
ar
X

iv
:2

40
1.

15
94

6v
3

 [
cs

.I
T

]
 2

8
A

pr
 2

02
4

Approaching Maximum Likelihood Decoding

Performance via Reshuffling ORBGRAND

Li Wan and Wenyi Zhang

University of Science and Technology of China

Email: wenyizha@ustc.edu.cn

Abstract—Guessing random additive noise decoding (GRAND)
is a recently proposed decoding paradigm particularly suitable
for codes with short length and high rate. Among its variants,
ordered reliability bits GRAND (ORBGRAND) exploits soft
information in a simple and effective fashion to schedule its
queries, thereby allowing efficient hardware implementation.
Compared with maximum likelihood (ML) decoding, however,
ORBGRAND still exhibits noticeable performance loss in terms
of block error rate (BLER). In order to improve the performance
of ORBGRAND while still retaining its amenability to hardware
implementation, a new variant of ORBGRAND termed RS-
ORBGRAND is proposed, whose basic idea is to reshuffle the
queries of ORBGRAND so that the expected number of queries
is minimized. Numerical simulations show that RS-ORBGRAND
leads to noticeable gains compared with ORBGRAND and its
existing variants, and is only 0.1dB away from ML decoding, for
BLER as low as 10

−6.

Index Terms—Error pattern, GRAND, maximum likelihood
decoding, ORBGRAND, querying, search problem

I. INTRODUCTION

In recent years, a variety of decoding methods gener-

ally referred to as guessing random additive noise decoding

(GRAND) have been proposed [1] [2] [3] [4]. These decoding

methods are universal in the sense that they are applicable

to all block codes, building upon the key idea of conduct-

ing a sequence of queries to test whether a queried error

pattern can convert a noise-corrupted channel output vector

into a codeword. They are particularly suitable for codes

with relatively short length and high rate [1] [5], meeting

the requirements of ultra-reliable low-latency communication

(URLLC). Among the variants of GRAND, soft GRAND

(SGRAND) [4], which schedules queries based on the exact

values of log likelihood ratios (LLRs), is in fact equivalent to

maximum likelihood (ML) decoding [6] [7, Ch. 10] (assuming

that the queries exhaust all possible error patterns, in the worst

case). It, however, is not amenable to hardware implementation

because its queries are generated based on the exact values

of LLRs in a sequential fashion. On the other hand, ordered

reliability bits GRAND (ORBGRAND) [3] only needs the

relationship of ranking among the magnitudes of LLRs to

generate queries. Once the ranking is obtained, the queries can

then be implemented in a parallel fashion, thereby facilitating

efficient hardware implementation [3] [8] [9] [10] [11].

This work was supported in part by the National Natural Science Founda-
tion of China under Grant 62231022.

From an information-theoretic perspective, ORBGRAND

has been shown to be almost capacity-achieving [6]. For finite

code lengths, however, ORBGRAND still exhibits a noticeable

performance loss compared with ML decoding in terms of

block error rate (BLER), especially as signal-to-noise ratio

(SNR) increases. Several works have focused on improving

ORBGRAND while still retaining its amenability to hardware

implementation (i.e., using the ranking among magnitudes of

LLRs only), by scheduling queries based on various heuristics

[3] [6] [11], typically related to the cumulative distribution

function (CDF) of the magnitude of LLR. Other enhancement

techniques include adopting list decoding [12] and combining

ad hoc queries based on empirical evidences [13].

In this work, we propose an improvement of ORBGRAND,

termed RS-ORBGRAND, motivated by the insight that, if,

ideally, one could reshuffle the queries of ORBGRAND so that

they are identical to those of SGRAND, then the performance

of the thus reshuffled ORBGRAND would be exactly that of

SGRAND and hence be optimal. Such an idealistic situation,

of course, is impossible, but it provides a guideline for us, and

drives us to study the difference between an arbitrary querying

schedule and the querying schedule of SGRAND.

