vector. In our quasi-classical picture,
atoms of axial energy E, in the spin state |Ŝ(E)〉, collide
with atoms of energy E′ in the spin state |Ŝ(E′)〉 for
all E′ 6= E. To find NE(t), we generalize Eq. S10 to
model the loss of the spin-energy correlated 3D densities
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nE(r, t), i.e. the density of atoms with axial energy E:

ṅE(r, t) = −
∑

E′

K(E,E′, t)nE(r, t)nE′(r, t) , (5)

where K(E,E′, t) is the effective loss rate coefficient.
Spin-dependent Fermi suppression is manifested in our
expression for K(E,E′, t), which weights the two-body
loss coefficient Ka

2 associated with the anti-symmetric

two-atom hyperfine |Ψa(i, j)〉 by the probability that the

incoming two-atom spin state |Ŝ(E)〉i|Ŝ(E′)〉j is in the
state |Ψa(i, j)〉 [21],

K(E,E′, t) =
Ka

2

4
[1− Ŝ(E, t) · Ŝ(E′, t)]. (6)

In the quasi-classical approximation, dynamical suppres-
sion of loss appears in the time dependence of the unit
vectors, Ŝ(E, t). K(E,E′, t) has a maximum of Ka

2/2
when the colliding spin vectors are anti-parallel and van-
ishes when the spin vectors are parallel, which is most
likely for a magnetized state.
To determine NE(t) from Eq. 5, we employ a quasi-

1D approximation, where the 3D density factors [21]:
nE(r, t) = nE(ρ, x, t) ≃ NE(t)R(ρ, t)|φE(x)|2. Here x
is the axial coordinate and ρ is is the radial coordi-
nate. We take R(ρ, t) to be the normalized transverse
probability density,

∫

dρ 2πρR(ρ, t) = 1 for all t and
∫

d3rnE(r, t) = NE(t). Integrals of Eq. 5 over x, ρ result

in coupled equations for Ṙ(ρ, t) and ṄE(t) [21]. Density-
dependent loss causes NE(t) to decrease in time and
R(ρ, t) to change shape, reducing the average transverse
probability density n̄⊥(t) =

∫

dρ 2πρ [R(ρ, t)]2. While
we cannot directly measure R(ρ, t), including the time-
dependence of n̄⊥(t) is essential, as is made apparent by
comparing the measured loss rates to the model predic-
tions with n̄⊥ = n̄⊥(t) and with n̄⊥ = n̄⊥(0) [21]. The

evolution equations for S(E, t) = NE(t)/2, Ŝ(E, t), and
R(ρ, t) determine the evolution of the total atom number
N(t) =

∑

E NE(t).
To test the loss model, we measure the time-dependent

loss of the total atom number N(t) for scattering lengths
aS = 0 to 24 Bohr (a0), corresponding to interaction
strengths ζ =0 to 5.39. The trapped gas is illuminated
by a nominally uniform optical field resonant with the
|g1〉 → |e〉 transition and evolves for a variable amount
of time before resonant absorption imaging of the atom
densities for the spectrally resolved hyperfine states |1〉
and |2〉.
In the experiments, a gas of N(0) = 6 × 104 6Li

atoms, is prepared in the weakly interacting regime [14].
The temperature of the gas is T = 0.18TF , where the
Fermi temperature TF ≃ 0.75µK. We use the calibration
from Ref. [14] to tune to the desired scattering length
aS(B), where RF spectroscopy precisely determines B.
A 0.5 ms π/2 RF pulse is applied to a z-polarized sam-
ple to prepare the atoms in an equal superposition of
the lowest-energy hyperfine states |1〉 and |2〉, i.e., the
pseudospins are initially polarized orthogonal to the mag-
netic field direction z. Immediately following the pulse,

a loss-inducing optical field is applied and the system
evolves for a time 0 ≤ t ≤ 400 ms. The Rabi frequency
of the optical field is estimated to be [21] Ω1 = γe/2,
where γe = 2π × 11.8 MHz is the spontaneous emis-
sion rate from the excited molecular state |e〉. Since
the optical field is on resonance, there is no optical shift
of the scattering length [27]. The trap frequencies are
ωρ = 2π × 668 Hz and ωx = 2π × 25 Hz. A fit to a zero-
temperature Thomas-Fermi profile yields an axial width
σTF = 330µm. The radial width of 12 µm is computed
from the ratio of the trap frequencies. For each measure-
ment with a coherently prepared sample, the two-body
loss rate coefficient Ka

2 is measured for a 50-50 mixture.
These measured values of Ka

2 are used as inputs into the
loss model.
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FIG. 3. Measurements of the atom fraction remaining af-
ter τ = 370 ms of illumination (blue points) vs scattering
length and interaction strength ζ, compared to the theoretical
prediction (red curve). The densities and values of Ka

2 vary
slightly for each measurement [21]. For the prediction, we use
the average values N(0) = 6.1 × 104 atoms, σTF = 332µm,
and Ka

2 = 62µm3/s.

