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When two active Brownian particles collide, they slide along each other until they can continue
their free motion. For persistence lengths much larger than the particle diameter, the directors
do not change, but the collision can be modeled as producing a net displacement on the particles
compared to their free motion in the absence of the encounter. With these elements, a Boltzmann–
Enskog-like kinetic theory is built. A linear stability analysis of the homogeneous state predicts a
density instability resulting from the effective velocity reduction of tagged particles predicted by the
theory.

Introduction. Non-inertial self-propelled active parti-
cles, even when the dominant interaction between parti-
cles is purely repulsive, have a natural tendency to clus-
ter [1–8]. Qualitatively, the mechanism is quite simple.
When two particles meet, they remain in contact for a
finite time, during which they point in roughly constant
directions. If the particle density ρ is high enough, during
the time they remain in contact and before one of them
changes its direction and escapes, more particles can ar-
rive, becoming the seed of a cluster. That is, clustering
is a direct consequence of persistence in motion and ex-
cluded volume. Active Brownian particles (ABP) [9–11]
is an ideal model to test this hypothesis. Here, particles
move persistently at constant speed V along directors
that change slowly by rotational diffusion with coefficient
Dr, and interact only by excluded volume. The equations
of motion for the position ri and the director n̂i of the
particle i are

ṙi = V n̂i + Fi, ˙̂ni =
√
2Dr ξi(t)× n̂i, (1)

where ξi are uncorrelated white noises and Fi the hard-
core interparticle force acting on i. For the case of spheri-
cal ABP with diameter σ, despite the absence of interpar-
ticle attraction, persistence was indeed found to induce
clustering [3, 4, 8]. Dimensional analysis and simulations
indicate that the relevant control parameters in d spatial
dimensions are ρ̃ = ρσd (which is proportional to the vol-
ume fraction) and the persistence length ℓ = V/(σDr),
also called the active Péclet number. Clustering takes
place for high ρ̃ and ℓ [4, 8, 12–14].
A theoretical framework to describe the clustering in-

stability is the so-called motility induced phase sepa-
ration (MIPS), which states that the effective particle
velocities are reduced due to particle encounters, which
turn out to be a decreasing function of the local density
Veff(ρ) [15, 16]. Then, if fluctuations create a density ex-
cess in a particular region, the particles there will move
at a lower speed, implying that the incoming diffusive
particle flux will be greater than the outgoing one, creat-
ing a mechanism for instability. This model allows for a
hydrodynamic-like description of the density and polar-
ization fields, where it has been shown that in the limit of

very large ℓ the density mode becomes unstable akin to
spinodal decomposition if −∂Veff

∂ρ > Veff/ρ. That is, if the

velocity reduction is sufficiently drastic [15, 16]. For fi-
nite persistence lengths, corrections to this prediction ap-
pear, and the instability develops only for ℓ greater than
a threshold, in agreement with simulations [16]. Non-
equilibrium thermodynamic formulations allow to obtain
the binodal curves besides the spinodals [16–20].

Microscopically, the MIPS instability has been derived
for lattice models, where it is possible to write the sys-
tem dynamics in terms of a master equation [2]. With
the usual approximation of no correlations, MIPS is pre-
dicted to occur for analogous conditions as for ABP. For
ABP, the MIPS explanation is realized by noting that
hard-core collisions cause particles to take longer to travel
a distance, i.e., the effective velocity is reduced by colli-
sions. In Ref. [21], for large spatial dimensions, d ≫ 1, a
kinetic-theoretic analysis allowed to compute the effective
velocity reduction, obtaining Veff = V (1 − ρ/ρcr), where
ρcr is a characteristic density that depends on d. Also,
using a mean-field approximation, the same dependence
for Veff was found for ABP, although no analytical deriva-
tion of ρcr was made [22]. In Ref. [23], hydrodynamic
equations showing MIPS were derived from a mean-field
kinetic theory for inertial ABP.

