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Abstract

We consider channels with synchronization errors modeled as insertions and deletions. A classical result for such
channels is their information stability, hence the existence of the Shannon capacity, when the synchronization errors
are memoryless. In this paper, we extend this result to the case where the insertions and deletions have memory.
Specifically, we assume that the synchronization errors are governed by a stationary and ergodic finite state Markov
chain, and prove that such channel is information-stable, which implies the existence of a coding scheme which
achieves the limit of mutual information. This result implies the existence of the Shannon capacity for a wide range
of channels with synchronization errors, with different applications including DNA storage. The methods developed
may also be useful to prove other coding theorems for non-trivial channel sequences.

I. INTRODUCTION

A mathematical model of a physical channel is defined by conditional distributions W (y|x) for all x ∈ X , y ∈ Y ,

which means that if a symbol x ∈ X is input, output y ∈ Y is observed with probability1 W (y|x). The fact that

W is a channel with the input set X and the output set Y will be denoted by W : X  Y . Shannon’s theorem

[1] considers a memoryless channel W : X  Y that is used n times independently. The equivalent channel that

transmits n symbols simultaneously is the channel Wn : Xn
 Yn, where the conditional probabilities are given

by Wn(yn1 |xn
1 ) =

∏n
i=1 W (yi|xi), with the use of the vector notation acb = (ab, ab+1, . . . , ac).

In this paper, our focus is on channels with synchronization errors, modeled as insertions, deletions and channel

errors. As an example, consider an insertion channel Vn with n input symbols x ∈ Xn. In general, for each input

symbol xi ∈ X , an output vector yi over X of length ≥ 1 is produced. In contrast with the channel Wn, the

resulting output of Vn is a concatenation of output vectors, but not the vector yn1 of output vectors. For example, if

input bits are (1, 0, 0) and the corresponding outputs for each bit are (1, 0), (0) and (1, 0), then the overall channel

output would be (1, 0, 0, 1, 0), not ((1, 0), (0), (1, 0)).
In general, a communication setup, besides conditional probabilities of the original channel, also includes some

underlying method of combining the outputs of multiple channel uses. In the case of simple memoryless channels,

the combining method is just stacking together output symbols into the output vector; in the case of insertion (and/or

deletion) channel, the combining method is concatenation. For this reason, in the non-trivial setup a general case of

a channel sequence (Wn : Xn  Yn)n∈N is usually considered [2], [3], where sets Xn, Yn can vary for different

n. For simplicity, we consider the case when input set for Wn is Xn = Xn and X is fixed for all n.

For a channel sequence the mutual information capacity can be defined as limn→∞ I(Wn)/n, where I(Wn)
denotes the maximum mutual information between the input and the output of a channel Wn over all possible input

distributions. The coding capacity (or operational capacity) is the (maximum) asymptotic rate of coding schemes

which achieve arbitrary small error probability as n → ∞. The capacity theorem is a statement that the mutual

information capacity is equal to the coding capacity.

There are many capacity theorems that generalize the Shannon’s theorem on non-trivial channel sequences.

Dobrushin’s work [4] considers the most general case, where input and output alphabets can be continuous, and

the metric of closeness of decoder’s output to the original signal can be arbitrary. It is shown that the so-called

“information stability” of a channel sequence is sufficient for the capacity theorem to hold. Later, in [2] it was

shown that information stability is necessary and sufficient for the capacity theorem. In [5], Dobrushin proves the

This work was funded by the European Union through the ERC Advanced Grant 101054904: TRANCIDS. Views and opinions expressed
are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority can be held responsible for them.

1This is valid only for a countable Y ; for uncountable case, there should be output PDFs instead; in this paper uncountable Y are not
considered.
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capacity theorem for channels with independent synchronization errors. In that model, for each input symbol, an

output vector of finite expected length is produced, and all the output vectors are concatenated to form the resulting

output. Since this channel model includes any insertion/deletion/substitution errors, we call such model an IDS

channel. The generalization of the capacity theorem to the case of IDS channels with continuous input alphabet is

studied in [6]. Capacity theorems are also proven for finite-state Markov channels (FSMC) [7], for Gilbert-Elliott

channels [8], for deletion channels concatenated with FSMC [9], for IDS channels with intersymbol interference

[10].

IDS channels are used to model various communication channels, including bit patterned media recording [11]

and DNA storage channels [12]. For the case of memoryless insertion/deletion channels, capacity upper bounds

and lower bounds are also obtained in [13], [14], [15], and the asymptotic expansion of the independent identically

distributed deletion channel capacity is found in [16]. See [17], [18] for a detailed review of progress in this area.

While most existing results focus on the scenario with independent synchronization errors, it is also important to

study the case with insertions/deletions with memory. For instance, current reading and writing technologies in

DNA sequencing introduce memory to the channel errors [19], [20].

In this paper, we consider IDS channels with Markov memory, i.e., the underlying insertions/deletions are

governed by a Markov chain. This model is referred to as a Markov-IDS channel. That is, each state of the Markov

chain is an IDS channel, called component channel, and the overall output of Markov-IDS channel is obtained by

concatenating the individual component channel outputs. The Markov-IDS channel is a generalization of both IDS

and FSMC: it is more general than IDS since statistics of the synchronization errors change over time according to

Markov chain rule; it is more general then FSMC since it concatenates the outputs of each component IDS channel

(which can be translated to non-concatenated version via inserting a special symbol at the end of each component

channel’s output). We note that while this model generalizes the synchronization errors as studied by Dobrushin,

it is not sufficiently general to encompass some DNA channel models with insertions/deletions with memory as

in [19], [20] since the channel states do not depend on the channel input in our model. Alternatively, in [10], the

capacity theorem is proven for IDS channels with intersymbol interference (ISI). The difference between the ISI-IDS

channel model in [10] and Markov-IDS channel model in this paper is that the state of ISI-IDS channel is defined

by a few recent input bits, and the channel state in the Markov-IDS model is random (though the distribution is

defined by the previous state).

In this paper, we also introduce a unified notation, which helps to elucidate the idea behind Dobrushin’s methods,

which can be seen as applying functions to channel sequences. Namely, if a function is applied on a channel’s

output, and this function is not “doing much” in a certain sense, then the modified channel has the same mutual

information capacity, coding capacity and information stability, as the original channel. This means that one can

apply any finite number of such functions and still have the same capacities.

The paper is organized as follows. In Section II, notations and information-theoretic definitions are introduced.

In Section III, functions on channels and their properties are described. In Section IV, the Markov-IDS channel

sequence is defined. In Section V, the capacity theorem for Markov-IDS channel sequence is proven. In Section VI,

conclusions are drawn.

