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Refractory high-entropy alloys are under consideration for applications where materials are subjected to high
temperatures and levels of radiation, such as in the fusion power sector. However, at present, their scope is
limited because they are highly brittle at room temperature. One suggested route to mitigate this issue is by
alloying with Ti. In this theoretical study, using a computationally efficient linear-response theory based on
density functional theory calculations of the electronic structure of the disordered alloys, we study the nature of
atomic short-range order in these multi-component materials, as well as assessing their overall phase stability.
Our analysis enables direct inference of phase transitions in addition to the extraction of an atomistic, pairwise
model of the internal energy of an alloy suitable for study via, e.g. Monte Carlo simulations. Once Ti is
added into either the NbMoTaW or VNbMoTaW system, we find that there is competition between chemical
phase ordering and segregation. These results shed light on observed chemical inhomogeneity in experimental
samples, as well as providing fundamental insight into the physics of these complex systems.

I. INTRODUCTION

A promising class of high-entropy materials are the refrac-
tory high-entropy alloys, first reported by Senkov et al. in
2010 [1]. These alloys are systems where four or more refrac-
tory elements are alloyed in roughly equal ratios to form a sin-
gle phase solid solution [2]. The prototypical refractory high-
entropy alloys are NbMoTaW and VNbMoTaW [1–3], but
numerous other compositions have been experimentally syn-
thesised, such as MoNbHfZrTi [4], TaNbHfZrTi [5], and Hf-
MoNbTaTiZr [6]. These materials often have enhanced phys-
ical properties compared to their base elements, and are of in-
terest for advanced nuclear applications [7] owing both to their
exceptional mechanical properties at high-temperature [8] and
their outstanding radiation resistance [9]. However, at room
temperature, alloys such as NbMoTaW and VNbMoTaW are
typically brittle [10, 11] limiting their applicability. One sug-
gested route for improvement is to alloy with Ti [10] but ex-
periments find that chemical inhomogeneities emerge when
these systems are processed [11, 12]. In this work we explore
this phenomenon via ab initio computational modelling.

Our approach is based on a perturbative analysis of the in-
ternal energy of the disordered solid solution evaluated via
density functional theory (DFT) calculations. Here we study
the effect of the addition of Ti on the two prototypical re-
fractory high-entropy alloys, NbMoTaW and VNbMoTaW. In
an earlier work [13] where the addition of Ti was not con-
sidered, we found that our modelling approach correctly pre-
dicts that the single phase solid solution for both NbMoTaW
and VNbMoTaW is stable to comparatively low temperatures,
with eventual B2 (for NbMoTaW) and B32 (for VNbMoTaW)
chemical orderings emerging at 559 K and 750 K respectively.
However, in the present study, we find that the addition of
Ti leads to competition between chemical phase ordering and
phase segregation in both of these systems. Furthermore, the

∗ Christopher.Woodgate@warwick.ac.uk
† J.B.Staunton@warwick.ac.uk

temperatures at which chemical ordering/segregation are pre-
dicted to emerge are increased. These results go some way to-
wards explaining the chemical inhomogeneities evident in ex-
perimental samples. Moreover we propose that our accurate,
computationally-efficient modelling approach can accelerate
the exploration of the composition space of high-entropy re-
fractory alloys to find new compositions with desirable phys-
ical properties and to reduce the number of ‘trial and error’
material syntheses and characterisations.

The paper is organised as follows. Section II outlines the
details of our modelling approach. The computational analy-
sis not only enables us to infer order-disorder transitions di-
rectly, but also facilitates extraction of simple, pairwise atom-
istic models suitable for further study via, e.g. Monte Carlo
simulations. Section III presents results for the TixNbMoTaW
and TixVNbMoTaW systems in the region 0 ≤ x ≤ 1 and ex-
amines the complex predicted phase behaviour of these sys-
tems. Because our modelling approach is based on DFT cal-
culations, we also elucidate the origins of chemical ordering
in terms of the underlying electronic structure of these com-
plex materials. Finally, in Section IV, we summarise our key
findings, give an outlook on their implications and outline po-
tential further work.