In order to conduct a tractable analysis, we turn to a

search problem, wherein a randomly selected codeword is

corrupted by additive white Gaussian noise (AWGN) and is

observed by a searcher, and the searcher conducts a sequence

of queries to recover this particular codeword. Such a problem

is an idealized decoding problem, without needing to consider

the risk of mistakenly deciding an incorrect codeword. For

this search problem, we analyze the expected number of

queries, showing that the querying schedule that minimizes

the expected number of queries obeys a monotonicity property.

Consequently, we propose to reshuffle the querying schedule

generated by ORBGRAND so as to satisfy this monotonicity

property. Since the reshuffling is offline, this method follows

the same decoding process as ORBGRAND and has low com-

plexity. When applying the thus obtained RS-ORBGRAND to

decoding, numerical simulations using BCH and polar codes

show that it leads to a gain of no less than 0.3dB compared

with ORBGRAND and its existing variants, and is only 0.1dB

away from ML decoding, for BLER as low as 10−6.

The remaining part of this paper is organized as follows.

Section II introduces the channel model and GRAND. Sec-

tion III analyzes the search problem motivated by GRAND,

and proposes RS-ORBGRAND. Section IV applies RS-

http://arxiv.org/abs/2401.15946v3

ORBGRAND to decoding, and verifies its effectiveness via

numerical simulations. Section V concludes this paper. We

use uppercase letters (e.g., X) to represent random variables

and their corresponding lowercase letters (e.g., x) to represent

their realizations.

II. PRELIMINARIES

A. Channel Model

We consider general binary block coding wherein infor-

mation bits U ∈ F
k
2 generate a codeword W ∈ C ⊆ F

n
2 .

The code rate is thus R = k
n

. For simplicity, in this work

we consider BPSK modulation over an AWGN channel,

while the basic idea should be applicable, with appropriate

generalizations, to general memoryless channels. We assume

that each element of W , Wi, i = 1, . . . , n, takes 0 and 1
with equal probability, a condition commonly satisfied for

linear block codes. With BPSK, the transmitted vector X is

such that Xi = 1 if Wi = 0 and Xi = −1 if Wi = 1,

i = 1, . . . , n; and the resulting AWGN channel output vector

satisfies Y |X ∼ N (X, σ2
In×n). Given Y , the LLRs are

Li = log
P (Yi | Wi = 0)

P (Yi | Wi = 1)
=

2

σ2
Yi, i = 1, . . . , n,

and subsequently we use ℓi to represent its realization.

Introduce the hard decision function θ(y) as θ(y) = 0
if y ≥ 0 and 1 otherwise. For Y , denote the vector of

[θ(Y1), . . . , θ(Yn)] ∈ F
n
2 by θ(Y) for simplicity. As an

exercise of Bayes’ rule, we have

if yi ≥ 0, P (Wi = 1 | Yi = yi) =
1

1 + exp(ℓi)
, and

if yi < 0, P (Wi = 0 | Yi = yi) =
1

1 + exp(−ℓi)
.

So the conditional probability that a transmitted bit is flipped

by the hard decision of the channel output is given by

P (θ(Yi) 6= Wi | Yi = yi) =
1

1 + exp(|ℓi|)
. (1)

B. GRAND

In a nutshell, the idea of GRAND is to find some E ∈ F
n
2 ,

called an error pattern, so that by flipping the hard decisions

θ(Y) according to E, the result θ(Y)⊕E is a codeword in C.

In order to find such an error pattern that results in a

codeword, a sequence of candidate error patterns are se-

quentially queried, until a codeword is reached, or until all

candidate error patterns are exhausted. For ease of expo-

sition, here we let the set of candidate error patterns be

E = {e(1), e(2), . . . , e(2n)} = F
n
2 , in which each e(t) is a

different vector in F
n
2 . Hence an error pattern E can surely be

found, sooner or later. At the end of this subsection we will

discuss how, in practice, we truncate the querying process due

to complexity constraints.

The driving engine of a GRAND scheme is an ordering

policy π, which is a permutation of {1, 2, . . . , 2n}, depending

upon y. A GRAND scheme thus sequentially checks whether

the criterion θ(y)⊕e(π(t)) ∈ C is satisfied, for t from 1 to 2n.

It stops as soon as it finds the first t satisfying the criterion

and declares the found codeword as the decoding result.