II. BACKGROUND

A. Notations

We use the following notation. Sets are written in calligraphic letters X ,Y,Y ; operators are written in bold letters

C,E, I. For b, c ∈ N, we denote a vector acb = (ab, ab+1, . . . , ac). Here, elements ai can be of any type: a number, a

distribution, a channel, etc. Also, we denote infinite sequences as a∞ = (a1, a2, . . . ). For a set A, we denote a set of

all finite sequences with elements from A by A = {()}∪⋃∞
i=1 Ai. For a vector a = an1 ∈ A we denote by N(a) = n

the vector length. We denote the concatenation (gluing) operator g as g(an1 , b
m
1 ) = (a1, a2, ..., an, b1, ..., bm), which

is also generalized onto any number of input vectors. Also, define the function gn : An → A, which glues n vectors

ai ∈ A as gn(a
n
1 ) = g(a1, a2, ..., an). The inverse image g−1

n (a) is the set of all possible ways of cutting a ∈ A
into n subvectors, i.e., g−1

n (a) = {an1 |gn(a
n
1 ) = a}. For a set S, we denote by DS the set of all distributions over

S, i.e.

DS =

{
f : S → [0, 1]

∣∣∣∣∣
∑

x∈S
f(x) = 1

}
.
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For n ∈ N, denote by Dn the set of distributions over the set {1, 2, . . . , n} in a form of row vectors ρn1 ,∑n
i=1 ρi = 1, ρi ≥ 0.

In general, probabilities are usually defined using sigma-algebras. In this paper, however, all probabilities are

defined on the countable sets, so the probability measure is always completely defined by the probabilities of the

elementary events Pr [X = x].
The probability distribution for any probability, expectation or entropy is written as a subscript. The values that are

not known are interpreted as random variables, and it is assumed that we take summation/expectation over all their

possible values. For example, if we have a conditional distribution W (u, x|v, y), where u ∈ U , v ∈ V , x ∈ X , y ∈ Y ,

and the values of u and v have been defined previously, then

Pr
W (u,x|v,y)

[x > 0] =
∑

x∈X :x>0
y∈Y

W (u, x|v, y),

EW (u,x|v,y)[f(x, y)] =
∑

x∈X ,y∈Y
W (u, x|v, y) · f(x, y).

We write HA[B] = EA[− log2 B] for entropy-like expressions. If A = B, then we omit the subscript for simplicity:

HW (x,y)[W (x|y)] = −
∑

x∈X ,y∈Y
W (x, y) · log2 W (x|y),

H[W (x, y)] = −
∑

x∈X ,y∈Y
W (x, y) · log2 W (x, y).

B. Channels and channel sequences

We define a channel W as a collection of conditional distributions W (y|x), defined ∀x ∈ X , ∀y ∈ Y . Throughout

the paper, we assume a finite set X and a countable set Y . Formally, a channel W is a function W : X ×Y → [0, 1],
such that

∀x ∈ X :
∑

y∈Y
W (y|x) = 1.

The fact that W has input messages from X and output from Y is denoted by W : X  Y .

Channel W defines the conditional distribution of the output given its input. If we further define some input

distribution p ∈ DX , then we can compute the joint distribution of input and output, which is denoted by p ◦W :

p ◦W (x, y) = p(x)W (y|x) (1a)

p ◦W (∗, y) =
∑

x∈X
p(x)W (y|x), (1b)

where (1b) defines the probability of output y, given the input distribution p.

For channels Wi : Xi  Yi, define the channel product W =
∏n

i=1 Wi as a channel W : X1 × · · · × Xn  

Y1 × · · · × Yn, such that

W =
n∏

i=1

Wi ⇐⇒ W (yn1 |xn
1 ) =

n∏

i=1

Wi(yi|xi) (2)

A similar notation is used for the n-th power Wn : Xn
 Yn of a channel W : X  Y .

A channel sequence V is defined as an infinite sequence V ∞ of channels Vi : X i
 Yi. Note that for any i,

the output set Yi is arbitrary, but the input set for the i-th channel is X i, so the i-th channel transmits exactly i
symbols from X .
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C. Mutual information capacity

The mutual information density of a channel W for an input distribution p ∈ DX and given values of an input

x ∈ X and an output y ∈ Y is defined as:

i(W, p, x, y)
△
=

{
0, if W (y|x) = 0 or p ◦W (∗, y) = 0

log2
W (y|x)

p◦W (∗,y) , otherwise
(3)

where p ◦W (∗, y) is given by (1b). The mutual information of W under input distribution p is the expectation of

mutual information density:

I(W, p)
△
= Ep◦W (x,y)[i(W, p, x, y)] =

∑

x∈X ,y∈Y
p◦W (x, y) · i(W, p, x, y). (4)

The mutual information capacity/i-capacity [4] of channel W is the maximum possible mutual information of W
under any input distribution, and is given by2

I(W )
△
= max

p∈DX

I(W, p). (5)

We will call the distribution p, for which the maximum is achieved, as the optimal distribution (for W ). By the

mutual information capacity/i-capacity of channel sequence V = V ∞ we mean the asymptotic average i-capacity

of Vn per input symbol:

I(V )
△
= lim

n→∞
I(Vn)

n
, (6)

if the limit exists. Note that the i-capacity of a channel always exists, since I(W, p) is a concave function of the

input distribution p with countable number of coefficients; however, the i-capacity of a channel sequence might not

exist, since sequence I(Vn)/n might not converge3.

D. Coding capacity

For a channel W : X  Y , code size M ∈ N, M ≤ |X | and error probability ε ∈ [0, 1], we define a (W,M, ε)-
coding scheme as a collection (xM

1 ,RM
1 = (R1,R2, . . . ,RM )), where:

• all xi are distinct codewords from X , i = 1 . . .M ;

• RM
1 is a collection of M disjoint sets Ri ⊆ Y , which are the decoder’s decision regions. When y ∈ Ri is

received, the decoder outputs xi;

• the decoding error probability is not greater than ε for any xi, i.e.

∀i ∈ {1, . . . ,M} :
∑

y/∈Ri

W (y|xi) ≤ ε.

Consider a channel sequence V ∞. We call R ∈ R≥0 an achievable rate over V , if

∀ε > 0, ∃n0 : ∀n ≥ n0 : ∃(Vn, ⌈2nR⌉, ε)-coding scheme. (7)

We denote by R(V ) the set of achievable rates R for channel sequence V . By the coding capacity/c-capacity

C(W ) of the channel sequence V we mean the supremum of all achievable rates [5]:

C(V )
△
= supR(V ) (8)

The existence of a (W,M, ε)-coding scheme obviously implies the existence of a (W,M ′, ε′)-coding scheme

for any M ′ ≤ M and ε′ ≥ ε. So, if R ∈ R(V ), then R′ ∈ R(V ) for any rate R′ < R. Thus, the set R(V )
is a connected set, i.e., there always exists α ∈ [0, log2 |X |], such that R(V ) ∈ {[0, α], [0, α)}. This implies that

C(V ) = α, i.e., any channel sequence has the c-capacity.

In [3], the coding capacity (c-capacity) C(V ) is derived in terms of mutual information density:

C(V ) = sup

{
α

∣∣∣∣ limn→∞
min

pn∈DXn

Pr
pn◦Vn(x,y)

{
i(Vn, pn, x, y)

n
≤ α

}
= 0

}
(9)

2In [4], the setup is for the much more general case, and “sup” over the input distributions is used instead of “max”. In our setup we
assumed (see Section II-B) that X is finite and Y is countable, so the maximum is always achieved as a maximum of a continuous function
over a compact set.