Despite its importance, a complete microscopic deriva-
tion of MIPS for ABP has not yet been obtained. Here,
we present a kinetic theory description of ABP in the
large persistence regime, from which we derive the con-
ditions for MIPS to occur with a clear and identifiable
mechanism for the reduction of the effective velocity.
Kinetic theory is a powerful tool to coarse-grain micro-
scopic models to obtain macroscopic equations for a re-
duced number of relevant fields (hydrodynamic-like equa-
tions) [24]. In the case of active matter, kinetic equations
have been successfully used in the low density limit for
active particles presenting short-range aligning interac-
tions [25–30]. For microswimmers moving in a fluid the
interactions are mediated by the fluid and become long-
range. In this case, a mean-field approximation, anal-
ogous to that used in plasma physics, has been used
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to study the instabilities that appear in these suspen-
sions [31, 32] and the effects of fluctuations [33]. Also, a
kinetic analysis of the interactions of the swimmers with
the fluid and among themselves has been used to charac-
terize the rheology of bacterial suspensions [34, 35]. The
case of ABP is more challenging for the construction of a
kinetic theory, because the interactions are short ranged,
but due to persistence, particles remain in contact for fi-
nite time and the usual concept of a collision is difficult to
visualize. Here, however, we show that it is indeed pos-
sible to formulate a kinetic description of ABP at mod-
erate densities and large ℓ, with collision events having
well-defined pre and postcollisional states. The kinetic
equation will be presented in general for d spatial dimen-
sions, but the explicit calculations will be performed in
two dimensions. Finally, we want to emphasize that ABP
have become a prototype for active matter because of its
theoretical simplicity, the possibility to perform efficient
simulations, and because, besides showing clustering, this
model accurately describes the properties of many exper-
imental realizations of non-inertial active matter such as
Janus colloids [7, 36–38], Quincke rollers [39, 40], or ac-
tive droplets [41], just name just a few. The construction
of a kinetic theory for ABP has, therefore, the possibility
to help in the theoretical description of different phenom-
ena shown by active matter.

Effective collision theory for active Brownian particles.
When two ABP meet, steric repulsion prevents them
from continuing their free motion and they begin to slide
in contact with each other. That is represented in Fig. 1:
two particles moving with velocity directors n̂1 and n̂2,
get in contact at positions marked by light yellow and
light green disks. They start to slide around each other
until they can detach again, indicated with dark yellow
and dark green disks. Such condition is mathematically
satisfied when (n̂1 − n̂2) · (r1 − r2) = 0, being ri the po-
sition of the particle i = 1, 2. Trajectories displayed by
solid black lines, while dotted lines would be the trajec-
tories without the collision. The duration of this collision
process tcol is of the order of σ/V . Then, in the regime
of large persistence lengths, ℓ ≫ 1, the directors have
hardly changed, allowing us to make the approximation
that the directors remain constant in the process. What
changes are the particle positions. If we call rinii the par-
ticle positions when they first meet, rendi the positions
when they depart, and ∆0

i = V n̂itcol, the distance trav-
elled if the collision had not occurred, a collision results
in net displacements ∆i = rendi − rinii −∆0

i . Then, a col-
lision can be modeled as an instantaneous process where
the directors do not change, but the positions change as
ri → ri +∆i (depicted in Fig. 1).

It is possible to find an explicit expression for the dis-
placements in terms of the particle directors and the unit
vector σ̂ pointing from particle 1 to 2 at the beginning
of the collision. The calculation (see the Supplemental
Material [42]) consists of solving the equation of motion

n̂1

n̂2

∆1

∆2

FIG. 1. Scheme of an effective collision for particles 1 (orange)
and 2 (green). Directors n̂1,2 are indicated by red arrows. The
light colored circles show the initial state of the collision, while
the dark colored circles show the state when the particles start
to depart. The solid black lines show the actual trajectories
up to the point of departure. The trajectories that the parti-
cles would had have followed without the collision are shown
as black dotted lines. Finally, blue arrows show the effective
displacements ∆1,2 caused by the collision . For simplicity,
the figure only shows the case where n̂2 = −n̂1, in which case
the center of mass remains fixed.

of the two particles with an additional normal force to
maintain the impenetrability condition. The results are
that tcol = σ

V |n̂2−n̂1| log | tan(θ/2)|, with θ the angle be-

tween σ̂ and n̂2 − n̂1, and

∆1 = −∆2 = −σ
σ̂end − σ̂

2
− V∆tcol

n̂1 − n̂2

2
, (2)

= −σ

2

[
σ̂end − σ̂ − log | tan(θ0/2)|

n̂1 − n̂2

|n̂2 − n̂1|

]
. (3)

Here, σ̂end is the unit vector from 1 to 2 at the end of the
collision, which is in the same plane as σ̂ and (n̂2 − n̂1),
and perpendicular to the latter. Note that although the
system does not obey Galilean invariance, the displace-
ments for the colliding particles are reciprocal. The colli-
sion time tcol diverges for head-on collisions (θ = π), but
it is an integrable divergence, giving finite results for the
relevant calculations below.
Average velocity reduction. For a tagged particle, the

displacement has a component perpendicular to its direc-
tor that contributes to diffusion and mixing. More im-
portantly for the purpose of understanding MIPS, there
is a component parallel to the director ∆∥ = ∆1 · n̂1,
which we show below to be negative on average. There-
fore, the effective particle velocity is reduced as a result
of collisions.
Before proceeding to derive the full kinetic theory, we

present some elements of the theory by computing in a
homogeneous system the average parallel displacement
rate due to collisions, ⟨d∆∥/dt|coll⟩. Let i = 1 be the
tagged particle. For the collisions with particle 2, we
assume the molecular chaos hypothesis for the precolli-