We generally determine the ordering policy π using a

reliability vector γ(y) = [γ1(y), . . . , γn(y)], in such a way

that, if any two candidate error patterns, say e(t) and e(t′),
satisfy

∑

i=1,...,n;ei(t)=1

γi(y) ≤
∑

i=1,...,n;ei(t′)=1

γi(y), (2)

then π(t) ≤ π(t′). That is, candidate error patterns are sorted

in ascending order in terms of their accumulated reliability

values.

The description using the reliability metric γ in the previous

paragraph has led to a unified treatment of GRAND schemes

[6]. Different choices of γ correspond to different GRAND

schemes; for example, the original GRAND [1] has γi(y) = 1,

SGRAND [4] (which is equivalent to ML decoding) has

γi(y) = |ℓi| (see also [7, Ch. 10]), ORBGRAND [3] has

γi(y) = ri where ri is the rank of |ℓi| among {|ℓ1|, . . . , |ℓn|},

in ascending order, and so on.

We say that an ordering policy π is of ORB-type, if it only

depends upon r = [r1, . . . , rn], instead of the exact values of

y. ORB-type ordering policies inherit the key advantage of

ORBGRAND, namely its amenability to hardware implemen-

tation: once the relationship of ranking among the magnitudes

of LLRs is obtained and the channel output symbols are

rearranged accordingly, the queries can then be sequentially

conducted using a pre-generated sequence, which can be

efficiently implemented in a recursive fashion [3] [11]. Our

aim is to design a new ORB-type ordering policy so as to

approach the performance of SGRAND, which, unfortunately,

is not of ORB-type.

III. SEARCH PROBLEM AND RESHUFFLED QUERYING

In order to conduct a tractable analysis of the querying

process in GRAND schemes, we turn to a search problem.

Compared with decoding, the key simplification is that the

search problem ignores the case where a querying process

stops with a codeword different from the actually transmitted

one. Our analysis for such an idealized situation sheds key

insight into how an ordering policy should be designed.

A. Search Problem Formulation

We formulate the search problem as follows:

• For the channel model described in Section II-A, let

a codeword W be randomly chosen, so as to produce

the BPSK transmitted vector X and the noise-corrupted

channel output vector Y , which is observed by the

searcher.

• The searcher adopts an ordering policy π, which is a

permutation of {1, 2, . . . , 2n}, depending upon Y .

• The searcher sequentially conducts queries by computing

θ(Y)⊕e(π(t)), for t from 1 to 2n. If for some t, θ(Y)⊕
e(π(t)) = W is satisfied, a genie immediately informs the

searcher that the chosen codeword W is found; otherwise,

the searcher turns to the next t.

Here lies the key difference between the search prob-

lem and GRAND: the searcher does not care about

whether any other codeword is encountered; — instead,

the searcher only cares about encountering W during

querying.

• For this idealized search problem, it is clear that there

exists exactly one value of t such that θ(Y)⊕ e(π(t)) =
W is satisfied, and the searcher stops once this t is found.

B. Analysis of Search Problem

For the search problem, we are interested in the expected

number of queries before the searcher stops. We emphasize

that the expectation is with respect to the joint probability

distribution of (W,Y), and hence it is an ensemble average

result, given as follows.

Theorem 1. For the search problem in Section III-A, the

expected number of queries before the searcher stops is given

by

Q =
2n
∑

t=1

tEY [St], (3)

where conditioned upon Y = y, St is realized as

st = PW |Y

(

θ(Y)⊕ e(π(t))|Y = y
)

, (4)

in which the subscript W |Y emphasizes that st is the posterior

probability that the codeword is θ(Y) ⊕ e(π(t)) when the

searcher observes Y .

Proof: According to the search problem described in

Section III-A, the expected number of queries Q can be

calculated as

∑

w∈C

P (W = w)

∫

Rn

pY |W (y|w) ·
2
n

∑

t=1

t · 1
(

θ(y)⊕ w = e(π(t))
)

dy

=

∫

Rn

p(Y = y)
∑

w∈C

PW |Y (w|y)
2
n

∑

t=1

t · 1
(

θ(y) ⊕w = e(π(t))
)

dy

=

∫

Rn

p(Y = y)
2
n

∑

t=1

t · PW |Y

(

θ(y)⊕ e(π(t))|y
)

dy

=
2
n

∑

t=1

t ·

∫

Rn

p(Y = y)PW |Y

(

θ(y)⊕ e(π(t))|y
)

dy

=
2
n

∑

t=1

tEY [St],

where the second equality is due to that for given y and

e(π(t)), there is exactly one w, namely θ(y) ⊕ e(π(t)), for

which the indicator function is one.