3Consider a channel which is ideal for even n and complete noise for odd n. In this case, the sequence of values of I(Vn)/n is
(log

2
|X |,0, log

2
|X |,0, . . . ). Such sequence has no limit for |X | > 1.
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E. Information stability

A channel sequence V is called J-information stable [2], where J = J∞ with Jn → ∞, if there exist distributions

p∗n ∈ DXn and sequence δ with δn > 0, δn → 0, such that

Pr
p∗
n◦Vn(x,y)

[∣∣∣∣
i(Vn, p

∗
n, x, y)

Jn
− 1

∣∣∣∣ > δn

]
< δn. (10)

If Jn = I(Vn) then V is called information-stable. We denote by IS(V ) the fact that V is information-stable, and,

moreover, the i-capacity I(V ) exists. In the case of IS(V ), under our general assumption that X is finite, (10) can

be rewritten as

∀δ > 0 : lim
n→∞

Pr
p∗
n◦Vn(x,y)

[∣∣∣∣
i(Vn, p

∗
n, x, y)

n
− I(V )

∣∣∣∣ > δ

]
= 0. (11)

Proposition 1 (Theorems 3.1 and 3.2 in [2]). IS(V ) ⇐⇒ C(V ) = I(V ).

For further derivations we need the following sufficient condition of information stability.

Proposition 2 (A sufficient condition for strict information stability). If there exists I(V ) and a sequence of

distributions p∗, for which

lim
n→∞

Ep∗
n◦Vn(x,y)

[∣∣∣∣
i(Vn, p

∗
n, x, y)

n
− I(V )

∣∣∣∣
]
= 0, (12)

then IS(V ).

Proof. Note that for any δ > 0,

E

[∣∣∣∣
i(Vn, p

∗
n, x, y)

n
− I(V )

∣∣∣∣
]
> δ · Pr

[∣∣∣∣
i(Vn, p

∗
n, x, y)

n
− I(V )

∣∣∣∣ > δ

]
,

so

0 ≤ lim
n→∞

Pr

[∣∣∣∣
i(Vn, p

∗
n, x, y)

n
− I(V )

∣∣∣∣ > δ

]
≤ 1

δ
· lim
n→∞

E

[∣∣∣∣
i(Vn, p

∗
n, x, y)

n
− I(V )

∣∣∣∣
]
= 0,

which is exactly the information stability condition (11).

III. FUNCTIONS OF CHANNELS AND THEIR PROPERTIES

For a channel W : X  Y and function f : Y → Z we write W ′ = f(W ) to refer to a channel W ′ : X  Z ,

defined as a composition of channel W and function f . That is,

W ′(z|x) =
∑

y∈f−1(z)

W (y|x), (13)

where f−1(z) = {y : f(y) = z} is the inverse image of f . Channel W ′ is degraded with respect to W , meaning

that it can be represented as a pipeline of W and a function f at its output. It is well-known and can be

straightforwardly checked that C(W ′) ≤ C(W ), and if both I(W ) and I(W ′) exist, then I(W ′) ≤ I(W ). Let

Φ = log2 maxz∈Z
∣∣f−1(z)

∣∣ be the maximum log-size of a preimage. Then, the following proposition holds.

Proposition 3 (Equation (4.3) in [5]). For any input distribution p ∈ DX :

Ep◦W (x,y)

[∣∣i(W, p, x, y)− i(W ′, p, x, f(y))
∣∣
]
≤ Φ. (14)

This proposition can be interpreted as follows. The process of forming the (random) output of channel W can

be seen as a pipeline of two steps. First, choose the value of z based on probabilities W ′(z|x). This is equivalent

to channel W ′. Second, randomly choose one value among all (at most) 2Φ possible values of y ∈ f−1(y′). The

maximum entropy of the second step is achieved when all preimages are equiprobable, namely, the entropy of the

second step is at most Φ.

For a channel sequence Un : Xn
 Yn and sequence of functions fn : Yn → Zn, we denote by V = f(U) a

channel sequence Vn = fn(Un) : Xn
 Zn, n ∈ N. Also, we denote by Φn = log2 maxz∈Zn

∣∣f−1
n (z)

∣∣.



6

Proposition 4 (Function with small preimage). If Φn ∈ o(n), then C(U) = C(V ). If, furthermore, at least one of

I(U), I(V ) exist, then they both exist and I(U) = I(V ). Moreover, IS(U) ⇐⇒ IS(V ).

Proof. First, note that Epn◦Vn
[i(Vn, pn, x, y)] = Epn◦Un

[i(Vn, pn, x, f(y))]. Using Proposition 3 and the fact that

Vn is degraded with respect to Un, for any sequence of input distributions p:

0 ≤ lim
n→∞

I(Un, pn)− I(Vn, pn)

n
= Epn◦Un

[
i(Un, pn, x, y)− i(Vn, pn, x, fn(y))

n

]

≤ lim
n→∞

Epn◦Un

[ |i(Un, pn, x, y)− i(Vn, pn, x, fn(y))|
n

]
≤ lim

n→∞
Φn

n
= 0, (15)

which for optimal p for U implies that I(U) = I(V ), if ether I(U) or I(V ) exists.

Equation (15) implies that for any pn ∈ DXn ,

lim
n→∞

Epn◦Un

[ |i(Un, pn, x, y)− i(Vn, pn, x, fn(y))|
n

]
= 0.

Using the same technique as in Proposition 2, it can be easily shown that for any δ > 0 and pn ∈ DXn ,

lim
n→∞

Pr
pn◦Un

{ |i(Un, pn, x, y)− i(Vn, pn, x, fn(y))|
n

> δ

}
= 0. (16)

If IS(U), then for arbitrary δ > 0, both (11) and (16) can be satisfied for δ/2 simultaneously using some sequence

of distributions p∗. The equality I(U) = I(V ), proven above, and the triangle inequality imply

lim
n→∞

Pr
p∗
n◦Un

{∣∣∣∣
i(Vn, p

∗
n, x, fn(y))

n
− I(V )

∣∣∣∣ > δ

}
≤ lim

n→∞
Pr

p∗
n◦Un

{ |i(Un, p
∗
n, x, y)− i(Vn, p

∗
n, x, fn(y))|

n
>

δ

2

}

+ lim
n→∞

Pr
p∗
n◦Un

{∣∣∣∣
i(Un, p

∗
n, x, y)

n
− I(U)

∣∣∣∣ >
δ

2

}
= 0. (17)

This implies IS(V ). The implication IS(V ) =⇒ IS(U) can be shown similarly.