3

sional states, corrected with the static pair correlation
function at contact χ, as in the Enskog theory for mod-
erately dense gases. That is, the collision rate for the two
particles is χ(ρ)f(n̂1)f(n̂2)|V σd−1(n̂2− n̂1) · σ̂|Θ[−(n̂2−
n̂1) · σ̂], where f is the distribution function. The factor
in absolute value represents the collision rate, which is
proportional to the velocity V multiplied by the effec-
tive cross section. Finally, Θ is the Heaviside step func-
tion to select particles that are approaching [24]. As-
suming an equilibrium distribution in two dimensions,
f(n̂) = ρ/(2π), after integrating over all directions of n̂2

and σ̂, we obtain ⟨d∆∥/dt|coll⟩ = −ρχπσ2V/4 (see the
Supplemental Material), which, as anticipated, is nega-
tive, indicating that collisions reduce the effective veloc-
ity of a particle to

Veff = V (1− ρχπσ2/4). (4)

The spinodal density ρ∗ for the MIPS instability is
given by the condition −∂Veff

∂ρ = Veff/ρ [15, 16], which

upon substitution of Eq. (4) reads

ρ∗σ2 [χ(ρ∗) + ρ∗χ′(ρ∗)/2] = 2/π, (5)

with χ′ = dχ/dρ, assuming that χ depends on the local
density. To evaluate Eq. (5), it is necessary to know the
value of χ, but it has not been determined for ABP [43].
Therefore, we have to rely on expressions valid for elastic,
passive, particles. The first approach can be to neglect
correlations, χ = 1, approximation valid for very low
densities. In this case, Eq. (5) gives ρ∗σ2 = 2/π ≈ 0.64,
which is quite large, in the range of high densities and
near close packing, ρmax = 2/(

√
3σ2). Then, the as-

sumption of no correlations is hard to justify. It is then
necessary to use an expression for χ valid at moderate
densities, such as that of Ref. [44], for hard disks in equi-
librium χhd = (1− 7πρσ2/64)/(1− πρσ2/4)2. With this
expression, the spinodal density is ρ∗σ2 ≈ 0.32 (area
fraction ϕ∗ = πρ∗σ2/4 ≈ 0.25), which is in the region
of moderate densities where χhd is expected to be valid.
The comparison with the simulation results for the spin-
odal curves is excellent. Simulations of ABP with hard
disk interactions, Refs. [13, 45, 46], predict ϕ∗ ≈ 0.25
for infinitely large ℓ. Other authors carry out simula-
tions for ABP interacting with softer potentials (see, e.g.,
Refs. [12, 14, 47]) predicting ϕ∗ ≈ 0.30− 0.35. Softer po-
tentials delay the MIPS transition, that is, the spinodal
line moves to higher densities [48, 49]. In both cases the
agreement with our theory is excellent.

Kinetic theory. A kinetic theory that can be analyzed
more formally to study MIPS, can be derived following
the ideas presented above. In absence of collisions, the
distribution function evolves purely by the effects of free
particle motion and rotational diffusion. Collisions can
be included in the kinetic equation in a complete analogy
to the Boltzmann–Enskog equation for moderately dense
gases, except that instead of changing velocities, here

each collision has the effect of displacing particles by an
amount ∆i. Thus the equation for f(r1, n̂1, t) reads

∂f

∂t
+ V n̂1 ·

∂

∂r1
f = Dr∇2

n̂1
f + J [f ]. (6)

The first three terms, up to the Laplace–Beltrami oper-
ator ∇2

n̂1
, are standard to account for the free streaming

and rotational diffusion of the particles [9–11, 26, 30, 31,
34]. The collisional term J we propose is written, as in
the Boltzmann–Enskog equation, as the difference of a
gain and a loss term,

J [f ] =

∫
χ(ρ(r′1 + r′2)/2)f(r

′
1, n̂1)f(r

′
2, n̂2)

× |V σd−1(n̂2 − n̂1) · σ̂|Θ[−(n̂2 − n̂1) · σ̂]δ(r′2 − r′1 − σσ̂)

× [δ(r1 − r′1 −∆1)− δ(r1 − r′1)]dr
′
1dr

′
2dn̂2dσ̂. (7)

The loss term, with the factor δ(r1−r′1), indicates that a
particle with position r1 and director n̂1 collides with a
partner at the previously given rate, resulting in a de-
crease of f(r1, n̂1, t). The gain term, with the factor
δ(r1 − r′1 − ∆1) accounts for the increase in f(r1, n̂1, t)
due to a particle located at r1−∆1 colliding with a part-
ner such that after the collision it ends at r1 with director
n̂1. Both collision terms have the factor χ evaluated at
the middle position of the two colliding particles.
The subtraction of the two Dirac deltas in Eq. (7) rep-

resents the instantaneous particle teleportation at colli-
sions, concept that is at the basis of the effective colli-
sion theory presented here. It is for the mass, the equiv-
alent of the collisional transfer of momentum and en-
ergy for hard sphere systems, where these quantities are
instantaneously exchanged between particles in a colli-
sion. As noted by Irving and Kirkwood, collisional trans-
fers imply that momentum and energy are not locally
conserved. However, by assuming that the momentum
and energy flow along the line connecting the particle
centers, it is possible to define local stress tensors and
heat fluxes [24, 50]. Here we proceed analogously. For
that, we note that we can write δ(r − ra) − δ(r − rb) =
−∇α