II. METHODOLOGY

Computational modelling approaches have a crucial role
to play in the process of materials design, discovery, and
optimisation. They can both facilitate understanding of the
phase behaviour and physical properties of existing materi-
als, as well as guide experiment by suggesting novel compo-
sitions and/or processing techniques for new ones. This is
particularly important in the space of high-entropy alloys and
materials, as the vast space of potential compositions makes
large-scale searches experimentally challenging. A number of
methods have been developed and successfully used to study
the phase behaviour of high-entropy alloys. Examples include
semi-empirical approaches such as CALPHAD [14] as well as
those based on DFT calculations, including large-scale super-
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cell studies [15] and fitted inter-atomic interactions [16, 17],
machine learned interatomic potentials [18], and cluster ex-
pansions [19]. Another class of DFT-based methodologies are
based on effective medium theories such as the coherent po-
tential approximation (CPA) [20, 21].

Our approach for modelling the phase behaviour of multi-
component alloys falls into the last of these categories, and has
been discussed extensively in earlier works [13, 22–25], so we
only outline the key details of the theory here. The method-
ology is complementary to other DFT-based modelling tech-
niques, and is based on earlier work on binary alloys [26, 27].
The workflow, a schematic of which is shown in Fig. 1 can be
broken down into four key steps:

1. Electronic Structure. A self-consistent DFT calcula-
tion is performed to model the electronic structure (and
associated internal energy) of the disordered solid so-
lution. This is performed within the Korringa-Kohn-
Rostoker (KKR) formulation of DFT [28, 29], using the
CPA to model the electronic structure of the disordered
solid solution [30, 31].

2. Perturbative Analysis. Using the S(2) theory for mul-
ticomponent alloys [32], which represents a linear re-
sponse theory for the KKR-CPA internal energy of the
disordered solid solution, we perform a perturbative
analysis to understand the dominant atom-atom corre-
lations in the disordered phase.

3. Landau Theory. Application of a Landau-type linear
response theory to an approximate form of the free en-
ergy of the disordered solid solution, where the varia-
tion of the internal energy comes from the perturbative
analysis, we are able to predict both the temperature
of the initial chemical disorder-order transition as well
as its nature in terms of ordered structures and (partial)
atomic site occupancies.

4. Monte Carlo Simulation. From the linear response
calculation, we can extract a simple, pairwise atomistic
model of the internal energy of the system, which en-
ables lattice-based Monte Carlo simulations to be per-
formed to explore the phase space of the system in more
detail.

The above workflow therefore facilitates a thorough analysis
of the phase behaviour of a given system. Although our mod-
elling approach is lattice-based, ongoing work demonstrates
that the on-lattice configurations obtained via Monte Carlo
simulations can be relaxed and/or deformed for use in sub-
sequent supercell studies, for example by training machine-
learned interatomic potentials [33]. We now discuss each of
the above methodological steps in more detail.

A. Electronic Structure: The Internal Energy of the Solid
Solution

Given an underlying Bravais lattice, the configuration of
an alloy can be specified by a set of site occupancies, {ξiα},

Self-consistent DFT
Calculation:

, , ...

Linear-Response
Calculation:

Real-space, pairwise
interactions:

Monte Carlo
simulations:

, , ...

Infer chemical orderings
directly:

(Landau theory)

1.

2.

3.

4.

FIG. 1. Visualisation of the workflow used in this paper for mod-
elling the phase behaviour of a given multicomponent alloy, as dis-
cussed in Sec. II.

where ξiα = 1 if site i is occupied by an atom of species α ,
and ξiα = 0 otherwise. The constraint that every lattice site is
occupied by one (and only one) atom is expressed as

∑
α

ξiα = 1. (1)

We note that vacancies can also be treated in this formalism
by considering them as a separate chemical species.

For a given configuration (and a sufficiently small sys-
tem), the internal energy associated with a configuration,
Eint[{ξiα}], can be evaluated directly via DFT calcula-
tions [34]. However, such calculations are computationally
demanding and this renders direct evaluation of the partition
function and associated thermodynamic quantities challeng-
ing.

In this work, therefore, we will use an alternative descrip-
tion of the configuration of the system by working directly
with the ensemble average of the site-wise configurations, the
so called site-wise concentrations. These are partial atomic
site occupancies defined as

ciα := ⟨ξiα⟩, (2)
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where ⟨·⟩ denotes an ensemble average. Note that by Eq. 1, we
have that 0 ≤ ciα ≤ 1. These site-wise concentrations repre-
sent order parameters classifying potential chemically ordered
phases.