To prove that C(U) = C(V ), we will use the expression of c-capacity given by (9). Assume that C(U) = α
and C(V ) 6= α. Then, C(V ) < α and

∀ε > 0, δ > 0, ∃n∗
0 : ∀n ≥ n0, ∃p∗n : Pr

p∗◦Un(x,y)

[
i(Un, p

∗, x, y)

n
> α− ε

]
> 1− δ. (18)

∃ε∗ > 0, δ∗ > 0 : ∀n0, ∃n∗ ≥ n0 : ∀pn, Pr
p◦Un∗ (x,y)

[
i(Vn∗ , p, x, fn∗(y))

n∗ ≤ α− ε∗
]
≥ δ∗. (19)

Since (18) holds for any ε > 0, δ > 0, we can let ε = ε∗/2, δ = δ∗/2, where ε∗ and δ∗ are from (19), and obtain

simultaneously

∃ε∗ > 0, δ∗ > 0 :

{
∃n∗

0 : ∀n ≥ n∗
0, ∃p∗n : Prp∗

n◦Un(x,y) [i(Un, p
∗
n, x, y)/n > α− ε∗/2] > 1− δ∗/2

∀n0, ∃n∗ ≥ n0 : ∀pn∗ , Prpn∗◦Un∗ (x,y) [i(Vn∗ , pn∗ , x, fn∗(y))/n∗ ≤ α− ε∗] ≥ δ∗

So, the first inequality holds for all n starting from n∗
0, and for each n specific p∗n should be picked up. The second

inequality holds for some n larger than arbitrary n0, for all pn. Bringing these two conditions together, we can

satisfy both inequalities as follows:

• for any n0, pick up the specific value of n∗ ≥ max {n0, n
∗
0}, for which the second inequality holds;

• since n∗ ≥ n∗
0, the first equality still holds for some specific selection of p∗n∗ . The second inequality will hold

for p∗n∗ as well, since it holds for any pn∗ .

The above procedure results in

∃ε∗ > 0, δ∗ > 0 : ∀n0, ∃n ≥ n0, ∃pn :

{
Prpn◦Un(x,y) [i(Un, pn, x, y)/n > α− ε∗/2] > 1− δ∗/2

Prpn◦Un(x,y) [i(Vn, pn, x, fn(y))/n ≤ α− ε∗] ≥ δ∗
.

Note that both probabilities are defined over the same probability space. The sum of the two probabilities is greater

than 1 + δ∗/2, which means that

Pr
pn◦Un(x,y)

{
i(Un, pn, x, y)− i(Vn, pn, x, fn(y))

n
>

ε∗

2

}
>

δ∗

2
,
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which contradicts (16).

Thus, one can apply such function sequences to a channel sequence W , changing neither I(W ), nor C(W ), nor

information stability property.

Proposition 5 (Semi-bijective function). Consider channels U : X  Y and V : X  Z , such that V = f(U),
f : Y → Z . Consider partitions Y = A ⊔ B, Z = A′ ⊔ B′, such that f(A) = A′ and f is bijective between A
and A′. Denote by β(x) = PrU(y|x) [y ∈ B] the probability that the output of U belongs to B given input x ∈ X .

If ∀x ∈ X : β(x) ≤ β, then for any p ∈ DX ,

I(U, p)− I(V, p) ≤ β log2 |X |+ 1

e ln 2
. (20)

Proof. Let U ′ : X  B be a channel equivalent to U with an additional condition that the output belongs to B,

with the normalized transition probabilities

U ′(y|x) = U(y|x)
β(x)

.

By definition, I(U, p) = Ep◦U(x,y)[i(U, p, x, y)]. The expectation can be expressed by two separate summations

over A and B:

Ep◦U(x,y)[i(U, p, x, y)] =
∑

y∈Y

∑

x∈Xn

p(x)U(y|x)i(U, p, x, y)

=
∑

y∈A

∑

x∈X
p(x)U(y|x)i(U, p, x, y)

︸ ︷︷ ︸
a

+
∑

y∈B

∑

x∈X
p(x)U(y|x)i(U, p, x, y)

︸ ︷︷ ︸
b

Let us analyze term b. First, introduce the modified distribution p̃(x) = p(x)β(x)/∆, where ∆ =
∑

x p(x)β(x).
Note that 0 ≤ ∆ ≤ β. Substituting p(x)U(y|x) = ∆p̃(x)U ′(y|x) for y ∈ B, one obtains

b =
∑

y∈B,x∈X
p(x)U(y|x) log2

U(y|x)∑
w p(w)U(y|w) = ∆

∑

y∈B,x∈X
p̃(x)U ′(y|x) log2

β(x)U ′(y|x)
∆
∑

w p̃(w)U ′(y|w)

= ∆ · I(U ′, p̃) + ∆
∑

y∈B,x∈X
p̃(x)U ′(y|x) log2

β(x)

∆
= ∆(I(U ′, p̃)− log2 ∆) +

∑

y∈B,x∈X
p(x)U ′(y|x)β(x) log2 β(x)

Using inequality − 1
e ln 2 ≤ x log2 x ≤ 0 when 0 < x ≤ 1, one obtains

−∆ log2 ∆− 1

e ln 2
≤ b ≤ ∆ log2

|X |
∆

(21)

The same can be done for the channel V :

Ep◦V (x,y)[i(V, p, x, y)] =
∑

y∈A′

∑

x∈X
p(x)V (y|x)i(V, p, x, y) +

∑

y∈B′

∑

x∈X
p(x)V (y|x)i(V, p, x, y)

︸ ︷︷ ︸
b′

=
∑

y∈A

∑

x∈X
p(x)U(y|x)i(U, p, x, y) + b′ = a+ b′

Note that β(x) =
∑

y∈B U(y|x) = ∑
z∈B′ V (z|x), so, using the auxiliary channel V ′(z|x) : X  B′ defined as

V ′(z|x) = V (z|x)/β(x), one obtains for any z ∈ B′, p(x)V (z|x) = ∆p̃(x)V ′(z|x). Similarly to b, the value of b′

can be represented as

b′ =
∑

z∈B′,x∈X
p(x)V (z|x)i(V, p, x, z) = ∆

∑

z∈B′,x∈X
p̃(x)V ′(z|x) log2

β(x)V ′(z|x)
∆
∑

w p̃(w)V ′(z|w)

= ∆(I(V ′, p̃)− log2 ∆) +
∑

z∈B′,x∈X
p(x)V ′(y|x)β(x) log2 β(x)

so (21) holds for b′ as well. This implies

∀p ∈ DX : I(U, p)− I(V, p) = b− b′ ≤ ∆ log2
|X |
∆

+∆ log2 ∆+
1

e ln 2
= ∆ log2 |X |+ 1

e ln 2
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Since ∆ ≤ β, (20) holds.

Proposition 6 (Function that does nothing almost surely). Consider channel sequences Un : Xn
 Yn and

Vn : Xn
 Zn, such that Vn = fn(Un), fn : Yn → Zn. Consider partitions Yn = An ⊔ Bn, Zn = A′

n ⊔ B′
n, such

that fn(An) = A′
n and fn is bijective between An and A′

n. Denote by βn(x) = PrUn(y|x) [y ∈ Bn], and βn =

maxx βn(x). If the output of channel Un almost always belongs to An, i.e., limn→∞ βn = 0, then C(U) = C(V ).
If, in addition, one of I(U), I(V ) exists, then they both exist and I(U) = I(V ). Moreover, IS(U) ⇐⇒ IS(V ).