∫ rb
ra

δ(r−s)dsα, where summation over repeated in-
dices is used. With this expression, the collision term can
be written as a divergence of a vector field, denoted by
G(r, n̂, t), with the form,

J [f ] = −∇αGα(r1, n̂1, t) = −∇α

[ ∫
χ(ρ(r′1 + r′2)/2)

×f(r′1, n̂1)f(r
′
2, n̂2)|V σd−1(n̂2− n̂1) · σ̂|Θ[−(n̂2− n̂1) · σ̂]

× δ(r′2 − r′1 − σσ̂)

∫ r′1+∆1

r′1

δ(r1 − s)dsαdr
′
1dr

′
2dn̂2dσ̂

]
.

(8)

With this expression, integrating Eq. (6) over n̂1 gives
the mass conservation equation

∂ρ

∂t
= −∇ · J, (9)
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where

ρ(r, t) =

∫
f(r, n̂, t) dn̂, (10)

J(r, t) = V

∫
f(r, n̂, t)n̂ dn̂+

∫
G(r, n̂, t) dn̂ (11)

are the density and the mass flux vector, respectively.
Linear perturbation and MIPS. Having derived the ki-

netic equation for ABP, we now proceed to study the sta-
bility of the homogeneous state to determine if MIPS is
well described by this theory. For simplicity, we consider
the two-dimensional case. First, it is easy to verify by
direct substitution that the homogeneous and isotropic
state, described by f0 = ρ/(2π), is a stationary solution
of the kinetic equation. Since the kinetic equation is ho-
mogeneous in space, we can use spatial Fourier modes
for the linear stability analysis. For the n̂-part of f , we
consider a series of angular Fourier modes for the distri-
bution of the director. In summary, we study solutions
of the form

f(r, n̂, t) = f0 + eik·r+λt
∑
m

gmeimϕ, (12)

where λ is the rate of amplification (Reλ > 0) or de-
cay (Reλ < 0) of the perturbation. Projecting back
the kinetic equation (6) in the mode e−ipϕ and choos-
ing k = kx̂, gives the eigenvalue problem for λ,

ikV
∑
m

Ipm(k)gm −Drp
2gp −

ikV

2
(gp+1 + gp−1) = λgp,

(13)

where the matrix elements Ipm(k) are given in terms of
the displacement ∆1 (see the Supplemental Material),
and the prefactor ik has been explicitly put to reflect the
effect of the divergence operator in the collision opera-
tor [Eq. (8)]. The eigenvalues λn can be obtained with
increasing number of angular Fourier modes. Figure 2
shows two cases, one that is stable and one where the
real part of an eigenvalue is positive, signaling the ap-
pearance of an instability, where the matrices have been
truncated to 7 modes (p = −3,−2, . . . , 3). For any num-
ber of modes, it is found that for k = 0 the eigenval-
ues are simply λn = −Drn

2, meaning that all modes
are stable except for one that is marginal, the density
mode. For finite but small wavevectors, the real part of
the density mode eigenvalue is quadratic in k. Then,
for the purpose of this letter, which is to show that
MIPS is predicted by kinetic theory, it is sufficient to
show that for small wavevectors the density mode eigen-
value can be positive, analysis that can be done using
perturbation theory. For that, a small k expansion of
the matrix elements is needed, which can be done an-
alytically using the explicit expression of ∆1 (see the
Supplemental Material). It is found that for Ipm(k = 0)
the only nonzero elements are when m = p ± 1, with

I±1,0 = ρ(2χ + ρχ′)πσ2/8, I0,±1 = 0, and Ip,p±1 =
ρχπσ2/8 for the rest. Also needed is dI00(k = 0)/dk =
i2σG(2ρχ + ρ2χ′)/π, where G ≈ 0.916 is the Catalan
constant. With these elements, perturbation theory gives

λ0 = V 2

2Dr

[
ρπσ2

4 (2χ+ ρχ′)
(
1− 16GDrσ/V π2

)
− 1
]
k2 +

O(k3). The spinodal density ρ∗ for MIPS is determined
by the change of sign of the k2 coefficient, resulting in
a value that grows with Dr. In the limit of large persis-
tence lengths (Dr → 0), where the present theory is valid,
ρ∗ is obtained from the reduced equation (5). Notably,
the spinodal density obtained from the heuristic analy-
sis of the effective velocity reduction coincides with that
obtained from the formal analysis of the kinetic equation.
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FIG. 2. Dynamical eigenvalues of the first 5 modes as a func-
tion of the wavevector k for Dr = 0.1 (ℓ = 10), χ = χhd, and
ρ = 0.32 (left) and ρ = 0.38 (right), obtained by truncating
the dynamical matrix to p = −3,−2, . . . , 3. The real (imagi-
nary) parts are shown with solid blue (dashed orange) lines.
Units have been chosen so that V = σ = 1.