The fraction of atoms remaining after 370 ms of illumi-
nation, N(370ms)/N(0), is shown in Fig. 3 for the differ-
ent scattering lengths. The data demonstrate a crossover
between the unlocked and spin-locked dynamical phases,
where the Fermi suppression more than doubles the num-
ber of atoms remaining between the aS =0 and 24 a0
cases. Error bars represent the standard deviation of the
mean for six shots. The prediction generated by the loss
model (red curve) agrees well with the data. For the pre-
diction, we use the averaged atom number, axial widths,
and values of Ka

2 from the measurements.
Measurements of the fraction of atoms remaining

throughout the evolution N(t)/N(0) for coherently pre-
pared samples are shown in Fig. 4, along with the cor-
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FIG. 4. Suppression of optically-induced loss versus illumination time as the scattering length is increased. N(t)/N(0) is the
atom fraction remaining after a time t. As a reference, the data and model for the non-interacting gas aS = 0 a0 (ζ = 0) are
shown in black on each plot. Each point represents the average of six shots, and the error bar is the standard deviation of the
mean. (a) aS = 5 a0 (ζ = 1.03), (b) aS = 10 a0 (ζ = 2.32), (c) aS = 15 a0 (ζ = 3.59), (d) aS = 24 a0 (ζ = 5.39). Note that
the interaction strength ζ is not precisely linear in the scattering length due to slight variations in the density. The measured
values of Ka

2 and exact densities for each scattering length are given in [21].

responding predictions using no free parameters. Pre-
dictions and measurements for aS = 0 a0 (ζ = 0), where
interactions are absent, are shown as a reference, and
agree very well. The atom number is nearly stagnant
for the first ≈ 80 ms, corresponding to the time needed
for the energy-dependent Zeeman precession rates to sep-
arate the collective spin vectors. Once the spin vectors
are sufficiently separated, the effective loss rate coefficient
K(E,E′, t) becomes non-negligible and the atom number
begins to decay. At aS = 5 a0 (ζ = 1.03), the data are
almost indistinguishable from the aS = 0 a0 case, Fig. 4a.
This is consistent with Fig. 2, where, for aS = 5 a0 at our
experimental densities, the system is still in the energy-
dependent precession-dominated regime. The data show
that a transition out of this dynamical phase occurs be-
tween aS = 5 a0 and aS = 10 a0 (ζ = 2.32), where the
measurements at aS = 10 a0 exhibit the onset of loss sup-
pression, Fig. 4b. The loss is further suppressed for the
aS = 15 a0 (ζ = 3.59) data, Fig. 4c, and even more for
the aS = 24 a0 (ζ = 5.39) data, Fig. 4d, reflecting the
increasing collective alignment of the spins, as depicted
for the lossless case of Fig. 2.

Our collective spin vector model of loss for the energy-
space lattice is in good quantitative agreement with mea-
surements. The average of the values of Ka

2 used to gen-
erate the curves in Fig. 4, 62 ± 6.2µm3/s, is in good
agreement with the predicted value of 69.4µm3/s [21].
For extraction of Ka

2 from loss measurements in a 50-

50 mixture, we assume that a pair of colliding atoms is
in the product state |1〉i|2〉j and hence has a probabil-
ity |〈Ψa(i, j)|1〉i|2〉j |2 = 1/2 to be in the antisymmetric
spin state [21]. However, we find that the values of Ka

2

used in the model need to be half of those extracted from
measurements in the 50-50 mixture. This origin of this
discrepancy is not yet clear.
In summary, we have observed dynamical collective

suppression of optically induced inelastic scattering in
a coherently prepared, weakly interacting Fermi gas. As
the scattering length is increased at fixed initial density,
we observe a crossover from high to low loss. We un-
derstand this suppression via the Pauli principle, where
the system undergoes a crossover into a magnetized dy-
namical phase with parallel collective spin vectors, Fig. 2,
causing suppression of s-wave scattering. In this way, loss
suppression serves as a new probe of the magnetization of
the system. We have developed a loss model that quan-
titatively agrees with observations and incorporates the
many-body evolution of the collective spin vectors. This
work paves the way for tailoring of spin-spin couplings by
optical control the interactions [21], as the accompany-
ing loss can now be included in energy-space spin-lattice
models.
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Appendix A: Supplemental Material

In this supplemental material, we begin by reviewing the energy-space spin lattice model for the evolution of
collective spin vectors in a weakly interacting Fermi gas without loss. Then we describe a generalized model, including
two-body loss for the collective, energy-dependent spin vectors, which is compared to measurements in coherently
prepared samples. Finally, we describe the experimental methods and the measurement of the optically-induced,
two-body loss rate constant K2 in two-state mixtures.

1. Evolution of the Energy-Space Spin Lattice without Loss

In the weakly interacting regime, the s-wave scattering length aS is magnetically tuned to be sufficiently small that
the collision rate is negligible over the experimental time scales. In this case, the energies of individual atoms are
conserved, enabling an energy-space spin-lattice description [12, 14]. For a cigar-shaped optical trap, the lattice can
be approximated as one-dimensional, where the collective spin vectors S(E, t) are labeled by the axial energy E for
motion along the cigar axis, defined as x. The energy-space spin-lattice is described by a Heisenberg Hamiltonian,
where the corresponding Heisenberg equations of motion yield an E-dependent rotation for the collective spin vector
S(E, t) at each site. In a mean-field description, the rotation arises from an effective site E-dependent Zeeman field and
the effective magnetic field arising from the spin-spin coupling to all other sites E′ 6= E. We employ a quasi-classical
description, where S(E, t) is treated as a classical vector.
The experiments employ a 6Li Fermi gas in a superposition of the two lowest hyperfine-Zeeman states, which are

denoted |1〉 ≡ | ↑z〉 and |2〉 ≡ | ↓z〉. The curvature of the applied bias magnetic field, ∂2
xBz, and the difference in

the magnetic moments for the two hyperfine states produce a spin-dependent axial harmonic trap frequency and a
corresponding E-dependent rotation rate about the applied magnetic field, which we denote by ΩB(E) = Ω′E ẑ. The
site-to-site coupling, denoted by g(E,E′), arises from forward s-wave scattering.