Proof. If either I(U) or I(V ) exists, then, using Proposition 5 and distributions p∗n, optimal for Un,

0 ≤ I(U)− I(V ) ≤ lim
n→∞

I(Un, p
∗
n)− I(Vn, p

∗
n)

n
≤ lim

n→∞

(
βnn log2 |X |

n
+

1

ne ln 2

)
= 0,

so I(U) = I(V ).
Assume that IS(U) is true. Note that, for any pn,

lim
n→∞

Pr
pn◦Un(x,y)

{i(Un, pn, x, y) 6= i(Vn, pn, x, fn(y))} = lim
n→∞

Pr
pn◦Un(x,y)

{y ∈ B} ≤ lim
n→∞

βn = 0. (22)

Since I(U) = I(V ), there exists a sequence of distributions (p∗n)n∈N, such that for any δ > 0:

lim
n→∞

Pr
p∗
n◦Vn(x,z)

{∣∣∣∣
i(Vn, p

∗
n, x, z)

n
− I(V )

∣∣∣∣ > δ

}
= lim

n→∞
Pr

p∗
n◦Un(x,y)

{∣∣∣∣
i(Vn, p

∗
n, x, fn(y))

n
− I(U)

∣∣∣∣ > δ

}

≤ lim
n→∞

[
Pr

p∗
n◦Un(x,y)

{i(Vn, p
∗
n, x, fn(y)) 6= i(Un, p

∗
n, x, y)}+ Pr

p∗
n◦Un(x,y)

{∣∣∣∣
i(Un, p

∗
n, x, y)

n
− I(U)

∣∣∣∣ > δ

}]
,

and by (22) and information stability of U , the limit is 0. Thus, IS(U) =⇒ IS(V ) is information stable. The

other implication can be shown similarly.

According to (9), C(U) = C(V ) can be proved by analyzing the probability of i(Vn, pn, x, y) being less than

αn for some value of α. This can be done as follows:

Pr
pn◦Vn(x,y)

[i(Vn, pn, x, y) ≤ αn] = Pr
pn◦Un(x,y)

[i(Vn, pn, x, f(y)) ≤ αn]

≤ Pr
pn◦Un(x,y)

[i(Vn, pn, x, f(y)) 6= i(Un, pn, x, y) ∨ i(Vn, pn, x, f(y)) = i(Un, pn, x, y) ≤ αn]

≤ Pr
pn◦Un(x,y)

[i(Vn, pn, x, f(y)) 6= i(Un, pn, x, y) ∨ i(Un, pn, x, y) ≤ αn]

≤ Pr
pn◦Un(x,y)

[i(Vn, pn, x, f(y)) 6= i(Un, pn, x, y)] + Pr
pn◦Un(x,y)

[i(Un, pn, x, y) ≤ αn],

where the first probability goes to zero according to (22). Thus,

lim
n→∞

min
pn

Pr
pn◦Un(x,y)

[i(Un, pn, x, y) ≤ αn] = 0 =⇒ lim
n→∞

min
pn

Pr
pn◦Vn(x,y)

[i(Vn, pn, x, y) ≤ αn] = 0,

which means that the set of such α’s for Un is a subset of such set for Vn, which implies C(V ) ≥ C(U) and thus

C(V ) = C(U).

If this proposition is combined with Proposition 4, the result is that one can apply any finite number of functions,

which either have sufficiently small pre-image or sufficiently small probability of changing the output, without

changing neither I nor C of the original channel sequence. The IS property is also saved upon such transformations.

IV. THE MARKOV-IDS CHANNEL SEQUENCE

A. The IDS channel sequence

In [5] a general channel model, which represents any channel with independent insertions, deletions, and substi-

tutions is considered. Consider a basic channel W : X  Y , such that for each x ∈ X the expected length N(y)
of the output sequence y ∈ Y is finite:

∃A ∈ R : ∀x ∈ X : EW (y|x)[N(y)] ≤ A. (23)

We will call such channel an IDS channel. The IDS channel sequence is D = D∞, where Dn is channel Wn,

followed by a gluing operator on its output:

Dn = gn(W
n), (24)
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where gn : Yn → Y glues together n vectors over Y . Such channel sequence D is information-stable [5], so

C(D) = I(D).

Proposition 7 (Lemma 9 in [10]). Any IDS channel (with finite expectation of output vector length) has finite

output entropy for each input:

∃H ∈ R : ∀x ∈ X : H[W (y|x)] ≤ H. (25)

Proof. Fix some x0 ∈ X . Denote by wy = W (y|x0). The entropy is a series

H[wy ] =
∑

y∈Y:wy>0

−wy log2 wy. (26)

Since all the terms of the summation are non-negative, we only need to prove that the sum is constrained. Denote

by pn =
∑

y∈Yn wy the probability that the length of output is n. From (23),

∑

y∈Y

wyN(y) =

∞∑

n=0

n ·
∑

y∈Yn

wy =

∞∑

n=0

npn ≤ A.

We obtained a constraint on pn. Expression
∑

y∈Yn −wy log2 wy achieves its maximum (with fixed pn) with uniform

distribution within Yn, i.e., when wy = pn/|Y|n. Thus,

H[wy] ≤ −
∞∑

n=0

∑

y∈Yn

pn
|Y|n log2

pn
|Y|n ≤ H[pn]−A · |Y|.

The second term is finite. The first term is the entropy of distribution pn, corresponding to the length of the output

of W , which has finite expectation ≤ A. The maximum possible entropy of discrete distribution over N∪{0} with

given (finite) mean is equal to the entropy of the geometric distribution, which is finite.

B. The Markov-IDS channel sequence

Consider a discrete-time Markov chain with s states S = {1, . . . , s}. Let G be an s× s matrix which defines the

transition probabilities: Gσ,τ ∈ [0, 1] is equal to the conditional probability of the next state being τ if the current

state is σ.

Assume that each state σ ∈ S corresponds to a state channel W1[σ] : X  Y , which is an IDS channel. If

the state channels have different output alphabets Yσ for each σ, we can easily generalize this case by letting

Y = ∪σYσ .

The finite-state Markov chain (FSMC) channel [7] works as follows:

1) The initial state σ1 is given.

2) The i-th symbol xi ∈ X is transmitted through channel W1[σi]. The output is yi ∈ Y .

3) After the i-th symbol is transmitted, the system transits from state σi to state σi+1 with probability Gσi,σi+1
.

4) For n input symbols, one obtains yn1 ∈ Yn
.