In the limit of high-temperature, where the alloy is disor-
dered, these quantities become spatially homogeneous, i.e. an
atom can occupy any lattice site with equal probability. This
is equivalent to the statement that

lim
T→∞

ciα = cα , (3)

where cα is the overall (total) concentration of species α . It re-
mains to evaluate the average internal energy of a system with
these homogeneous site occupancies, written ⟨Eint⟩[{ciα}].
Such a scheme is provided by the CPA [30, 31] within the
KKR formulation of DFT [29]. The CPA constructs an ef-
fective medium of electronic scatterers whose average scat-
tering properties approximate those of the disordered alloy,
and it has been shown to reproduce successfully many physi-
cal properties of disordered systems. For example, KKR-CPA
calculations have previously been shown to successfully re-
produce the smeared out Fermi surface of the CrCoFeNi high-
entropy alloy [35], as well as a variety of magnetic [36] and
transport [37] properties.

B. Perturbative Analysis and Landau Theory: The S(2)

Theory for Multicomponent Alloys

To assess the energetic cost of perturbations to the disor-
dered solution, we begin with an expression for its Landau
free energy, Ω. In general, this takes the form

Ω =U −T S−µN, (4)

where U is the internal energy, T the temperature, S the en-
tropy, µ the chemical potential(s), and N the number(s) of
particles in the system. For the description of the alloy con-
sidered in this paper, the free energy is approximated via

Ω
(1) = ⟨Eint⟩[{ciα}]−β

−1
∑
iα

ciα lnciα −∑
iα

νiα ciα . (5)

In the above expression, the first term represents the average
internal energy as obtained within the CPA, the second term
represents the so-called entropy of mixing, and the third term
represents chemical potentials which, in principle, can vary
for each chemical species and lattice site. The chemical poten-
tials serve as Lagrange multipliers in the theory and conserve
overall concentrations of each chemical species.

We then make a Landau series expansion of this free energy
about the spatially homogeneous reference state. Writing the
inhomogeneous site occupancies as a perturbation to the ho-
mogeneous system,

ciα = cα +∆ciα , (6)

this series expansion takes the form

Ω
(1)[{ciα}] =Ω

(1) [{cα}]+∑
iα

∂Ω(1)

∂ciα

∣∣∣∣
{cα}

∆c jα

+
1
2 ∑

iα
jα ′

∂ 2Ω(1)

∂ciα ∂c jα ′

∣∣∣∣
{cα}

∆ciα ∆c jα ′ + . . .
(7)

Owing to the homogeneity of the high-temperature reference
state, and because we impose the condition that chemical
fluctuations must conserve the overall concentrations of each
species, the first-order term vanishes [32].

To second order, the change in free energy due to a chemical
perturbation is therefore written

∆Ω
(1) =

1
2 ∑

iα
jα ′

∂ 2Ω(1)

∂ciα ∂c jα ′

∣∣∣∣
{cα}

∆ciα ∆c jα ′ . (8)

The variation of the chemical potentials is not considered rel-
evant to the underlying physics [32], so their derivatives are
set to zero and the second derivative of the free energy can
therefore be expressed as

∂ 2Ω(1)

∂ciα ∂c jα ′
=

∂ 2⟨Eint⟩
∂ciα ∂c jα ′

−β
−1

(
δi jδαα ′

1
c jα ′

)
. (9)

It can be shown that these second derivatives relate directly
to an estimate of the two-point correlation function, i.e. the
atomic short-range order [22, 32]. For notational convenience,
we define a new quantity S(2)iα; jα ′ via

S(2)iα; jα ′ :=
∂ 2⟨Eint⟩0

∂ciα ∂c jα ′
. (10)

A scheme by which to evaluate these derivatives by consider-
ing infinitesimal perturbations to the CPA reference medium
has been considered in detail in Ref. 32 and first implemented
in Ref. [22]. The same implementation is used here.

Due to the underlying crystal lattice, it is convenient to
work with Fourier-transformed variables in a so-called con-
centration wave formalism as pioneered by Khachaturyan [38]
and Gyorffy and Stocks [26]. The site-wise concentrations are
written

ciα = cα +∑
k

eik·Ri∆cα(k), (11)

where k is a wavevector, {Ri} are the positions of the lattice
sites, and ∆ciα(k) are the concentration waves. Eqs. 8 and 9
are then combined and written in reciprocal space as

∆Ω
(1) =

1
2 ∑

k
∑
αα ′

∆cα(k)
[

β
−1 δαα ′

cα

−S(2)
αα ′(k)

]
∆cα ′(k).