Taking S(E, t) = S(E, t) Ŝ(E, t), where Ŝ(E, t) denotes a unit vector, we find

˙̂
S(E, t) = ΩB(E)× Ŝ(E, t) +

∑

E′

g(E,E′)S(E′, t)× Ŝ(E, t). (S1)

Without loss, each S(E, t) evolves via rotation. In this case, the magnitudes |S(E, t)| ≡ S(E, t) = S(E, t = 0) are
conserved. There is some flexibility in the definition of S(E), as Eq. S1 is invariant under the scale transformation
S(E) → c(E)S(E) and g(E,E′) → g(E,E′)/c(E). We choose S(E, t = 0) to be

S(E, t = 0) = NE/2. (S2)

Here NE = N P (E) is the number of atoms in axial energy group E, with N the total atom number and P (E)
the probability distribution. In the model, we take P (E) to be a zero-temperature Thomas-Fermi distribution for
near-degenerate samples; for higher temperatures, we employ a Boltzmann distribution. The collective spin vectors
begin their evolution after a π/2 RF pulse coherently rotates the initially z-polarized sample, so that

Ŝ(E, t = 0) = x̂
′, (S3)

where x̂
′ is defined in the Bloch frame, orthogonal to ẑ.

For our choice of S(E, t = 0) in Eq. S2, the site-to-site couplings g(E,E′) in Eq. S1 are given by

g(E,E′) = −n̄⊥
8π~

m

∫

dx |φE(x)|2|φE′(x)|2 aS (S4)

where φE(x) is the axial trap eigenstate for energy E. Note that optical control of interactions allows aS → aS(x, t), so
that g(E,E′) may be tailored. In Eq. S4, we have assumed that the single-particle probability density takes the form
R(ρ) |φE(x)|2, where x is the axial coordinate, ρ is the transverse radial coordinate, R(ρ) is the transverse probability
density, and

∫

dρ 2πρR(ρ) = 1. The overlap integral is evaluated using a WKB approximation. For a harmonic trap,

∫

dx |φE(x)|2|φE′(x)|2 =
2

π2

√

mω̄2
x

2|E − E′| EllipticK
[

−min(E,E′)

|E − E′|

]

, (S5)

In Eq. S4, n̄⊥ is the average transverse probability density,

n̄⊥ ≡
∫

dρ 2πρR2(ρ). (S6)
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For lossless evolution, R(ρ) is time-independent. Assuming a zero-temperature Thomas-Fermi distribution,

R(ρ) =
3

πσ2
ρ

(

1− ρ2

σ2
ρ

)2

(S7)

we obtain n̄⊥ = 9/(5πσ2
ρ). For the Maxwell-Boltzmann distribution,

R(ρ) =
1

πσ2
ρ

e−ρ2/σ2

ρ , (S8)

we find n̄⊥ = 1/(πσ2
ρ).

2. Modeling Two-Body Loss in the Energy-Space Spin lattice

Inelastic interactions are induced in the energy-space spin lattice by illuminating the coherently prepared clouds
with an optical field. In this section, we describe our model for the loss in this system due to these interactions.
We begin by describing the interaction process: For the magnetic fields of interest, a collision between a pair of 6Li

atoms, one in each of the two lowest hyperfine spin states, occurs nominally in the triplet electronic potential (where
“triplet” refers to the two-electron spin state). For s-wave scattering, where the relative motion state is symmetric in
the interchange of the two atoms, the two-atom hyperfine state is the antisymmetric state,

|Ψa(1, 2)〉 =
1√
2
(| ↑z〉1 | ↓z〉2 − | ↓z〉1| ↑z〉2) ≃ |1,−1; 1, 1〉. (S9)

At high magnetic fields, as used in the experiments, |1,−1; 1, 1〉 is the dominant triplet state in the interior basis,
i.e., the total electronic spin state is S = 1,MS = −1, the total nuclear spin state is I = 1,MI = 1. This triplet
state has a large hyperfine coupling to the dominant singlet electronic state S = 0 [30], denoted |g〉, which is in
the 38th vibrational state of the singlet ground molecular potential, producing a broad Feshbach resonance at 832.2
G [31]. The difference between the magnetic moments of the singlet and triplet states enables magnetic tuning of
the s-wave scattering length near the resonance. The applied optical field drives transitions from |g〉 to the 64th

electronically-excited vibrational state in the electronic singlet molecular potential, denoted |e〉 [8, 11]. Spontaneous
emission from |e〉 causes the interaction to be inelastic, and we assume that the emission results in loss of both atoms
without transfer of atoms between energy states, so that the energy-space spin lattice model remains appropriate.
Loss due to two-body inelastic collisions between a particle of species A and a particle of species B is generally

modeled as

ṅA(r, t) = ṅB(r, t) = −KAB
2 nA(r, t)nB(r, t) (S10)

where nA(r, t) is the 3D density of species A and nB(r, t) is the 3D density of species B. It is assumed that only A
and B interact, and that each inelastic collisions causes both atoms to be lost. Eq. S10 follows from the definition of
the inelastic cross section of the AB interaction σAB

inel where KAB
2 ≡ 〈vrelσAB

inel〉 (the brackets denote the average over
the relative speeds vrel). This will be our basis for constructing our loss model.