Let W∗,1[σ1] = (W1,1[σ1],W2,1[σ1], . . . ) be an FSMC channel sequence with initial state σ1. Then

Wn,1[σ1](y
n
1 |xn

1 ) = W1[σ1](y1|x1) ·
∑

σn
2
∈Sn−1

n∏

i=2

Gσi−1,σi
W1[σi](yi|xi). (27)

Also, introduce channel Wn[σ] which outputs gn(y
n
1 ) ∈ Y , where yn1 is the output of Wn,1[σ]:

Wn[σ] = gn(Wn,1[σ]). (28)

Assume that the initial state of Markov chain is chosen according to distribution ρ ∈ Ds. Then, the corresponding

FSMC channel sequence is denoted by V∗,1[ρ], Vn,1[ρ] : Xn
 Yn

:

Vn,1[ρ](y|x) =
∑

σ∈S
ρσ ·Wn,1[σ](y|x). (29)

The Markov-IDS channel sequence V [ρ], Vn[ρ] = gn(Vn,1[ρ]) : Xn → Y is given by

Vn[ρ](y|x) =
∑

σ∈S
ρσ ·Wn[σ](y|x). (30)
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V. CAPACITY THEOREM FOR MARKOV-IDS CHANNEL

Throughout the section, we use notation of the channel sequences Wn,1[ρ], Wn[ρ], Vn,1[ρ] and Vn[ρ], n ∈ N, as

defined in (27), (28), (29) and (30).

A. Markov chain state distribution convergence

It is well-known (Theorem 8.9 in [21]), that if a Markov chain with a finite state space is aperiodic and irreducible,

then

∃B ≥ 0, 0 ≤ P < 1 : ∀n ∈ N, ∀i, j ∈ S : |Gn
i,j − πj | ≤ BPn = B′e−Cn △

= δn, (31)

where Gn
i,j = (Gn)i,j , π ∈ Ds is the stationary distribution of Markov chain G: π ·G = π, constants B,B′ ≥ 0,

0 ≤ P < 1 and C > 0 depend only on the Markov chain.

For any starting distribution ρ ∈ Ds we have
∑

i ρi = 1, and so

|(ρGn)j − πj | =
∣∣∣∣∣
∑

i

ρiG
n
i,j −

∑

i

ρi · πj

∣∣∣∣∣ ≤
∑

i

ρi
∣∣Gn

i,j − πj

∣∣ (31)

≤ δn. (32)

Introduce sequence εn, such that

δn = εn min
i

πi. (33)

Then, the small (with n → ∞) additive term can be substituted with small multiplicative term as πi+δn ≤ πi(1+εn).
Combining this with (31), (32)

∀ρ ∈ Ds, ∀j : πj(1− εn) ≤ (ρGn)j ≤ πj(1 + εn),

εn ≤ De−Cn, C = const, D = const, (34)

which also implies

πj(1− εn) ≤ Gn
i,j ≤ πj(1 + εn).

B. Main Theorems

Theorem 1 (Existence of i-capacity). If a Markov chain G of s states, corresponding to Markov-IDS channel

sequence V , is aperiodic and irreducible, then for any ρ ∈ Ds the i-capacity I(V [ρ]) exists and does not depend

on ρ. In other words, for any ρ ∈ Ds, I(V [ρ]) exists and

I(V [ρ]) = I(V [π]), (35)

where π is the stationary distribution of the Markov chain.

Proof. We now will prove that the limit I(V [ρ]) = limn→∞ I(Vn[ρ])/n exists. For that, we will use the stronger

formulation [22] of Fekete’s lemma, which says that if function u : N → R is quasi-subadditive in the sense that

∀m,n ∈ N, n ≤ m ≤ 2n : u(m+ n) ≤ u(m) + u(n) + f(m+ n), (36)

where term f(m+ n) is such that series
∑∞

n=1 f(n)/n
2 converges, then the limit limn→∞ u(n)/n exists.

Denote by Vn1|n2|...|nt
[ρ] : Xn

 Yt
, n =

∑
i ni, a channel, which works as a channel Vn,1[ρ] combined with

the merging operation. The merging operation concatenates the outputs inside i-th output sub-block for each i,
where the corresponding i-th input sub-block has length ni. So, the receiver knows the output, corresponding to

each ni-block, but does not know the exact output for each input symbol. Also, we write ñi instead of ni to denote

the fact that the output, corresponding to the i-th input block is erased, i.e., substituted by the zero-length vector.

Consider the case of ρ = π, i.e., the initial state distribution is the stationary distribution of the Markov chain (later

we will show that the initial state distribution does not influence the i-capacity). Then, the following sequence of

inequalities holds:

I(Vm+n[π])
1
≤ I(Vm|n[π])

2
≤ I(Vm|l|n−l[π])

3
≤ I(Vm|l̃|n−l[π]) + lH

4
≤ I(Vm|l̃|n−l|l[π]) + lH

5
≤ I(Vm|l̃|n[π]) + 2lH

(37)
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where H = maxσ∈S,x∈X H[W [σ](y|x)] is the highest output entropy of a component channel (see Proposition 7).

Here, transitions 1 and 2 correspond to providing the receiver with additional information.

In transition 3, let us assume the same input distribution p ∈ D[Xm+n] for both Vm|l|n−l[π] and Vm|l̃|n−l[π]

and prove that I(Vm|l|n−l[π], p) ≤ I(Vm|l̃|n−l[π], p) + lH. Since this holds for any p, then we establish that the

transition 3 is also valid. Denote by X1, X2, X3 the random variables corresponding to three input blocks of m, l
and (n − l) symbols (they are the same for both channels since we take the same input distribution), and denote

the random variables corresponding to the outputs by Y1, Y2, Y3. Then, the amount of information about X3
1 that

we have lost by erasing Y2 is given by

I(Vm|l|n−l[π], p)− I(Vm|l̃|n−l[π], p) = I(Y 3
1 ;X

3
1 )− I(Y1, Y3;X

3
1 ) = I(Y2;X

3
1 |Y1, Y3) ≤ H(Y2|Y1, Y3) ≤ H(Y2),

where H(Y2) is the unconditional entropy of output corresponding to the second block; vector Y2 consists of l outputs

Y
(i)
2 of component channels, glued together, i = 1 . . . l. So, H(Y2) ≤ H(Y

(1)
2 , Y

(2)
2 , . . . , Y

(l)
2 ) ≤ ∑

iH(Y
(i)
2 ). Each

Y
(i)
2 is an unconditioned output of a state channel. It can be expressed as

H(Y
(i)
2 ) = Eσi,xi

[
H(Y

(i)
2 |xi, σi)

]
≤ max

σ,x
H[W [σ](y|x)] = H,

where distribution of σi is given by initial state distribution ρ and Markov chain transition probabilities, and

distribution of xi is given by marginalization of distribution p over all coordinates except the (m+ i)-th coordinate.

The above implies that H(Y2) ≤ lH and inequality 3 holds.

In transition 4 after block of (n− l) symbols we further transmit a block of l symbols. This cannot decrease the

mutual information, since we can just ignore last block of input and output.

In transition 5 the output of (n− l)-block is merged with the output of the l-block. We can additionally tell the

receiver the exact values of the output for the last l-block, and then the receiver can know the boundaries of the

two outputs. By the same consideration as in inequality 3, the conditional entropy about the last l glued outputs,

which we have partially lost by gluing, is not greater than unconditional entropy of l unglued outputs, which is not

greater than lH bits. This holds for any input distribution, so this holds for maxima over the input distributions.