(12)
The term in square brackets is referred to as the chemical sta-
bility matrix. Above a disorder-order transition temperature,
the eigenvalues of this matrix are positive for all k. However
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with decreasing temperature, we expect that at some temper-
ature Tus, where ‘us’ is shorthand for unstable, the lowest-
lying eigenvalue of this matrix will pass through zero for
some wavevector kus. The associated chemical ordering is
described by the eigenvector ∆cα(k). For example, for a bi-
nary alloy, the B2 ordering visualised in Fig. 2 is described
by a wavevector kus = (0,0,1) and equivalent, with a chemi-
cal polarisation ∆cα = 1/

√
2(1,−1). (Convention is that the

chemical polarisation be normalised to be a unit vector.) Sim-
ilarly, a B32 ordering is described by a concentration wave
with the same chemical polarisation, but this time with a
wavevector of kus = (1/2,1/2,1/2) and equivalent. Finally,
the case of phase segregation is described by a wavevector of
kus = (0,0,0), representing a concentration wave of infinite
length.

C. Monte Carlo Simulations

In addition to the Landau theory used to infer chemical or-
derings directly, it is possible to map the results of the S(2)

calculation back to a simple, pairwise atomistic model, the
Bragg-Williams model [39, 40], which works directly with
the discrete site-occupancies. The Hamiltonian for the Bragg-
Williams model takes the form

H ({ξiα}) =
1
2 ∑

i, j
∑
αα ′

Viα; jα ′ ξiα ξ jα ′ . (13)

Given a Hamiltonian of this form, it can be shown that
Viα; jα ′ = −S(2)iα; jα ′ , making the S(2)s an unambiguous best
choice of parameter to use in this model. This model is suit-
able for study via lattice-based Metropolis Monte Carlo sim-
ulations using Kawasaki dynamics [41] (i.e. only permitting
swaps of atoms) to conserve overall concentrations of each
species. The algorithm picks two lattice sites at random and
computes the change in energy, ∆H, realised by swapping the
site occupancies. If ∆H < 0 the move is accepted uncondition-
ally, while if ∆H ≥ 0 the move is accepted with probability
e−β∆H . This is repeated until equilibrium is achieved.
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FIG. 2. Visualisations of the B2 and B32 ordered structures imposed
on the bcc lattice. A B2 ordering in an equiatomic binary system is
described by a wavevector kus = (0,0,1) and equivalent, with chem-
ical polarisation ∆cα = 1/

√
2(1,−1). The B32 ordering is described

by a concentration wave with the same chemical polarisation, but this
time with a wavevector of kus = (1/2,1/2,1/2) and equivalent.

Once a simulation has been equilibrated at a given tem-
perature, we extract two key quantities of interest. To quan-
tify atomic short-range order in our simulations, we use the
Warren-Cowley atomic short-range order parameters [42, 43],
denoted α

pq
n and defined as

α
pq
n = 1− Ppq

n

cq
, (14)

where n refers to the nth coordination shell, Ppq
n is the condi-

tional probability of an atom of type q neighbouring an atom
of type p on coordination shell n, and cq is the overall con-
centration of atom type q. When α

pq
n > 0, p-q pairs are dis-

favoured on shell n, while when α
pq
n < 0 they are favoured.

The value 0 corresponds to the ideal, random, solid solution.
The second quantity of interest is a measure of the con-

figurational contribution to the specific heat capacity of the
system, estimated via the fluctuation-dissipation theorem. At
thermodynamic equilibrium, this theorem allows us to esti-
mate the specific heat capacity (SHC) as

C =
1

kbT 2

(
⟨E2⟩−⟨E⟩2) , (15)

to obtain our SHC curves. A combined plot of the Warren-
Cowley order parameters and specific heat capacity as a func-
tion of temperature for a given simulation facilitates under-
standing of the phase behaviour of a given system. In addi-
tion, it is possible to use sample configurations drawn from
these lattice-based Monte Carlo simulations as inputs to other
modelling approaches to predict materials properties.