a. Optically-Induced Loss in the Energy Lattice

To treat loss in the energy-space spin lattice, we consider the atoms at each energy site E to be a “species” in the
context of Eq. S10. We associate a 3D density nE(r, t) to the group of atoms with energy E and a collective spin
vector S(E, t), and sum the inelastic collision rates for atoms of energy with E with atoms of energies E′ over all
E′ 6= E to obtain

ṅE(r, t) = −
∑

E′

K(E,E′, t)nE′(r, t)nE(r, t). (S11)

Here the total density is n(r, t) =
∑

E nE(r, t) and K(E,E′, t) is the effective energy-dependent two-body loss rate
coefficient.
We obtain K(E,E′, t) by computing the probability that the pair of atoms in energy groups E and E′ are in the

antisymmetric spin state |Ψa(1, 2)〉. We assume that the spin of each atom of energy E is polarized along S(E, t),
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corresponding to the spin state |Ŝ(E, t)〉. In this case, atoms of energies E and E′ are in states with definite spin
polarizations, so that we can assume the incoming spin state for a colliding pair of atoms with energies E and E′ is
|Ŝ(E, t)〉1 |Ŝ(E′, t)〉2. The probability amplitude to be in the singlet state is then found by the inner product of this
state with |Ψa(1, 2)〉, so that

K(E,E′, t) = Ka
2 |〈Ψa(1, 2)|Ŝ(E, t)〉1 |Ŝ(E′, t)〉2|2. (S12)

where Ka
2 is the loss constant associated with the antisymmetric two-atom spin state, given in Eq. S9. Suppressing

the time dependence, the energy-dependent spin states take the form,

|Ŝ(E)〉1 = e−iφE/2 cos(θE/2) |↑z〉1 + eiφE/2 sin(θE/2) |↓z〉1
|Ŝ(E′)〉2 = e−iφ′

E/2 cos(θ′E/2) |↑z〉2 + eiφ
′

E/2 sin(θ′E/2) |↓z〉2. (S13)

A straightforward calculation gives

|〈Ψa(1, 2)|Ŝ(E, t)〉1 |Ŝ(E′, t)〉2|2 =
1

4
[1− cos θE cos θE′ − sin θE sin θE′ cos(φE − φE′)] , (S14)

or, in terms of the unit vectors and restoring the time dependence,

K(E,E′, t) ≡ Ka
2

4

[

1− Ŝ(E, t) · Ŝ(E′, t)
]

. (S15)

As expected, when the collective spin vectors for energy groups E and E′ vectors are parallel, the corresponding unit
vectors Ŝ(E, t) and Ŝ(E′, t) are parallel and there is no loss. In contrast, maximum loss occurs when the unit vectors

are anti-parallel, K(E,E′, t) → Ka
2 /2 . The unit vectors Ŝ(E, t) are found from Eq. S1, with S(E, t) = NE(t)/2,

where the atom number NE(t) is self-consistently determined from Eqs. S11 and S15, as we now show.
We begin by assuming that the spin-energy correlated 3D densities nE(r, t) can be factored as

nE(r, t) = nE(x, ρ, t) = NE(t)R(ρ, t) |φE(x)|2, (S16)

where x is the axial coordinate and ρ the transverse coordinate. As observed in the experiments and shown in Fig. S2
below, for nonzero Ka

2 , the increase in the loss rate with increasing 3D density reshapes the spatial profile. For this
reason, we assume that both the atom number NE(t) in each energy group and the transverse probability density
R(ρ, t) are functions of time. Further, we assume that R(ρ, t) is independent of E, and take

∫

dρ 2πρR(ρ, t) = 1 for
all t. Using Eq. S16, the spatial integral of the total density, n(r, t) =

∑

E nE(r, t) yields total atom number,

N(t) =
∑

E

NE(t). (S17)

Using Eq. S16 in Eq. S11 and integrating over x, we obtain

d

dt
[NE(t)R(ρ, t)] = −

∑

E′

η(E,E′, t) [NE′(t)R(ρ, t)] [NE(t)R(ρ, t)] , (S18)

where

η(E,E′, t) ≡ K(E,E′, t)

∫

dx |φE(x)|2|φE′(x)|2. (S19)

Integrating Eq. S18 over ρ and using Eq. S21, we find

ṄE(t)

∫

dρ 2πρR(ρ, t) +NE(t)
d

dt

∫

dρ 2πρR(ρ, t) = −n̄⊥(t)
∑

E′

η(E,E′, t)NE′(t)NE(t), (S20)

where n̄⊥(t) is the time-dependent average transverse probability density

n̄⊥(t) ≡
∫

dρ 2πρR2(ρ, t). (S21)