Now, consider channel Vm|l̃|n[ρ] : Xm+l+n
 Y2

. We will need auxiliary channel Wn,1[σ → τ ] : Xn → S×Yn
,

where τ is considered as a part of the channel’s output. The channel can be represented as channel Wn,1[σ] which

additionally outputs the state after transmission of the last symbol:

Wn,1[σ1 � τ ](yn1 |xn
1 ) = W1[σ1](y1|x1) ·

∑

σn
2
∈Sn−1

Gσn,τ ·
n∏

i=2

Gσi−1,σi
W1[σ](yi|xi). (38)

Also, define the glued version of this channel as

Wn[σ � τ ](y|x) =
∑

y∈g
−1
n (y)

Wn,1[σ � τ ](y|x). (39)

The channel which does not output the final state and the channel which outputs the final state are related via

marginalization over the final state:

Wn[σ](y|x) =
∑

τ

Wn[σ � τ ](y|x), Wn,1[σ](y|x) =
∑

τ

Wn,1[σ � τ ](y|x).

Now we can define the transition probabilities, corresponding to transmitting an m and an n-block, separated by

an l-block, which is then erased:

Vm|l̃|n[π](y
2
1 |x3

1)
△
=

∑

z1∈g
−1
m (y1)

z2∈g
−1
n (y2)

∑

σ3
1
∈S3

πσ1
Wm[σ1 � σ2](z1|x1)G

l
σ2,σ3

Wn[σ3](z2|x3)

1
≤

∑

z2
1
,σ3

1

πσ1
Wm[σ1 � σ2](z1|x1)πσ3

(1 + εl)Wn[σ3](z2|x3)

2
≤ (1 + εl)

∑

σ1,z1

πσ1
Wm[σ1](z1|x1)

∑

σ3,z2

πσ3
Wn[σ3](z2|x3) = (1 + εl)Vm[π](y1|x1)Vn[π](y2|x3). (40)
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V V Ṽ
g g◦

f◦ f

I(V ) I(V ) I(Ṽ )

Step 1 Step 2

IS(V ) IS(V ) IS(Ṽ ) True
Step 3

Fig. 1. The outline of proof of Theorem 2

For brevity, introduce some shortcuts: let x = x3
1, y = y21 . Since Vm|l̃|n[π](y

2
1 |x3

1) does not depend on x2,

consider shortcut U(y21 |x2
1) = Vm|l̃|n[π](y

2
1 |x1, x

′, x2), where x′ ∈ X l is some fixed vector. Also, consider

shortcut U ′(y|x) = Vm[π](y1|x1)Vn[π](y2|x2). Denote marginalized distribution p̃(x1, x2) =
∑

x′ p(x1, x
′, x2).

Rewriting (40) in shortcuts, one obtains U(y|x) ≤ (1+εl)U
′(y|x), and one can upper-bound the mutual information

by

I(Vm|l̃|n[π], p) = I(U, p̃) =
∑

x,y

p̃ ◦ U(x, y)[log2 U(y|x)− log2 p̃ ◦ U(∗, y)]

1
≤

∑

x,y

(1− εl)p̃◦U ′(x, y) log2 [(1 + εl)U
′(y|x)]− (1 + εl)p̃ ◦ U ′(x, y) log2 [(1− εl)p̃◦U ′(∗, y)]

= (1− εl)Ep̃◦U ′(x,y)[log2 U
′(y|x) + log2 (1 + εl)]− (1 + εl)Ep̃◦U ′(x,y)[log2 p̃ ◦ U ′(∗, y) + log2 (1− εl)]

= I(U ′, p̃)− εlEp̃◦U ′(x,y)[log2 U
′(y|x)]− εlE[log2 p̃ ◦ U ′(∗, y)] + Γl

= I(U ′, p̃) + εlHp̃◦U ′(x,y)[U
′(y|x)] + εlH[p̃ ◦ U ′(∗, y)] + Γl

≤ I(Vm[π] · Vn[π], p̃) + εl(m+ n)H + εl(m+ n)H + Γl, (41)

where Γl = (1− εl) log2(1+ εl)− (1+ εl) log2(1− εl). The transition in
1
≤ is done as follows. Each log in the first

term adds a negative amount, so the multiplicative term before the first logarithm is lower-bounded. The logarithm

itself is an increasing function, so its argument is upper-bounded. Note that the upper bound might turn the value

of logarithm to a positive value. Then the whole term under
∑

sign is upper-bounded, because the original term

was non-positive. The second term is taken with a negative sign, so all bounds are the opposite.

Bringing together (37) and (41), for un = I(Vn[π]) one obtains

um+n ≤ um + un + 2εl(m+ n)H + Γl + 2lH

Let l = ⌊
√
m+ n⌋ and denote by f(m+ n) = 2εl(m+ n)H + Γl + 2lH. Then,

0 ≤ f(n) ≤ 2ε2
√
2n · n+ Γ⌊

√
2n⌋ + 2

√
2n ·H

Note that by (34), the first term tends to zero. The second term Γl → 0 with l → ∞. Thus, f(n) ∈ O(
√
n), so the

series
∑

n f(n)/n
2 converges. This implies the existence of limn→∞ un/n = I(V [π]).

We can show that I(V [ρ]) = I(V [π]) by the same trick of skipping ⌊√n⌋ symbols at the beginning.

To underline the fact that I(V [ρ]) does not depend on ρ, we will always denote the i-capacity by I(V ).

Theorem 2 (Information stability of the Markov-IDS channel sequence). For any ρ, the channel sequence V [ρ] is

information stable. In particular, the coding capacity C(V [ρ]) achieves the mutual information capacity I(V ), and

thus does not depend on ρ:

C(V [ρ]) = C(V ) = I(V ). (42)

Proof. The outline of the proof is depicted in Fig. 1.

Step 1. Transition V → V .

Consider channel sequence V n[ρ] = Vln|mn|ln|...|mn
[ρ] : Xn

 YQn
, for which the receiver knows the outputs

corresponding to all the input subvectors of lengths ln and mn, where

mn = ⌊
√
n⌋, ln = ⌊ 4

√
n⌋, qn =

⌊
n

mn + ln

⌋
, Qn = 2qn (43)
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and the last rn = n − qn(mn + ln) input symbols are ignored. Note that with n → ∞, the asymptotics of these

variables are

Qn ∼ qn ∼ mn ∈ O(
√
n), ln ∈ O( 4

√
n), rn ∈ O(n3/4).

Below, we will omit index n and write l,m, q and Q meaning that they depend on n by (43).