III. RESULTS AND DISCUSSION

A. Electronic Structure

We begin by performing a self-consistent DFT calculation
to model the electronic structure of the disordered solid solu-
tion. We use the all-electron HUTSEPOT code [44] to con-
struct the self-consistent potentials of the KKR-CPA formula-
tion of DFT. We perform spin-polarised, scalar-relativistic cal-
culations within the atomic sphere approximation (ASA) [45],
employing an angular momentum cutoff of lmax = 3 for ba-
sis set expansions, a 20× 20× 20 k-point mesh for integrals
over the Brillouin zone, and a 24 point semi-circular Gauss-
Legendre grid in the complex plane to integrate over valence
energies. We use the local density approximation and the
exchange-correlation functional is that of Perdew-Wang [46].
bcc lattice parameters for NbMoTaW and VNbMoTaW are
set at 3.226 Å and 3.183 Å respectively, consistent with
their experimental values [1, 11]. For TiNbMoTaW and
TiVNbMoTaW (i.e. the case x = 1) these values are set at
3.240 Å and 3.209 Å respectively, again consistent with exper-
imentally determined values [10]. For intermediate values of x
we interpolate linearly between these using Vegard’s law [47].

Previous CALPHAD modelling has suggested the possibil-
ity of the emergence of an hcp phase at low temperatures with
increasing Ti concentration [11]. To investigate this aspect,
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FIG. 3. Comparison of the total and species-resolved density of states for different values of x for the disordered solid solution modelled within
the coherent potential approximation for both TixNbMoTaW and TixVNbMoTaW. The Fermi level, EF , is indicated by a vertical, grey, dashed
line. The 3d elements V and Ti have species-resolved curves which differ substantially in character from the 4d/5d elements Nb, Mo, Ta, and
W, suggesting the potential for stronger ordering tendencies.

we perform a transformation to the hcp structure conserving
the overall volume-per-atom and compute the difference in to-
tal energy per atom between the bcc and hcp structures as a
function of x, the results of which are visualised in the Sup-
plemental Material [48]. Within the ASA, using the CPA to
average over disorder, we find that the bcc structure is consis-
tently favoured over the hcp structure in the region 0 ≤ x ≤ 2,
i.e. up to and beyond the range of x considered in this paper.
We therefore only consider the alloy on a bcc lattice for the
remainder of this paper.

Proceeding, in Fig. 3 we visualise the total and species-
resolved density of states (DoS) for both systems for three
indicative values of x. The total DoS is given by the weighted
average of the species-resolved curves. It can be seen that
pairs of chemical species which are isoelectronic, e.g. Nb/Ta
and Mo/W, have species-resolved curves which lie almost on
top of one another, which we expect to lead to weak correla-
tions between these pairs of elements. Compared to the 4d and
5d elements, the two 3d elements considered here, V and Ti,
can be seen to have narrower d bands with significantly differ-
ent profiles around EF , which we expect to lead to strong or-
dering tendencies between these and other elements, as noted
in our earlier study [13].

Another important feature to note is the charge-transfer be-
tween elements. In an alloy system where there is an atomic
size discrepancy, where the lattice parameter sits somewhere
between that of the pure elements (approximately in accor-

dance with Vegard’s law), there is often a transfer of charge
from the large atoms to the smaller ones, corresponding to the
charge density associated with the ‘large’ atom spilling over
into the Winger-Seitz cell associated with the ‘small’ atom. In
our calculations, we find that this effect is generally strongest
for V and Ta, with V gaining charge and Ta losing it. For ex-
ample, in the five-component VNbMoTaW, V (proton number
23) has an associated average charge per atom of 23.177 e,
while Ta (proton number 73) has an associated charge per-
atom of 72.901 e. This is consistent with V being the ‘small-
est’ atom and Ta one of the ‘largest’ for the systems consid-
ered here.

B. Perturbative Analysis

Proceeding, we perform a linear response calculation to as-
sess the dominant atomic short- and long-range order in these
systems, as outlined in Section II. Visualised in Fig. 4 are
eigenvalues of the chemical stability matrix around the irre-
ducible Brillouin zone (IBZ) of the bcc lattice, evaluated at a
temperature of T = 1000 K. Note that, for an s-species alloy,
there are s−1 eigenvalues due to the constraint that the overall
concentration of each species be conserved.