Discussion. The kinetic theory presented here is ex-
pected to be a valid formalism for different regimes oc-
curring in active Brownian particles, and when additional
interactions with external fields or between particles are
considered. The only limitation is that the persistence
length is large and that no long-lived bound states are
formed, as happens for example in some non-reciprocal
interactions [51, 52]. As usual in kinetic theory, it is
necessary to assume absence of all or at least some cor-
relations in the precollisional state. Here, we were able
to build the theory assuming that there are no director-
director correlations, but that there are position correla-
tions, which were considered in the factor χ. To make
more quantitative predictions, it is crucial to evaluate
this factor. Note that no assumption has been made
about the postcollisional states, which are indeed highly
correlated.

The effective collision theory and the associated colli-
sion operator were obtained in the limit of infinite per-
sistence lengths. For a more complete theory, it becomes
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relevant to develop a systematic approach to derive cor-
rections for large but finite persistence lengths, where,
as an effect of rotational diffusion, colliding particles can
escape at different angles and with new directors, as in
the case of tumbling particles in an array of fixed obsta-
cles [53]. Formal methods like those used in Refs. [54, 55]
can be fruitful for this purpose. Heuristically, neverthe-
less, it is possible to advance that on average colliding
particles will escape earlier for finite persistence lengths.
This results in a less pronounced reduction of the effec-
tive velocity (4), implying that the spinodal density ρ∗

should grow with Dr, consistently with experiments and
simulations. This dependence of ρ∗ with Dr of kinematic
origin should be added to the dependence found above in
the linear stability analysis.

The application of the kinetic theory to an initially
homogeneous gas correctly predicts MIPS without any
ad-hoc hypothesis about the effective velocity. Rather,
its reduction by collisions appears naturally and the pre-
dicted spinodal density shows an excellent agreement
with the extrapolation of simulations to very large per-
sistence lengths. Finally, for a complete analysis of the
phase diagram, with the binodal curves besides the spin-
odal ones, it would be necessary to solve the stationary
long-time non-linear dynamics of the kinetic equation,
which will be the purpose of future work.
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[22] J. Bialké, H. Löwen, and T. Speck, Microscopic theory
for the phase separation of self-propelled repulsive disks,
Europhysics Letters 103, 30008 (2013).

[23] B. Hancock and A. Baskaran, Statistical mechanics and
hydrodynamics of self-propelled hard spheres, Journal
of Statistical Mechanics: Theory and Experiment 2017,
033205 (2017).

[24] R. Soto, Kinetic theory and transport phenomena (Ox-
ford University Press, 2016).

[25] I. S. Aranson and L. S. Tsimring, Pattern formation of
microtubules and motors: Inelastic interaction of polar
rods, Physical Review E 71, 050901 (2005).



6

[26] E. Bertin, M. Droz, and G. Grégoire, Boltzmann and hy-
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Appendix A: SUPPLEMENTAL MATERIAL

1. Explicit expressions for the displacements

Consider two ABP particles with directors n̂1,2 that
enter in contact with a relative vector r ≡ r2−r1 = σσ̂0.
For clarity, in this Supplementary Material, we will call
σ̂0 the initial relative unit vector and σ̂ the instan-
taneous relative unit vector during the collision. The
relative velocity prior to the collision is V (n̂2 − n̂1).
Then, the condition of collision is that the two parti-
cles are approaching, that is, (n̂2 − n̂1) · σ̂0 < 0. We
define the unit vector ẑ as parallel to (n̂2 − n̂1), that
is ẑ = (n̂2 − n̂1)/|n̂2 − n̂1| = (n̂2 − n̂1)/

√
2− 2n̂1 · n̂2,

and we define θ0 as the angle between σ̂0 and ẑ, that is,
cos θ0 = σ̂0 · ẑ. Note that the collision condition implies
that cos θ0 < 0. Similarly, we define the instantaneous
angle θ such that cos θ = σ̂ · ẑ

During the collision, the equations of motion of the two
particles are

ṙ1 = V n̂1 −N σ̂, (A1)

ṙ2 = V n̂2 +N σ̂, (A2)

where N is the normal that guarantees that they do not
penetrate, which is computed imposing that (ṙ2 − ṙ1) ·
σ̂ = 0, resulting in N = V (n̂1 − n̂2) · σ̂/2. The normal
vanishes for θ = π/2, which corresponds to the moment
of detachment of the two particles.