Since
∫

dρ 2πρR(ρ, t) = 1, Eq. S20 immediately yields

ṄE(t) = −n̄⊥(t)
∑

E′

η(E,E′, t)NE′(t)NE(t). (S22)
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Next, we sum Eq. S18 over E and use Eq. S17 to obtain

Ṅ(t)R(ρ, t) +N(t) Ṙ(ρ, t) = −R2(ρ, t)
∑

E

∑

E′

η(E,E′, t)NE′(t)NE(t) = Ṅ(t)
R2(ρ, t)

n̄⊥(t)
. (S23)

Here, the right-hand side has been simplified by using the sum of Eq. S22 over E and Eq. S17,

Ṅ(t) = −n̄⊥(t)
∑

E

∑

E′

η(E,E′, t)NE′(t)NE(t). (S24)

Hence, the radial probability distribution obeys

Ṙ(ρ, t) =
Ṅ(t)

N(t)

[R2(ρ, t)

n̄⊥(t)
−R(ρ, t)

]

. (S25)

Using Eq. S21, one readily verifies that the integral of Eq. S25 over ρ vanishes, so that the total transverse probability
remains normalized to 1 for all t. Further, the right hand side is ∝ Ṅ(t) [R(ρ, t) − n̄⊥(t)], where Ṅ(t) < 0 when
Ka

2 6= 0. Hence, near the center of the cloud, where R(ρ, t) > n̄⊥(t), the probability density decreases in time, while
in the wings, where R(ρ, t) < n̄⊥(t), the probability density increases in time. The net effect of the loss is to increase
the effective width of R(ρ, t), while preserving the normalization.

b. Optically-Induced Loss in a Mixture

For the loss model described above, we require the loss constant Ka
2 associated with a pair of atoms in the antisym-

metric two-atom spin state |Ψa(1, 2)〉. To obtain Ka
2 , we measure the loss in a 50-50 incoherent mixture of | ↑z〉 and

| ↓z〉, for which the 50-50 ratio is maintained throughout the evolution, and extract the fraction of the loss constant
associated with the state |Ψa(1, 2)〉. Considering the mixture to be comprised of atoms in the | ↑z〉 state and the | ↓z〉
state, we define the 3D densities associated with each state n↑(r, t) and n↓(r, t) and apply Eq. S10 to obtain

ṅ↑(r, t) = ṅ↓(r, t) = −K↑↓
2 n↑(r, t)n↓(r, t). (S26)

We assume that the incoming state is a product state | ↑z〉1| ↓z〉2. Then, the probability to be in the antisymmetric
two-atom spin state is |〈Ψa(1, 2)| ↑z〉1| ↓z〉2|2 = 1/2,

K↑↓
2 = Ka

2 × 1/2. (S27)

With n↑(r, t) + n↓(r, t) = n(r, t) the total density and n↑(r, t) = n↓(r, t) = n(r, t)/2 for a 50-50 mixture, Eq. S26
yields

ṅ(r, t) = −1

4
Ka

2 n
2(r, t). (S28)

Eq. S28 may be solved analytically:

n(r, t) =
n(r, 0)

1 + 1
4 K

a
2n(r, 0) t

. (S29)

Integrating Eq. S29 over all three spatial dimensions, the total atom number N(t) is predicted as a function of time,
given n(r, 0):

N(t) =

∫

dx

∫

2πρ dρ
n(r, 0)

1 + 1
4 K

a
2n(r, 0) t

. (S30)

To measure Ka
2 , then, we fit measurements of the atom number N(t) in the 50-50 mixture to Eq. S30. This is further

described in § A4b, where we show that Ka
2 is independent of the relative speed near the zero crossing of the broad

Feshbach resonance in 6Li, see Eq. S39. However, as will also be discussed in § A4b, we must halve the measured
Ka

2 before inserting it into Eq. S14 in order to reach agreement with the loss measurements in the energy lattice.
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3. Evolution of the Energy-Space Spin Lattice with Loss

To model the energy-space lattice with optically-induced loss, we employ Eqs. S22 and S25, together with Eq. S1.
These equations determine the evolution of the density for each energy group, the transverse profile and therefore the
total density and the total number in the presence of loss, which are compared with the measurements.
Including the E-dependent loss, the magnitudes of the collective spin vectors in Eq. S1, S(E, t) = NE(t)/2, decrease

with time. The evolution of S(E, t) includes both a rotation of the unit vectors and a time-dependent magnitude,

Ṡ(E, t) = S(E, t)
˙̂
S(E, t) + Ṡ(E, t) Ŝ(E, t). (S31)

The unit vectors Ŝ(E, t) evolve according to Eq. S1, while the decay of the magnitudes S(E, t) is determined by
Eq. S22 with NE(t) = 2S(E, t) and Eqs. S19 and S15,

Ṡ(E, t) = −
∑

E′

κ(E,E′, t) [S(E, t)S(E′, t)− S(E, t) · S(E′, t)] . (S32)

Here, the effective loss rate κ(E,E′, t) is given by

κ(E,E′, t) ≡ Ka
2

2
n̄⊥(t)

∫

dx |φE(x)|2|φE′(x)|2. (S33)

We discuss the measurement of Ka
2 for mixtures in § A4b.