According to Theorem 1, the key to assessing a search

problem is St, t = 1, . . . , 2n. When the elements of W ,

[W1, . . . ,Wn], are independent and identically distributed

(i.i.d.), St can be evaluated using the following result.

Lemma 1. When [W1, . . . ,Wn] are i.i.d., given y, the poste-

rior probability st in (4) is given by

st =
∏

i:ei(π(t))=1

1

1 + exp(|ℓi|)

∏

i:ei(π(t))=0

exp(|ℓi|)

1 + exp(|ℓi|)
. (5)

Proof: Due to the i.i.d. property of W and the memoryless

property of the AWGN channel, an exercise of Bayes’ rule

yields

st = PW |Y

(

θ(Y)⊕ e(π(t))|Y = y
)

=

n
∏

i=1

PWi|Yi
(θ(Yi)⊕ ei(π(t))|Yi = yi) . (6)

Inspect the product. For those factors whose subscripts i’s
satisfy ei(π(t)) = 1, θ(Yi)’s are flipped, and according to

(1), we have their product as
∏

i:ei(π(t))=1
1

1+exp(|ℓi|)
; on

the other hand, for those factors whose subscripts i’s satisfy

ei(π(t)) = 0, θ(Yi)’s are not flipped, and according to (1),

we have their product as
∏

i:ei(π(t))=0
exp(|ℓi|)

1+exp(|ℓi|)
. Multiplying

these two parts together leads to (5).

From the expression of Q in (3), we have that ordering

policies minimizing the expected number of queries should

render the sequence of {EY [St]}t=1,...,2n monotonically non-

increasing.

Corollary 1. For the search problem, ordering policies that

minimize Q satisfy EY [S1] ≥ EY [S2] ≥ . . . ≥ EY [S2n].

Proof: This immediately follows from the expression (3).

The expectation sequence {EY [St]}t=1,...,2n being mono-

tone is a condition weaker than the sequence {st}t=1,...,2n

itself being monotone for each y. In fact, this latter condition

corresponds to the ordering policy of SGRAND, as shown by

the following result.

Proposition 1. The ordering policy π that for each y re-

arranges queries so as to render s1 ≥ s2 ≥ . . . ≥ s2n is

identical to the ordering policy of SGRAND generated using

γi(y) = |ℓi| in Section II-B.

Proof: Consider any two candidate error patterns, e(t)
and e(t′), satisfying st ≥ st′ . Applying Lemma 1, we have

∏

i:ei(π(t))=1

1

1 + exp(|ℓi|)

∏

i:ei(π(t))=0

exp(|ℓi|)

1 + exp(|ℓi|)

≥
∏

i:ei(π(t′))=1

1

1 + exp(|ℓi|)

∏

i:ei(π(t′))=0

exp(|ℓi|)

1 + exp(|ℓi|)
.

Noting that the denominators on both sides of the inequality

are in fact identical, i.e.,
∏n

i=1(1+exp(|ℓi|)), we cancel them

and obtain

∏

i:ei(π(t))=0

exp(|ℓi|) ≥
∏

i:ei(π(t′))=0

exp(|ℓi|),

i.e.,
∑

i:ei(π(t))=0

|ℓi| ≥
∑

i:ei(π(t′))=0

|ℓi|,

i.e.,
∑

i:ei(π(t))=1

|ℓi| ≤
∑

i:ei(π(t′))=1

|ℓi|, (7)

which is exactly the condition of π(t) ≤ π(t′) in SGRAND,

according to the description in Section II-B.