To interpret these concentration wave modes, there are
three key features to consider. The first is the shape of the
modes, as these tell us about the nature and strength of atom-
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FIG. 4. Plots of the eigenvalues of the chemical stability matrix, [β−1Ψ−1(k)]αα ′ , around the irreducible Brillouin Zone of the body-centred
cubic lattice, evaluated at T = 1000 K. Without the addition of Ti, the minima lie at H and P, indicative of B2 and B32 ordering, respectively.
However, with increasing Ti concentration, for both systems, an additional minimum at Γ, indicative of phase segregation, can be seen to
emerge.

System k-point Eigenvalue (eV) ∆cTi ∆cV ∆cNb ∆cMo ∆cTa ∆cW

TiNbMoTaW H 0.290 −0.107 −0.361 0.636 −0.553 0.386
Γ 0.297 −0.784 0.168 −0.163 0.508 0.271
P 0.227 −0.828 −0.011 0.101 0.246 0.493

TiVNbMoTaW H 0.368 −0.252 0.167 −0.361 0.589 −0.530 0.388
Γ 0.402 −0.611 −0.331 0.138 −0.144 0.589 0.360
P 0.253 −0.605 −0.487 0.099 0.172 0.314 0.508

TABLE I. Comparison of eigenvalues and their associated chemical polarisations for TixNbMoTaW and TixVNbMoTaW for x = 1. All are
evaluated at T = 1000 K. For both systems, for the special points H, Γ, and P (indicative of B2 ordered, phase separation, and B32 ordering,
respectively), the eigenvalues are close in value, indicative of competition between different concentration wave modes. At the Γ point, the
chemical polarisation is dominated by Ti, suggesting a tendency for Ti to segregate away from other elements.

atom interactions in the disordered phase. Strongly varying
modes are associated with strong interactions, while weakly
varying modes are associated with chemical species interact-
ing weakly. The second feature is the location of the minima,
as these tell us about the dominant correlations in the disor-
dered phase, and to infer the likely chemical ordering. Finally,
it is necessary to know the chemical polarisation of a mode,
i.e. ∆cα to understand the chemical species to which it re-
lates. Some sample eigenvalues, and chemical polarisations
at a few high-symmetry points of the IBZ for TiNbMoTaW
and TiVNbMoTaW are provided in Table I, while the remain-
ing data can be found in the repository associated with this

publication.

Considering first the TixNbMoTaW system, the top row of
Fig. 4, we see that for the case x = 0 we have three clear
modes emerging. The first is a mode dipping at H and peak-
ing at Γ, which is associated with B2 ordering tendencies and,
in concentration space, is polarised to suggest that Nb and
Ta will sit on one sublattice, while Mo and W will sit on the
other. The two other modes present are near-flat, and are as-
sociated with the isoelectronic pairs Nb-Ta and Mo-W, which
are very weakly correlated in our calculations. On adding Ti
by increasing x, however, we see the emergence of a new,
strongly varying mode, introducing competing minima at P
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System Ti Concentration (x) Tus (K) kus ( 2π

a ) ∆cTi ∆cV ∆cNb ∆cMo ∆cTa ∆cW

TixNbMoTaW 0 557 (0,0,1) −0.421 0.566 −0.568 0.424
0.5 584 (1/2,1/2,1/2) −0.725 −0.168 0.047 0.217 0.629
1 673 (1/2,1/2,1/2) −0.828 −0.011 0.101 0.246 0.493

TixVNbMoTaW 0 698 (1/2,1/2,1/2) −0.828 −0.005 0.090 0.247 0.495
0.5 726 (1/2,1/2,1/2) −0.397 −0.656 0.054 0.159 0.298 0.542
1 709 (1/2,1/2,1/2) −0.605 −0.487 0.099 0.172 0.324 0.507

TABLE II. Predicted ordering temperatures (Tus), wavevectors (kus), and chemical polarisations for the TixNbMoTaW and TixVNbMoTaW
systems for x = 0, 0.5, 1. The addition of Ti generally increases predicted ordering temperatures on account of strong correlations between Ti
and other elements.

and Γ, associated with B32 ordering and phase segregation
respectively. Notably, the chemical polarisation of the con-
centration wave mode at the Γ point, as shown in Table I,
suggests Ti and Mo segregating from Nb, Ta and W, which
is entirely consistent with the experimentally observed segre-
gation in Ref. [11]. These results therefore confirm that the
addition of Ti produces competing interactions in this system,
with the potential for a variety of chemical orderings and/or
phase segregation.