We rewrite the evolution of the transverse probability density, Eq. S25, as

Ṙ(ρ, t) =
Ṡ(t)

S(t)

[R2(ρ, t)

n̄⊥(t)
−R(ρ, t)

]

. (S34)

Here we have defined S(t) ≡ ∑

E S(E, t) = N(t)/2. Eq. S21 shows that the site-to-site couplings of Eq. S4 become
time dependent for Ka

2 6= 0, g(E,E′) → g(E,E′, t), while the decay of S(E, t) reduces the rotation rate of the unit
vectors by reducing the magnitude of the mean field.
Including loss, the evolution of the energy-dependent collective spin vectors is determined by Eq. S31, using Eq. S1

to describe the rotation of the unit vectors and Eqs. S32, S34, and S21 to determine the decay of the magnitudes.
The collective spin vectors are initialized according to Eqs. S2 and S3. The initial condition for the transverse
probability density, R(ρ, 0), is given by Eq. S7 for a Thomas-Fermi distribution and by Eq. S8 for a Maxwell-
Boltzmann distribution.

4. Experimental Methods

a. Measurement of Loss in the Energy-Space Spin Lattice

To test the loss model, we measure the time-dependent decay of the total atom number N(t) in a cigar-shaped
optical trap comprising a single focused CO2 laser beam. The measurements are obtained for scattering lengths
aS = 0 a0 to 24 a0 at nominally the same density. Starting from a ẑ-polarized sample, we employ a 0.5 ms π/2
RF pulse to prepare an initially x̂

′-polarized sample as described in § A1. Immediately following the RF pulse, the
trapped gas is illuminated by a uniform optical field locked on-resonance with the singlet molecular g → e transition
(see § A2) and evolves for a variable amount of time t before absorption imaging of the atom densities for the | ↑z〉
and | ↓z〉 states, which are spectrally resolved.
In the experiments, we begin by evaporatively cooling a 50-50 mixture of atoms in the two lowest hyperfine states

| ↑〉z ≡ |1〉 and | ↓〉z ≡ |2〉 at the broad Feshbach resonance near 832.2 G [31]. Following forced evaporation by
lowering the trap depth, the trap depth is increased so that the radial trap frequency is ωρ = 2π× 668.0 Hz. To avoid
the formation of Feshbach molecules while tuning to the weakly interacting region near 527 G, the magnetic field is
swept up to 1200 G and resonant light is applied to expel one spin state, leaving a ẑ-polarized spin sample. The
magnetic field is then swept to produce scattering length aS(B) of interest near 527 G. The calibration of Ref. [14]
determines aS(B), where magnetic field is measured by RF spectroscopy.
After this preparation, the total number of atoms N(0) ≃ 6.0 × 104. A fit of the measured axial profile with

a zero-temperature Thomas-Fermi distribution yields an axial width σx
TF ≃ 331µm, Fig. S1. The radial width

σρ
TF is computed from the ratio of trap transverse and axial frequencies, ωρσ

ρ
TF = ωxσ

x
TF . As noted in § A1, the

curvature in the applied magnetic field results in a spin-dependent axial trapping force in the axial direction, where
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FIG. S1. Thomas-Fermi fits to the sum of the initial axial profiles of the | ↑z〉 and | ↓z〉 states, immediately after the π/2 pulse,
as used for measurement of N(t) at 0 Bohr in the coherently-prepared sample. The fit of a finite-temperature 1D Thomas-Fermi
profile yields the reduced temperature T/TF = 0.2. The fit is nearly identical to that of a zero-temperature 1D Thomas Fermi
profile, justifying our use to a zero-temperature distribution in the model.

ωmag = 2π × 16.3 Hz. For the combined optical and magnetic trapping potentials near 527 G, the net axial trap
frequency is measured to be ωx = 2π × 25.0 Hz. With ωρ = 2π × 668.0 Hz, we find σρ

TF ≃ 12.0µm.
To determine the temperature, we fit a 1-D finite-temperature Thomas-Fermi distribution to the initial axial profile.

The Fermi temperature TF for our harmonic trap is determined by

EF = kBTF = ~ (6Nω2
ρωx)

1/3. (S35)

Note that the 6 in Eq. S35 reflects the fact that all N atoms initially begin in an identical spin state. For the
initial atom number and trap frequencies given in the last paragraph, we find TF ≃ 0.75µK. Using the calculated

Thomas-Fermi radius σTF =
√

2EF /(mω2
x) ≃ 317.0µm, a fit to a finite-temperature Thomas-Fermi profiles yields

T ≃ 0.20TF . Fig. S1 shows the averaged initial axial profile for a sample that is coherently prepared at 0 Bohr, along
with the corresponding fitted finite-temperature 1D Thomas-Fermi and zero-temperature 1D Thomas-Fermi profiles.
The zero-temperature and finite-temperature Thomas-Fermi profiles are nearly identical, as expected for T ≃ 0.20TF ,
justifying the use of an effective zero-temperature profile with a fitted width in the model.
For every scattering length, Ka