Adding (A1) and (A2), gives for the center of mass
R ≡ (r1 + r2)/2,

Ṙ = V (n̂1 + n̂2)/2. (A3)

For the relative vector, as the radial component is fixed
by the normal, the only relevant components are the tan-
gential ones. We define the unit vector θ̂ to be in the
same plane as ẑ and σ̂, but perpendicular to σ̂. We com-
plete the set of spherical unit vectors with ϕ̂ = σ̂ × θ̂.
Then, the tangential components for ṙ = ṙ2 − ṙ1 are

ṙ · ϕ̂ = V (n̂2 − n̂1) · ϕ̂ (A4)

= V |n̂2 − n̂1|ẑ · ϕ̂ (A5)

= 0 (A6)

and

ṙ · θ̂ = V (n̂2 − n̂1) · θ̂ (A7)

= V |n̂2 − n̂1|ẑ · θ̂, (A8)

σθ̇ = −V |n̂2 − n̂1| sin θ. (A9)

That is, the relative unit vector remains in the ẑ–σ̂0

plane, with the angle evolving according to

θ̇ = −V |n̂2 − n̂1| sin θ/σ. (A10)

This differential equation must be integrated from the
initial condition θ0 to the moment of detachment at π/2.
That gives the total collision time

∆tcol = − σ

V |n̂2 − n̂1|

∫ π/2

θ0

dθ

sin θ
(A11)

=
σ

V |n̂2 − n̂1|
log tan(θ0/2). (A12)

At the end of the collision the relative vector, charac-
terized by having θ = π/2 is given by

σ̂end =
σ̂0 − (σ̂0 · ẑ)ẑ
|σ̂0 − (σ̂0 · ẑ)ẑ|

(A13)

=
σ̂0 − cos θ0ẑ

sin θ0
. (A14)

Hence, during the collision, the relative vector has expe-
rienced a total displacement

∆rcol = σ(σ̂end − σ̂0). (A15)

At the same time, during the collision, the center of mass
has displaced

∆Rcol = V (n̂1 + n̂2)∆tcol/2, (A16)

where we used Eq. (A3). With this, we obtain the total
travelled distance by the particles during the collision

∆rcol1 = ∆Rcol −∆rcol/2, (A17)

∆rcol2 = ∆Rcol +∆rcol/2. (A18)

Now, we are in condition to write down the effective
displacements ∆i as the total travelled distance during
the collision ∆rcoli , minus what they would have trav-
elled during the same time as if there were have been no
collision V n̂i∆tcol, which simplify to

∆1 = −σ
σ̂end − σ̂0

2
− V∆tcol

n̂1 − n̂2

2
, (A19)

∆2 = −∆1. (A20)

Recalling the expressions for ∆tcol, σ̂end, ẑ, and θ0, we
notice that effective displacements depend only on n̂2−n̂1

and σ̂0 · (n̂2 − n̂1). We also note that, by using (A12),
the effective displacements do not depend on V and are
proportional to the diameter σ.

2. Parametrization in two spatial dimensions

In three dimensions, the instantaneous unit relative
vector σ̂ is parametrized by θ ∈ [0, π], and the az-
imuthal angle φ ∈ [0, 2π]. In two dimensions, there
is no azimuthal angle and now θ lies in the full range
[0, 2π]. Then, two situations can can take place: if
π/2 ≤ θ0 < π, at the end of the collision θend = π/2, but
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if π < θ0 ≤ 3π/2, at the end of the collision θend = 3π/2.
Consistently, to be valid in all cases in 2D, Eq. (A12) has
to be modified to

∆tcol =
σ

V |n̂2 − n̂1|
log | tan(θ0/2)|. (A21)

Writing the directors as n̂i = (cosϕi, sinϕi) and defin-
ing the rotation matrix

R(α) =

(
cosα − sinα
sinα cosα

)
, (A22)

we have

ẑ =

(
cosϕ2 − cosϕ1√
2− 2 cos(ϕ2 − ϕ1)

,
sinϕ2 − sinϕ1√
2− 2 cos(ϕ2 − ϕ1)

)
,

(A23)

σ̂0 = R(−θ)ẑ, (A24)

and

σ̂end =

{
R(−π/2)ẑ, π/2 ≤ θ0 < π

R(π/2)ẑ, π < θ0 ≤ 3π/2.
(A25)

With this parametrization in terms of ϕ1, ϕ2, and θ (now, the angle at the beginning of the collision), the different
expressions reduce to

|n̂2 − n̂1| =
√
2− 2 cos(ϕ1 − ϕ2), (A26)

(n̂2 − n̂1) · σ̂ =
√
2− 2 cos(ϕ1 − ϕ2) cos θ, (A27)

|(n̂2 − n̂1) · σ̂|∆1 =
σ| cos θ|

2

{[
cos(ϕ2 − θ)− cos(ϕ1 − θ) + (cosϕ2 − cosϕ1) log | tan(θ/2)| ± (sinϕ1 − sinϕ2)

]
x̂

+
[
sin(ϕ2 − θ)− sin(ϕ1 − θ) + (sinϕ2 − sinϕ1) log | tan(θ/2)| ± (cosϕ2 − cosϕ1)

]
ŷ

}
, (A28)

where the positive sign is for π/2 < θ < π and the negative one for π < θ < 3π/2.