Proceeding, we move on to the results for the
TixVNbMoTaW alloy, i.e. the bottom row of Fig. 4.
For the case x = 0, there is an additional mode compared to
NbMoTaW, which dips at P and peaks at H, and is associated
with a B32 ordering between V and the other elements
present. This was analysed in detail in our earlier work [13]
and is associated with the large charge-transfer between V
and the other elements present. Again, upon the addition of
Ti, however, a new, strongly varying mode materialises and
introduces a competing minimum at the Γ point, indicative of
phase segregation. As shown in Table I, this minimum has a
chemical polarisation suggesting Ti, V, and Mo segregating
away from Nb, Ta, and W, again consistent with the exper-
imental data [10, 12]. As before, we interpret these data as
suggesting that Ti does not mix well with the other elements
present and introduces competing chemical interactions in the
system.

For each of the considered systems, via application of
the Landau theory outlined in Sec. II, we estimate a transi-
tion temperature by computing the temperature for which the
lowest-lying eigenvalue passes through zero. We also provide
its chemical polarisation and associated wavevector, as these
elucidate the nature of the ordered phase. These results are
tabulated in Table II. In summary for both systems, increasing
Ti concentration leads to higher predicted ordering tempera-
tures, and alters the chemical polarisation and/or wavevector
describing the chemical ordering. It is evident that Ti drives
strong atom-atom correlations in these systems.

Both the temperature and nature of our predicted B2 order-
ing in NbMoTaW and predicted B32 ordering in VNbMoTaW
are in good agreement with other DFT-based computational
studies [16–19], including those using GGA functionals, and
we take this as evidence that the LDA adequately captures the
relevant physics in these systems. We also note that our re-
sults are not hugely sensitive to the choice of lattice parameter.

For example, for the five-component VNbMoTaW, for a 2%
decrease in lattice parameter, we predict a slightly increased
ordering temperature of 740 K, while for a 2% increase in lat-
tice parameter, we predict a slightly decreased ordering tem-
perature of 627 K. (This effect is the origin of the small nu-
merical difference between ordering temperatures predicted
in this study for VNbMoTaW and NbMoTaW, using experi-
mental lattice parameters, and the ordering temperatures ob-
tained in Ref. [13], using LDA-optimised lattice parameters.)
Despite the modest changes in ordering temperature, the pre-
dicted chemical ordering is still into the B32 structure, and
the chemical polarisations remain very numerically close to
those predicted at the experimental lattice parameter. These
findings therefore verify the robustness of our results.

C. Monte Carlo Simulations

From the linear response calculations performed in recip-
rocal space, we are able to backwards Fourier transform and
recover a pairwise, real-space interaction, as described in Sec-
tion II. Our fitted interactions are provided in the database as-
sociated with this study and are tabulated in the Supplemental
Material [48]. We find that a fit to the first four coordina-
tion shells of the bcc lattice captures the reciprocal space data
with acceptable accuracy, and that interactions are strongest
on the first two coordination shells. Typically, we find that
the strongest interactions are between Ti, V, and the other el-
ements present, while 4d/5d pairs such as Nb-Ta and Mo-W,
which are isoelectronic, interact weakly. Our fitted interac-
tions exhibit clear dependence on system composition, which
reflects the importance of a full treatment of the multicom-
ponent system rather than extrapolating interactions from bi-
nary subsystems. However, typically, the sign and order of
magnitude of atom-atom pair interactions remains consistent
across the range of Ti concentrations considered. It should be
noted that the linear response results of Sec. III B include the
Onsager correction of Ref. [32], which serves to restore im-
portant on-site sum rules concerning atomic short-range order
and charge and drives down estimated transition temperatures.
However, the simple pairwise form of Eq. 13 does not permit
inclusion of an Onsager correction directly. Inclusion of the
Onsager correction in the atomistic simulations is a subject of
ongoing study.
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n , and specific heat capacity, C, for TixNbMoTaW as a function of temperature,

calculated from an ensemble of lattice-based Monte Carlo simulations. The top row shows atom-atom correlations excluding Ti, while the
bottom row shows correlations between Ti and other elements. The addition of Ti can be seen to introduce an additional Ti-driven ordering
compared to the NbMoTaW system.
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introduce an additional Ti-driven ordering compared to the VNbMoTaW system.