C. Reshuffled Querying

Motivated by Proposition 1 and Corollary 1, we desire

an ORB-type ordering policy that approximates the ordering

policy of SGRAND in the sense that, although it is unlikely

to have {st}t=1,...,2n be monotonically non-increasing for

each y, the overall effect, i.e., the ensemble average sequence

{EY [St]}t=1,...,2n is monotonically non-increasing. So we

propose the following simple approach:

• We begin with an existing ORB-type ordering policy,

denoted πbase, for example, the original ORBGRAND [3]

or CDF-ORBGRAND [3] [6], to obtain its corresponding

expectation sequence {EY [St]}t=1,...,2n .

• We then sort {EY [St]}t=1,...,2n so that they are in de-

scending order. Denote the permutation achieving this

goal by π̃.

• We then use the concatenation of πbase and π̃, π = π̃ ◦
πbase, as the ordering policy for decoding.

We call the thus obtained decoder RS-ORBGRAND, where

the prefix “RS” implies that it is obtained by reshuffling the

ordering policy of a base ORBGRAND scheme. Since both

πbase and π̃ are of ORB-type, RS-ORBGRAND is of ORB-

type. In particular, we emphasize that, conditioned upon πbase,

π̃ is in fact a fixed permutation, even independent of the

ranking r, let alone y. For obtaining π̃, only the expectation

sequence {EY [St]}t=1,...,2n is needed, which can be evaluated

offline, without requiring the exact realizations y.

RS-ORBGRAND uses the reshuffling step π̃ to render

the queries to satisfy Corollary 1. For each particular y,

this reshuffling may not always render the queries to satisfy

s1 ≥ s2 ≥ . . . ≥ s2n . So there still exists a gap between

RS-ORBGRAND and SGRAND. The following result sheds

some further insight into this gap.

Proposition 2. For any ordering policy π, the expectation of

its excess number of queries compared with SGRAND is given

by

∆Q = EY





∑

1≤i<j≤2n:Si<Sj

(Sj − Si)



 . (8)

Proof: Denote by Ŝt, t = 1, . . . , 2n, the random vari-

ables characterized by (4) induced by SGRAND. In fact,

{Ŝt}t=1,...,2n is simply a rearrangement of {St}t=1,...,2n sat-

isfying Ŝ1 ≥ . . . ≥ Ŝ2n . Applying the expression of Q in

Theorem 1, we have that the difference between the expected

numbers of queries with the considered π and SGRAND, i.e.,

the expectation of the excess number of queries, is given by

∆Q = EY

[

2n
∑

t=1

t(St − Ŝt)

]

. (9)

To prove the equivalence between (8) and (9), we compare

their coefficients of St. Denote by ρt the position of St in

{Ŝt}t=1,...,2n . In (9), the coefficient of St is t − ρt. On the

other hand, in (8), the coefficient of St can be rewritten as
∑

i:i<t 1(Si < St)−
∑

j:j>t 1(Sj > St).

We now take a closer look at how we rearrange

{St}t=1,...,2n to obtain {Ŝt}t=1,...,2n . Starting with St, since

there are
∑

j:j>t 1(Sj > St) elements with indices larger than

t and values also larger than St, we need to move them to “the

left of” St, and since there are
∑

i:i<t 1(Si < St) elements

with indices smaller than t and values also smaller than St,

we need to move them to “the right of” St. This way, St is

moved to the position ρt as Ŝρt
. Therefore, we have

t+
∑

j:j>t

1(Sj > St)−
∑

i:i<t

1(Si < St) = ρt,

i.e., t− ρt =
∑

i:i<t

1(Si < St)−
∑

j:j>t

1(Sj > St),

meaning that the coefficients of St in (8) and (9) are identical,

for each t = 1, . . . , 2n.