2 is measured from the loss in a 50-50 mixture, as discussed in § A4b. Loss is induced
by an optical beam propagating at an angle of ≃ 49◦ relative to the trap x-axis. The intensity half width at 1/e of the
optical beam is w = 1.1 mm, so that the projection of the full width of the optical beam at 1/e onto the cloud x−axis,
is 2w sin(49◦) ≃ 1.5w = 1.6 mm. This can be compared to the full width of the cloud 2 σx ≃ 0.66 mm. Hence, most
of the atoms are illuminated near the peak intensity, I = P/(πw2). The servo-stabilized beam power is 7.6 mW, so
that I = 2.0 mW/mm2. The Rabi frequency for the singlet electronic transition from the ground 38th vibrational

state |g〉 to the excited 64th vibrational state has been measured [27] to be Ω1/2π = 4.4 MHz

√

I[mW/mm
2
]. The

Rabi frequency for the loss inducing beam is then Ω1 = 0.53×γe, where γe = 2π×11.8 MHz is the rate of spontaneous
emission from the excited molecular state [8, 11]. The resonance frequency for each magnetic field value is found by
finding the peak loss in the incoherent mixture as a function of frequency, which is prepared as described in § A4b.
Since the optical field is locked on resonance, there is no optical shift in the scattering length.
The importance of including the time dependence of R(ρ, t) in the model can be seen in the difference between the

predictions for n̄⊥ = n̄⊥(0) and n̄⊥ = n̄⊥(t) at aS = 0 a0, as shown in Fig. S2. If n̄⊥ is taken to be constant, the
model disagrees with the data for longer times. Accounting for the decrease in n̄⊥(t) reduces the energy-dependent
loss rate κ(E,E′, t) of Eq. S33, causing the tail of the loss curve to rise to match the data.

b. Measurement of the Two-Body Loss Constant Ka
2 in a Mixture

To measure the two-body loss constant Ka
2 , we measure the decay of the total number of atoms in an incoherent

mixture of the | ↑z〉 and | ↓z〉 states. We employ a 50-50 mixture for which Eq. S28 is valid, with Eq. S30 allowing
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FIG. S2. Predictions of loss in a coherently-prepared sample, with (blue) and without (red) the time dependence of the average
transverse probability density n̄⊥. The time-dependence of n̄⊥(t) arises from loss. Measurements for 0 Bohr in the coherently-
prepared cloud are in agreement with the model when n̄⊥ = n̄⊥(t) (blue). When n̄⊥ is taken to be constant (red), the tail of
the loss curve does not agree with the measurements. For the 0 Bohr data, the inputs into the loss model are Ka

2 = 58.0µm3/s,
the initial atom number N = 6.3× 104 and the width σTF = 331.0µm.

FIG. S3. Measurements and predictions (Eq. S38) for the evolution of the axial profiles in a mixture. The magnetic field is
tuned so that aS = 15 a0. The two-body loss rate constant Ka

2 = 2 × 69.0µm3/s is determined from the fit of N(t), Eq. S30
to the data.

Ka
2 to be determined from measurements of N(t). We model n(r, 0) as the Maxwell-Boltzmann distribution, which is

appropriate for the higher temperature samples used in the mixture measurements,

n(r, 0) =
N(0)

πσ2
ρσx

√
π
e−(ρ/σρ)

2−(x/σx)
2

, (S36)

with the axial size σx determined from the measured spatial profiles, the radial size σρ is found from the ratio of the
trap frequencies. Using the initial density n(r, 0) in Eq. S30, the measured decay of the total number N(t) determines
Ka

2 , which is used as a fit parameter. Here we expect that Ka
2 is independent of temperature, as discussed below (see

Eq. S39).
To prepare the sample, a 50-50 incoherent mixture of atoms in spin states | ↑z〉 and | ↓z〉 undergoes forced evaporation

at 300 G. Then the magnetic field is then swept upward to the magnetic field of interest in the weakly-interacting
regime. This method avoids the formation of Feshbach molecules and subsequent loss. However, the efficiency of
evaporation performed at 300 G, where the elastic scattering cross section is small, is reduced compared to that of
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TABLE I. Two-body loss coefficients.

aS (a0) Ka
2 (µm3/s) σKa

2
(µm3/s)

0 115 5

5 120 11.6

10 110 6.8

15 138 10

24 136 10

the unitary gas at 832.2 G. For this reason, the samples used to measure Ka
2 are at a higher temperature than for the

coherently prepared samples. We assume that Ka
2 is temperature independent, as Ka

2 is expected to exhibit a weak
momentum dependence in the weakly interacting regime. At the magnetic field of interest, the loss-inducing optical
field is applied, and the total number of atoms is measured as a function of time. The optical resonance frequency is
determined by finding the peak loss point at each magnetic field of interest. Using the measured initial axial width
and the initial radial width deduced from the ratio of the trap frequencies, the initial density profile is determined and
Eq. S28 is used to find Ka

2 . This procedure is repeated for each scattering length aS employed in the experiments.
We determine the temperature from a fit of a Maxwell-Boltzmann distribution to the spatial profiles, kBT =

mω2
xσ

2
x/2, where σx is the fitted Gaussian width. For 15 a0, this procedure gives T = 0.56TF , where TF = 0.79µK

is determined by

TF =
~

kB
(3Nω2

ρωx)
1/3. (S37)