Note that in the case of channel V n[ρ] the receiver knows all the information that is here in the case of channel

Vn[ρ] plus the boundaries of l- and m-blocks. This means that channel Vn[ρ] can be represented as a pipeline of

channel V n[ρ] and merging function gQ, which merges Q vectors into one, i.e., Vn[ρ] = gQ(V n[ρ]).
We propose to represent the merging function gQ as a pipeline of two functions. The first one merges the output

of V n[ρ], if the total length of output is < 2An. Formally, let

g◦
n(y

Q
1 ) =

{
yQ1 if N(gQ(y

Q
1 )) ≤ 2An

gQ(y
Q
1 ) if N(gQ(y

Q
1 )) > 2An

(44)

Note that, with n → ∞, function g◦
n(y) changes the input with probability 0 , i.e., Pr [g◦

n(y) 6= y] → 0. Moreover,

the image of short sequences does not intersect the image of long sequences, so function sequence g◦ satisfy

Proposition 6.

Now let g be a sequence of functions, which glue the vectors of vectors that remained unglued after g◦:

gn(Y ) =

{
gQ(Y ), if Y ∈ YQ ∧N(gQ(Y )) ≤ 2An

Y , if Y ∈ Y ∧N(Y ) > 2An
(45)

Note that the log-size of the inverse image of this function is

Φn = log2 max
Y

∣∣g−1
n (Y )

∣∣ = log2

(
2An+Q− 1

Q− 1

)
∼ log2(2An)

√
n ∈ O(

√
n logn) ⊂ o(n).

Thus, function sequence g satisfies Proposition 4. One can see that gQ = g◦
n ◦ gn, thus, V [ρ] = g(g◦(V [ρ])), and

we obtain

I(V [ρ]) = I(V ), IS(V [ρ]) ⇐⇒ IS(V [ρ]). (46)

Step 2. Transition V → Ṽ .

Now, denote by Ṽ [ρ] the sequence of channels Ṽn[ρ] = Vl̃|m|l̃|m|...[ρ], where number of l- and m-blocks is q,

and l = ln, m = mn, and q = qn are defined by (43).

The difference between channels Ṽn[ρ] and V n[ρ] is that each l-block is erased. Similarly to the previous step,

transition from V n[ρ] to Ṽn[ρ], i.e., erasing of the l-blocks, can be done by two steps via pipeline of two functions

f◦n and fn, such that Ṽn[ρ] = fn(f
◦
n(Ṽn[ρ])).

Let function f◦n substitute all l-blocks with special erasure symbol ι /∈ Y , if their total length is greater than

2Aql. Similarly to g◦, function sequence f◦ satisfies conditions for Proposition 6.

Let function fn erase all l-blocks after applying function f◦n . Then, the number Φn of possible inputs, cor-

responding to the same output, or, alternatively, the number of possible values of erased l-blocks, is upper-

bounded by
∑⌊2Aql⌋

i=0 |Y ∪ {ι}|i ≤ (|Y| + 1)2Aql+1. Obviously, A and |Y| are constants, and ql ∈ O(n3/4), thus,

log2 Φn ∈ O(n3/4 log2 n) ⊂ o(n), which means that function sequence f satisfies Proposition 4.

The above considerations imply

I(Ṽ [ρ]) = I(V [ρ]), IS(Ṽ [ρ]) ⇐⇒ IS(V [ρ]). (47)

Step 3. Information stability of Ṽ .

Similarly to (40), one can obtain

(1 − εl)
qV q

m[π](yeven|w) ≤ Ṽn[ρ](y
Q
1 |x) ≤ (1 + εl)

qV q
m[π](yeven|w)

where w = f̃n(x) is the input vector x without the l-blocks and the last incomplete block, i.e. f̃n(x) = (x(1), x(2), . . . , x(q)),

x(i) = x
i(m+l)
i(m+l)−m+1. Denote by pn ∈ DXn′ , n′ = qm the marginalized distribution of f̃n(x), given distribution pn

over x:

pn(w) =
∑

x:f̃n(x)=w

pn(x)
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The fact that channel probabilities of Ṽn[ρ] and V q
m[π] are close implies that mutual information densities of

Ṽn[ρ] and V q
m[π] are close too, since

i(Ṽn[ρ], pn, x, y) = log2
Ṽn[ρ](y|x)∑

x′ pn(x′)Ṽn[ρ](y|x′)
≤ log2

(1 + εl)
q · V q

m[π](yeven|w)
(1− εl)q · pn◦V q

m[π](∗, yeven)

= i(V q
m[π], pn, w, yeven) + q log2

1 + εl
1− εl

. (48)

The last term tends to zero with n → ∞, since εl ≤ Ce−D 4
√
n decays exponentially fast and q ∈ O(

√
n). Similarly,

i(Ṽn[ρ], pn, x, y) ≥ i(V q
m[π], pn, w, yeven)− q log2

1+εl
1−εl

, and thus

lim
n→∞

E
[
i(Ṽn[ρ], pn, x, y)− i(V q

m[π], pn, x, yeven)
]
= lim

n→∞
E
[∣∣∣i(Ṽn[ρ], pn, x, y)− i(V q

m[π], pn, x, yeven)
∣∣∣
]
= 0.

Now, let pn be the direct product of q distributions p∗m which are optimal for Vm[π], i.e. let pn(x
q
1) =

∏q
i=1 p

∗
m(xi)

and let pn be any distribution such that f̃n(pn) = pn. Then,

lim
n→∞

E

[
1

n
·
∣∣∣∣∣i(Ṽn[ρ], pn, x, y)−

q∑

i=1

i(Vm[π], p∗m, x(i), yeven)

∣∣∣∣∣

]

= lim
n→∞

E

[∣∣∣∣∣
i(Ṽn[ρ], pn, x, y)

n
− q

n
· I(Vm[π])

∣∣∣∣∣

]
= lim

n→∞
E

[∣∣∣∣∣
i(Ṽn[ρ], pn, x, y)

n
− I(V )

∣∣∣∣∣

]
= 0. (49)

By (46) and (47), I(Ṽ [ρ]) = I(V ). By (49), the channel sequence Ṽ [ρ] satisfies Proposition 2, which implies

IS(Ṽ [ρ]), which by (46) and (47) is equivalent to IS(V ).

VI. CONCLUSION

In this paper, we have focused on channels with synchronization errors, for which the insertions/deletions are

governed by a Markov chain. Specifically, we have shown that if the underlying Markov chain is stationary and

ergodic, then the information capacity of the corresponding channel sequence exists and it is equal to the coding

capacity. This result generalizes the classical result of Dobrushin on the existence of the Shannon capacity for

channels with memoryless synchronization errors. To accomplish this goal, we generalized methods used in [4],

[5] as separate independent propositions. These propositions state that one can apply a function sequence to a

channel sequence, changing neither the coding capacity nor the mutual information capacity of the latter, if the

function sequence has asymptotically small preimage or asymptotically small probability of changing the output.

By applying such function sequences, one can bring the original channel sequence to another channel sequence,

for which the capacity theorem or capacity bounds can be more easily derived, and one can be sure that the coding

capacity / mutual information capacity is not changed under such transformation. The methodology may be useful

for deriving capacity theorems and capacity bounds for other non-trivial channel sequences. The future work can

be done towards generalization of this paper and [10] in order to include simultaneously the state’s randomness

and its dependence on input symbols.
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