We can rewrite ∆Q in (8) as

∆Q =

2n
∑

i=1

2n
∑

j=i+1

EY [(Sj − Si) · 1(Sj > Si)], (10)

and construct a 2n×2n matrix R with its (j, i)-th element as:

Rj,i =











EY [(Sj − Si) · 1(Sj > Si)] i < j

0 i = j

EY [(Si − Sj) · 1(Si > Sj)] i > j

. (11)

We see that ∆Q is the sum of the lower-triangular elements of

R. The reshuffling step π̃ in RS-ORBGRAND basically keeps

swapping rows and columns of R, so that if for any i < j,

Rj,i > Ri,j , these two elements are interchanged. Using R,

we can visually illustrate the effect of the reshuffling step π̃. In

Figure 1, we display the first 200× 200 rows and columns of

R, before and after applying the reshuffling step π̃ to the base

πbase, for which we choose to use CDF-ORBGRAND. Here

for better visual effect, we plot in gray scale the normalized

values Rj,i/(Rj,i+Ri,j). It can be seen that after reshuffling,

all the lower-triangular elements of R become no greater than

0.5, i.e., all the relatively large lower-triangular elements are

interchanged with their upper-triangular counterparts.

Before Reshuffling

50 100 150 200

50

100

150

200

After Reshuffling

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Fig. 1. Illustration of R before and after applying the reshuffling step.

In practice, since 2n is typically an exceedingly large

value, due to complexity constraints, we cannot afford the

worst case. In implementation, we introduce two additional

parameters, T ≤ T1 no greater than 2n. In RS-ORBGRAND,

TABLE I
AVERAGE NUMBER OF QUERIES FOR BCH(127, 113).

4dB 5dB 6dB 7dB

ORBGRAND [3] 790.8 83.89 7.072 1.479

CDF-ORBGRAND [3] 727.9 67.44 5.476 1.478

3 Line-ORBGRAND [3] 730.0 62.34 4.732 1.445

RS-ORBGRAND (proposed) 715.6 60.63 4.445 1.350

SGRAND [2] 666.5 52.99 3.932 1.328

we apply the reshuffling step to only the first T1 elements of

{EY [St]}t=1,...,2n . When decoding, we truncate the querying

process if none of e(π(t)), t = 1, . . . , T , yields a codeword;

— when truncation occurs, no codeword is found and a

decoding failure is declared. As will be seen in the next

section, choosing a value of T1 sufficiently larger than T
is crucial for achieving a good performance. Noting that the

reshuffling step is conducted offline, we can usually tolerate

to use a sufficiently large value of T1, given the abundant

computing resources available to date.

IV. PERFORMANCE EVALUATION

In this section, we apply RS-ORBGRAND proposed in

the previous section to conduct some numerical studies. We

consider two codes: BCH(127, 113) and polar(128, 114) with

10 cyclic redundancy check (CRC) bits. Unless specified oth-

erwise, we use CDF-ORBGRAND [3] [6] with T1 = 5× 104

to generate the ordering policy, and when decoding, we permit

at most T = 104 queries and terminate the querying process

if no codeword is still not found by then.

Figure 2 compares the BLER for BCH(127, 113) using

several ORB-type decoders as well as SGRAND and ML

decoding lower bound. The ML decoding lower bound is

obtained by first running SGRAND with T = 105, and then

supposing that even if no codeword has been found upon

truncation, the decoding result would still be correct. It can be

seen that only RS-ORBGRAND achieves performance close

to SGRAND as SNR increases. When BLER is 10−6, the

gain of RS-ORBGRAND compared with existing ORB-type

decoders is at least 0.3dB, and the gap from the ML decoding

lower bound is only 0.1dB. In Table I we display the average

number of queries for the decoders studied in Figure 2, and we

can observe that RS-ORBGRAND requires the least querying

cost among ORB-type decoders. We remark that although

SGRAND incurs the least average number of queries (as also

suggested by the analysis in Section III-C), its queries needs

to be generated online based on the exact values of LLRs and

hence its querying complexity is by far the highest.

Figure 3 compares the BLER for CRC-aided polar(128,

114) using different decoders. Here for RS-ORBGRAND, we

further study several different values of T1, from 5 × 104

down to 104. It is clearly shown that using a sufficiently

large set of candidate error patterns is crucial. Again, we note

that T1 candidate error patterns are used offline for obtaining

the reshuffling step, but when decoding, all the decoders can

4 4.5 5 5.5 6 6.5 7

Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
L
E

R

ORBGRAND

CDF-ORB

3-Line ORB

RS-ORB

SGRAND

MLD LowerBound

Fig. 2. BLER for BCH(127, 113).