Note that we have used a factor 3 = 6/2 in place of the factor 6 in Eq. S35, as a 50-50 mixture has half of the total
number of atoms N in each spin state.
Measurements of N(t) in 50-50 mixtures are shown in Fig. S4 for all of the scattering lengths of interest, using

Eq. S30 to determine Ka
2 . The values extracted from the fit are displayed in Table I, where the uncertainty σKa

2
is

determined from the square root of the covariance matrix of the fit (note that this neglects the uncertainty in the
initial density). The measured value of Ka

2 changes by ≃ 10% as the scattering length is varied, most likely due
to changes in the optical detuning and alignment from run-to-run. Note that the axial widths are smaller for the
measurements at 0 and 10 a0 than for 5, 15, and 24 a0. The difference arises from the difference between the trap
depths used for 0 and 10 a0, where the trap frequencies were ωρ = 2π × 1075 Hz and ωx = 2π × 34 Hz. The 5, 15,
and 24 a0 data employed the smaller trap frequencies given in § A4 a. The faster timescales of loss for the 0 and 10
a0 measurements reflect the higher density of the sample in the deeper trap.
Eq. S29 also predicts the time-dependent axial profiles n1D(x, t), which can be compared to measurements. For the

Maxwell-Boltzmann distribution of Eq. S36,

n1D(x, t) =

∫

dρ 2πρn(r, t) =
4πσ2

ρ

Ka
2 t

ln

[

1 +
Ka

2 t

4πσ2
ρ

N(0)

σx
√
π
e−(x/σx)

2

]

. (S38)

In the limit Ka
2 t → 0, n1D(x, t) approaches a 1D gaussian distribution normalized to the initial total atom number

N(0), as it should. Using the Ka
2 determined from the fit to N(t), we find that the predicted axial profiles are in

quantitative agreement with the measured profiles, as shown for aS = 15 a0 in Fig. S3.
If the measurements in Table I are used in the energy-dependent loss rate coefficientK(E,E′, t) of Eq. S14, however,

the loss model does not agree with the measurements in the energy lattice. To obtain quantitative agreement between
predictions and data for coherently prepared samples (as is shown in Fig. 2 and 3 in the main paper), we must divide
the values of Ka

2 measured in the mixture by two. It is possible that we have incorrectly extracted Ka
2 by using

Eq. S27 or Eq. S28.
To gather evidence as to whether or not the factor of 1/2 is correct, we can compare the values of Ka

2 used to fit
the coherently prepared sample in Fig. 3 of the main text to predictions for the optically-induced loss rate constant
in 6Li. We take Kcalc

2 = −2× 8π~
m a′′, where a′′ < 0 is determined from the complex light-induced phase shift φ using

tanφ = −ik a′′ at the optical resonance. Here, ~k is the relative momentum, and we assume |k a′′| << 1 as is the
case for our experiments. Note that a factor of two is included to be consistent with the antisymmetrized hyperfine
state of Eq. S9 that defines Ka

2 , which in turn requires a symmetric spatial state with a total cross section [32]
σtot = 8π/k Im{f(0)} and an elastic cross section σel = 8π |f |2, with f the s-wave scattering amplitude. The
corresponding inelastic cross section σinel = σtot − σel = 2 × π

k2 (1 − |e2iφ|2) is twice that of Ref. [11], where the
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FIG. S4. Measurements and predictions of loss in the 50-50 mixture at each scattering length. Different trap depths were used
for 0 and 10 Bohr (ωρ = 2π × 1075 Hz, ωx = 2π × 34 Hz) than for 5, 15, and 24 Bohr (ωρ = 2π × 675 Hz, ωx = 2π × 23 Hz).
(a) Loss at 0 Bohr, with an initial gaussian width 213 µm; (b) loss at 5 Bohr, with an initial gaussian width 241 µm; (c) loss
at 10 Bohr, with an initial gaussian width 211 µm; (d) loss at 15 Bohr, with an initial gaussian width 243 µm; (e) loss at 24
Bohr, with an initial gaussian width 260 µm.

scattering atoms were treated as distinguishable and a factor 4π was used in the cross sections. The supplementary
material of Ref. [11] determines a′′ using x = k|abg| and ∆̃0 = (B−B∞)/∆B = −1 in Eq. S5, which gives L(∆̃0, x) ≃ 1
in Eq. S8 of Ref. [11], yielding

Kcalc
2 = 2× 8π~ |abg|

m

~ γe
4µB∆B

Ω̃2
1 , (S39)

where Ω̃1 ≡ Ω1/γe. With the parameters of Ref. [33], abg = −1405 a0, ∆B = 300 G, and µB/~ = 2π × 1.4 MHz/G,

γe = 2π × 11.8 MHz we find Kcalc
2 = 277.4µm3/s Ω̃2

1, which gives Kcalc
2 = 69.4µm3/s at Ω̃1 = 0.5 as used in the

measurements. This result is in good agreement with the value Ka
2 = 69µm3/s that fits the decay of the coherently

prepared sample at 15 a0, but is, however, half the value Ka
2 = 138µm3/s extracted from measurements in the 50-50

mixture using Eq. S28 as noted above. At present, we are unable to resolve this discrepancy, which may arise from
applying Eq. S28 to a very weakly interacting mixture or from an incorrect choice of the incoming two-atom state in
deriving Eq. S28.