Proceeding, we performed lattice-based Monte Carlo sim- ulations (simulated annealing) of both the TixNbMoTaW and
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TixVNbMoTaW systems for x = 0, 0.5, 1. All simulation cells
consisted of a system of 16×16×16 cubic bcc unit cells for
a total of 8192 atoms in the simulation cell. At each temper-
ature, following an initial burn-in period to achieve equilib-
rium, statistics were gathered over a run of 104 Monte Carlo
steps per atom. All data were averaged across an ensemble
of 10 simulations, which enables an extraction of an uncer-
tainty on key quantities such as the specific heat capacity of
the simulation.

Visualised in Figures 5 and 6 are plots of the Warren-
Cowley ASRO parameters at nearest-neighbour distance and
specific heat capacity as a function of temperature for
TixNbMoTaW and TixVNbMoTaW respectively. (Warren-
Cowley ASRO parameters at second-nearest neighbour dis-
tance are provided in the supplementary material [48].) The
top row of panels for each figure shows Warren-Cowley
parameters excluding Ti, while the bottom row shows the
Warren-Cowley parameters for correlations between Ti and
the other elements present.

Considering first the results for TixNbMoTaW (Fig. 5), we
see that there is a clear trend of increasing transition temper-
ature with increasing Ti concentration, as the initial peak in
SHC is moved to higher temperatures. In the NbMoTaW sys-
tem, as discussed in our earlier work [13], the initial peak
in the SHC is associated with a B2 ordering, with Nb and
Ta atoms preferentially sitting on one sublattice, and Mo and
W atoms preferentially sitting on the other. This predicted
B2 ordering is in good agreement with other computational
studies of this system [16–18, 21]. The peak in SHC as-
sociated with the B2 ordering is maintained as Ti is added
to the system, but a new, additional peak at higher temper-
atures emerges, associated with correlations between Ti and
the other elements present. In particular, in our simulations,
Ti favours pairing with W, and avoids Mo, Ta, and Nb. These
results are consistent with the earlier linear response analy-
sis suggesting that the introduction of Ti produces competing
interactions and eventual phase segregation in this system.

Moving on to the results for the senary TixVNbMoTaW
system (Fig. 6), we see a similar picture emerging. Without
Ti present, there is known to be emergent B32-like ordering
in this system [13, 19], which is detected in both our linear
response calculation and Monte Carlo simulations, indicated
here by the peak in SHC between 500 and 750 K. As for the
TixNbMoTaW system, however, the introduction of Ti pro-
duces an additional peak in the SHC curves at higher temper-
ature, which is dominated by correlations between Ti and the
other elements present. In particular, our modelling suggests
that, at nearest-neighbour distance, Ti-W pairs are favoured,
while Ti-V pairs are disfavoured.

IV. CONCLUSIONS

In summary, we have used a perturbative analysis based
on DFT calculations of the internal energy of the disordered
solid solution to examine atomic ordering tendencies in the
TixNbMoTaW and TixVNbMoTaW refractory high-entropy
alloys. From the perturbative analysis, we have fitted a pair-

wise, real-space interaction and explored the phase space fur-
ther using Monte Carlo simulations. We have also discussed
the origins of the dominant atom-atom correlations in terms
of the materials’ underlying electronic structure.

When Ti is not present (i.e. the case x = 0) it is found that
both NbMoTaW and VNbMoTaW form single-phase solid so-
lutions down to relatively low temperatures, with predicted
disorder-order transition temperatures of 557 K and 698 K
respectively. The predicted transitions for these systems are
chemical orderings, B2 and B32 respectively, and no signifi-
cant phase segregation is expected. These results are consis-
tent with both experimental and theoretical literature, as well
as with our own earlier study [13].

However, with increasing Ti concentration (i.e. the case x>
0) it is found that strong atom-atom correlations emerge in the
system. This leads to competition between phase segregation
and phase ordering, with the perturbative analysis suggesting
that Ti and Mo (and, to a lesser extent, V) tends to segregate
from Nb, Ta, and W. This effect is amplified with increasing
Ti concentration.

These results shed light on the complex phase behaviour of
these technologically relevant high-entropy alloys, as well as
giving insight into the physical origins of the dominant atom-
atom correlations in the solid solution, thus demonstrating
the efficacy of this methodology. In future, we hope that our
computationally efficient modelling approach can be used for
further exploration of the space of high-entropy alloys and
materials, and guide experiments towards new compositions
with desirable physical properties.
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