4 4.5 5 5.5 6 6.5 7

Eb/N0 (dB)

10
-8

10
-6

10
-4

10
-2

10
0

B
L
E

R

ORBGRAND

CDF-ORB

RS-ORB T
1
=1e4

RS-ORB T
1
=2e4

RS-ORB T
1
=3e4

RS-ORB T
1
=5e4

SGRAND

6.7 6.8 6.9 7

10
-7

10
-6

Fig. 3. BLER for CRC-aided Polar(128, 114).

conduct at most T = 104 queries. By using a large value of T1,

we can identify more relatively large EY [St]’s and reshuffle

them, so as to have them queried earlier in RS-ORBGRAND.

V. CONCLUSION

RS-ORBGRAND, as an improvement of ORBGRAND, is

proposed and studied. Its basic idea is to reshuffle queries with

the goal of approximating SGRAND. This improved scheme

still inherits the key advantage of ORBGRAND, namely its

dependency upon the ranking of the magnitudes of LLRs only.

Numerical simulations show that RS-ORBGRAND achieves

noticeable gain compared with existing ORB-type decoders,

and is very close to ML decoder even in the regime of low

BLER.

REFERENCES

[1] K. R. Duffy, J. Li, and M. Médard, “Capacity-achieving guessing random
additive noise decoding,” IEEE Transactions on Information Theory,
vol. 65, no. 7, pp. 4023–4040, 2019.

[2] K. R. Duffy, M. Médard, and W. An, “Guessing random additive
noise decoding with symbol reliability information (SRGRAND),” IEEE
Transactions on Communications, vol. 70, no. 1, pp. 3–18, 2021.

[3] K. R. Duffy, W. An, and M. Médard, “Ordered reliability bits guessing
random additive noise decoding,” IEEE Transactions on Signal Process-

ing, vol. 70, pp. 4528–4542, 2022.
[4] A. Solomon, K. R. Duffy, and M. Médard, “Soft maximum likelihood

decoding using GRAND,” in IEEE International Conference on Com-

munications (ICC), 2020, pp. 1–6.
[5] C. Yue, V. Miloslavskaya, M. Shirvanimoghaddam, B. Vucetic, and

Y. Li, “Efficient decoders for short block length codes in 6G URLLC,”
IEEE Communications Magazine, vol. 61, no. 4, pp. 84–90, 2023.

[6] M. Liu, Y. Wei, Z. Chen, and W. Zhang, “ORBGRAND is almost
capacity-achieving,” IEEE Transactions on Information Theory, vol. 69,
no. 5, pp. 2830–2840, 2022.

[7] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ, USA: Prentice Hall, 2004.

[8] K. Galligan, M. Médard, and K. R. Duffy, “Block turbo decoding with
ORBGRAND,” in 57th Annual Conference on Information Sciences and

Systems (CISS), 2023, pp. 1–6.
[9] W. An, M. Médard, and K. R. Duffy, “Soft decoding without soft

demapping with ORBGRAND,” in 2023 IEEE International Symposium

on Information Theory (ISIT). IEEE, 2023, pp. 1080–1084.
[10] S. M. Abbas, T. Tonnellier, F. Ercan, M. Jalaleddine, and W. J. Gross,

“High-throughput and energy-efficient VLSI architecture for ordered
reliability bits GRAND,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 30, no. 6, pp. 681–693, 2022.
[11] C. Condo, V. Bioglio, and I. Land, “High-performance low-complexity

error pattern generation for ORBGRAND decoding,” in IEEE Globecom

Workshops (GC Wkshps), 2021, pp. 1–6.
[12] S. M. Abbas, M. Jalaleddine, and W. J. Gross, “List-GRAND: A practi-

cal way to achieve maximum likelihood decoding,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 1, pp. 43–
54, 2022.

[13] C. Condo, “A fixed latency ORBGRAND decoder architecture with
LUT-aided error-pattern scheduling,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 69, no. 5, pp. 2203–2211, 2022.

	Introduction
	Preliminaries
	Channel Model
	GRAND

	Search Problem and Reshuffled Querying
	Search Problem Formulation
	Analysis of Search Problem
	Reshuffled Querying

	Performance Evaluation
	Conclusion
	References