3. Linear stability analysis

Expansion in Fourier modes

We consider the expansion

f(r, n̂, t) = f0 + f1(r, n̂, t), (A29)

where f0 = ρ/(2π) is the reference isotropic and homo-
geneous distribution in 2D, and the perturbation is

f1(r, n̂, t) = eik·r+λt
∑
m

gmeimϕ. (A30)

Eigenvalue problem

Substituting this expansion, with k = kx̂, in the ki-
netic equation

∂f

∂t
+ V n̂1 · ∂

∂r1
f = Dr∇2

n̂1
f + J [f, f ], (A31)

gives for the first three terms

eik·r+λt
∑
m

gm

[
λ+

ikV

2

(
eiϕ1 + e−iϕ1

)
−Drm

2

]
eimϕ1 ,

(A32)

where we used that k · n̂1 = kn1x = k cosϕ1. Pro-
jecting into the p Fourier mode, that is, computing

(2π)−1
∫ 2π

0
dϕ1e

−ipϕ1 over Eq. (A32) results in

λgp +
ikV

2
(gp+1 + gp−1)−Drp

2gp, (A33)

where we have factored out the exponential prefactor.
To evaluate the contribution of collisions, we first note

that, as usual in Enskog theories, the collision operator
is not bilinear because χ depends on the local density.
Indeed,

χ(r) = χ(ρ(r)) (A34)

= χ(ρ+ eik·rρ1) (A35)

≈ χ(ρ) + χ′(ρ)eik·rρ1, (A36)

where we linearized for small perturbations, ρ1 = 2πg0 is
the local correction of the density, and used the notation
χ′ = dχ/dρ.

With these elements, after integrating out all the Dirac delta functions of J [f ] in Eq. (7) of the main text, one
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obtains to linear order

J [f0 + f1] =

∫ {
χ(ρ)f0

[
f1(n̂1) + eik·σσ̂f1(n̂2)

]
+ χ′(ρ)f2

0 ρ1e
ik·σσ̂/2

}
×
(
e−ik·∆1 − 1

)
|V σd−1(n̂2 − n̂1) · σ̂|Θ[−(n̂2 − n̂1) · σ̂]dn̂2dσ̂, (A37)

where we also factored out the exponential prefactor.
Replacing the expansion (A30) and using the parametrization for n̂i and σ̂ given in the previous section, we project

into the p Fourier mode, that is we compute (2π)−1
∫ 2π

0
dϕ1e

−ipϕ1J [f0 + f1], for k = kx̂:

ikV σ

(2π)2

∫ 2π

0

dϕ1

∫ 2π

0

dϕ2

∫ 3π/2

π/2

dθe−ipϕ1

{
χ(ρ)ρ

∑
m

[
eimϕ1 + eik·σσ̂eimϕ2

]
gm + χ′(ρ)ρ2g0e

ik·σσ̂/2

}

×
(
e−ik·∆1 − 1

ik

)
|(n̂2 − n̂1) · σ̂| = ikV

∑
m

Ipm(k)gm, (A38)

which defines the matrix elements Ipm(k). We used that the common factor
(
e−ik·∆1 − 1

)
in Eq. (A37) vanishes in

the limit k → 0, consistent with the divergence operator in front of the collision term in Eq. (8) of the main text, to
put an explicit prefactor k in Eq. (A38). With this choice, the matrix elements remain finite in the limit k → 0 and
can be evaluated for any value of k by direct numerical integration using the explicit form of ∆1.

Collecting (A33) and (A38), the eigenvalue problem
for the growth rates λ reads

ikV
∑
m

Ipm(k)gm −Drp
2gp −

ikV

2
(gp+1 + gp−1) = λgp,

(A39)

which can be written as∑
m

Λpm(k)gm = λgp. (A40)

Largest eigenvalue for small wavevectors

The structure of the eigenvalue problem (A39) allows
to analyze the eigenvalues perturbatively in powers of k.
Specifically, we are interested in the largest eigenvalue,
which can become positive, indicating the emergence of
an instability. For that, we first expand the matrix Λ in
powers of k, Λ = Λ(0) + kΛ(1) + k2Λ(2) + . . . , where

Λ(0)
pm = −Drp

2δpm, (A41)

Λ(1)
pm = iV Ipm(0)− iV

2
(δp,m+1 + δp,m−1) , (A42)

Λ(2)
pm = iV I ′pm(0), (A43)

with I ′pm = dIpm/dk.

The eigenvalue problem then reads

(Λ(0)+kΛ(1)+k2Λ(2)+. . . )(g(0)+kg(1)+k2g(2)+. . . ) =

(λ(0)+kλ(1)+k2λ(2)+ . . . )(g(0)+kg(1)+k2g(2)+ . . . ),
(A44)

which can be analyzed order by order. To order k0, the
equation reduces to

Λ(0)g(0) = λ(0)g(0), (A45)

which has the simple solution λ
(0)
n = −Drn

2, for n ∈ Z.
For n = 0, the eigenvalue vanishes at k = 0, associated
to the mass conservation. All the others are strictly neg-
ative. By continuity, the n = 0 eigenvalue is the only one
that can become positive for small k. We will therefore
study this eigenvalue to different orders in k. For sim-
plicity, we will omit in what follows the subscript n. The
corresponding eigenvector is simply

g(0)p = δp,0. (A46)

To order k1, Eq. (A44) reads

Λ(0)g(1) = λ(1)g(0) − Λ(1)g(0), (A47)

where we used that λ(0) = 0. The hermitian matrix Λ(0)

is singular. Hence, for this equation to have a solution,
the right hand side must be orthogonal to its nullspace,
g(0). That is, we must have

λ(1)g(0)T g(0) − g(0)TΛ(1)g(0) = 0, (A48)

where T means transpose. Below, we show that Λ(1)

vanishes identically on the diagonal and the only non-
zero elements are for p = m± 1. This implies that

λ(1) = 0 (A49)

and that the solution of Eq. (A47) is

g(1)p = Λ
(1)
p0 (δp,1 + δp,−1)/Dr. (A50)
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Finally, to order k2, Eq. (A44) simplifies to

Λ(0)g(2) = λ(2)g(0) − Λ(1)g(1) − Λ(2)g(0). (A51)

Again, for this equation to have a solution, the right hand
side must be orthogonal to g(0), implying that

λ(2) = g(0)TΛ(1)g(1) + g(0)TΛ(2)g(0), (A52)

where we used that g(0)T g(0) = 1.

In summary, the largest eigenvalue is

λ =

(
Λ
(1)
0,1Λ

(1)
1,0 + Λ

(1)
−1,0Λ

(1)
0,−1

Dr
+ Λ

(2)
0,0

)
k2 +O(k3),

(A53)

where we used the explicit forms of g(0) and g(1)

[Eqs. (A46) and (A50)] to write the result in terms of
the matrix elements. Hence, to determine if it is possible
for λ to become positive, we need to evaluate Λ(1) and

the matrix element Λ
(2)
0,0.

It is possible to obtain exact analytical expressions for the relevant terms in the matrix expansion. Indeed, taking
the limit,

Ipm(0) = − σ

(2π)2

∫ 2π

0

dϕ1

∫ 2π

0

dϕ2

∫ 3π/2

π/2

dθe−ipϕ1

[
ρχ(eimϕ1 + eimϕ2) + ρ2χ′δm0

]
|(n̂2 − n̂1) · σ̂|∆1x. (A54)

With the explicit expression Eq. (A28), it is direct to obtain that

Ip,p+1(0) =
ρπσ2

8
×


2χ+ ρχ′ if p = −1

0 if p = 0

χ otherwise

, Ip,p−1(0) =
ρπσ2

8
×


2χ+ ρχ′ if p = 1

0 if p = 0

χ otherwise

, (A55)

while all other elements vanish. With the second contribution in Eq. (A42), it results that, as advanced, Λ(1) is not
vanishing only for p = m± 1.

Finally, we also need Λ
(2)
0,0 = iV I ′0,0(0). It is given by

Λ
(2)
0,0 =

V σ

2(2π)2
(2ρχ+ ρ2χ′)

∫ 2π

0

dϕ1

∫ 2π

0

dϕ2

∫ 3π/2

π/2

dθ|(n̂2 − n̂1) · σ̂|∆1x(σx −∆1x) (A56)

= −2V σG(2ρχ+ ρ2χ′)/π, (A57)

where G ≈ 0.916 is the Catalan constant.
Substituting these results in Eq. (A53) gives

λ =
V 2

2Dr

[
ρπσ2

4
(2χ+ ρχ′)

(
1− 16GDrσ/V π2

)
− 1

]
k2 +O(k3). (A58)

The eigenvalue becomes positive when the square bracket vanishes,

ρπσ2

4
(2χ+ ρχ′)

(
1− 16GDrσ/V π2

)
− 1 = 0. (A59)

Its solution gives the spinodal transition density ρ∗. In the limit of large persistence (Dr → 0), the equation for ρ∗

reduces to

ρπσ2

4
(2χ+ ρχ′)− 1 = 0, (A60)

which is the same to that found when analyzing the effective velocity reduction.
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